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Abstract
Integrating convolutional neural networks (CNNs) and transformers has notably improved lightweight single image super-
resolution (SISR) tasks. However, existing methods lack the capability to exploit multi-level contextual information, and 
transformer computations inherently add quadratic complexity. To address these issues, we propose a Joint features-Guided 
Linear Transformer and CNN Network (JGLTN) for efficient SISR, which is constructed by cascading modules composed of 
CNN layers and linear transformer layers. Specifically, in the CNN layer, our approach employs an inter-scale feature integra-
tion module (IFIM) to extract critical latent information across scales. Then, in the linear transformer layer, we design a joint 
feature-guided linear attention (JGLA). It jointly considers adjacent and extended regional features, dynamically assigning 
weights to convolutional kernels for contextual feature selection. This process garners multi-level contextual information, 
which is used to guide linear attention for effective information interaction. Moreover, we redesign the method of computing 
feature similarity within the self-attention, reducing its computational complexity to linear. Extensive experiments shows 
that our proposal outperforms state-of-the-art models while balancing performance and computational costs.

Keywords Image super-resolution · Multi-level contextual information · Linear self-attention · Lightweight network

1 Introduction

Single image super-resolution (SISR) aims to restore high-
resolution (HR) images from their corresponding low-res-
olution (LR) counterparts. This technique holds paramount 
importance in diverse applications such as remote sens-
ing [1], medical imaging [2], hyperspectral imaging [3], 
and surveillance [4]. Despite its significance, the inherent 
ill-posedness of SISR renders accurate image restoration 

challenging. The advent of convolutional neural networks 
(CNNs) introduced a transformative approach, facilitating 
a direct mapping from LR to HR images. Dong et al. [5] 
pioneered this arena with their SRCNN model, surpassing 
conventional methods. This led to the proliferation of CNN 
models, further refining SISR methodologies. Nonetheless, 
their extensive computational demands hinder efficient 
deployment on edge devices, as shown in Fig. 1.

To address the computational and storage constraints of 
edge devices, recent research on SISR is inclining towards 
the development of lightweight neural network architec-
tures. CNN-based strategies have prevailed, frequently 
integrating residual or densely connected blocks, often 
paired with attention mechanisms, to enhance performance. 
For instance, PAN [6] combined attention mechanisms 
with residual learning, improving performance. However, 
CNNs, with their inherent limitations in extracting local 
features, struggled with long-distance dependencies. Con-
sequently, researchers turned to the transformer for SISR 
tasks. SwinIR [7] stood out by incorporating transformer 
components, establishing a solid baseline for image resto-
ration, and emphasizing transformers’ potential. ESRT [8] 
blended CNNs and transformers to develop a lightweight 
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architecture, leading to an efficient SISR solution. Yet, both 
CNNs and Transformers often overlook neighborhood and 
contextual features. Earlier studies posited that neurons 
should adapt based on behavior. [9] devised a dynamic con-
volution mechanism adjusting weights per contextual cues. 
[10] unveiled a context-gated convolution, adaptively alter-
ing convolutional kernel weights via context. Recognizing 
that pixels in images aren’t isolated, it’s understood that 
they interact with their surroundings. Notably, the intrinsic 
quadratic complexity of transformers posed computational 
challenges. [11] addressed this by representing self-attention 
as a linear dot product of kernel feature maps, thus reduc-
ing complexity to linear levels. [12] utilized a binarization 
paradigm, approximating linear complexity attention mecha-
nisms through binary code dot products.

Inspired by prior work, we propose the joint feature-
guided linear transformer and CNN for an efficient image 
super-resolution network (JGLTN). Our approach integrates 
multi-level contextual feature to guide the self-attention 
mechanism and refines feature similarity calculations, aim-
ing to reduce the transformer’s complexity from quadratic 
to linear. JGLTN comprises several CNN layers and linear 
transformer layers cascades, each consisting of a CNN layer 
and a linear transformer layer. Within the CNN layer, we 
introduce an inter-scale feature integration module (IFIM). 
This module utilizes the latent information mining com-
ponent (LIMC) to extract features, emphasizing valuable 
information while discarding redundancies. For the linear 
transformer layer, we put forth the joint feature-guided lin-
ear attention (JGLA), anchored by the multi-level contextual 
feature aggregation (MCFA) block, to effectively integrate 
adjacent, extended regional, and contextual features. To 
further optimize self-attention, we revisit feature similarity 

computations, ensuring maintained linear complexity. Our 
primary contributions are summarized as follows: 

(1) We introduce a latent information mining component 
(LIMC) that filters redundant information and flexibly 
learns local data. Concurrently, we specially design an 
inter-scale feature integration module (IFIM) to metic-
ulously combine LIMC, ensuring cross-scale feature 
learning.

(2) We develop a joint feature-guided linear attention 
(JGLA), utilizing the designed multi-level contextual 
feature aggregation (MCFA) to synthesize local and 
extended regional features and adaptively adjust the 
weights of modulation convolution kernels, enabling 
the selection of required contextual information. This 
approach facilitates self-attention in guiding the infor-
mation exchange. Additionally, we revisit the feature 
similarity computation method in attention mecha-
nisms, reducing the computational complexity of self-
attention to linear complexity.

(3) We construct a joint features-guided linear transformer 
and CNN for efficient image super-resolution network 
(JGLTN). Experiments on five benchmark datasets 
show that our approach achieves an ideal balance 
between the computational cost and performance of 
the model.

2  Related work

2.1  Efficient SISR model

Deep learning models such as EDSR [13], ENLCN [14], 
and DAT [15] have showcased superior performance SISR. 
However, their high parameter complexity and computa-
tional demands limited their practical deployment. As a 
result, recent research emphasized lightweight SR models. 
For example, CARN [16] enhanced efficiency through cas-
caded residual networks, IMDN [17] leveraged distillation 
and fusion modules for feature aggregation, and RFDN [18] 
applied channel splitting and fusion residual connection 
strategies. Similarly, LatticeNet [19] simplified model com-
plexity with its lattice block and backward feature fusion; 
RepSR [20] refined SR by reintroducing BN and employ-
ing structural re-parameterization; FDIWN [21] integrated 
wide-residual distillation connection and self-calibration 
fusion to capture multi-scale details. LatticeNet-CL [22] 
enhanced performance using its novel lattice block (LB) and 
a contrastive loss, while GASSL [23] innovated in struc-
tured pruning with a sparse structure alignment technique. 
AsConvSR [24] offered a divide-and-conquer tactic in SR by 
modulating convolution kernels based on input features, cul-
minating in a swift and compact super-resolution network.

