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Abstract
Deep learning has made important contributions to the development of medical image segmentation. Convolutional neural 
networks, as a crucial branch, have attracted strong attention from researchers. Through the tireless efforts of numerous 
researchers, convolutional neural networks have yielded numerous outstanding algorithms for processing medical images. 
The ideas and architectures of these algorithms have also provided important inspiration for the development of later tech-
nologies.Through extensive experimentation, we have found that currently mainstream deep learning algorithms are not 
always able to achieve ideal results when processing complex datasets and different types of datasets. These networks still 
have room for improvement in lesion localization and feature extraction. Therefore, we have created the dense multiscale 
attention and depth-supervised network (DmADs-Net).We use ResNet for feature extraction at different depths and create 
a Multi-scale Convolutional Feature Attention Block to improve the network’s attention to weak feature information. The 
Local Feature Attention Block is created to enable enhanced local feature attention for high-level semantic information. In 
addition, in the feature fusion phase, a Feature Refinement and Fusion Block is created to enhance the fusion of different 
semantic information.We validated the performance of the network using five datasets of varying sizes and types. Results 
from comparative experiments show that DmADs-Net outperformed mainstream networks. Ablation experiments further 
demonstrated the effectiveness of the created modules and the rationality of the network architecture.
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1  Introduction

The analysis of a lesion requires the doctor to determine 
the shape, size and contour of the lesion. Lesions on the 
outside of the body can be identified by direct observation, 
but lesions on the inside of the body can only be analysed 
indirectly by means of images transmitted from the imag-
ing equipment. Although the above two processes complete 
the analysis of the lesion, they consume a lot of time and 

effort. Therefore, autonomous learning for image segmen-
tation tasks has become an important research goal in the 
medical field.

In computer-aided diagnosis (CAD) systems, automatic 
image segmentation algorithms provide important informa-
tion and data for the entire diagnostic process as an upstream 
task. Particularly in quantitative and qualitative analysis, 
high-quality segmentation data helps doctors to make effi-
cient and quick diagnoses.

Most of the early medical image segmentation tasks are 
done using traditional algorithms [33, 42, 49], where dif-
ferent regions of a medical image are divided by means of 
pixel changes and threshold processing to localise the target 
of a lesion. However, with the advancement of the medical 
field, the clarity and precision of medical images have con-
tinuously improved, making the segmentation tasks faced 
by traditional algorithms more diversified and complex. 
Although traditional algorithms have made important contri-
butions to medical image segmentation tasks, relying solely 
on thresholding and pixel variations is no longer sufficient 
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to meet the diagnostic needs of medical care. Deep learn-
ing provides new solutions for medical image segmentation 
tasks. More and more researchers have begun to focus on the 
development of deep learning in the field of medical image 
segmentation, leading to the emergence of many excellent 
algorithms [4, 17, 20], among which convolutional neural 
networks (CNN) are the most representative branch.

Convolutional neural networks such as AlexNet [21] 
process the features generated by convolution into feature 
vectors for performing classification tasks through fully con-
nected layers. However, this all-connected layer approach 
does not apply in the case of segmentation tasks. The 
emergence of FCN [32] has brought the field of image seg-
mentation into a new period. In order to be able to achieve 
pixel-level classification and solve image segmentation prob-
lems, FCNs changed the way the network ended up using 
fully connected layers and used convolution instead. This 
change provides an important lesson in thinking for the field 
of medical image segmentation. Subsequently, SegNet [3] 
explored semantic segmentation based on the network of 
VGG [39] and proposed the "encoder-decoder" structure 
for the first time. The size is reduced by maximum pool-
ing during the encoding phase and feature information at 
different semantic levels is continuously acquired through 
convolutional layers. The feature image is restored to the 
same size in the decoding stage by upsampling to the same 
position as in the encoding stage. Finally, pixel-level classi-
fication of the feature maps of the original size is performed, 
which enables the segmentation of the whole image. With 
the development of technology and ideas, networks such as 
U-Net [37], UNet++ [55] and KiU-Net [45] have emerged 
one after another, continuously pushing forward the quality 
of medical image segmentation.

By integrating shallow and deep features, FCN-8 s can 
capture both the details and global context of images, thus 
maintaining good structural integrity. However, FCN-8 s 
has shown certain limitations in medical image segmenta-
tion, as the model restores image resolution through multiple 
upsampling steps, which may lead to the loss of some detail 
information. Particularly in larger scale upsampling, the res-
toration of details might not be sufficiently precise, result-
ing in blurred edge regions. MultiResUNet [19] has made 
significant structural improvements to U-Net by incorporat-
ing multi-scale convolution and deep feature fusion mecha-
nisms, enhancing the model’s capability to process medical 
images of various modalities. Although MultiResUNet has 
made progress in feature integration, it still faces limitations 
in further refining and utilizing deep semantic information. 
Such limitations could result in less flexibility in the seman-
tic fusion of deep features, potentially affecting the accuracy 
and robustness of the final segmentation results.

CFNet [53] integrates multi-view attention mecha-
nisms and adaptive fusion strategies, leading to significant 

performance improvements in the domain of medical image 
segmentation. By utilizing cross-scale feature fusion and 
multi-view attention mechanisms, CFNet effectively cap-
tures and integrates features across different scales, enhanc-
ing the recognition of image details and contextual infor-
mation. However, CFNet’s reliance on complex attention 
mechanisms may lead to overfitting of certain features, 
affecting its generalization performance. Despite the use of 
an adaptive fusion weight strategy to bridge semantic gaps 
across layers, the semantic disparity in highly heterogeneous 
medical images may still result in insufficient feature fusion.

Similarly, the KiU-Net model optimizes the capture of 
small structures and the precision of boundary segmenta-
tion by combining Kite-Net and U-Net. This design allows 
KiU-Net to extract detailed and boundary information in 
deep layers while maintaining the capture of high-level and 
low-level features, thereby improving segmentation accu-
racy. Nevertheless, KiU-Net has limitations in its feature 
fusion strategy, particularly when dealing with images of 
complex backgrounds and structures, where the feature 
fusion between Kite-Net and U-Net branches may not be 
smooth. Moreover, although the Kite-Net branch is sensitive 
to details, it may be limited in capturing deep, high-level 
features, affecting the understanding of the overall image 
context and complex structures.

TMAHU-Net [11] innovatively introduces a multi-atten-
tion hybrid network that leverages the strengths of CNNs 
and Transformers, significantly enhancing the accuracy of 
skin lesion segmentation. This model utilizes a depth-wise 
separable convolutional attention module to flexibly allocate 
attention weights, thereby reinforcing the capture of channel 
and spatial information. While TMAHU-Net successfully 
integrates the advantages of CNNs and Transformers, the 
Transformer component, despite offering a global perspec-
tive, might be less intuitive in capturing local detail features, 
particularly in areas with fuzzy or highly irregular lesion 
boundaries.

On the other hand, the MSNet [54] adopts a multi-scale 
subtraction network structure to address the issue of redun-
dancy in multi-layer feature fusion inherent in traditional 
U-shaped architectures, showing substantial benefits for pre-
cise polyp segmentation. However, while MSNet achieves 
impressive results in polyp segmentation, its multi-scale sub-
traction approach may lead to imbalanced feature capture, 
especially in scenarios with highly variable polyp sizes or 
complex structures.

Through detailed experimental analysis, we observed that 
current advanced medical image segmentation algorithms 
still have room for improvement in capturing lesion edge 
details and maintaining target integrity (as in Fig. 1). This 
phenomenon indicates that existing methods lack efficiency 
in capturing and utilizing lesion texture information during 
the feature extraction phase and possess limited capability 
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in utilizing and integrating multi-semantic information that 
includes the target during the feature reconstruction stage.

