
Vol.:(0123456789)

International Journal of Machine Learning and Cybernetics
https://doi.org/10.1007/s13042-024-02212-5

ORIGINAL ARTICLE

Uni‑directional graph structure learning‑based multivariate time
series anomaly detection with dynamic prior knowledge

Shiming He1 · Genxin Li1 · Jin Wang1 · Kun Xie2 · Pradip Kumar Sharma3

Received: 29 November 2023 / Accepted: 8 May 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
In the Internet of Things (IoT) system, sensors generate a vast amount of multivariate time series data and transmit it to
the data center for aggregation and analysis. However, due to equipment failure or attacks, the collected data may contain
anomalies, which in turn affect the overall performance and reliability of IoT services. Therefore, an effective multivariate
time series anomaly detection (MTSAD) method is a crucial issue to ensure the quality of service. Graph structure learning
(GSL)-based methods become a promising technology in MTSAD, which learns an optimal graph structure joint with the
anomaly detection task. However, most existing methods disregard the causal and dynamic relationships between sensors
during the processing of IoT and assume that the data is devoid of any missing values. Therefore, we propose a uni-direction
graph structure learning-based multivariate time-series anomaly detection with dynamic prior knowledge (DPGLAD), which
learns the uni-directional relationships between sensors under the constraint of the dynamic prior graph and utilizes diffu-
sion convolutional recurrent neural networks (DCRNN) based on timestamp mask to extract temporal and spatial features.
Extensive experiments show that our method has better detection performance and shorter training times than state-of-the-art
techniques on four real-world datasets. Compared with the best GSL-based method GTA, DPGLAD achieves 4.16–7.29%
more F1-score.

Keywords  Multivariate time series · Anomaly detection · Graph structure learning · Graph neural network · Dynamic prior
graph · Uni-directional graph structure

1  Introduction

In the Internet of Things (IoT) system, sensors generate
large amounts of time series data [8]. Anomalies in the data
may indicate device malfunctioning or system attacks. If
the anomalies are not detected in time, they may result in
economic losses [9, 26]. Thus, anomaly detection plays an
important role in IoT systems. In real applications, multivari-
ate indicators.1 are collected to reflect the overall status of
a system [7, 16] A multivariate time series (MTS) example
from an industrial IoT system is presented in Fig. 1, which
includes data from seven different sensors installed in a
tap water treatment system. These sensors are Flow meter
FIT101, level transmitter LIT101, motorized valve MV101,
sump pump P101, backup sump pump P102, conductivity
analyzer AIT201, and pH analyzer AIT202.

Various indicators affiliated with the same system inter-
relate with each other, making it so that a sudden shift in
several indicators may not be indicative of system failure.

This work is supported by the Open Fund of Key Laboratory of
Safety Control of Bridge Engineering, Ministry of Education
(Changsha University of Science Technology) under Grant 21KB07.

 *	 Jin Wang
	 jinwang@csust.edu.cn

	 Shiming He
	 smhe_cs@csust.edu.cn

	 Genxin Li
	 mapleleavesli@stu.csust.edu.cn

	 Kun Xie
	 xiekun@hnu.edu.cn

	 Pradip Kumar Sharma
	 pradips@ieee.org

1	 Key Laboratory of Safety Control of Bridge Engineering,
Ministry of Education, Changsha University of Science
and Technology, Changsha 410114, China

2	 College of Computer Science and Electronics Engineering,
Hunan University, Changsha 410082, China

3	 Computing Science, University of Aberdeen,
Aberdeen AB24 3FX, UK 1  Here, "indicator" refers to the time series of a particular variable.

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-024-02212-5&domain=pdf

	 International Journal of Machine Learning and Cybernetics

As shown in Fig. 1, despite the occurrence of a sudden
decline in P101, P102, and AIT201 during the green seg-
ment, the system remains in a healthy status. This is due to
the consistent trend of these three indicators. In contrast, the
red segment shows an inconsistent pattern in MV101 com-
pared to all other indicators, indicating system malfunction.
Therefore, in the realm of multivariate time series anomaly
detection (MTSAD), it is crucial to discover the presence of
potential dependencies among the indicators [8].

Recently, graph neural networks (GNNs) [22, 23], espe-
cially spatio-temporal graph neural networks have garnered
significant attention due to their ability to model inter-indi-
cator relationships with satisfactory results. However, most
GNNs [6, 28] presuppose an explicit graph structure or treat
the graph structure as a complete graph. In real-world set-
tings, the graph structure may be unavailable, rendering the
inter-dependencies between sensors unknown.

To handle unknown graph structure, MTSAD grounded
in Graph Structure Learning (GSL) [2, 3, 5]. It is a promis-
ing method that effectively acquires knowledge about the
concealed graph structure in conjunction with the down-
stream GNNs task. Figure 2 visually illustrates the typical
GSL-based anomaly detection method process. The graph
structure learner generates a graph structure. This graph
structure is then fed into the detection model, leading to a
joint update of parameters in both the detection model and
the graph structure learner. In this way, the graph struc-
ture is iteratively refined. This iterative parameter update
scheme can obtain a more optimal graph structure that
aligns with the requirements of the downstream anomaly
detection task.

Nonetheless, the graph structure learning-based anom-
aly detection method still confronts numerous challenges.

•	 Most of the present graph structure learning-based
MTSAD [3, 5] method only captures undirected

dependencies, leaving uni-directional dependen-
cies unaccounted for. The existing uni-directional
graph structure [2] learning-based MTSAD method
has considerable overhead. Several anomaly detec-
tion based on graph structure learning calculate node
similarity to construct an undirected graph. However,
there is a special processing of IoT. The upstream sta-
tus decides the downstream operation. The downstream
sensor depends on the upstream sensor. The relation-
ship between sensors is uni-directional. Although
Graph Learning with Transformer for Anomaly detec-
tion (GTA) [2] employs a fully parameterized graph
learning method to obtain uni-directional graphs, the
training time required is too lengthy and inefficient.
Therefore, an efficient graph structure learning method
is needed to extract the one-way dependence between
sensors.

•	 The static nature of the prior graph limits its ability to
represent the dynamic relationship between sensors.
To improve the quality of learned graph structure, prior
information is often provided by a prior graph. Existing
methods utilize all raw data as input to obtain the K near-
est neighbor (KNN) graph as prior knowledge, which is a
static graph. However, the relationship between sensors
changes over time. Using only a static prior graph can not
adapt to varying data features and task requirements.

•	 The existing methods are susceptible to data with
missing values. In current works, it is commonly
assumed that training data is entirely normal and devoid
of any missing values [11]. However, in the real world,
collected data often contain missing values, especially
when dealing with large volumes of data.