Fig. 1  Model inference time comparison on Set5 dataset(x4)
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The advent of attention mechanisms significantly 
advanced lightweight SISR tasks. MAFFSRN [25] incor-
porated multi-attention blocks (MAB) into a feature extrac-
tion group (FFG) to bolster feature fusion. Drawing from 
attention mechanisms, PAN [6] pioneered a pixel attention 
(PA) strategy, enabling SR with reduced parameters. This 
method seamlessly merged PA attention into the primary and 
reconstruction branches, yielding two innovative building 
blocks. Similarly, A2N [26] employed an attention-in-atten-
tion strategy, which enabled more proactive pixel attention 
adjustments and enhanced the utilization and comprehension 
of attention tasks within SISR. PFFN [27] unveiled a pro-
gressive attention module to optimize the potential of feature 
mapping by broadening the receptive field of individual lay-
ers. RLFN [28] presented a distinctive residual local feature 
network, refining feature aggregation and re-examining the 
contrastive loss. FMEN [29] devised an enhanced residual 
block paired with a sequential attention branch, accelerat-
ing network inference. However, many current CNN-based 
lightweight SISR models might treat all features uniformly, 
neglecting the critical nuances of finer details, which could 
compromise the network’s reconstruction proficiency.

2.2  Vision transformers

Recently, the Vision Transformer (ViT) has demonstrated 
robust potential in low-level visual tasks such as image 
denoising [30], deblurring [31], enhancement [32], and 
dehazing [33]. The exceptional ability of ViT to capture 
long-range information has also been evident in SISR tasks. 
Precisely, the HAT [34], by integrating channel attention 
with window self-attention strategies, had further enhanced 
pixel reconstruction accuracy. DAT [15] alternated between 
spatial and channel attention within transformer blocks and 
introduced an SGFN network to integrate intra-module fea-
tures. While transformer-based approaches have achieved 
significant results, their deployment in lightweight SISR 
tasks remains challenging.

Consequently, recent research is dedicated to integrating 
transformers into lightweight SISRs. SwinIR [7], based on 
the Swin Transformer [35], designed a reconstruction net-
work comprising multiple residual swin transformers and 
optimized it to a lightweight version, demonstrating impres-
sive reconstruction outcomes. ESRT [8] developed an efficient 
multi-head transformer structure for SISR, which significantly 
reduced memory consumption, thereby enhancing feature 
representation capabilities. To further capture long-distance 
dependencies, ELAN [36] introduced a novel multi-scale self-
attention mechanism that employed different window sizes 
for attention computation. NGswin [37], built on SwinIR, 
proposed a method that interacted via sliding window self-
attention to extend degradation areas, integrating N-Gram 
into SISR and achieving an efficient SR network. These 

transformer-based lightweight networks have further advanced 
the performance of SISR tasks.

Introducing the Transformer increased computational 
demands due to the quadratic complexity of the self-attention 
mechanism. Addressing this issue, researchers have explored 
various linear ViT methodologies that capitalize on linear 
attention to reduce complexity to a linear magnitude. Notable 
studies [11, 38–42] have adopted kernel-based linear attention 
strategies to bolster ViT efficacy. These methods eschewed the 
softmax function, refined computational efficiency by reor-
dering the self-attention computation, and leveraged either 
kernel functions or comprehensive self-attention matrices. 
Specifically, [11, 38] managed to attain a linear complexity, 
preserving a performance on par with the conventional ViT 
by transforming the softmax-based self-attention’s exponen-
tial term using kernel functions and modifying the calculation 
sequence. Additionally, [41, 42] harnessed low-rank approxi-
mation and sparse attention to further optimize linear ViT’s 
proficiency. In this paper, we reassess feature similarity com-
putation for token similarities, creating a linear self-attention 
mechanism. This mechanism bypasses the softmax procedure 
and reaches linear computational complexity, curtailing com-
putational expenses while upholding superior performance.

3  Approach

3.1  Network architecture

We propose a joint feature-guided linear transformer and CNN 
for efficient SISR (JGLTN). As depicted in Fig. 2, JGLTN 
comprises multiple CNN layers cascaded with linear trans-
former layers, and it further integrates two reconstruction mod-
ules. The CNN layers primarily focus on extracting beneficial 
cross-scale features while filtering out redundant ones. On 
the other hand, the linear transformer layers emphasize amal-
gamating adjacent, extended regional, and contextual features. 
This ensures the transformer not only boasts global modeling 
prowess but also excels in joint feature modeling, all while 
reducing the computational complexity of the transformer to 
a linear scale.

Given an input ILR , the size is initially modified through a 
convolution fconv to obtain the shallow feature I0.

Subsequently, I0 is utilized as the input. The process involv-
ing n cascaded CNN layers and linear transformer layer can 
be denoted as:

(1)I0 = fconv(ILR)

(2)In = �n(�n−1(...(�1(I0))))
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where each � i can be represented as the i-th CNN layer f i
CNN

 
and channel expansion, as well as the i-th linear transformer 
layer f i

LT
 and channel recovery operations, collectively 

depicting the entire process as:

where Ii−1 denotes the output from the (i-1)-th CNN layers 
and linear transformer layer, and C

exp
 and Crec respectively 

represent channel expansion and channel recovery, specifi-
cally through convolutional layers that alter the channel 
dimensions of features. In JGLTN, C

exp
 expands the channel 

number to 144, while Crec reduces the channel count back to 
48. Ultimately, both In and ILR are subjected to convolutional 
upsampling to finalize the image reconstruction.

where frec represents a reconstruction module that encom-
passes a PixelShuffle operation and a 3x3 convolution opera-
tion, ISR stands for the reconstructed high-resolution image.