Addressing these challenges, this study introduces a dense 
multiscale attention network operating under a deep super-
vision mechanism (as in Fig. 2). To enhance the expres-
sion of texture information, we developed the Multi-scale 

Convolutional Feature Attention Block (MSCFA). MSCFA 
employs an innovative multi-scale feature processing strat-
egy that aggregates features using multiple dense residual 
blocks and multi-path parallel convolutions, thereby expand-
ing the receptive field and achieving broad feature correla-
tion. To tackle the issue of information fusion in feature 

Fig. 1   A comparative experiment diagram of Ours and mainstream networks.We annotate the attention features of the segmentation targets in 
the images and perform visual overlap processing for all participating methods. Red for incorrectly identified areas, green for unidentified areas

Fig. 2   DmADs-Net main network diagram. Using ResNet
18

 and 
ResNet

34
 as the backbone network to complete feature extraction of 

different depths.In order to preserve more weak feature information, 
the MSCFA module is created and applied in skip connections and 

deep networks.LFA is created to enhance the contextual association 
of high-level semantic information. FRFB is created to complete the 
fusion of different information. A deep supervision mechanism is 
used to train the reinforcement network



	 International Journal of Machine Learning and Cybernetics

reconstruction, we further proposed the Feature Refinement 
and Fusion Block (FRFB), which enhances shallow network 
information through residual blocks and edge spatial atten-
tion mechanisms, converting deep semantic information 
into channel weights to guide the reconstruction of shallow 
features. Additionally, the Local Feature Attention Block 
(LFA) utilizes a block processing strategy to enhance deep 
semantic information, establishing more extensive feature 
associations. A deep supervision mechanism is applied in 
the feature reconstruction phase, providing extra supervision 
to the reconstruction process and further optimizing model 
performance.

In this paper, we contribute as follows: 

(1)	 Introduce the Multi-scale Convolutional Feature Atten-
tion Block, which enhances the expression of detail 
information and establishes feature correlations across 
a broader area through dense residual blocks combined 
with an expanded convolutional receptive field.

(2)	 Based on the block processing concept, the Local Fea-
ture Attention Block is proposed. This module reallo-
cates channel weights for high-level semantic informa-
tion, emphasizing target features, and then enhances 
local semantic associations through block processing.

(3)	 During the feature reconstruction phase, the Feature 
Refinement and Fusion Block is introduced to merge 
semantic information from different layers. This block 
recovers detail information through edge spatial atten-
tion mechanisms and performs feature compensation 
with residual connections, while also channel filtering 
deep information to highlight target features.

(4)	 To demonstrate the processing power of DmADs-Net, 
we chose five datasets of different sizes that are cur-
rently publicly available (ISIC2016 [13], JSRT [38], 
Glas [40], DSB2018 [55], BUSI [1]) to continue our 
comparison experiments. The combined prediction 
results and metrics from the results show that DmADs-
Net shows superior results in the localisation and char-
acterisation of lesion targets.

2 � Related work

In this section we give a brief overview of the development 
of deep learning in the field of medical image segmentation, 
a brief introduction to deep supervisory mechanisms and 
finally we outline attention-related content.

2.1 � Medical image segmentation and deep learning

Since the beginning of FCN, excellent networks in the 
field of medical image segmentation have been constantly 
updated, with SegNet introducing the "encoder-decoder" 

structure for the first time, and U-Net bringing the "encoder-
decoder" structure to the forefront of medical image seg-
mentation. Unlike previous networks, U-Net uses a form 
of stitching when fusing features of skip connection in 
order to be able to retain more dimensional information. 
Although the dimensional stitching format has some advan-
tages in semantic segmentation tasks, the thicker features 
also increase memory consumption. Each layer of the U-Net 
encoder is passed only to the corresponding decoder, and 
this processing may be subject to feature discrepancy phe-
nomena. UNet++ enhances the processing of skip con-
nection on top of U-Net. UNet++ passes deeper features 
through the skip connection to the shallow processing of 
the decoder, thus reducing the possible semantic gap prob-
lem. In addition, a deep supervision mechanism is used in 
UNet++ to enhance the supervision of the training process.

Dual encoder [43] uses a pre-processing approach to 
enhance the focus on feature information, and stained cell 
section samples are pre-processed to enhance the expression 
of edge features in the sample. The pre-processed feature 
information is then fed into the network together with the 
original image for further feature extraction, and in each 
layer, the fusion of the two-way feature information is rein-
forced by the constructed attention skip module and passed 
to the decoder for feature stitching. The Compact Split-
Attention block (CSA) is created in DCSAU-Net [50] for 
multi-scale feature extraction, and channel attention [16] is 
also added to the CSA to enhance the focus on weights. To 
enhance the focus on feature information, CSA is applied 
not only to each layer of the encoder stage, but also to the 
decoder stage, where feature information is recaptured after 
dimensional stitching. In order to process 3D medical image 
data, a new densely connected U-Net is proposed in H-Den-
seUNet [25]. First the network converts the 3D image infor-
mation into 2D features and sends them to 2DDenseUNet 
to extract the features of each layer slice, then the stitched 
together features are sent to 3DDenseUNet together with the 
original 3D image to complete the feature fusion. The brain 
tissue is relatively dense, and the lesions that occur here are 
more challenging to segment compared to other locations. 
In order to enhance the detection ability of brain tumors and 
improve the accuracy of medical diagnosis, Li S [24] and 
others proposed a new region-of-interest-aided (ROI-aided) 
segmentation technique for the diagnosis of brain tumors. To 
avoid the influence of information from other human tissues 
on the extraction of tumor features, the network first uses 
a 2D U-Net for localization and then uses a 3D U-Net for 
binary segmentation. This network has achieved effective 
results.

The self-attention proposed in Transformer [46] has 
shown excellent performance in semantic segmentation, and 
in recent years Transformer has also been gradually used in 
the field of medical image segmentation. Since CNNs are 
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limited by the convolutional kernel when performing feature 
extraction, they are unable to obtain global association infor-
mation. TransUNet [6] combines Transformer with U-Net, 
first using CNN to complete shallow feature extraction, and 
subsequently fusing features in Transformer for global asso-
ciation, thus improving the network’s focus on global infor-
mation. Considering that the number of samples in medical 
image datasets is generally small, and that it is often not opti-
mal to train a network containing a Transformer, MedT [44] 
proposed a "local–global" training strategy. MedT enhances 
the learning of local feature information by chunking the 
samples, while increasing the amount of data and improv-
ing the overall performance of the network. HmsU-Net [12] 
showcased its innovative capability in addressing multi-scale 
medical image segmentation challenges by integrating CNN 
and Transformer technologies. The model adopted a parallel 
architecture, effectively merging local details with global 
contextual features, and resolved the consistency issues 
between the two feature extraction mechanisms through a 
multi-scale feature fusion module. The high performance of 
HmsU-Net in precise medical image segmentation allowed 
it to surpass existing advanced technologies across multiple 
evaluation metrics.

As medical technology continues to improve, the medi-
cal images that can be acquired become more abundant and 
varied; the need for high quality diagnosis relies on more 
accurate medical image segmentation techniques. Although 
many excellent algorithms have emerged in the field of med-
ical image segmentation, there are still significant challenges 
in the field of medical image segmentation in the face of a 
more diverse and complex sample environment. We there-
fore propose DmADs-Net, which is expected to enable the 
task of segmentation of different kinds of medical image 
datasets and to improve the focus on feature information.

2.2 � Deep supervision

A deep supervision mechanism is proposed in DSN [22], 
which is mainly used to solve the problem of gradient dis-
appearance and gradient explosion that occurs during the 
training process of the network, to improve the transpar-
ency of the intermediate layers during the training process, 
and to enhance the learning ability of the network training 
process for features. The main idea of deep supervision is 
to add branch outputs directly to the intermediate layer and 
supervise the branch output results, setting the accompany-
ing loss function. The main idea of deep supervision is to 
add branch outputs directly to the intermediate layer and 
supervise the branch output results, setting the accompany-
ing loss function.

Due to the good performance of deep supervision mech-
anisms, their ideas are used in various areas of computer 
vision. In the field of building change detection (BCD), 

DSA-Net [10] adds branching outputs to each layer of the 
decoder stage in order to enhance the feature representa-
tion capability of the intermediate layers of the network and 
strengthen the representation of building features, and cal-
culates the loss that accompanies the output results, thus 
further guiding the network training. In the medical field, 
for accurate localization of breast lumps as well as lesion 
locations, Rajalakshmi N R [36] et al. have achieved excel-
lent results by optimizing the learning process using deep 
supervised mechanisms on top of U-Net.

The same deep supervision mechanism is used in our net-
work (as in Fig. 2), with branch outputs in each layer of the 
feature fusion phase. Considering the importance of high-
level semantic information, we also set branching outputs for 
the MSCFA of the bottleneck layer to enhance the learning 
supervision for the bottleneck layer. In addition, consider-
ing that too many loss functions may cause the network to 
converge slowly, we add weights to all the accompanying 
loss functions to control the proportion of accompanying 
losses in the total losses. The details of the loss function are 
described in detail in Part IV of the experiments.