To address the three challenges, we explore a uni-direc-
tion graph structure learning-based multivariate time
series anomaly detection with dynamic prior knowledge
(DPGLAD), which utilizes uni-directional graph structure
learning to model relationships between sensors under the
constraint of the dynamic prior graph, and diffusion con-
volutional recurrent neural networks (DCRNN) based on
timestamp mask to extract temporal and spatial features. Our
major contributions can be summarized as follows:

Fig. 1   A multivariate time series example of an industrial IoT sys-
tem that showcases both normal (represented by green) and abnormal
(represented by red) values

Fig. 2   A general framework of Graph Structure Learning-based
anomaly detection

International Journal of Machine Learning and Cybernetics	

•	 To mine one-way dependencies between sensors at
a low cost, we utilize a lightweight uni-directional
graph structure (UGL) learning method. UGL learns
two embedding vectors for each sensor to represent the
source node and destination node of the edge, respec-
tively, instead of one embedding vector or one feature
vector.

•	 To improve the quality of the learning graph, we propose
a dynamic prior graph generation to obtain a dynamic
prior graph changing over time instead of a static prior
graph, which provides accurate prior information and
adapts to varying data features and task requirements.

•	 To effectively handle data with missing values, we pro-
pose a timestamp mask-based diffusion convolutional
recurrent neural network (DCRNN) to actively mask
some values and robustly predict the next value of the
time series. The prediction error is exploited to detect
anomalies.

•	 Extensive experiments conducted on four public and real-
world datasets show that our method has better detection
performance and shorter training times than state-of-
the-art techniques. Compared with the best GSL-based
method GTA, DPGLAD achieves 4.16–7.29% more
F1-score.

The subsequent sections of this paper are organized as fol-
lows. Section 2 explains the background for our work. Sec-
tion 3 presents an overview of the related work. Section 4
provides a presentation of the problem description and the
preliminaries. Section 5 provides a comprehensive explana-
tion of DPGLAD, including both a general overview and
a step-by-step guide. In Sect. 6, we conduct experiments
to evaluate the performance and efficiency of the model.
Finally, our work is concluded in Sect. 7.

2 � Background

In this section, we take an example to display the one-way
dependence between sensors. An illustration of the first two
processes in the Safe Water Treatment (SWAT) testbed is
shown in the left of Fig. 3. In process 1, the water level
sensor (LIT101) in the tank has a causal effect on the pump
control system (P101). When the water level in the tank
drops below a certain threshold, it triggers the pump control
system to activate and start pumping water for further treat-
ment. Similarly, in process 2, the chemical dosing system
(P201, P203, P205) is influenced by the data from the water
quality sensor (FIT201, AIT201). Once the water quality
meets the required standards, the addition of chemicals will
be ceased.

In this simplified illustration, it is evident that the pro-
cesses have a uni-directional influence on each other, indi-
cating the presence of a uni-directional relationship among
the sensors. We can obtain a uni-directional graph for these
sensors as shown in the right of Fig. 3.

3 � Related work

In this section, we review anomaly detection methods based
on temporal feature, graph neural networks, and graph struc-
ture learning.

3.1 � Temporal feature‑based anomaly detection
methods

The recurrent neural networks (RNNs) and their variants
are prevalent in MTSAD due to their natural aptitude for
handling time series data. LSTM-NDT [10] utilizes Long

Fig. 3   Left: The first two processes of Secure Water Treatment (SWAT) [4] testbed. Right: The abstract relationships between sensors

	 International Journal of Machine Learning and Cybernetics

Short-Term Memory (LSTM) to learn the temporal features
and generate predictions. It collects the error between pre-
dicted and actual values to form an error vector, which is
exponentially averaged and weighted to compute a thresh-
old for anomaly detection. In addition, various combined
models of recurrent neural networks and generative models
are employed in MTSAD for reconstructing time series. For
instance, Omnianomaly [20] employs a stochastic recurrent
neural network to effectively capture and represent nor-
mal patterns, thereby facilitating the reconstruction of the
observed data. DAGMM [29] trains both deep autoencoder
and Gaussian mixture models to produce reconstruction
errors for detecting anomalies. MAD-GAN [12] employs
LSTM to establish a Generative Adversarial Network (GAN)
framework that effectively captures the temporal correla-
tion of time series distributions, and identifies anomalies
through discrimination and reconstruction processes. USAD
[1] adversarially trains an encoder-decoder framework to
achieve fast and efficient training. LSTM-VAE [17] maps
multimodal observations and temporal dependencies’ rela-
tions to the latent space and reconstructs the expected dis-
tribution. MSCRED [25] combines convolutional layers,
LSTM layers, and attention mechanisms to construct the
Encoder, thus increasing the network’s fitting capability.

Although RNNs have shown promising results in mod-
eling the temporal dependence of time series data in the
temporal dimension, they cannot directly capture the cor-
relations between sensors.

3.2 � Graph‑based anomaly detection methods

The effectiveness of graph attention networks in predict-
ing temporal dependencies and modeling correlations
between sensors has been demonstrated in recent studies.
For instance, MTAD-TF [6] employs multi-scale convolution
and graph attention networks to capture the feature in tempo-
ral patterns. MTAD-GAT [28] uses two parallel graph atten-
tion layers to model correlations between indicators. Arvalus
and its variant D-Arvalus [18] employs system deployment
meta-information to construct a graph structure and intro-
duces a new graph convolution (GC) technique to model
correlations between indicators.

Although graph neural networks-based anomaly detection
methods have shown promising results in modeling correla-
tions between indicators, they still have some limitations.
For instance, the Arvalus and its variant D-Arvalus [18]
assume that there is a known graph structure predefined by
domain knowledge. This assumption limits their generality
and makes them sensitive to graph predefinition [27]. On the
other hand, MTAD-TF [6] and MTAD-GAT [28] treat the
relationship between indicators as a complete graph, which
increases computational overhead.

3.3 � Graph structure learning‑based anomaly
detection methods

To handle multivariate time series without a comprehensive
real graph structure, GSL-based anomaly detection methods
emerged. For instance, GDN [3] constructs a KNN graph by
the similarity between the learned node embedding vectors.
The learned graph structure is then fed into a graph attention
neural network to extract dependencies between indicators
and predict future behavior, where the prediction error is
used to calculate the anomaly score. Similarly, FuSAGNet
[5] partitions sensors based on their functions within a par-
ticular process and recursively encodes a group of sensors
in the same process to construct a KNN graph. GTA [2]
considers the elements of the adjacency matrix as learn-
able parameters and automatically learns the graph structure
using a Transformer-based architecture to model temporal
dependencies.

The graph structure obtained by pair-wise similarity, as
with the GDN [3] and FuSAGNet [5], is undirected, which
can not reflect the unidirectional dependencies between sen-
sors. Although GTA [2] can obtain a uni-directional graph,
the fully parametric learning method is complicated and has
low training efficiency. Therefore, an efficient uni-directional
graph structure learning method is necessary for MTSAD.