For the proposed JGLTN network, its loss function L can 
be expressed as:

where fJGLTN(⋅) represents the network model we proposed, 
Ii
LR

 is the input low-resolution image, Ii
HR

 is its corresponding 
high-resolution ground truth image, Θ denotes the learnable 
parameters within the network, and m signifies the number 
of image pairs in the dataset.

3.2  CNN layer

Within this layer, we present the inter-scale feature integra-
tion module (IFIM) designed to capture intricate feature 

(3)� i = Crec(f
i

LT
(C

exp
(f i

CNN
(Ii−1))))

(4)ISR = frec(In) + frec(ILR)

(5)

L(Θ) = argmin
Θ

1

m

m∑

i=1

‖‖‖fJGLTN(I
i
LR
) − Ii

HR

‖‖‖1

= argmin
Θ

1

m

m∑

i=1

‖‖‖I
i
SR

− Ii
HR

‖‖‖1

details. As depicted in Fig. 3, the primary components of 
inter-scale feature integration module include two latent 
information mining component (LIMC) and a mechanism 
for cross-scale feature learning.

3.2.1  Inter‑scale feature integration module

CNN-based models are notably adept at feature extrac-
tion. However, they often incorporate superfluous features. 
Furthermore, the receptive field of CNNs is inherently 
restricted, but utilizing features from multiple scales proves 
crucial for understanding intricate details. To tackle this, we 
introduce the inter-scale feature integration module (IFIM). 
This module amalgamates a latent information mining com-
ponent (LIMC) with a cross-scale learning mechanism and 
stride convolution. Such a synthesis guarantees the model’s 
proficiency in pinpointing and assimilating valuable features 
across varied scales.

Fig. 2  Overall framework of 
proposed networks (JGLTN). It 
consists of a cascade of CNN 
layers and linear transformer 
layers

Fig. 3  Structure of the inter-scale feature integration module (IFIM), 
which is composed of the latent information mining component 
(LIMC), is used to filter unnecessary features and extract valuable 
information
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Specifically, inter-scale feature integration module (IFIM) 
bifurcates the input into two branches. One branch retains 
the original feature dimensions, making selections from the 
native features. The other branch expands its receptive field 
to learn features within a larger spatial context. We articulate 
this entire process as

Where f
RB

 represents a residual block. For the shallow fea-
ture input, I0 , features are first extracted through a founda-
tional residual block, followed by feature selection using our 
proposed latent information mining component (LIMC). f

CL
 

corresponds to a learnable upsampling [43]. For f
CL

 , a mask 
is predicted through a convolution layer, representing the 
relationship between each original resolution pixel and its 
neighboring pixels; the original pixels are weighted sums of 
their neighborhood pixels, with weights provided by this 
mask. Subsequently, an unfold operation is used to expand 
the tensor. Essentially, this operation extracts a 3x3 neigh-
borhood around each point, stretches these neighborhoods 
into one-dimensional vectors, and reshapes them to be 
weighted by the mask, allowing each pixel and its neighbor-
hood information to be weighted by the corresponding 
weights in the mask. Finally, a summing operation aggre-
gates the weighted neighborhood information of each pixel, 
resulting in a high-resolution output. Thus, it guides the 
transformation of features in the original feature map within 
a larger receptive field. This is followed by a stride convolu-
tion f

stride
 with a stride of 2, residual connection, and a Sig-

moid function f
sig

 . fLIMC is the latent information mining 
component (LIMC), further detailed in the ensuing segment. 
The cross-scale learning mechanism integrates information 
across different scales, enabling the network to better under-
stand the structure within images.

3.2.2  Latent information mining component

Building on our prior research in the SISR task, we observe 
a tendency for reconstructed images to exhibit over-smooth-
ing. This problem emerges mainly because the model indis-
criminately processes all input image features, neglecting 
that certain features are pivotal for recovering image texture 
details. To address this, we introduce the latent informa-
tion mining component (LIMC), which emphasizes texture 
details, as illustrated in Fig. 3. The underlying principle of 
latent information mining component (LIMC) is to filter 
out redundant features by generating masks, thereby better 
preserving vital image details. Initially, input features are 
processed through convolutions and activation functions, 
yielding mixed features. Following this, a 1x1 convolution is 
utilized to modify the channel count of these mixed features 

(6)
IIFIM = fLIMC(fLIMC(fRB(I0)) × (f

sig
(f

stride
(f

CL
(I0)) + I0))) + I0

to three. Weights are assigned to each channel via a softmax 
operation, efficiently discarding superfluous features.

where fCR denotes the combination of convolution and acti-
vation functions, the output feature I ′

CR
 is produced. Subse-

quently, a 1x1 convolution, represented by f1×1 , generates a 
mask. After a softmax operation fSM , this mask filters out 
superfluous features. The resulting weight mask is then mul-
tiplied with the input I ′

CR
 to retain sections of the original 

feature that contribute significantly to texture detail. Finally, 
an additional convolution layer and a channel spatial atten-
tion mechanism fCSAM using 3D convolution are introduced 
to refine features further. CSAM utilizes the channel-spatial 
attention from the HAN [44], incorporating responses from 
all dimensions of the feature maps. A 3D convolutional 
layer is used to capture the joint channel and spatial features 
within the feature maps, generating an attention map. This 
is achieved by applying a 3D convolutional kernel to the 
data cube formed by multiple adjacent channels of the input 
features. The 3D convolutional kernels, sized 3x3x3 with a 
stride of 1, convolve with three consecutive groups of chan-
nels, each interacting with a set of 3D convolutional ker-
nels, to produce three sets of channel-spatial attention maps. 
Through this process, CSAM is capable of extracting robust 
representations to describe inter-channel and intra-channel 
information across consecutive channels. A residual con-
nection complements this to ensure the effective operation 
of the latent information mining component (LIMC). As a 
result, within inter-scale feature integration module (IFIM), 
latent information mining component (LIMC) retains the 
most valuable features via the weight mask.