2.3 � Attention mechanism

As deep learning develops more deeply, the feature extrac-
tion capabilities of networks are receiving wider attention. 
Since the feature extraction capability of CNN is limited by 
the convolutional kernel, networks using traditional convo-
lution can only focus on local information and it is difficult 
to capture feature information from a global perspective. 
Therefore, in order to gain attention to global features and 
improve the dependencies between remote features, SENet 
[16], non-local attention [48], SKNet [26] and other net-
works have appeared one after another. By weighting each 
pixel in the form of calculating weights from the global 
level, the strength of the feature information is improved 
and the overall performance of the network is enhanced.

In recent years, attention mechanisms have played an 
equally important role in various areas of computer vision. 
Consider the fact that the structure of the attention module 
cannot be modified manually during the training process. 
A2N  [5] proposed an Attention in Attention Block ( A2B ) 
using Dynamic Convolution [8] in order to implement 
single image super-resolution (SISR). The module adapts 
the weights to the input and performs a discard operation 
on unimportant features, thus streamlining the number of 
parameters and improving the focus on important features. 
To achieve the fusion of infrared and visible images, Li 
et al. [27] proposed a feature extraction module based on 
the Laplace gradient operator and enhanced attention to 
depth features by ECA [47]. The features of the two different 
images are finally fused together through multi-scale feature 
extraction and feature noticing.
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In the field of segmentation, in order to obtain finer 
segmented images of urban buildings, MANet [23] used 
softmax to pre-process the features, reducing the computa-
tional complexity, and named the module Kernel attention 
mechanism (KAM). In MANet, KAM and ECA process the 
same feature information in parallel to enhance the features 
in terms of both position dependence and channel depend-
ence, respectively, with good results. In order to improve the 
accuracy of vessel localization, RADCU-Net [51] utilized 
residual attention to construct a dual-supervision cascaded 
network, which demonstrated good performance in retinal 
segmentation tasks.

The segmentation targets faced in the field of medical 
image segmentation often have a high degree of similarity 
or identical texture to their surroundings. To obtain finer 
edge and detail information, increased attention to weak 
features around the target is required. We have therefore 
created MSCFA and LFA to complete the feature extraction 
of medical images, the details of which are described in the 
third part.

3 � Method

In this section, we introduce the main architecture of 
DmADs-Net: Multi-scale Convolutional Feature Attention 
Block (MSCFA), Local Feature Attention Block (LFAB), 
Feature Refinement and Fusion Block (FRFB), in turn, and 
finally show the algorithmic flow of DmADs-Net, as in 
Algorithm 1.

3.1 � Network structure

Considering that the feature information captured by the net-
work structure at different depths is not the same. Therefore, 
in DmADs-Net, ResNet18 , ResNet34 are used as the backbone 
network in order to extract feature information at different 
depths more efficiently and to prevent the problem of gradi-
ent disappearance due to increasing depth. It is worth not-
ing that since a large number of features in medical images 
have the same texture features as their surroundings and are 
relatively weak, we only kept the convolutional layer in the 
middle part of ResNet [14] and discarded operations such as 
pooling to retain richer feature information for the network 
to process.

In order to obtain feature information at different depths 
and with different sensory fields, each layer of processing in 
the backbone network changes the size of the feature map. 
This operation will inevitably result in loss of features. In 
order to complete the supplement of feature information, we 
set up skip connections for the middle two layers of process-
ing to pass low-level semantic information to the feature 
fusion stage.

For the processing of skip connections, MSCFA is cre-
ated to reinforce the feature strength of low-level semantic 
information. In addition, MSCFA is applied to the pro-
cessing of depth features in addition to skip connections, 
thus preserving a richer set of features for processing in 
the bottleneck layer. Deeper features contain more seman-
tic information and in the bottleneck layer, LFA is created 
in order to reinforce the dependencies between high-level 
semantic information. In LFA, the feature information is 
first enhanced from a global perspective by the SE block 
proposed by SENet, and then the high-level semantic infor-
mation is dependent on the association in the form of multi-
scale chunking.

The feature fusion phase needs to accept not only low-
level semantic information from the skip connection, but 
also high-level semantic information from the bottleneck 
layer. How to fuse these two features together more effec-
tively becomes the focus of the research, hence the creation 
of FRFB in the fusion phase. FRFB is primarily a residual 
structure that enhances the granularity of different feature 
information through branching, ultimately achieving better 
fusion of feature information and outputting a final segmen-
tation prediction map.

In order to increase the transparency of the intermediate 
layers during training and to further optimise the operation 
of the network, DmADs-Net employs a deep supervision 
mechanism. As shown in Fig. 2, we set up depth supervi-
sion at the fusion stage as well as at the bottleneck layer to 
compute the loss of branch output features with the same 
size of GT.

3.2 � Multi‑scale Convolutional Feature Attention 
Block

Residual blocks, through skip connections, focus on detail 
information while enabling feature reuse. Moreover, chain-
ing multiple residual blocks enhances the network’s ability 
to learn more complex and abstract features, as demonstrated 
by past work [14, 15, 18, 52]. The advantages of residual 
blocks have been well-established. ASPP [7] captures multi-
scale feature information through convolutions with varying 
dilation rates. By expanding the receptive field, the model 
effectively establishes broader associations among features. 
Inspired by these insights, we propose the Multi-scale Con-
volutional Feature Attention Block (MSCFA), as in Fig. 3.

In the network, it enhances the features of skip connec-
tions and bottleneck layers. The whole module is designed 
on a residual structure and three paths with different sen-
sory fields are constructed. A Residual block consisting of 
a dense 3 × 3 convolution is first constructed and used in an 
iterative manner to focus the feature information. Subse-
quently, the feature information is associated by means of 3 
× 3 convolutions with different sensory fields.
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In the upper path processing (as in Eq. 1), since the larg-
est perceptual field expansion is used, we first use a dense 
Residual block to increase the strength of important features, 
and finally use the convolution of the expanded perceptual 
field to enhance the remote dependencies. Similarly, the 
same treatment is used in the middle (as in Eq. 2) and lower 
path treatment (as in Eq. 3), with the difference that the 
number of Residual blocks is adjusted accordingly as the 
sensory field changes.

Since the feature information captured by the three pro-
cesses is different, we fuse the feature information in the 
form of channel stitching and integrate the feature informa-
tion channel by channel using 1 × 1 convolution in order 
to maximise the integrity of the feature information (as in 
Eq. 4). Finally, we complement the original features by sum-
ming the features (as in Eq. 5). Where f3×3(⋅) is the 3 × 3 
convolution, f1×1(⋅) is the 1 × 1 convolution, Fres(⋅) is the 
Residual block and � is the ReLU.

As in Fig. 4, the processing results of MSCFA at different 
stages are displayed. Within the three layers of semantic infor-
mation captured by the backbone network ( lay1−i ), the first two 
layers contain a large amount of target texture information, 
while the last layer is rich in macro-location information of 
both the target and its surroundings. After processing through 
dense residual blocks and parallel convolutions with varying 
scale receptive fields, the texture and edge information in the 
first two layers’ features are significantly enhanced. In the 
third layer, the feature target location weight captured by the 
backbone network is lower, while the environmental weight 
is higher. After processing with convolutions that expand the 
receptive field, a broader association among feature informa-
tion is established, allowing the network to more effectively 
recognize target features, ultimately enhancing the weights of 
both lung sides. Consequently, the corresponding environmen-
tal weight is significantly reduced.

3.3 � Local Feature Attention Block

Due to the high sensitivity of channel attention to the 
channels of potential target features, we aim to utilize it to 
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Fig. 3   Multi-scale Convolutional Feature Attention Block

Fig. 4   Feature attention map 
after MSCFA processing
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enhance the intensity of the target’s channels in deep seman-
tic information. Additionally, influenced by the concept of 
feature patch processing [29–31], we construct a feature slic-
ing processing scheme to improve the model’s learning of 
feature information.