Compared with graph-based spatial and temporal learn-
ing, we use graph learning techniques rather than a prede-
fined graph structure based on expert experience. Compared
with previous temporal graph structural learning technique,
we learn a uni-directional graph to model one-way relation-
ships between sensors.

4 � Problem definition and preliminaries

4.1 � Problem definition

Multivariate time series data comprises a substantial amount
of regularly spaced sampling and uninterrupted observation
points, characterized by K indicators and N timestamps,
which can be denoted by X = (x1, x2,… , xN)

T ∈ RK×N . The
i-th indicator can be represented by xi = (xi

1
, xi

2
,… , xi

N
) .

The t-th timestamp contains K values of indicators, which
is denoted by xt = (x1

t
, x2

t
,… , xK

t
)T  . Define the historical

time series window of length � at time t as subsequence
Xt = (xt−�, xt−�+1,… , xt−1)

T ∈ RK×� . When xt is considered
abnormal, the label yt is set to 1.

Multivariate time series anomaly detection aims to iden-
tify whether the timestamp ( xt ) is anomalous. According to
the historical time series Xt , it predicts the value of times-
tamp t, and the difference between the prediction and the
ground truth is taken as an anomaly score to identify the
anomaly. The process is formulated as follows:

International Journal of Machine Learning and Cybernetics	

where x̂t is the predicted value of timestamp t, s(t) is the
anomaly score of timestamp t, and T is the threshold. When
the anomaly score st exceeds the threshold T, an anomaly is
considered to have occurred at timestamp t.

4.2 � Anti‑symmetric matrix

A matrix A is said to be an anti-symmetric matrix if it satis-
fies the following conditions:

•	 A is a square matrix, meaning it has an equal number of
rows and columns.

•	 For each element Ai,j in matrix A, it holds that Ai,j = −Aj,i ,
i.e., AT = −A.

The anti-symmetric matrix is exploited to implement uni-
directional graph learning.

4.3 � Graph structure learning

Given the time series X ∈ RK×N , the purpose of the graph
structure learning is to obtain a graph G = (V ,E) and its
graph topology or adjacency matrix A ∈ RK×K . The node v
in the graph is a sensor that produces an indicator, and the
hidden relationship between the sensors is considered the
edge E. The adjacency matrix A stores the edge informa-
tion in the graph, which reflects the underlying dependencies
among indicators. The elements in the adjacency matrix are
composed of 0 and 1. Ai,j is 1, which represents an edge
between node i and node j. On the contrary, there is no edge
between node i and node j, when Ai,j = 0 [15, 21, 30].

If a graph is directed, its adjacency matrix satisfies that if
Ai,j equals 1, then Aj,i must be 0.

5 � Our proposed methodology

This section provides a comprehensive explanation of our
proposed approach. The notation used in this section is
described in Table 1.

5.1 � Overview

Complex topological relationships often exist among
monitored indicators in real-world scenarios, which can

(1)x̂t =f
(
Xt

)

(2)s(t) = 𝜑
(
xt, x̂t

)

(3)ŷt =

{
1, if s(t) > T

0, if s(t) ≤ T

be represented as a graph. In this graph, each indicator
is regarded as a node, while the relationships between
them are represented by edges connecting the nodes.
Most previous methods [3, 5] learn an undirected graph
that cannot represent one-way dependencies between sen-
sors. Although GTA [2] uses a direct method to obtain
a uni-directional graph, the GTA method is inefficient.
Therefore, we propose a uni-directional Graph Structure
Learning-based Multivariate Time Series Anomaly Detec-
tion with Dynamic Prior Knowledge. Figure 4 illustrates
the framework for our method. Essentially, our method
comprises four key components:

•	 Uni-directional graph structure learner: To mine one-
way dependencies between sensors at a low cost, we con-
struct a uni-directional graph using the antisymmetric
matrix with the ReLu function.

•	 Dynamic prior graph generator: To improve the qual-
ity of the learning graph, we utilize a dynamic prior
graph to provide dynamic prior information for learning
graph.

•	 DCRNN predictor based on timestamp mask: To
effectively handle data with missing values, we utilize
the timestamp masking mechanism to eases the impact of
missing values in the raw data. The time series is masked
and then fed into DCRNN with the uni-directional graph
to predict future values for each sensor.

•	 Anomaly score calculation: After the predictor is
trained, the prediction error is used to calculate the
anomaly score.

Table 1   List of notations

Notation Meaning

X Multivariate time series
Xt historical time series window of length � at time t
∼

Xt
The masked historical time series

x
i The i-th indicator values
xt The indicator values at timestamp t
Tf () The masking transformation
x̂ The prediction
K The number of indicators
N The number of timestamps
yt The label of timestamp t
G Graph
A Adjacency matrix
� Prior adjacency matrix

V
(t)

i
The feature vector of sensor i at timestamp t

E
1

The source embedding vector
E
2

The destination embedding vector
Erri(t) The prediction error at timestamp t for sensor i
s(t) Anomlay scores

	 International Journal of Machine Learning and Cybernetics

5.2 � Uni‑directional graph structure learner

Many of the current graph structure learning-based anomaly
detection methods [3, 5] depend on node similarity metrics
to construct the graph structure. Consequently, the graph
structure is undirected and the relationship between nodes
is symmetrical. However, there are uni-directional relation-
ships between nodes.

Our uni-directional graph structure learner is specially
tailored to identify and extract one-way dependencies. It is
implemented by a source node embedding vector and a tar-
get node embedding vector as follows:

(4)M1 = tanh
(
�E1�1

)

where E1 and E2 represent the source and target node embed-
ding vectors, respectively, �1 , �2 are the model parameters,
and the activation function’s saturation rate is symbolized
by � . E1 and E2 are initialized as random, which are updated
by the backpropagation of graph learning loss. Subtraction
operation (M1M

T
2
−M2M

T
1
) in Eq. (6) can construct an anti-

symmetric matrix according to Eq. (7). In an anti-symmetric
matrix A, the value of Aj,i equals −Ai,j.

(5)M2 = tanh
(
�E2�2

)

(6)A =ReLU
(
tanh

(
�
(
M1M

T
2
−M2M

T
1

)))

Fig. 4   The DPGLAD framework comprises four main modules. The
first module, depicted in gold, models the inter-indicator relation-
ships. The second module, depicted in cyan, is responsible for gen-
erating a dynamic prior graph that provides prior information to the

graph structure learner. The third module, shown in grey, utilizes a
timestamp mask-based DCRNN predictor to generate accurate predic-
tions of indicators. The last module, shown in lilac, perform anomaly
score calculation. Loss functions are highlighted in red

International Journal of Machine Learning and Cybernetics	

Subsequently, the uni-directional adjacency matrix is
obtained by setting the negative value Aj,i to 0 by the ReLU
activation function. Figure 5 gives a simple example to
illuminate the construction of a uni-directional matrix. To
construct a one-way graph, it is necessary to calculate the
similarity weights for every pair of node embedding vectors,
which incurs a computational cost of O(K2).