3.3  Linear transformer layer

The powerful global feature learning of transformers pre-
sents a novel approach for the SISR task. However, trans-
formers currently employed in SISR often overlook adjacent 
and extended regional features, and contextual features while 
also having a high computational complexity. To address 
these issues, we propose a joint-feature guided linear atten-
tion (JGLA). Within JGLA, we employ a multi-level con-
textual feature aggregation (MCFA) to obtain joint features. 
This block carefully considers adjacent, extended regional, 
and contextual features, optimizing the surrounding and con-
textual information of a given pixel during feature recon-
struction. Furthermore, refining the self-attention mecha-
nism, we streamlined the vector similarity computation, 
redesigning the self-attention calculations and effectively 
transitioning the complexity to a linear scale.

(7)I
�

CR
=fCR(ICR)

(8)ILIMC =fCSAM(fCR(fSM(f1×1(I
�

CR
)) × I

�

CR
)) + ICR
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3.3.1  Multi‑level contextual feature aggregation

Transformers are powerful at global feature modeling, both 
overlook the significance of adjacent, extended regional, and 
contextual features. Typically, in traditional transformers, the 
self-attention mechanism derives self-attention values from 
three linear layers following linear embedding. Our objective 
is for our transformer to handle adjacent, extended regional, 
and contextual features. As a result, we have modified the 
linear embedding layer within the transformer, replacing it 
with our proposed multi-level contextual feature aggrega-
tion (MCFA).

Multi-level contextual feature aggregation (MCFA) is 
adept at harnessing adjacent, extended regional, and con-
textual features. Specifically, the MCFA comprises a 3x3 
convolution, a dilated convolution, and a context modulation 
convolution (CMC), as illustrated in Fig. 4. For the input 
feature IInput , the entire process can be expressed as:

 where fadj represents a standard 3x3 convolution, which 
learns local features from adjacent feature vectors, fext is a 
dilated convolution, capturing a broader receptive field to 
grasp surrounding features better. After concatenating fadj 
and fext , a ReLU operation is applied.

Subsequently, global contextual information is adaptively 
learned through fCMC . In the CMC, for input features of size 
c × h × w , a max pooling operation first reduces the dimen-
sions to k × k . A shared-parameter linear layer projects the 
spatial location information into a vector of size (k × k)∕2 , 
from which new channel weights are generated. To alleviate 
the time-consuming core modulation caused by a large num-
ber of channels, the concept of grouped convolution is 

(9)IMCFA = fCMC(frelu(Concat(fadj(IInput), fext(IInput))))

applied to the linear layer, resulting in an output dimension 
o and facilitating channel interaction. Subsequently, another 
linear layer produces tensor outputs in two directions, 
o × 1 × k × k and 1 × c × k × k . These two tensors are added 
element-wise to form our modulated convolutional kernel, 
resized to o × c × k × k , to simulate the convolution kernel 
in actual convolution operations. The simulated modulated 
convolutional kernel is then multiplied by an adaptive mul-
tiplier W and reshaped. W is an adaptive multiplier, match-
ing the size of the tensor, and upon multiplication with the 
tensor, it transforms into a set of trainable type parameters 
that are bound to the module, allowing the weights of W to 
be automatically learned and modified during training to 
optimize the model. For the input Xinput , the unfold function 
extracts sliding features of size k × k , linking the context 
between different pixel features, resulting in a feature map 
size of X�

input
∈ k2c × hw . Ultimately, a fully comprehended 

modulated convolutional kernel W’ can use the input fea-
tures to obtain context guidance, adaptively capturing the 
required contextual information for key pixels.

3.3.2  Joint‑feature guided linear attention

To reduce the computational complexity of the self-atten-
tion mechanism, we introduce the linear transformer. The 
essence of linear attention lies in decomposing the simi-
larity measure function into distinct kernel embeddings, 
denoted as S(Q,K) ≈ Φ(Q)Φ(K)T . Consequently, leverag-
ing the properties of matrix calculations, we can rearrange 
the computation order to Φ(Q)(Φ(K)TV) . The complexity of 
the attention mechanism is no longer the token length but 
depends on the feature dimension. Here, the feature dimen-
sion is much smaller than the token length. We redesign the 

Fig. 4  Structure of the linear 
transformer layer, including 
multi-level contextual feature 
aggregation (MCFA), joint 
feature guided linear attention 
(JGLA) and contextual informa-
tion perceptron
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similarity computation between vector pairs, formulating a 
linear attention apt for the SISR task. This offers a substi-
tute for conventional softmax-based attention, enhancing 
performance outcomes. Specifically, the dot product of two 
vectors, v1 and v2 , is defined as:

where � represents the angle between vector pairs, conse-
quently, the angle between vector pairs can be expressed as:

where < ⋅ > denotes the inner product and ‖⋅‖ signifies the 
Euclidean norm. Thus, the range of � is [0,�] . We incorpo-
rate this angular calculation into the similarity computation 
between the Q and K values in the attention mechanism, 
articulated as:

We confine the output range of S(Q, K) to [0, 1]. If the dis-
tance between Q and K decreases, the angular distance � 
also decreases, approaching � , making S(Q, K) near 1. On 
the other hand, as the distance between Q and K grows, � 
increases, leading Sim(Q, K) to approach 0, which signifies 
a diminished similarity between Q and K.

Substituting Eq. 10 into Eq. 11, we obtain:

 To simplify Eq. 10, we employ trigonometric calculations 
and infinite series expansion.

In this configuration, (Q ⋅ KT ) denotes a normalization oper-
ation 

�
⟨Q,K⟩

‖Q‖⋅‖K‖

�
 . As observed from the above equation, the 

first term can serve as a similarity measure in linear attention 
with a complexity of O(n). The latter term, being of a higher 
order, introduces greater complexity. To tailor our linear 
attention mechanism for the SISR task, we propose employ-
ing a linear expansion approach. Given that our Q and K are 
near zero, we suggest retaining only the first linear term and 
discarding the higher-order terms. This ensures linear com-
plexity conservation while sidestepping additional complex-
ity induced by elevated order elements. Moreover, extant 

(10)v1 ⋅ v2 = ‖v1‖ ⋅ ‖v2‖ cos �

(11)�(v1, v2) = arccos

� ⟨v1, v2⟩
‖v1‖ ⋅ ‖v2‖

�

(12)S(Q,K) = 1 −
1

�
⋅ �(Q,K)

(13)S(Q,K) = 1 −
1

�
arccos

�
⟨Q,K⟩

‖Q‖ ⋅ ‖K‖

�

(14)

S(Q,K) = 1 −
1

�

(
�

2
− arcsin(Q ⋅ KT )

)

=
1

2
+

1

�
⋅ (Q ⋅ KT )

+
1

�
⋅

∞∑

t=1

(2t)!