Figure 5 displays the Local Feature Attention Block 
(LFA), which serves to strengthen the network’s focus on 
high-level semantic information. High-level semantic infor-
mation contains a large number of semantic features, and 
traditional convolution is only able to establish associations 
with local features within the convolution kernel during pro-
cessing, without being able to focus on contextual features 
from a global perspective. Therefore, in the LFA, we first 
compress the feature information of X ∈ ℝ

H×W×C using the 
SE block to obtain the global feature information z ∈ ℝ

1×1×C 
(as in Eq. 6). To enable the network to learn to use global 
information and to learn to selectively emphasise feature 
information, highlighting useful features and suppressing 
unimportant features, a gating mechanism is used (as in 
Eq. 7), where W1 = ℝ

C

2
×C , W2 = ℝ

C×
C

2 , � is the sigmod and 
� is ReLU , to obtain the feature S. Subsequent channel mul-
tiplication with the original features embeds the global infor-
mation into the original feature information (as in Eq. 8) 
to obtain feature O. Subsequently, we sliced the feature O 
into multiple chunks oi ∈ ℝ

p×p according to p × p size and 
performed 3 × 3 convolution on each of the sliced chunks 
to strengthen the association of regional feature informa-
tion (as in Eq. 9), where n = ⌈W∕p⌉ . We set up ratios p of 
different sizes to correlate regions of feature information in 
a parallel way (as in Eq. 10), where Oi is the result of the 
different ratios p.

Figure  6 displays the feature maps after processing 
with the LFA. It is clearly observable that all weights are 

reduced. This reduction is mainly due to the lung and its 
surrounding environment sharing similar texture features, 
leading the channel attention to adjust the weights of chan-
nels with similar information during processing. However, 
the texture information of the lung target is still enhanced. 
This enhancement is mainly due to the patch processing 
approach, which allows deep information to establish tighter 
local semantic connections. As a result, the position weight 
indicated by the gray box in the image is effectively reduced. 
Following LFA processing, the continuity of edge features 
is significantly improved, playing a crucial role in guiding 
the subsequent lesion target reconstruction.

3.4 � Feature Refinement and Fusion Block

Shallow networks extract features that contain more texture 
and detail information, while deep networks capture more 
abstract information, including scene context and macro-
location information of objects. To enhance detail informa-
tion, it is necessary to focus on weak features, and residual 
blocks have been proven effective in past studies. Through 
extensive experimentation by various researchers, ESA [28] 
has been shown to significantly focus on edge and texture 
information. Therefore, we aim to utilize a combination of 
both to enhance the edge intensity of lesion target informa-
tion in the features captured by shallow networks, allow-
ing the network to achieve a more complete segmentation 
result. To maintain high sensitivity to channel information, 
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Fig. 5   Local Feature Attention Block Fig. 6   Feature attention map after LFA processing
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the features obtained by deep networks are updated through 
channel attention. The fusion and interaction of these two 
different features ultimately strengthen the lesion target 
information.

Therefore, in the feature fusion stage, to more effec-
tively enhance edge feature information and strengthen 
the fusion of features of different scales, we propose 
the Feature Refinement and Fusion Block (FRFB), as in 
Fig. 7. The FRFB receives two parameters and the resid-
ual structure is still used in the first path processing when 
processing low-level semantic information. The feature 
information is first enhanced by dense blocks of residuals, 
and subsequently we introduce ESA to capture the associ-
ation between more feature information and superimpose 
the refined feature information onto the original features. 
Finally, the feature information is adaptively adjusted by 

the gating mechanism (as in Eq. 11) to obtain Low1 , where 
FESA(⋅) is the ESA and Fres(⋅) is the Residual block.

The second path low-level semantic information is fused 
with the reduced-dimensional high-level semantic informa-
tion for features (as in Eq. 12) to obtain Fu. And after the high 
level semantic information is downscaled to the dimension 
where the low level semantic information is located, through 
the SE block, Deep2 is obtained to participate directly in the 
final channel multiplication to complete the fusion process (as 
in Eq. 13) to obtain Out.

Figure 8 displays the feature processing results on one path 
during the feature reconstruction phase. FRFB receives shal-
low features rich in detail and texture information processed 
by MSCFA, as well as deep features containing rich target 
macro-location information processed by LFA. After fusion 
and reconstruction, the edge information and integrity of the 
target are further enhanced. Moreover, compared to environ-
mental information, target information maintains a higher 
weight. This is primarily due to the further enhancement of 
detail information from shallow networks and the refinement 
of channels containing target information in deep semantic 
information within FRFB.

(11)Low1 =�
(
W2�

(
W1FESA

(
Fres(Low)

)))

(12)Fu =Low + Deep

(13)Out =Low1 ⊗ Fu⊗ Deep2

Fig. 7   Feature Refinement and Fusion Block

Fig. 8   Feature attention map of 
high-level semantic information 
processed by LFA and low-level 
semantic information processed 
by MSCFA processed by FRFB
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3.5 � Feature visualization

Figure 9 shows a set of feature maps generated by the 
model when processing skin data samples, with different 
background colors indicating the main architecture of the 
model and arrows showing the flow direction of feature 
information. The gray background represents the informa-
tion extracted by ResNet34 and ResNet18 at three different 
depths and scales, showing noticeable differences in the 
information they focus on, yet both annotate the features 
of the lesion area. After processing with MSCFA against 
a blue background, the information weight captured by 
the backbone network significantly increases, especially 
in terms of target integrity, closer to the lesion area, dem-
onstrating the positive impact of MSCFA’s dense residual 
blocks and parallel multi-scale receptive field strategy on 
performance.

After LFA processing, particularly in the ResNet18 
path, the macro-localization of the target is effectively 
enhanced, proving the facilitative role of patch processing 
in modeling deep semantic information. In the subsequent 
feature reconstruction phase, FRFB integrates the results 
of LFA and MSCFA, and through two levels of FRFB pro-
cessing, significantly enhances the edge information of 
the target. This further confirms that the residual blocks 
and ESA within FRFB enhance the model’s sensitivity to 
edge and texture information. Moreover, the processing of 
deep semantic information by FRFB increases the weight 
of the target channel, leading to better model performance 
by utilizing macro-location information to guide target 
reconstruction.

4 � Experiment

In this section, we will provide an overview of a series of 
experiments conducted on DmADs-Net. We will begin by 
describing the experimental environment and introducing 
the datasets used in the experiments. Then, we will present 
some results of the comparative experiments and analyze 
the findings. Finally, to further demonstrate the rational-
ity of the network architecture, we will conduct ablative 
experiments on DmADs-Net.
Algorithm 1   DmADs-Net

Input: Image = Xi; GT = Gi i ∈ [1, n]
Output: Segmentation Map S, Loss1, Loss2
while not converge do

TRAIN(Xi,Gi)
list1 = ResNet18 (Xi)
list2 = ResNet34 (Xi)
Mlist1 = MSCFA (list1)
Loss1+ = loss Mlist(1,3), Gi

)

Mlist2 = MSCFA (list2)
Loss1+ = loss Mlist(2,3), Gi

)

Out1 = LFA Mlist(1,3)
)

Out2 = LFA Mlist(2,3)
)

for k = 0; k < 2; k ++; do
Out1 = FRFB Out1 ↑, list(1,k)

)

Loss1+ = loss (Out1, Gi)
Out2 = FRFB Out2 ↑, list(1,k)

)

Loss1+ = loss (Out2, Gi)
end for
S = Fusion (Out1, Out2)
Loss2 = loss (S,Gi)
Loss = θLoss1 + Loss2
Loss Function:
We use SoftIoU as our loss function to guide our training.
We use the Adam optimizer to optimize our network.

end while

Fig. 9   Demonstration of feature information acquired by DmADs-Net in different stages
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4.1 � Experimental parameters

The training was performed using NVIDIA TITAN RTX 
GPUs, running on a Linux environment with Pytorch ver-
sion 1.4.0. The maximum iteration for all compared methods 
was set to 400 rounds, with the best model compared every 
10 rounds. If the best model did not update for 50 consecu-
tive rounds, the training process was automatically stopped. 
Additionally, the same training strategy was applied to all 
compared methods on all datasets.

In medical image segmentation tasks, the Dice coeffi-
cient (Eq. 14) significantly represents the overlap between 
the predicted segmentation area and the actual annotated 
area, which is crucial for formulating subsequent diag-
nostic and treatment strategies. A high Dice coefficient 
indicates the model’s high accuracy in identifying spe-
cific tissues or lesions, essential for evaluating the model’s 
performance in maintaining pathological characteristics. 
The IoU-score (Eq. 15) also serves as a benchmark metric 
for assessing image segmentation quality, measuring the 
ratio of the intersection to the union between predicted and 
actual segmentations. In the context of medical imaging, 
the IoU score enables medical professionals to accurately 
assess the model’s ability to differentiate between lesion 
and normal tissues, crucial for ensuring the clinical appli-
cability of the model.