To reduce the computation cost, only the first k large val-
ues are considered as neighbors, and the rest are set to 0 as
follows:

where the index of the top-k largest values of a vector is
returned by arg topk(⋅).

5.3 � Dynamic prior graph generator

To enhance the quality of the learning graph, the existing
graph structure learning method provides prior knowledge
in the format of a prior graph for graph learning. Currently
prior graph generation methods typically utilize all raw
data as input and transform them into a KNN graph as prior
knowledge. This prior graph is a static graph and can only
describe fixed relationships between indicators.

However, the relationships between indicators usually
change over time. As shown in Fig. 6, the purple line and
the blue line exhibit synchronous fluctuations from t1 to t2 ,
but they diverge and move in opposite directions after t3 .
Therefore, it is necessary to capture the various and dynamic
relationships between sensors. Specifically, the dynamic
prior graph generator comprises two essential components:
the feature extractor and the KNN graph generator.

(7)

(
M1M

T
2
−M2M

T
1

)T
=
(
M1M

T
2

)T
−
(
M2M

T
1

)T

=
(
M2M

T
1

)
−
(
M1M

T
2

)

= −
(
M1M

T
2
−M2M

T
1

)

(8)

for i = 1, 2,… ,K ∶

idx = arg topk
(
Ai,∶

)

Ai,j = 1, j ∈ idx

5.3.1 � Feature extractor

To represent each sensor, we design a feature extractor that
generates a feature vector for each sensor. The feature vec-
tor characterizes the diverse behaviors of different sensors.
To capture the relationships changing over time, the input
of the feature extractor at timestamp t is the subsequence
Xt instead of the whole time series. The feature vector of
the sensor i at timestamp t is obtained by applying two one-
dimensional convolutional layers and a fully connected layer
[19] as follows:

where x(t)
i

 = (xi
t−�

, xi
t−�+1

,… , xi
t−1

) ∈ Rw , and V (t)

i
 is the fea-

ture vector of sensor i at timestamp t. Conv stands for the
one-dimensional convolutional layer and FC stands for the
fully connected layer.

5.3.2 � KNN graph generator

The KNN graph generator uses the features vector from the
feature extractor to generate prior graphs. The initial step of
the KNN graph generator is to compute the cosine similarity
of two feature vectors as follows:

where ‖ ⋅ ‖ denotes magnitude. We choose the most similar
k nodes for each node as follows:

(9)V
(t)

i
= FC

(
Conv

(
Conv

(
x
(t)

i

)))

(10)cos
(
V
(t)

i
,V

(t)

j

)
=

V
(t)

i
∙ V

(t)

j

|||
|||V

(t)

i

|||
||| ∙

|||
|||V

(t)

j

|||
|||

(11)�
(t)

i,j
= 1, j ∈ topk

(
cos

(
V
(t)

i
,V

(t)

j

))

Fig. 5   The process of constructing a uni-directional matrix

Fig. 6   The relationship between sensors changes over time

	 International Journal of Machine Learning and Cybernetics

where �(t)
i,j

 denote the element located in the i-th row and j-th
column of the prior graph and topk(⋅) selects the k node
indices with the highest cosine similarities [3].

In this way, we can generate a list of prior graphs
�(1), �(2),… , �

(
N

stride
−�+1) , where N is the total length of the

time series, the stride is the step size of the sliding window,
and � is the size of the sliding window.

Although the obtained prior graph is undirected, it still
provides efficient knowledge for uni-directional graph struc-
ture learning. In detail, the undirected edges in the prior graph
represent the relationships between connected nodes, and the
graph learner strives to determine the direction of these edges
within the constraint of the prior graph. The prior graph �(t)
serves as the direction candidates for graph learning.

5.4 � DCRNN predictor based on timestamp mask

To handle the missing value in prediction, we propose the
timestamp mask-based DCRNN predictor. It combines a
timestamp mask mechanism and a recurrent graph neural net-
work to robustly make predictions of future values by actively
masking some values. The masked subsequence

∼

Xt and the
learned adjacency matrix A from the graph structure learner
are utilized as input for the recurrent graph neural network to
predict the following value of the subsequence.

5.4.1 � Timestamp masking

For a given subsequence Xt ∈ RK×� , a masking vector m ∈
{0, 1}� is first sampled, where each element is drawn from a
Bernoulli distribution with probability p independently [24].
Then, we mask the subsequence Xt with m, resulting in the
creation of a masked subsequence denoted by

∼

Xt.

where Tf () is the masking transformation, and xi ∈ R� is the
transpose of the i-th row vector of Xt . Fig. 7 gives a simple
example of masking process. The input of the DCRNN pre-
dictor consists of

∼

Xt and the adjacency matrix A.

(12)
∼

Xt = Tf
(
Xt,m

)
=
[
x
1 ⊙ m, ..., xK ⊙ m

]T

5.4.2 � DCRNN predictor

DCRNN [13] is designed for uni-directional graphs and
can capture the temporal and spatial features simultane-
ously. DCRNN captures spatial features by diffusion con-
volution and temporal features by Gated Recurrent Unit
(GRU).

The diffusion convolution can aggregate L hops neigh-
bors features, which is defined as follows:

where ◦ represents diffusion convolution operation, DO and
DI are the out- and in-degree matrices, wQ

l,1
 and wQ

l,2
 denote

the model parameters, and L is the diffusion degree.
GRU is designed to capture the temporal features. To

compensate for the capability of capturing spatial fea-
tures, DCRNN uses the diffusion convolution operation
to replace the linear multiplication in GRU, which is for-
mulated as follows:

where
∼
xt and H(t) are the input and output at timestamp t, ◦ is

the diffusion convolution operation, || is the concatenation
operation of two features, Rt , Ct , and Ut are the update gate,
reset gate and the candidate hidden state, respectively.

For the masked subsequence
∼

Xt , DCRNN utilizes an
encoder and decoder architecture to predict the value of
the next timestamp. Its process can be summarized as fol-
lows: In the encoder, the hidden feature H(⋅) is updated
from timestamp t − w to timestamp t − 1 , where w denotes
the length of the subsequence. This updating process accu-
mulates the information from multiple historical times-
tamps, resulting in the total hidden feature H(t−1) of the
subsequence, as illustrated in Fig. 4. In the decoder, the
total hidden feature H(t−1) is decoded by a DCRNN layer
to predict the value x̂t at timestamp t.