22t(t!)2(2t + 1)
(Q ⋅ KT )2t+1

studies suggest that softmax-based attention can generate a 
full-rank attention map, mirroring model feature diversity. 
However, linear attention cannot yield a full-rank attention 
map [45]. As a countermeasure, we introduce a DWconv, 
reviving the rank of the attention matrix and ensuring feature 
diversity.

Therefore, our attention mechanism can be described 
as:

Given that 1
2
⋅ V +

1

�
⋅ Q ⋅ (KT

⋅ V) is the linear term from 
Eq. 13 and fDW represents a depthwise separable convolu-
tion to achieve a full-rank attention matrix, thereby enriching 
feature diversity. Consequently, the final transformer layer 
consists of two joint feature-guided linear attention (JGLA) 
and a context information perceptron, as shown in Fig. 4. 
For the context information perceptron, we retain the context 
modulation convolution (CMC), substituting the multi-layer 
perceptron from the traditional transformer.

4  Experiments

4.1  Datasets and metric

Consistent with previous works, we utilize the DIV2K 
[53] dataset for our training, which consists of 800 train-
ing images. We further validate the effectiveness of our 
model using five public benchmark datasets for testing, 
including Set5 [54], Set14 [55], B100 [56], Urban100 
[57], and Manga109 [58]. Additionally, the peak signal-to-
noise ratio (PSNR) and structural similarity index measure 
(SSIM) are utilized as metrics to evaluate the image resto-
ration quality on the Y channel.

4.2  Implementation details

For training, we apply x2, x3, and x4 upscaling factors. The 
batch size is set to 16. Additionally, for data augmentation, 
we apply random rotations of 90◦ , 180◦ , 270◦ , and randomly 
crop a patch of size 48x48 as input. We set the initial learn-
ing rate at 5e−4 and employ the Adam optimizer with param-
eters �1 = 0.9, �2 = 0.999, and � = 1e−8 . The model features 
an input channel count 48, with channel adjustments after 
each CNN layers and linear transformer layers invocation. 
Furthermore, the training architecture consists of eight CNN 
layers and eight linear transformer layers. All experiments 
are conducted on an Nvidia RTX A6000 GPU.

(15)
L = S(Q,K) ⋅ V

≈
1

2
⋅ V +

1

�
⋅ Q ⋅ (KT

⋅ V) + fDW ⋅ V
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4.3  Comparison with advanced lightweight SISR 
models

In this section, we compare our approach with state-of-
the-art lightweight SISR methods, including [16–19, 23, 
25, 26, 29, 46–51]. We will analyze from two perspectives: 
qualitative analysis and quantitative analysis.

4.3.1  Quantitative evaluations

We validate the quantitative performance of our model by 
comparing it with state-of-the-art models on five bench-
mark datasets at x2, x3, and x4 scales, as presented in 
Table 1. We adhere to standardized methods for the uni-
form calculate the number of parameters. For the calcula-
tion of Multi-Adds, we are consistent with other meth-
ods and set the HR image size to 1280x720. The results 
highlight the superior performance of our method over 
advanced models. Notably, JGLTN consistently ranks 
among the top across all datasets. At the x4 scale, our 
approach exceeds the LatticeNet-CL model by margins 
of 0.25dB on Set5, 0.14dB on Urban100, and 0.19dB on 
Manga109. Such enhanced performance is attributed to the 
seamless integration of CNN and transformer, efficiently 
capturing adjacent, extended regional, and contextual 
information. Additionally, adapting linear attention for 
SISR tasks simplifies the model’s design while ensuring 
excellent performance.

Furthermore, we conducted a comparative analysis of our 
model and advancing transformer-based models, as illus-
trated in Table 2. To demonstrate the comparison more viv-
idly between our method and advanced transformer-based 
approaches, we have introduced the use of average PSNR/
SSIM for evaluation. This allows for a rapid and informative 
assessment of the algorithm’s effectiveness by examining the 
average performance. Compared to lightweight models such 
as SwinIR, ESRT, and NGswin, our approach demonstrates 
equivalent efficacy, maintaining a similar scale of param-
eters and computational resources. It is worth noting that 
compared to SwinIR, JGLTN still maintains a comparable 
number of parameters with lower Multi-Adds. It is notewor-
thy that SwinIR uses a pretrained model for initialization and 
sets the patch size to 64x64 during training. Extensive exper-
iments have shown that larger patch sizes yield better results. 
However, JGLTN utilizes a patch size of 48x48. Moreover, 
SwinIR employs an additional dataset (Flickr2K [59]) for 
training, which is crucial for further enhancing model per-
formance. To ensure a fair comparison with methods like 
ESRT, we did not use this external dataset in our work. The 
results of JGLTN on some datasets even surpass those of 
SwinIR, with higher average PSNR, while still maintaining 
comparable parameters and fewer Multi-Adds.

4.3.2  Qualitative evaluations

To more thoroughly examine the efficacy of our model, we 
performed a qualitative comparative analysis alongside the 
current advancing models. As depicted in Figs. 5 and 6, prior 
methods manifest issues such as boundary-blurring, exces-
sive smoothing, line distortions, and, in some instances, 
alterations to the original image structure, significantly 
diminishing its visual appeal. In stark contrast, our pro-
posed model preserves the original image structure, main-
tains sharp boundaries, and retains intricate texture details. 
Specifically, the ′ppt3′ in Fig. 5, our method provides more 
pronounced edge information than representative CNN and 
transformer methods. Furthermore, within ′img_78′ of the 
Urban100 dataset, while numerous advanced techniques 
compromise the original image structure, our approach 
successfully maintains the essential original information, 
yielding a visually superior result. Therefore, JGLTN not 
only upholds a high PSNR metric but also ensures enhanced 
visual outcomes.