The Precision metric (Eq. 16) measures the model’s ability 
to correctly identify pixels as lesions (positive class). High 
precision in the field of medical image segmentation reduces 
the occurrence of false positives, thereby avoiding misdiagno-
sis and unnecessary treatment for patients, making precision 
a key indicator of model performance, especially in medical 
applications where diagnostic sensitivity is critical. Similarly, 
Recall (Eq. 17) reflects the model’s ability to capture the actual 
lesion area, where a high recall rate ensures that critical patho-
logical information is not overlooked, crucial for preventing 
missed diagnoses and ensuring timely and accurate treatment 
for patients. During the disease assessment phase, a high recall 
rate aids physicians in comprehensive disease evaluation, lead-
ing to more precise treatment planning. Therefore, these four 
metrics provide a comprehensive and accurate set of perfor-
mance evaluation tools for medical image segmentation, which 
we use as objective evaluation criteria in our experiments.

(14)Dice =
2TP

2TP + FP + FN

(15)IoU =
TP

FP + FN + TP

(16)Precision =
TP

TP + FP

Binary cross-entropy loss, as in Eq. 18, is the most com-
monly used loss function in the field of medical image seg-
mentation; therefore, we also chose it as the loss function for 
our experiments. The network employs a deep supervision 
mechanism, setting companion outputs at different stages 
and calculating the loss (Eq. 19). Finally, by adjusting the 
weights, the proportion of companion loss in the total loss 
(Eq. 20) is modified, where LCE(⋅) represents the loss of 
the final output feature map. Drawing on past experimental 
experience, we set the value of � to 0.5.

4.2 � Experimental dataset

4.2.1 � JSRT

The JSRT dataset consists of human chest images obtained 
through X-ray scanning, containing a large number of lung 
images with each sample having a resolution of 256 × 256 
pixels. In these lung X-ray images, the lung contours are 
often obscured by neighboring organs such as the heart, 
stomach, and spleen, leading to incomplete lung contour 
information. Compared to optical imaging, X-ray imaging 
has limitations in depicting edge details, often failing to cap-
ture the target’s edge features accurately, resulting in lung 
images with relatively high blurriness of edge information. 
Given these characteristics, we choose the JSRT dataset for 
our experiments to test the model’s performance in captur-
ing edge information, especially its ability to handle blurred 
edges caused by anatomical structure occlusion and imaging 
technique limitations.

4.2.2 � ISIC2016

The ISIC2016 dataset is specifically designed for the detec-
tion of skin lesion tissues, containing a rich collection of 
skin lesion samples presented at a resolution of 256 × 256 
pixels. This dataset emphasizes the diversity and complex-
ity of samples, providing a broad range of cases for skin 
lesion detection. One challenge within the samples is that 

(17)Recall =
TP

TP + FN

(18)
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environmental factors, such as human hair, can obscure 
lesion areas, posing a severe test to the model’s recognition 
capabilities. Moreover, since skin surface cells and lesion 
cells share a similar physiological environment, some sam-
ples exhibit a high visual similarity between lesion and 
non-lesion areas, further demanding the model’s excellent 
discrimination ability. Given these characteristics, we use 
the ISIC2016 dataset as an evaluation tool to examine the 
model’s detailed recognition and performance in handling 
skin lesion detection.

4.2.3 � DSB2018

The DSB2018 dataset encompasses a wide range of cell 
imaging samples, with each sample having a resolution of 
256 × 256 pixels. This dataset is rich in features, containing 
cell samples captured in various lighting conditions, demon-
strating the diversity in cell size, density, and morphology, 
all of which significantly challenge the model’s generaliza-
tion ability and adaptability. In stained scenarios, the uneven 
distribution of staining agents and the death of some cells 
can introduce significant interference noise in the samples, 
increasing the complexity of image analysis. In unstained 
dark-field scenarios, the visual information of cell edges 
is often unclear, thereby increasing the difficulty of model 
recognition. Given these characteristics and challenges, we 
choose the DSB2018 dataset for a comprehensive evaluation 
of model performance, ensuring the developed model can 
effectively handle complex biological image data in practi-
cal applications.

4.2.4 � BUSI

The BUSI dataset is created for the treatment of breast can-
cer, a disease with a high mortality rate in women. The sam-
ples in the dataset are taken from 600 female patients at the 
location of the breast and classified into three categories: 
normal, benign and malignant. We chose to use this dataset 
to detect only the malignant category, and adjusted the sam-
ple size to 256 × 256. The targets in this dataset have a high 
degree of similarity to their surroundings and therefore place 
high demands on the performance of the network.

4.2.5 � GlaS

The GlaS dataset contains a large number of samples of cell 
sections from colon lesions, and this dataset is also charac-
terised by sample diversity. To test the ability of DmADs-
Net to handle weak feature information and dense features, 
the sample size of the GlaS dataset was adjusted to 128 × 
128.

4.3 � Comparative experiment

Next, we outline our comparative experiments on five data-
sets, for each of which we carry out a subjective analysis 
with the help of result plots and select some of the results for 
local feature comparisons, followed by an objective analysis 
by means of various indicators.

4.3.1 � JSRT

As in Fig.  10, we show the prediction results of each 
method on the JSRT dataset. As in sample A, there is inter-
ference between the central positions of the left and right 
lungs due to obscuration by the heart. Several methods 
such as Attention U-Net [34], U-Net, and UNet++ showed 
weakness in processing the A samples and were unable to 
correlate the features in the occluded part with those in 
other locations, so the prediction results differed signifi-
cantly from GT. In contrast Ours showed a better ability. 
The results from the processing of the B and E samples 
show that the quality of the prediction maps obtained by 
networks such as KiU-Net, ResNet34-Unet [35], and R2U-
Net [2] is severely disturbed due to interference from other 
organs as well as environmental factors. In comparison to 
these methods, Ours shows good performance, with the 
module created and used by Ours effectively suppressing 
the weight values of unimportant features and boosting 
the weight values of the target features, resulting in results 
similar to those of GT. Comparing the overall results of all 
networks longitudinally, the results achieved by MSNet are 
the best of all the comparison networks, but there is still a 
gap compared to Ours. For the D sample, MSNet clearly 
differed from GT for the right lung.

To highlight the ability to process edge features, we 
selected samples A and D for visual comparison. As in 
Fig. 11, we visually overlapped the predicted result maps 
of each method with the ground truth (GT), where the red 
regions represent misidentified areas and the green regions 
represent unidentified areas. From the comparison results, 
although our method still has some shortcomings in han-
dling edge features, the achieved results are higher than 
those of the U-Net, UNet++, and MedT networks. From 
the processing of samples in Fig. 11, DmADs-Net shows 
better ability to handle non-target features.

As in Fig. 12, we select C sample for local feature ampli-
fication comparison, from the amplification results, KiU-
Net, Attention U-Net for the processing of edge features 
obviously has shortcomings. Compared to the first two net-
works, U-Net achieves significantly better processing results 
on edge features, but is still less refined than Ours.

Table 1 shows the metric results of various compar-
ative networks on the JSRT dataset. As seen from the 
results, MSNet achieved the highest results among all 
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comparative networks, which is consistent with our sub-
jective evaluation of the prediction results. However, 
there is still a gap between MSNet and our proposed 
method. Ours outperformed the second-ranked network 
by 0.37 in Dice score, 1.21 points in IoU score, and 0.75 
in Recall. Based on both subjective and objective evalu-
ations, our method achieved satisfactory results on the 
JSRT dataset. Although there is still room for improve-
ment in edge feature processing, our method outperforms 
the mainstream networks currently available.

4.3.2 � ISIC2016

Figure 13 depicts the segmentation results achieved by dif-
ferent methods on the ISIC2016 dataset. Given the dataset’s 

large number of samples in different environments, we have 
carefully selected the most representative ones for dis-
play. Sample A and B both contain a significant amount 
of hair within the segmentation target, while Sample A 
also includes many patches around it. From the segmen-
tation results, we observe that R2U-Net, U-Net, and other 
methods are impacted by hair, leading to evident errors in 
the target’s segmentation. Similarly, KiU-Net, MedT, and 
other approaches are also affected by environmental factors, 
resulting in varying degrees of errors in boundary determi-
nation. Furthermore, the segmentation target in Sample C 
has highly similar texture features to the surrounding envi-
ronment, and the edges are relatively blurred, demanding 
high network performance. SegNet and MedT exhibit obvi-
ous shortcomings in the segmentation results of Sample C. 