5.5 � Loss function

Generally, the mean absolute error is employed as the loss
function lossp for the prediction task.

(13)WQ◦Y =
∑L

l=0

�
w
Q

l,1

�
D−1

O
A
�l
+ w

Q

l,2

�
D−1

I
AT

�l�
Y

(14)Rt =sigmoid
(
WR◦

[
∼
xt||H(t−1)

]
+ bR

)

(15)Ct =tanh
(
WC◦

[
∼
xt||(Rt ⊙ H(t−1))

]
+ bC

)

(16)Ut =sigmoid
(
WU◦

[
∼
xt||H(t−1)

]
+ bU

)

(17)H(t) =Ut ⊙ H(t−1)+
(
1−Ut

)
⊙ Ct

Fig. 7   A simple example of timestamp mask

International Journal of Machine Learning and Cybernetics	

where x̂i
t
 and xi

t
 represent the predicted value and ground

truth of the i-th indicator at timestamp t, respectively.
To improve the quality of the learning graph, we intro-

duce a graph learning loss during model training to impose
constraints on the learning graph. The graph learning loss
lossg is expressed as the cross-entropy between the prior
knowledge �(t) and the learned graph structure A as follows:

To mitigate overfitting, an L2 regularization term is incor-
porated into the loss function. The total loss function of the
model is defined as follows:

where the parameter �1 and �2 is the regularization magni-
tude. The prediction loss lossp makes the prediction as close
as possible to the ground truth. Meanwhile, the graph learn-
ing loss lossg controls the learning direction of the graph
learning to capture meaningful spacial dependencies. Regu-
larization term prevents from overfitting and enhances the
model’s generalization to unseen data.

5.6 � Anomaly score calculation

We identify anomalies that deviate from normal behavior
based on the ground truth and prediction values. As a result,
the first step is to calculate the individual anomaly score for
each sensor. These scores are later combined to obtain the
aggregative anomaly score for each timestamp. Whenever
the aggregative anomaly score surpasses a predetermined
threshold, it is regarded as an anomaly.

We compare the ground truth and the predicted value at
timestamp t to calculate the prediction error Erri(t) for sen-
sor i as follows:

To ensure the consistency of metric scales among sensors
with varying value ranges, a standard normalization is con-
ducted on the prediction error as follows:

where �i and �i are the mean and standard deviation of
Erri(t) , respectively.

Then, the aggregative anomaly score at timestamp t is
determined by the highest anomaly score among all sensors
as follows:

(18)lossp =
1

K

K∑
i=1

��x̂it − xi
t
��

(19)lossg =
∑

ij

−�
(t)

i,j
logAi,j −

(
1 − �

(t)

i,j

)
log

(
1 − Ai,j

)

(20)loss = lossp + �1lossg + �2‖w‖22

(21)Erri(t) =
|||x

i
t
− x̂i

t

|||

(22)si(t) =
Erri(t) − �i

�i

5.7 � Threshold selection

To determine the optimal threshold, a grid search technique
is employed. The upper and lower bounds of the threshold
are defined as the maximum and minimum values of s(t),
respectively. An exhaustive search of all possible thresholds
is conducted with a step size of 0.01. The threshold with
the highest F1 score is selected as the optimal threshold. In
addition, we use a point-adjust strategy for anomaly scores
according to Ref. [20].

6 � Experiments and performance analysis

In this section, we explain our experiments in detail and
answer the following research questions:

•	 RQ1 (Detection Performance, Efficiency and Com-
putation Complexity): Does our method outperform
the baseline method in terms of both performance and
efficiency in anomaly detection? What is the computer
complexity of the model?

•	 RQ2 (Parameter Influence): How sensitive is DPGLAD
with different parameters?

•	 RQ3 (Graph Structure Learner Performance): Does
our proposed UGL outperform other graph learning
methods in anomaly detection models in terms of per-
formance and efficiency?

•	 RQ4 (Ablation Studies): How does each component of
DPGLAD affect its performance, and is DPGLAD more
effectively to handle input data with missing values?

6.1 � Datasets

In our experiments, we utilize four public and real-world
datasets. The statistics of all these datasets are presented
in Table 2.

The Safe Water Treatment (SWAT) dataset2 originates
from a water treatment testbed that is overseen by the Public
Utilities Authority of Singapore. The data collection process
spanned 11 days and is continuously operating for 24 h a
day, during which network traffic and values from all 51
sensors and actuators are recorded.

The Water Distribution (WADI) dataset3 is a com-
prehensive water distribution system consisting of a

(23)s(t) = max
i

si(t)

2  https://​itrust.​sutd.​edu.​sg/​itrust-​labs-​home/​itrust-​labs_​SWAT/.
3  https://​itrust.​sutd.​edu.​sg/​itrust-​labs-​home/​itrust-​labs_​WADI/.

https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs_SWAT/
https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs_WADI/

	 International Journal of Machine Learning and Cybernetics

multitude of pipelines. As an extension of the SWAT
testbed, WADI presents a more thorough and lifelike rep-
resentation of water treatment, storage, and distribution
networks. The dataset encompasses a continuous period
of 16 days, during which 14 days encompass regular oper-
ations, and the remaining 2 days cover attack scenarios.
The testbed is equipped with 127 sensors and actuators.

The Mars Science Laboratory rover (MSL) is a dataset
of sensor and actuator data from the Mars rover by NASA.
This dataset comprises 55 distinct metrics for 27 unique
entities.

The Soil Moisture Active Passive satellite (SMAP) is a
dataset of soil samples and telemetry collected by NASA
using the Mars rover. This dataset comprises 25 metrics
for 55 entities.

To accommodate the extensive volume of raw data,
a down-sampling process is implemented every 10 s for
both the SWAT and WADI datasets. The median value is
captured during this interval. Once an anomaly occurs
within a 10-s window, it is marked as abnormal.

6.2 � Evaluation metrics

It is common to adopt F1-Score (F1), precision (Prec),
and recall (Rec) as evaluation metrics of anomaly detec-
tion performance as shown in Eqs. (24), (25) and (26):

where TP, TN, FP, and FN are the numbers of true positives,
true negatives, false positives, and false negatives.

Besides, the efficiency is evaluated by assessing the
training time per epoch for model training.

(24)Prec =
TP

TP + FP

(25)Rec =
TP

TP + FN

(26)F1 =
2 × Prec × Rec

Prec + Rec
.

6.3 � Baselines

We compare DPGLAD with twelve machine learning
and deep learning methods, which are AE, IF, DAGMM,
LSTM-NDT, LSTM-VAE, MAD-GAN, OmniAnomaly,
USAD, MTAD-GAT, GDN, FuSAGNet, and GTA.