4.4  Ablation study

4.4.1  The effectiveness of CNN layer

Effectiveness of latent information mining component 
(LIMC): We validate the effectiveness of the LIMC within 
the JGLTN model. Experiments are conducted by excluding 
the LIMC module from inter-scale feature integration mod-
ule (IFIM). Notably, to expedite the experiments, the model 
omits the linear transformer layers. Table 3 displays the 
comparative results between configurations with and without 
LIMC. The results reveal that although the parameter count 
decreases with the removal of LIMC, model performance 
experiences a decrease of 1.03dB on the Urban100 dataset 
and 2.19dB on the Manga109 dataset. This underscores the 
role of the LIMC component in retaining valuable informa-
tion and filtering out unnecessary features.

Effectiveness of inter-scale feature integration module 
(IFIM): We evaluate the impact of cross-scale learining(CL) 
to ascertain the efficacy of IFIM. Integration of CL results 
in an average increase of 0.04dB in PSNR value across five 
datasets, as Table 4 illustrates. This fact underscores the cru-
cial role of CL in cross-scale feature learning within IFIM. 
For a more comprehensive validation of IFIM, we conduct 
a comparative analysis with state-of-the-art CNN modules, 
replacing IFIM with advanced modules such as RCAB, 
HPB, and LB. To expedite the experiment, we exclude linear 
transformer layers. Despite a marginal parameter increase, 
IFIM demonstrates a nearly 0.1dB improvement in PSNR 
over these advanced CNN modules, as indicated in Table 4. 
This performance attests to the capability of IFIM to learn 
valuable features across various scales.
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Table 1  Performance of our method compared with state-of-the-art SR methods with BI degradation for ×2,×3 and ×4 image super-resolution on 
benchmark datasets

’-’ denotes the results are not reported. The best and second best results are highlighted in bold and underlined

Scale Methods Params Multi-adds Set5 Set14 B100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

2 VDSR [46] 655K 612.6G 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9750
IDN [47] 553K 124.6G 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 38.01/0.9749
CARN [16] 1592K 222.8G 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765
IMDN [17] 694K 158.8G 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
MADNet [48] 878K 187.1G 37.85/0.9600 33.38/0.9161 32.04/0.8979 31.62/0.9233    -   /   -
MAFFSRN-L [25] 790K 154.4G 38.07/0.9607 33.59/0.9177 32.23/0.9005 32.38/0.9308    -   /   -
RFDN [18] 534K 123.0G 38.05/0.9606 33.68/0.9184 32.16/0.8994 32.12/0.9278 38.88/0.9773
LatticeNet+ [19] 756K 165.5G 38.15/0.9610 33.78/0.9193 32.25/0.9005 32.43/0.9302    -   /   -
SMSR [49] 985K 351.5G 38.00/0.9601 33.64/0.9179 32.17/0.8990 32.19/0.9284 38.76/0.9771
A2N [26] 1036K 247.5G 38.06/0.9608 33.75/0.9194 32.22/0.9002 32.43/0.9311 38.87/0.9769
DRSAN [50] 690K 159.3G 38.11/0.9609 33.64/0.9185 32.21/0.9005 32.35/0.9304    -   /   -
FMEN [29] 748K 172.0G 38.10/0.9609 33.75/0.9192 32.26/0.9006 32.48/0.9311 38.95/0.9778
LatticeNet-CL [51] 756K 169.5G 38.09/0.9608 33.70/0.9188 32.21/0.9000 32.29/0.9291    -   /   -
GASSL-B [23] 689K 158.2G 38.08/0.9607 33.75/0.9194 32.24/0.9005 32.29/0.9298 38.92/0.9777
Ours 900K 115.5G 38.19/0.9612 33.85/0.9197 32.27/0.9010 32.59/0.9319 39.08/0.9776

3 VDSR [46] 665K 612.6G 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9340
IDN [47] 553K 56.3G 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 32.71/0.9381
CARN [16] 1592K 118.8G 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.43/0.9427
IMDN [17] 703K 71.5G 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
MADNet [48] 930K 88.4G 34.16/0.9253 30.21/0.8398 28.98/0.8023 27.77/0.8439    -   /   -
MAFFSRN-L [25] 807K 68.5G 34.45/0.9277 30.40/0.8432 29.13/0.8061 28.26/0.8552    -   /   -
RFDN [18] 541K 55.4G 34.41/0.9273 30.34/0.8420 29.09/0.8050 28.21/0.8525 33.67/0.9449
LatticeNet+ [19] 765K 76.3G 34.53/0.9281 30.39/0.8424 29.15/0.8059 28.33/0.8538    -   /   -
SMSR [49] 993K 156.8G 34.40/0.9270 30.33/0.8412 29.10/0.8050 28.25/0.8536 33.68/0.9445
A2N [26] 1036K 117.5G 34.47/0.9279 30.44/0.8437 29.14/0.8059 28.41/0.8570 33.78/0.9458
DRSAN [50] 740K 76.0G 34.50/0.9278 30.39/0.8437 29.13/0.8065 28.35/0.8566    -   /   -
FMEN [29] 757K 77.2G 34.45/0.9275 30.40/0.8435 29.17/0.8063 28.33/0.8562 33.86/0.8462
LatticeNet-CL [51] 765K 76.3G 34.46/0.9275 30.37/0.8422 29.12/0.8054 28.23/0.8525    -   /   -
GASSL-B [23] 691K 70.4G 34.47/0.9278 30.39/0.8430 29.15/0.8063 28.27/0.8546 33.77/0.9455
Ours 913K 52.6G 34.64/0.9285 30.52/0.8456 29.22/0.8087 28.59/0.8601 33.98/0.9473