Fig. 10   In the comparative experiment, the prediction results of each network on the JSRT dataset

Fig. 11   Visual overlap comparison chart for the JSRT dataset. Red for incorrectly identified areas, green for unidentified areas
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Ours exhibits relatively good performance, outperforming 
current state-of-the-art networks in both target localization 
and edge feature extraction.

To highlight the ability to process edge features, we chose 
Attention U-Net, SegNet, MedT, and Ours for visual overlap 

comparisons, as in Fig. 14. In the processing of sample C, 
the three comparison networks are significantly too coarse 
for the target edge features, while Ours is much closer to GT 
in its determination of fuzzy edges. Overlaying the feature 
attention plots of the final Ours results with GT, it can be 
seen that Ours is much more refined in its determination of 
edge features, and is almost identical to GT in the lower half 
of the sample, although there are also deviations from GT in 
the upper half of the D sample.

As in Fig. 15, we select the F sample and supplement 
it with a set of features with complex boundaries for local 
feature comparison. From the processing of the red and 
blue box positions in the figure by each network, MSNet is 
too rounded for samples with blurred edges, and the results 
obtained by KiU-Net and MedT are similar to those of 
Ours, but from the processing of the green box positions, 
the results obtained by Ours are most similar to those of GT.

Figure 16 displays two sets of samples containing envi-
ronmental interference. In their processing, R2U-Net, KiU-
Net, and MedT all exhibit lower generalization capabilities 
and poorer robustness. Although the results obtained by 
Ours also have some discrepancies from the GT, they do not 
include environmental information compared to the result 
images of the other three methods. This indicates that the 
model effectively distinguishes between the target and the 
environment in the process of enhancing detail information, 

Fig. 12   Local zoom comparison of the JSRT dataset

Table 1   Metrics for each network in the JSRT dataset

The bold represents the best indicator value

Method Dice IoU Precision Recall

Attention U-Net [34] 96.17 92.65  98.27 94.23
FCN8s [9] 96.53 93.32 97.06 96.63
R2U-Net [2] 86.22 76.09 78.56 96.29
ResNet34-Unet [35] 95.21 90.9 95.92 94.71
SegNet [3] 69.23 54.79 81.9 60.89
U-Net [37] 95.68 91.79 97.12  97.21
UNet++ [55] 96.58 93.41 96.40 96.36
KiU-Net [45] 96.48 93.25 95.66 96.46
MSNet [54]  97.29  94.23  97.74 97.13
MedT [44] 95.87 92.10 96.59 94.44
Ours  97.66  95.44 97.59  97.96
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thanks to the multi-scale receptive field design in MSCFA. 
Moreover, the enhancement of macro-location information 
of the target in LFA promotes the model’s perceptual ability 
towards the target. The information enhancement and fusion 
by FRFB ultimately achieve the reconstruction of the target. 
Eventually, Ours achieves results closest to the GT.

Table 2 shows the metric results of various methods tested 
on the ISIC2016 dataset. Ours achieved first place in Dice and 
IoU-score, and second place in Precision. Combined with sub-
jective evaluation, Ours indeed achieved satisfactory results on 
the ISIC2016 dataset. Despite facing complex environments 
and diverse samples, Ours still exhibited strong generalization 
ability. In addition, through comparative experiments, we also 
found that there is still room for improvement in Ours in terms 
of feature extraction and boundary attention.

4.3.3 � DSB2018

The DSB2018 dataset contains a large number of samples 
in different environments, and therefore, we selected some 
results for display, as shown in Fig. 17. Although samples A 
and C are stained with H &E, the boundaries of some cells 
are still not clear, as evidenced by the R2U-Net results where 
the volume of individual cells is significantly smaller than 
that in the ground truth (GT). In contrast, although U-Net’s 
segmentation results show little difference in cell volume 
compared to GT, U-Net cannot identify the edge features 
of individual cells in dense cell clusters, resulting in severe 
cell adhesion in the processing results of samples A and C. 
In the processing of sample E, ResNet34-Unet clearly lacks 
an ambiguously stained cell, while KiU-Net’s handling of 

Fig. 13   In the comparative experiment, the prediction results of each network on the ISIC2016 dataset

Fig. 14   Visual overlap comparison chart for the ISIC2016 dataset. Red for incorrectly identified areas, green for unidentified areas



	 International Journal of Machine Learning and Cybernetics

cell boundaries is too rough. We use a longitudinal compari-
son to analyze the stability of each method, where MedT 
shows relatively poor stability, and its handling of unstained 
samples is significantly higher than that of stained samples. 

R2U-Net and SegNet’s feature extraction for the unstained 
sample D is significantly lower than that of all the networks 
involved in comparison.

As in Fig. 18, Sample C is selected for local comparison 
in order to highlight the processing results of the local fea-
tures. We zoom in on the locations shown in red boxes, and 
the processing of local features shows that Ours is signifi-
cantly more capable of focusing on weak features than the 
networks involved in the comparison. Attention U-Net and 
UNet++ do not complete the segmentation of lightly stained 
cells, while our network is able to identify cells with weak 
features more completely.

As in Fig. 19, we select two sets of samples for visual 
overlap comparison, and the overall effect shows that each 
network is able to complete segmentation of the cells. The 
cells in the first sample are larger in size, while in the second 
sample they are smaller and more densely arranged. KiU-
Net handles the second sample significantly worse, in con-
trast to our network which shows better performance both 
for segmentation of large targets and for segmentation of 
small and dense cells.

Fig. 15   Comparison of local features of ISIC2016 dataset

Fig. 16   Comparison of environmental disturbances in the ISIC2016 dataset

Table 2   Metrics for each network in the ISIC2016 dataset

The bold represents the best indicator value

Method Dice IoU Precision Recall

Attention U-Net [34] 88.34 81.22  93.77 87.32
FCN8s [9] 90.68 84.61 90.28  94.20
R2U-Net [2] 87.60 80.25 88.00 92.07
ResNet34-Unet [35]  90.74  84.75 91.20  93.44
SegNet [3] 76.38 66.57 79.15 85.71
U-Net [37] 88.66 81.92 90.48 91.17
UNet++ [55] 90.20 83.83 92.94 90.68
KiU-Net [45] 83.22 75.03 81.83 91.80
MSNet [54] 89.40 83.22 91.54 91.52
MedT [44] 88.95 82.03 90.11 91.78
Ours  92.64  86.3  93.34 93.00
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Table 3 shows the scores of all networks compared in the 
experiment, and our network achieved the highest scores in 
the Dice, IoU-score, and Recall metrics. It outperformed 
the second place by 1.28 in Dice and 2.72 in IoU-score. 
Combined with subjective analysis on the DSB2018 dataset, 
DmADs-Net demonstrated excellent segmentation perfor-
mance in complex environments, with superior ability to 
handle local features compared to other methods. It is worth 
noting that from the visual comparison and local feature 
enlargement analysis, there is still room for improvement in 
DmADs-Net’s edge feature extraction and target localiza-
tion. This will be the focus of our future research.

4.3.4 � BUSI

Figure 20 shows the results of each method for the malignant 
breast cancer samples. Compared to the first three datasets, 
the samples in the BUSI dataset have highly similar textural 
features to their surroundings and the segmentation targets 
in all samples are characterised by blurred edge features. 
From the processing of the C and D samples, networks such 
as UNet++, MSNet and MedT are able to locate the position 
of the segmentation target, but do not achieve satisfactory 
results in edge determination. Again, Ours suffers from the 
same problem, but in contrast, the predictions obtained by 
Ours are most similar to those of GT.

In order to highlight the localization and edge process-
ing capabilities of each network for the predicted targets, 

Fig. 17   In the comparative experiment, the prediction results of each network on the DSB2018 dataset

Fig. 18   Local zoom comparison of the DSB2018 dataset
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we selected C and F samples for visual overlap processing, 
as in Fig. 21. In the first sample, our network and UNet++ 
handle the edges in the lower left corner of the target rela-
tively well, while for the right side, all four networks show 
varying degrees of missing features.

As in Table 4, we show the experimental metrics on 
the BUSI dataset. Feature extraction is difficult due to the 
presence of the same texture features in the breast cancer 
data samples as in the surrounding environment. Ours still 
achieves the highest scores on Dice, IoU-score. Combined 
with the subjective analysis, Ours’ experiments on the BUSI 
dataset achieved good results, but still need to explore more 
in edge feature processing as well as global feature informa-
tion to obtain even better results.