•	 AE: Autoencoder is utilized to reconstruct the input
data, and the reconstruction error is used as the anom-
aly score.

•	 IF [14]: The isolation forest method is a tree-based
anomaly detection algorithm. It effectively identifies
anomalous samples by gaining insight into the distribu-
tion of the input data.

•	 DAGMM [29]: It simultaneously trains a deep autoen-
coding and Gaussian mixture model, with the objec-
tive of generating a low-dimensional representation and
identifying anomalies based on reconstruction errors.

•	 LSTM-NDT [10]: It uses LSTM to achieve high pre-
diction performance and provides a nonparametric,
dynamic, and unsupervised anomaly thresholding
method to detect anomalies.

•	 LSTM-VAE [17]: It projects multimodal observation
and temporal dependencies into a latent space and
reconstructs the expected distribution through LSTM-
based VAE.

•	 MAD-GAN [12]: It exploits LSTM as the base model
in the GAN framework to capture the temporal correla-
tion of time series distributions.

•	 OmniAnomaly [20]: It is a prior-driven stochastic
model for timestamp anomaly detection that directly
returns the reconstruction probability.

•	 USAD [1]: It adversarially trains an encoder-decoder
framework to achieve rapid and efficient training.

•	 MTAD-GAT [28]: It treats the relationship between
indicators as a complete graph and utilizes graph atten-
tion neural networks for anomaly detection.

•	 GDN [3]: It uses pair-wise cosine similarity between
nodes to construct graph structures and utilizes atten-
tional GNNs to learn the dependencies between time
series and predict behavior.

•	 FuSAGNet [5]: It learns the graph structure through
pair-wise cosine similarity between recursive sensor
embeddings and obtains a sparse representation of the
input data through a sparse autoencoder, which is fed
into a graph attention network to predict future sensor
behavior.

•	 GTA [2]: It involves automatically learning a graph
structure and utilizes Transformer-based architecture
to model temporal dependency.

Table 2   Description of datasets

Dataset SWAT​ WADI MSL SMAP

Indicators 51 127 55 25
of training 495000 762970 58317 135183
of testing 450000 172800 73729 427617
Anomalies 11.97% 5.99% 10.72% 13.13%

International Journal of Machine Learning and Cybernetics	

6.4 � Settings

The parameters for our experiments are set as shown in
Table 4. All experiments were conducted using Python 3.8,
PyTorch 1.10, and CUDA version 11.3, and were trained on
a server equipped with an Intel(R) Xeon(R) Platinum 8255C
CPU and NVIDIA RTX 3080 GPU.

6.5 � RQ1. Detection performance, efficiency
and computation complexity

Firstly, We evaluate the performance of DPGLAD by com-
paring it with all other baseline methods. Secondly, we
compare its training time with existing GSL-based anomaly
detection methods [2, 3, 5] Finally, we calculate the number
of parameters of the model and plot the ROC curve.

6.5.1 � Detection performance

As shown in Table 3, the DPGLAD significantly outper-
forms other baseline methods. DPGLAD uses spatial and
temporal graph neural networks relative to traditional CNN
and LSTM (IF, DAGMM, LSTM-NDT, LSTM-VAE, MAD-
GAN, OmniAnomaly, USAD) to effectively extract the
relationship between indicators. In comparison to the latest

GSL-based anomaly detection methods, such as GDN [3],
FuSAGNet [5] and GTA [2], DPGLAD efficiently extracts
one-way relationships between nodes and enhances learn-
ing graph quality by dynamic prior graphs. The ROC-AUC
curve of DPGLAD is shown in Fig. 8. All AUC of four
dataset are over 0.9.

The performance of all methods on the WADI dataset
is comparatively lower than the other datasets. This can be
attributed to the WADI dataset’s longer length, larger num-
ber of indicators, and lower anomaly rates compared to the
other datasets, as shown in Table 2. However, DPGLAD
outperforms the baseline method on the WADI dataset due
to its utilization of dynamic prior graphs as prior knowledge
for graph structure learning. Thus, DPGLAD is effective
in high-dimensional time series and sample imbalance sce-
narios, making it suitable for practical applications.

The anomaly detection performance of FuSAGNet on the
SMAP and MSL datasets is insufficient. The reason is that
FuSAGNet is primarily designed for Cyber-Physical Sys-
tems (CPSs), where CPS sensors can be categorized into
various specific processes [5]. FuSAGNet, as a result, incor-
porates sensors in each process individually. In contrast, the
sensors present in the SMAP and MSL datasets lack specific
processes. Besides, LSTM-NDT [10] is also insufficient on
the WADI datasets. The reason is that LSTM-NDT uses a

Table 3   Precision, recall and F1
score on SWAT and WADI

The highest and second-highest results are highlighted with boldface and italics, respectively

Method SWAT​ WADI SMAP MSL

Pre Re F1 Pre Re F1 Pre Re F1 Pre Re F1

AE 72.6 52.6 61.1 34.3 34.3 34.3 72.1 97.9 77.7 85.3 97.4 87.9
IF 96.2 73.2 83.1 62.4 61.6 62.0 44.2 51.1 46.7 56.8 67.4 59.8
DAGMM 27.5 69.5 39.4 54.4 27.0 36.1 63.3 99.8 71.2 75.6 98.0 81.1
LSTM-NDT 77.8 51.1 61.7 1.4 78.2 2.7 85.2 73.3 78.8 62.9 100.0 77.2
LSTM-VAE 96.2 59.9 73.9 87.8 14.5 24.8 71.6 98.8 75.6 86.0 97.6 85.4
MAD-GAN 99.0 63.7 77.5 41.4 33.9 37.3 81.6 92.2 86.5 85.2 99.3 91.7
OmniAnomaly 72.2 98.3 83.3 26.5 98.0 41.7 75.9 97.6 85.4 91.4 88.9 90.1
USAD 100.0 56.0 71.8 43.1 22.5 29.6 74.8 96.3 84.2 79.5 99.1 88.2
MTAD-GAT​ 21.0 64.5 31.7 11.7 30.6 16.9 79.9 99.9 88.8 79.2 98.2 87.7
GDN 99.4 68.1 80.8 97.5 40.2 56.9 74.8 98.9 85.2 93.1 98.9 95.9
FuSAGNet 98.7 72.6 83.7 82.9 47.8 60.7 9.3 67.9 16.5 80.6 98.9 88.9
GTA​ 93.9 85.7 89.6 79.6 79.4 79.5 89.1 91.8 90.4 91.0 91.2 91.1
DPGLAD 95.1 93.0 94.0 80.7 87.8 83.9 94.2 100.0 97.0 99.8 100.0 99.9

Table 4   Experimental
parameter setting

Parameter sliding window
size �

�
1

�
2

learning rate batchsize epochs

MSL 12 1 0.0001 0.005 64 30
SMAP 12 1 0.0001 0.005 64 30
SWAT​ 15 1 0.0005 0.005 64 30
WADI 15 1 0.0005 0.005 64 30

	 International Journal of Machine Learning and Cybernetics

dynamic error threshold method to compute the threshold,
which is difficult to obtain an appropriate threshold when
the dataset has a low anomaly rate.