4 VDSR [46] 665K 612.6G 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870
IDN [47] 553K 32.36G 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 29.41/0.8942
CARN [16] 1592K 90.9G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.42/0.9070
IMDN [17] 715K 40.9G 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
MADNet [48] 1002K 54.1G 31.95/0.8917 28.44/0.7780 27.47/0.7327 25.76/0.7746    -   /   -
MAFFSRN-L [25] 830K 38.6G 32.20/0.8953 28.62/0.7822 27.59/0.7370 26.16/0.7887    -   /   -
RFDN [18] 550K 31.6G 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 30.58/0.9089
LatticeNet+ [19] 777K 43.6G 32.30/0.8962 28.68/0.7830 27.62/0.7367 26.25/0.7873    -   /   -
SMSR [49] 1006K 89.1G 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 30.54/0.9085
A2N [26] 1047K 72.4G 32.30/0.8966 28.71/0.7842 27.61/0.7374 26.27/0.7920 30.67/0.9110
DRSAN [50] 730K 49.0G 32.30/0.8954 28.66/0.7838 27.61/0.7381 26.26/0.7920    -   /   -
FMEN [29] 769K 44.2G 32.24/0.8955 28.70/0.7839 27.63/0.7379 26.28/0.7908 30.70/0.9107
LatticeNet-CL [51] 777K 43.6G 32.30/0.8958 28.65/0.7822 27.59/0.7365 26.19/0.7855    -   /   -
GASSL-B [23] 694K 39.9G 32.17/0.8950 28.66/0.7835 27.62/0.7377 26.16/0.7888 30.70/0.9100
HPUN-L [52] 734K 39.7G 32.38/0.8969 28.72/0.7847 27.66/0.7393 26.36/0.7947 30.83/0.9124
Ours 931K 30.7G 32.55/0.8980 28.78/0.7858 27.69/0.7412 26.42/0.7962 30.89/0.9139
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Furthermore, to validate the efficacy of inter-scale feature 
integration module (IFIM) in feature extraction and pinpoint 
its focus areas on the image, we executed a meticulous visual 
analysis. Figure 7a contrasts the output feature maps with 
and without the incorporation of IFIM. Without IFIM, the 
network seemingly emphasizes the flat regions interspersed 
among textures. Notably, texture details are paramount for 
image reconstruction. With the integration of IFIM, the net-
work shifts its attention predominantly towards the intricate 
textures of the butterfly. This observation strongly attests to 
the enhanced feature extraction capabilities of IFIM.

4.4.2  The effectiveness of linear transformer layer

Effectiveness of multi-level contextual feature aggregation 
(MCFA): MCFA plays a crucial role in guiding joint fea-
tures for the transformer. We validate its effectiveness by 

replacing MCFA with the linear embedding layer commonly 
used in traditional self-attention mechanisms. Table 5 dem-
onstrates that MCFA outperforms the linear embedding layer 
regarding PSNR metrics while utilizing fewer parameters. 
Specifically, it achieves a 0.22dB improvement on the Set5 
dataset and a 0.4dB enhancement on the Manga109 dataset. 
These results verify that MCFA effectively integrates adja-
cent, extended regional, and contextual information, provid-
ing optimal feature guidance for the linear transformer.

Effectiveness of joint feature-guided linear attention 
(JGLA): We compare JGLA with the self-attention mecha-
nism prevalent in traditional transformers. According to 
the data in Table 5, JGLA achieves superior metrics while 
maintaining a consistent parameter count. Specifically, it 
outperforms them by 0.04dB on the Urban100 dataset and 
by 0.21dB on the Manga109 dataset. Given that JGLA is a 
form of linear attention, it operates with significantly lower 

Table 2  Performance of our method compared with state-of-the-art transformer-based methods on benchmark datasets

The best and second best results are highlighted in bold and underlined

Methods Params Multi-adds Set5 Set14 B100 Urban100 Manga109 Average
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

SwinIR [7] 897K 49.6G 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151 29.26/0.8274
ESRT [8] 751K 67.7G 32.19/0.8947 28.69/0.7833 27.69/0.7379 26.39/0.7962 30.75/0.9100 29.14/0.8244
NGswin [37] 1019K 36.4G 32.33/0.8963 28.78/0.7859 27.66/0.7396 26.45/0.7963 30.80/0.9128 29.20/0.8262
Ours 931K 30.7G 32.55/0.8980 28.78/0.7858 27.69/0.7412 26.42/0.7962 30.89/0.9139 29.27/0.8270

Fig. 5  Qualitative comparison 
of our JGLTN with recent state-
of-the-art lightweight image SR 
methods for the × 4 SR on Set14 
and B100 datasets. The perfor-
mance of each image patch is 
shown in the following
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Fig. 6  Qualitative comparison 
of our JGLTN with recent state-
of-the-art lightweight image 
SR methods for the × 4 SR on 
Urban100 Datasets. The perfor-
mance of each image patch is 
shown in the following

Table 3  The effect of the latent 
information mining component 
(LIMC) in terms of PSNR score 
on the benchmark datasets for 
x4 SR

Modules Params Multi-
Adds

Set5 Set14 B100 Urban100 Manga109

w/o LIMC 132K 5.2G 30.40 27.42 26.82 24.30 27.12
w LIMC 215K 5.3G 31.59 28.21 27.31 25.33 29.31

Table 4  The effect of the inter-
scale feature integration module 
(IFIM) in terms of PSNR score 
on the benchmark datasets for 
x4 SR

Where w/o CL represents the comparison result of IFIM without cross-scale learning

Modules Params Multi-
Adds

Set5 Set14 B100 Urban100 Manga109

w RCAB [46] 107K 6.1G 30.37 27.43 16.82 24.27 27.12
w HPB [8] 132K 7.6G 31.42 28.08 27.21 25.15 28.94
w LB [19] 197K 11.2G 31.50 28.16 27.29 25.30 29.24
w/o CL 205K 6.9G 31.54 28.18 27.30 25.29 29.24
w IFIM 215K 5.3G 31.59 28.21 27.31 25.33 29.31

Table 5  The effect of the multi-level contextual feature aggregation (MCFA) and joint feature-guided linear attention (JGLA) in terms of PSNR 
score on the benchmark datasets for x4 SR

Among them, MCFA* means replacing MCFA with the linear embedding layer in traditional self-attention. JGLA* means replacing JGLA with 
traditional self-attention based on softmax

Modules Params Multi-
Adds

Set5 Set14 B100 Urban100 Manga109

MCFA * 1775K 19.9G 32.33 28.63 27.61 26.29 30.49
JGLA* 931K 30.4G 32.48 28.72 27.67 26.38 30.68
JGLTN 931K 30.7G 32.55 28.78 27.69 26.42 30.89
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complexity compared than the traditional self-attention 
mechanism. These findings demonstrate that JGLA not only 
works with linear complexity but also delivers performance 
superior to that of the traditional self-attention mechanism, 
establishing its suitability for the SISR task.