Fig. 19   Visual overlap comparison chart for the DSB2018 dataset. Red for incorrectly identified areas, green for unidentified areas

Table 3   Metrics for each network in the DSB2018 dataset

The bold represents the best indicator value

Method Dice IoU Precision Recall

Attention U-Net [34] 88.58 81.22 89.30 89.15
FCN8s [9] 89.23  82.18 90.38  90.66
R2U-Net [2] 79.48 68.94 89.39 78.07
ResNet34-Unet [35]  90.14  82.18 91.15 88.49
SegNet [3] 77.27 66.92 92.37 72.16
U-Net [37] 88.70 80.45 90.11 85.88
UNet++ [55] 89.46 81.85 90.31 88.46
KiU-Net [45] 87.68 78.56 89.25 85.19
MSNet [54] 85.01 75.56 89.81 82.32
MedT [44] 80.59 71.41  92.91 73.62
Ours  91.42  84.90  92.90  91.05

Fig. 20   In the comparative experiment, the prediction results of each network on the BUSI dataset
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4.3.5 � GlaS

Figure 22 shows a comparison experiment on the GlaS data-
set, where we have selected representative samples with dif-
ferent shapes for presentation. Sample A has well-defined 
boundaries and most of the networks are more accurate for 
feature identification, but the processing results obtained by 
MedT, MSNet, and SegNet are not as good as our network 
for correlating intracellular regions. The segmentation target 
in the C sample has the same texture characteristics as its 
surroundings and it is difficult to discriminate the bound-
aries by visual observation alone, whereas the shape and 
boundary information of the target can be easily obtained 
by excellent automatic segmentation techniques. Networks 
such as UNet++, U-Net and KiU-Net are better for cell 
segmentation, while networks such as Attention U-Net and 
FCN8s clearly do not handle boundary feature information 
well. In contrast, our network is able to identify edge infor-
mation more accurately, with the highest similarity to GT. 
Of course, Ours does also have room for improvement, for 
example, the small cells on the right side of the GT plot in 
the C sample, which Ours does not identify. There is a large 
difference between the left and right environments in the D 
sample, with cells concentrated on the right side of the sam-
ple, while the left environment produces the same boundary 
information as the cells due to cell breakage, which places a 
high demand on the network’s feature recognition capabil-
ity. All networks are affected by the left-hand side of the 
environment for cell partitioning, with Ours being the least 
affected.

As in Fig. 23, we select the sample B for local zoom-
ing. MSNet still has room for improvement in feature rec-
ognition, and KiU-Neth and MedT do not achieve the same 
results for edges as Ours. Although Ours does not achieve 
the same level of edge refinement as GT, it completes seg-
mentation for all segmentation targets that appear in the 
sample.

Figure 24 Sample F is selected and supplemented with a 
new sample for visual overlap comparison. The first sample 
has a different class of cells on the left side than on the right 
side and therefore presents a larger difference, which also 
has an impact on the segmentation results. As in UNet++, 
MSNet does not handle the left side cells significantly better 
than the right side, and although KiU-Net achieves localisa-
tion of most of the cells, there is still a gap with our network 
in terms of edge determination. The cells in the second sam-
ple have a more distinct boundary with their surroundings 
and, from the results, our network works relatively well, but 
there are still deficiencies in the identification of cells at the 
edges of the sample.

The metric results for each network on the GlaS data-
set are shown in Table 5, with our network achieving the 
highest scores on Dice, IoU-score, and Precision. Ours is 
3.46 points higher than the second place in the Dice, 5.56 
points higher than the second place in the IoU-score and 
4.58 points higher than the second place in the Precision. On 
the whole, Ours has shown excellent results on samples with 

Fig. 21   Visual overlap comparison chart for the BUSI dataset. Red for incorrectly identified areas, green for unidentified areas

Table 4   Metrics for each network in the BUSI dataset

The bold represents the best indicator value

Method Dice IoU Precision Recall

Attention U-Net [34] 61.54 50.13 68.12 64.64
FCN8s [9] 54.04 40.3 68.15 50.75
R2U-Net [2] 31.87 22.97 63.64 24.44
ResNet34-Unet [35]  66.39 54.21  72.16 68.19
SegNet [3] 30.29 20.85 58.14 29.06
U-Net [37] 61.73 48.76 68.48 62.40
UNet++ [55] 61.29 49.67  74.14 58.66
KiU-Net [45] 49.98 35.91 62.22 48.38
MSNet [54] 66.10  54.85 66.31  74.40
MedT [44] 55.81 44.54 67.43 55.23
Ours  71.35  55.46 71.14  68.46
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a size of 128 × 128, and has shown excellent results in terms 
of target localization and anti-environmental interference. It 
is also clear from the results of the comparison experiments 
that there is real room for improvement in our network, as 
in Fig. 24, where the edge determination of individual cells 
in the second sample still needs to be enhanced.

Ours floating-point calculation amount is 33.06GMac, 
which is leading compared to SegNet’s 457.55GMac, 
KiU-Net’s 70.14GMac, and R2U-Net’s 38.24GMac. How-
ever, compared to lightweight networks such as MedT and 
UNet++, Ours still needs further algorithm optimization. In 
terms of parameter quantity, Ours has 36.28M parameters, 
which is a significant advantage compared to networks such 
as R2U-Net and MSNet, but still insufficient compared to 
lightweight networks.

This concludes our comparative experiments on all five 
datasets, and the overall results show that Ours achieves 
excellent results in edge feature processing, target locali-
sation and feature association. Although Ours outperforms 
current mainstream networks, the advantage is not obvious 
in the processing of individual samples and metrics, so we 
will continue our exploration of network performance.

4.4 � Ablation experiment

This section provides an overview of the ablation experi-
ments that will be conducted based on the network itself. 
The MSCFA modules will be removed from the network, 
and the resulting ablated model will be named DmADs-Net-
a. The FRFB module will be removed and replaced with 

Fig. 22   In the comparative experiment, the prediction results of each network on the GlaS dataset

Fig. 23   Local zoom comparison of the GlaS dataset
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upsampling and traditional feature addition, resulting in a 
network named DmADs-Net-b. The LFA module will be 
removed and replaced with a 3x3 convolution, resulting in 
a network named DmADs-Net-c. All generated compan-
ion features and corresponding loss functions in the origi-
nal network will be removed, resulting in a model named 
DmADs-Net-d. Finally, to demonstrate the performance 
improvement of two different ResNet structures, DmADs-
Net-e will only use ResNet18 as the backbone network. We 
will still conduct experiments on the five datasets used in the 
comparative experiments to make the ablation experiments 
more informative.

4.4.1 � JSRT

Figure 25 shows the results obtained by the five ablation 
models and the original model on the JSRT dataset. From 
the analysis of the prediction results, there is a significant 
difference between the results obtained by DmADs-Net-
c, DmADs-Net-d, and DmADs-Net-e and the GT image. 

Although the results obtained by the other ablation models 
are close to the GT, they still do not perform as well as the 
original network in describing edge features.

As in Table 6, the results of the ablation experiments 
are presented. Overall, there are some differences between 
the indicators of the five ablation models and the original 
network. Combining the results of various indicators, the 
effectiveness of the network model is demonstrated.

4.4.2 � ISIC2016

As in Fig. 26, we also select a representative set of samples 
from the ISIC2016 dataset to highlight the performance of 
each ablation model. For the treatment of first sample, the 
results obtained by DmADs-Net-b are significantly smaller. 
A longitudinal comparison of DmADs-Net-b shows that its 
ability to capture weak features in the sample is significantly 
lower than several other models, and that it is too rounded 
in its treatment of edge features, with specific edge features 
missing. Overall, the results obtained by the five ablation 
models have a certain gap with the original network.

As in Table 7, the metric results obtained by DmADs-
Net-b and DmADs-Net-c have the largest gap with the 
original network. Combined with the experimental results, 
the results obtained by the two are also far behind the GT. 
Ablation experiments performed on the ISIC2016 dataset 
demonstrate the effectiveness of our created model.