6.5.2 � Training time and computation complexity

Our method, when compared to FuSAGNet [5] and GTA
[2], boasts a shorter training time across all datasets while
remaining in close proximity to GDN as shown in Table 5.
GDN’s shorter training time can be attributed to its sim-
plistic architecture, only using a graph attention network.
Conversely, GTA uses the Transformer for prediction,
leading to a significantly increased complexity. FuSAG-
Net joint trains a sparse autoencoder and a graph attention
network for reconstruction and prediction. Its performance
is superior to GDN [3] and inferior to GTA [2], while its
training time is inferior to GDN [3] and superior to GTA

[2]. DPGLAD uses timestamp mask-based DCRNN for
prediction, which greatly reduces the training time while
ensuring the model’s performance. To evaluate the compu-
tation complexity of DPGLAD, we also present the com-
putation time and the number of parameters of DPGLAD,
as shown in Table 6. The WADI dataset with 127 indica-
tors has the largest nodes among all the datasets in the
anomaly detection field. The training time of DPGLAD
is still less than that of GTA. Therefore, the scalability of
DPGLAD on large datasets is also commendable.

6.6 � RQ2. Parameter influence

To demonstrate the stability of our method to different
parameters, we analyze the impact of hyperparameters and
regularization parameters.

6.6.1 � Window size

In this experiment, we examine the impact of window
sizes. The window size is set from 5 to 60. The results
are presented in Fig. 9. Notably, our method demonstrates
a stable performance with different window sizes across
several datasets, including SWAT, SMAP, and MSL.
However, the window size has an impact on the detec-
tion performance of the WADI dataset. The reason is that
the WADI dataset has a large sampling number and a low
anomaly rate. In particular, DPGLAD outperforms both
GDN and FuSAGNet with their default window size �
of 5. Moreover, the DPGLAD with a window size of 15
outperforms GTA with its default window size of 60. Thus,
compared with GDN, FuSAGNet, and GTA, our method
exhibits superior performance, higher F1 scores, and lower
complexity, while requiring only short-term history data.

Table 5   Running time of each epoch(s)

Method SWAT​ WADI SMAP MSL

GDN 11.13 42.4 0.67 0.57
FuSAGNet 44.23 75.29 1.57 1.14
GTA​ 107.38 154.33 8.46 4.17
Our 26.37 42.5 1.67 0.83

Table 6   Computation time and the number of parameters of
DPGLAD

Dataset Computation Time(s) Parameters

SWAT​ 791.1 1586090
WADI 1275 1627814
SMAP 50.1 1269917
MSL 24.9 1270511

Fig. 8   The ROC curve of the model

Fig. 9   The impact of window size

International Journal of Machine Learning and Cybernetics	

6.6.2 � Regularization parameters

In this experiment, we present the impact of the regulari-
zation parameters �1 and �2 on four datasets. We vary �1
from 1 to 15, and �2 from 0.0001 to 0.0005. As shown in
Fig. 10, the optimal performance is achieved and the per-
formance appears to be generally stable, when �1 is set to
1. �2 has little effect on the performance.

6.7 � RQ3. Graph structure learner performance

To demonstrate the effectiveness of the uni-directional
graph structure learner of DPGLAD, we compare UGL
with two existing graph structure learner methods: The
k-neighbour Method (KNM) and the Fully Parameterized
Method (FPM). Besides, we modify the UGL with only
one node embedding to generate an undirected graph for
comparison, which is termed as Undirected Graph Method
(UGM). Among the three comprised methods, KNM and
UGM learn an undirected graph.

6.7.1 � k‑neighbour method

This method produces an embedding vector for each
sensor and subsequently evaluates the cosine similarity
between sensors. Finally, the top k most similar sensors
are selected to build the adjacency matrix. It is referred
to as KNM and exploited by GDN [3] and FuSAGNet [5].

where ‖ ⋅ ‖ denotes magnitude, Ai,j denote the element
located in the i-th row and j-th column of the adjacency
matrix and topk(⋅) selects the k node indices with the highest
cosine similarities [3].

(27)cos
(
Ei,Ej

)
=

Ei ∙ Ej

||||Ei
|||| ∙

|||
|||Ej

|||
|||

(28)Ai,j =1, j ∈ topk(cos(Ei,Ej)

Fig. 10   The effect of regularization parameters

	 International Journal of Machine Learning and Cybernetics

6.7.2 � Undirected graph method

To demonstrate the validity of the uni-directional graph
structure, we use one node embedding instead of two
node embeddings to construct an undirected graph using
pair-wise similarity. It is referred to as UGM.

where E1 represents the node embedding vectors, �1 are the
model parameters, and the activation function’s saturation
rate is symbolized by � . The index of the top k largest values
of a vector is returned by arg topk(⋅) . M1M

T
1
 is a symmetric

matrix, which generates a symmetric adjacency matrix after
tanh and ReLU functions.

6.7.3 � Fully parameterized method

This method first randomly initializes the probability matrix
�1 ∈ RK×K . The adjacency matrix is Gumbel-Softmax sam-
pled from the �1 . It is referred to as FPM and exploited by
GTA [2].

where u is samples drawn from the Uniform(0,1) distri-
bution, gi,jv satisfy the gumbel distribution, and �i,j

1
 is the

value of row i and column j of the probability matrix �1 ,
which represents the probability that node i is connected to

(29)M1 = tanh(�E1�1)

(30)A =ReLU(tanh(�(M1M
T
1
))

(31)

for i = 1, 2,… ,K ∶

idx = arg topk(Ai,∶)

Ai,j = 1, j ∈ idx

(32)gi = − log(− log(u)), u ∼ Uniform(0, 1)

(33)z
i,j

1
=

exp
��

log�
i,j

1
+g

i,j

1

�
∕�

�

∑
v∈{0,1}

exp
��

log�
i,j
v +g

i,j
v

�
∕�

�

node j. � is the temperature parameter. As the temperature
� approaches 0, zi,j

1
 is close to 0 or 1 and the Gumbel-Soft-

max distribution becomes identical to the class distribution.
Finally, Ai,j in adjacency matrix is set to zi,j

1
 , which is set to

1 with probability �i,j

1
.

Table 7 and Table 8 compare the anomaly detection per-
formance and training time of three methods with our pro-
posed UGL. Although the K-neighbour and UGM exhibit
superior training time compared to the UGL, their anomaly
detection performance is compromised due to their inability
to capture the uni-directional relationships among sensors.
Although the FPM produces a uni-directional graph, it has a
longer training time than the UGL method and lower detec-
tion performance.