To further ascertain the specific regions emphasized by 
joint feature-guided linear attention (JGLA) within the net-
work, a detailed visual analysis was conducted. Figure 7b 
contrasts the focal areas of features when integrating JGLA 
and when omitting it. Without JGLA, the model predomi-
nantly targets the contour information of the butterfly. With 
the introduction of JGLA, the network accentuates not only 
texture features but also the surrounding details and contex-
tual information adjacent to the contour. These observations 
underscore the capacity of JGLA to consolidate surrounding 
details and contextual information, facilitating the recon-
struction process and enhancing the effectiveness of joint 
feature-guided linear attention (JGLA).

4.4.3  The effectiveness of CNN layer and linear transformer 
layer

In this subsection, we undertake ablation experiments focus-
ing on the CNN layers and the linear transformer layers. 
Models comprising exclusively CNN layers and solely lin-
ear transformer layers form the basis of this analysis. The 
data presented in Table 6 illustrate that dependence solely 
on CNN layers increases parameter usage, while exclusive 
reliance on linear transformers leads to higher GPU con-
sumption. Employing either component in isolation falls 
short of matching the performance level of JGLTN, render-
ing them less viable for practical applications. For instance, 

on the Manga109 dataset, models utilizing only CNN or 
linear transformer layers underperform JGLTN by 0.62dB 
and 0.26dB, respectively. Therefore, a balanced integration 
of CNN and linear transformer layers optimizes model size, 
GPU consumption, and performance, enhancing suitability 
for real-world deployment.

4.5  Real‑world image super‑resolution

To further validate whether our model is applicable to the 
super-resolution of real images, we compared it with other 
lightweight models on the RealSR [60] dataset, including 
IMDN [17], LP-KPN [60], and ESRT [8]. Notably, LP-KPN 
is specifically designed for SR of real images. As shown 
in Table 7, our model outperforms the other methods on 
the RealSR dataset in terms of metrics, demonstrating that 
JGLTN is also suitable for SR of real images.

4.6  Model size analysis

In this section, we benchmark our model against others, con-
sidering PSNR, parameters, and Multi-Adds. We carry out 
these experiments on the Set5 dataset at x4 upscaling factor. 
As depicted in Fig. 8, while JGLTN does not possess the 
lowest parameter, it excels in the PSNR metric. Specifically, 
our model has fewer parameters than NGswin and A2N and 
marginally more than FMEN and LatticeNet-CL. However, 
it significantly surpasses these advanced methods in terms 
of PSNR. According to Fig. 9, JGLTN establishes an exem-
plary balance between PSNR and Multi-Adds, upholding 
a superior PSNR performance even when accounting for 
the minimal Multi-Adds. Our proposed method outperforms 
other models within similar parameter ranges, achieving a 
judicious balance between model complexity and perfor-
mance. Therefore, we affirm that our approach is lightweight 
and efficient, ensuring a favorable balance between model 
size and performance.

Table 6  The effect of 
integrating CNN layer(CNN) 
with linear transformer 
layer(LT) in terms of PSNR 
score on the benchmark datasets 
for x4 SR

Modules Params GPU Multi-
Adds

Set5 Set14 B100 Urban100 Manga109

w/o LT 722K 3888 M 19.7G 32.09 28.51 27.54 25.91 30.27
w/o CNN 330K 11470 M 17.9G 32.46 28.65 27.64 26.32 30.63
JGLTN 931K 13052 M 30.7G 32.55 28.78 27.69 26.42 30.89

Fig. 7  Visual comparison of features with and without inter-scale fea-
ture integration module (IFIM) and joint feature-guided linear atten-
tion (JGLA)

Table 7  Comparison with SISR methods on RealSR

The best results are highlighted in bold

Scale Methods IMDN [17] LP-KPN [60] ESRT [8] ours

x4 PSNR 28.68 28.65 28.78 28.97
SSIM 0.815 0.820 0.815 0.832
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In the experiments, we set the number of CNN layers and 
linear transformer layers to 8 and explore the performance 
under conditions with fewer CNN layers and linear trans-
former layers. As illustrated in Fig. 10, when the number of 
CNN layers and linear transformer layers is increased, per-
formance is consistently enhanced compared to the model 
variant with G=2 (where G represents the number of CNN 
layers and linear transformer layers). Consequently, JGLTN 
exhibits superior performance across diverse configurations, 
showcasing its effectiveness and scalability.

5  Conclusions

In this paper, we propose a lightweight super-resolution 
network termed the joint feature-guided linear transformer 
and CNN network (JGLTN). The structure of this network 
consists of a cascade of CNN layer and linear transformer 
layer, collectively termed CNN layers and linear transformer 

layers. The CNN layer incorporates an inter-scale feature 
integration module (IFIM), and the linear transformer layer 
encompasses Joint feature guided linear attention (JGLA). 
Specifically, IFIM aims to extract valuable feature informa-
tion, while JGLA, integrating with the multi-level contex-
tual feature aggregation (MCFA), brings together adjacent, 
extended regional, and contextual features to guide the linear 
attention. Regarding linear attention, we revisit inter-feature 
similarity calculations and reduce the quadratic computa-
tional complexity of self-attention to linear complexity. A 
wide range of experiments shows that the JGLTN network 
strikes an impressive balance between performance and 
computational costs. Future work will involve an in-depth 
exploration of the intrinsic mechanisms of the JGLTN net-
work to identify more precise feature extraction methodolo-
gies and more efficient computational strategies to enhance 
its capacity for further SISR tasks.
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