4.4.3 � DSB2018

As in Fig. 27, we have selected two sets of stained samples 
and two sets of unstained samples from the DSB2018 dataset 
for demonstration. From the treatment of the first sample, 
five ablation experiments showed varying degrees of fea-
ture identification problems. In combination with the second 
sample, the segmentation results obtained by DmADs-Net-a 
are more rounded, missing the edge feature information, thus 

Fig. 24   Visual overlap comparison chart for the GlaS dataset. Red for incorrectly identified areas, green for unidentified areas

Table 5   Metrics for each network in the GlaS dataset

The bold represents the best indicator value

Method Dice IoU Precision Recall

Attention U-Net [34] 82.74 71.93 81.34 84.3
FCN8s [9]  84.75  74.41  86.02 85.29
R2U-Net [2] 69.99 55.03 59.24  90.92
ResNet34-Unet [35] 79.39 67.16 77.45 84.66
SegNet [3] 79.84 67.56 76.18 86.83
U-Net [37] 82.62 71.64 80.42 83.27
UNet++ [55] 81.47 71.54 84.08 84.5
KiU-Net [45] 82.69 71.7 80.5 85.22
MSNet [54] 83.27 72.61 85.9 83.39
MedT [44] 76.5 63.29 73.53 82.78
Ours  88.21  79.97  90.6  87.13
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allowing to see the contribution of MSCFA to the network’s 
weak feature focus capability.

As in Table 8, we show the metric scores obtained 
by the five ablation models with the original network. 
Combining the prediction results overall, all five abla-
tion models obtained inferior results to the original net-
work, which proves the effectiveness of the network for 
the architecture.

4.4.4 � BUSI

As in Fig. 28 and Table 9, we show ablation experiments 
performed on the BUSI dataset. From the experimental 

results, the results obtained by each ablation experiment 
are not as good as the original network. In particular, 
the results obtained with DmADs-Net-c contain a large 
amount of non-target information and are more rounded 
for lesions, missing information on edge features. The 
ablation experiments performed on the BUSI dataset simi-
larly demonstrate the effectiveness of the modules in the 
network.

Fig. 25   Results of the JSRT dataset on ablation experiment

Table 6   Results of the JSRT dataset on ablation experiment

Method Dice IoU Precision Recall

DmADs-Net-a 97.43 95.20 97.38 97.86
DmADs-Net-b 97.48 95.10 96.97 98.05
DmADs-Net-c 97.37 94.89 97.98 96.82
DmADs-Net-d 96.80 93.82 95.36 98.37
DmADs-Net-e 97.44 95.02 95.50 97.43
DmADs-Net 97.66 95.44 97.59 97.96

Fig. 26   Results of the ISIC2016 dataset on ablation experiment

Table 7   Results of the ISIC2016 dataset on ablation experiment

Method Dice IoU Precision Recall

DmADs-Net-a 91.46 85.39 94.02 91.27
DmADs-Net-b 90.15 83.41 92.94 90.34
DmADs-Net-c 90.57 84.27 94.19 89.93
DmADs-Net-d 91.15 84.90 94.41 90.37
DmADs-Net-e 91.20 85.01 92.4 92.54
DmADs-Net 92.64 86.30 92.59 93.00
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4.4.5 � GlaS

As in Fig. 29, we modify the sample size of the GlaS data-
set to 128 × 128 and use it for the ablation experiments. 
Because the lesion targets in the first sample are similar to 
their surroundings, each ablation experiment exhibits vary-
ing degrees of misidentification. For the second sample, it 
is still the original network that gives the best results. This 
is indirect evidence of the role played by the three modules 
and the depth supervision mechanism in the network.

As in Table 10, the metric results achieved by the abla-
tion experiments on the GlaS dataset are demonstrated. 

Combined with the results shown in the comparison plots, 
performance degradation occurs for all five ablation mod-
els, with the most significant degradation occurring for the 
model with the removal of the depth supervision mechanism.

In the ablation experiments, we conduct experiments on 
five datasets for fiv ablation models. The ablation experi-
ments demonstrate the contribution of MSCFA to the 
extraction of weak feature information from the network, 
the enhancement of the deep supervision mechanism to the 
network training process, and likewise the contribution of 

Fig. 27   Results of the DSB2018 dataset on ablation experiment

Table 8   Results of the DSB2018 dataset on ablation experiment

Method Dice IoU Precision Recall

DmADs-Net-a 91.31 84.62 93.77 89.92
DmADs-Net-b 91.10 84.33 92.93 90.39
DmADs-Net-c 91.28 84.43 91.96 91.75
DmADs-Net-d 90.79 83.88 92.54 90.29
DmADs-Net-e 91.24 84.66 92.91 90.78
DmADs-Net 91.42 84.90 92.90 91.05

Fig. 28   Results of the BUSI dataset on ablation experiment

Table 9   Results of the BUSI dataset on ablation experiment

Method Dice IoU Precision Recall

DmADs-Net-a 69.41 53.16 67.54 67.66
DmADs-Net-b 68.36 51.93 66.01 67.02
DmADs-Net-c 70.04 53.89 73.51 66.91
DmADs-Net-d 71.20 55.28 70.79 67.88
DmADs-Net-e 70.32 54.23 66.22 69.12
DmADs-Net 71.35 55.46 71.14 68.46
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FRFB and LFA to the network performance. Nevertheless, 
DmADs-Net is still not optimal for some samples, so we 
still need to explore its optimal performance in the future.

5 � Limitations and future work

Although DmADs-Net shows good performance on five 
datasets, we must acknowledge that its universality has not 
reached the ideal level. Further experiments on other data-
sets do not demonstrate significant advantages, revealing 
potential limitations or biases of the model. To enhance the 
credibility of the paper, future work will delve into these 
limitations, refine the analysis of the model’s performance 
under different conditions, and identify its performance 
bottlenecks.

DmADs-Net’s performance across various datasets indi-
cates room for improvement in the network’s robustness. 
We plan to conduct in-depth optimization of the network 
architecture, focusing on improving the capture of global 
information to enhance overall performance. The integra-
tion of the Transformer and diffusion model [41] concepts 
into DmADs-Net is planned to address current deficiencies.

Considering that most current medical image segmenta-
tion datasets are manually created and feature lesions with 
clear identifiability, real-world complex and emergent medi-
cal situations cannot guarantee that lesion targets will be 
unaffected by environmental factors. Although the datasets 
used in this paper include samples with environmental inter-
ference, their quantity is still insufficient to effectively simu-
late real situations. In the future, we will validate DmADs-
Net’s performance in actual medical diagnostics and plan to 
collect samples affected by environmental interference for 
systematic model evaluation.

Future research will also be conducted on a broader range 
of medical image datasets, including specific types such as 
polyps, retinal blood vessels, and others, as well as in areas 
like change detection, remote sensing image segmentation, and 
semantic segmentation. The aim is to expand the applicability 

of DmADs-Net and adapt it to new application challenges. 
Through these specific research directions, we aim to com-
prehensively enhance the performance and applicability of 
DmADs-Net.

6 � Conclusion

This paper presents DmADs-Net, aiming to enhance the 
attention to weak features in medical image segmentation 
tasks. The Multi-scale Convolutional Feature Attention 
Block enhances the network’s recognition of weak features 
and improves the intensity of texture and detail informa-
tion. At the bottleneck layer, the Local Feature Attention 
Block enhances the capture of high-level semantic infor-
mation through block processing, thereby improving the 
overall network performance. The Feature Refinement and 
Fusion Block, combined with the Edge Spatial Attention 
strategy, strengthens the fusion of features across different 
semantic levels. Additionally, a deep supervision mechanism 
optimizes the training process by calculating the compan-
ion loss of intermediate layer outputs, further enhancing the 
network’s learning efficiency. The performance improve-
ment of DmADs-Net in medical image segmentation is 
expected to have a significant impact on clinical diagnosis 
and treatment planning. By more accurately identifying and 
segmenting lesion areas, DmADs-Net can help physicians 
better understand the condition, leading to more precise 

Fig. 29   Results of the GlaS dataset on ablation experiment

Table 10   Results of the GlaS dataset on ablation experiment

Method Dice IoU Precision Recall

DmADs-Net-a 88.02 79.64 89.93 87.63
DmADs-Net-b 87.30 78.60 87.28 89.06
DmADs-Net-c 87.85 79.90 87.48 90.36
DmADs-Net-d 86.16 76.98 85.41 88.60
DmADs-Net-e 86.73 77.32 86.94 87.49
DmADs-Net 88.21 79.97 90.60 87.13
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diagnoses and more effective treatment plans. For instance, 
in the early diagnosis of cancer, accurate image segmenta-
tion helps in timely tumor detection, increasing the chances 
of cure. Experimental results prove the efficacy of DmADs-
Net and validate the effectiveness of its modules and the 
rationality of the network structure through ablation studies. 
In the future, we plan to further explore the field of medi-
cal imaging based on DmADs-Net to meet the demands of 
more medical tasks and advance the development of medical 
image analysis technology.
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