We conduct a case study, as depicted in Fig. 11. On the
left side of Fig. 11, we can observe a partial graph structure
that is learned by DPGLAD. On the right side, we present
predictions for the relevant sensors. In this case, sensor
AIT-202 is compromised, resulting in changes in its value
between timestamps 708 and 730. Due to the uni-directional
correlation between sensors in the water treatment process,
the attack on AIT-202 causes the dosing pump P-203 to shut
down, which in turn affects the permeate conductivity ana-
lyzer AIT-503 at timestamp 800. As depicted in the right
side of Fig. 11, DPGLAD accurately predicts the behavior
of AIT-503 and successfully detects the attack by identifying
the significant difference between the predictions and the
ground truth of AIT-503 at timestamp 800. On the left side
of Fig. 11, the correlation among the three sensors involved
in this case is correctly represented.

Table 7   Precision, recall, and
F1 score with different graph
structure learners

The highest and second-highest results are highlighted with boldface and italics, respectively

Method SWAT​ WADI SMAP MSL

Pre Re F1 Pre Re F1 Pre Re F1 Pre Re F1

KNM 96.9 88.9 92.7 78.9 78.1 78.5 92.2 100 95.9 99.1 100 99.5
UGM 95.3 90.4 92.8 82.9 75.2 78.9 92.6 100 96.2 99.3 100 99.6
FPM 97.4 90.5 93.8 80.2 78.1 79.1 92.8 100 96.2 99.2 100 99.6
UGL 95.1 93.0 94.0 80.7 87.8 83.9 94.2 100 97.0 99.8 100 99.9

Table 8   Running time of each epoch(s) with different graph structure
learner

Method SWAT​ WADI SMAP MSL

KNM 23.03 36.02 1.4 0.67
UGM 25.02 34.3 1.53 0.73
FPM 29.06 62.42 1.30 0.83
UGL 26.37 42.5 1.67 0.83

International Journal of Machine Learning and Cybernetics	

6.8 � RQ4. Ablation studies

In this experiment, ablation studies are conducted to show-
case the necessity of DPGLAD components in achieving
optimal detection performance. We focus on the dynamic
prior graph generator and timestamp masking.

For the dynamic prior graph, we consider the following
two methods.

•	 NPGLAD stands for DPGLAD in the absence of the
priory knowledge and the graph learning loss function.

•	 SPGLAD utilizes a static prior graph extracted from all
row data to replace the dynamic prior graphs in the graph
learning loss function.

As shown in Table 9, the dynamic prior graph is proven to
be more flexible and provides better prior information for
the learning graph compared to no prior graph and the static
prior graph, resulting in a better detection effect.

We evaluate the effectiveness of timestamp masking (TM)
on the raw datasets and the datasets with missing values. We
consider the method without TM.

•	 DPGLAD without TM eliminates the timestamp masking
component, in which the raw subsequence Xt is fed into
the DCRNN.

To demonstrate the performance with missing value, we ran-
domly delete the data from the raw data as missing dataset.
The percentage of missing values ranges from 0.05 to 0.2.
As shown in Fig. 12, as the increase of percentage of missing
values, the F1 scores of two methods decreases. However,
DPGLAD always outperforms that without TM in all miss-
ing percentages. Therefore, the TM component is found to be
effective in handling data containing missing values.

7 � Conclusion and future work

In this paper, we propose a uni-directional graph structure
learning-based multivariate time series anomaly detection
method with dynamic prior knowledge. In this method, we
implement a more effective uni-directional graph structure
learning method to capture the one-way relationship between
sensors and use dynamic prior graphs to improve the qual-
ity of the learning graph. Besides, we combine the learning
graph and TM-based DCRNN predictor to efficiently predict
the future behavior of sensors. Compared with the baseline

Fig. 11   Left: Partial graph structure learned on SWAT dataset. Right: Understand the relationship between sensors with ground truth and pre-
diction

Table 9   Ablation Study of the
Dynamic Prior Graph

The highest and second-highest results are highlighted with boldface and italics, respectively

Method SWAT​ WADI SMAP MSL

Pre Re F1 Pre Re F1 Pre Re F1 Pre Re F1

NPGLAD 91.2 93.9 92.5 66.9 91.1 77.2 89.0 100 94.2 99.1 100 99.4
SPGLAD 95.3 92.0 93.6 81.0 78.1 79.5 91.2 100 95.4 99.3 100 99.6
DPGLAD 95.1 93.0 94.0 80.7 87.8 83.9 94.2 100 97.0 99.8 100 99.9

	 International Journal of Machine Learning and Cybernetics

on four public datasets, our proposed method achieves the
best performance with short-term data while reducing the
training overhead. Modeling the interconnections among
sensors from multiple perspectives and improving the scal-
ability when dealing with large graphs are future work.

Data availability  The datasets used are all public datasets, and the links
to obtain the datasets are as follows. SWAT: https://​itrust.​sutd.​edu.​sg/​
itrust-​labs-​home/​itrust-​labs_​SWAT/, WADI: https://​itrust.​sutd.​edu.​sg/​
itrust-​labs-​home/​itrust-​labs_​WADI/, MSL/SMAP: https://​s3-​us-​west-2.​
amazo​naws.​com/​telem​anom/​data.​zip.

References

	 1.	 Audibert J, Michiardi P, Guyard F, et al (2020) USAD: unsuper-
vised anomaly detection on multivariate time series. In: KDD ’20:
The 26th ACM SIGKDD Conference on knowledge discovery and
data mining, virtual event. ACM, pp 3395–3404, https://​doi.​org/​
10.​1145/​33944​86.​34033​92

	 2.	 Chen Z, Chen D, Zhang X et al (2022) Learning graph structures
with transformer for multivariate time-series anomaly detection
in iot. IEEE Internet of Things J 9(12):9179–9189. https://​doi.​org/​
10.​1109/​JIOT.​2021.​31005​09

	 3.	 Deng A, Hooi B (2021) Graph neural network-based anomaly
detection in multivariate time series. In: Thirty-Fifth AAAI Con-
ference on artificial intelligence, pp 4027–4035, https://​doi.​org/​
10.​1609/​AAAI.​V35I5.​16523

	 4.	 Goh J, Adepu S, Junejo KN, et al (2016) A dataset to support
research in the design of secure water treatment systems. In:
Critical information infrastructures security: 11th Interna-
tional Conference, CRITIS, pp 88–99, https://​doi.​org/​10.​1007/​
978-3-​319-​71368-7_8

	 5.	 Han S, Woo SS (2022) Learning sparse latent graph representa-
tions for anomaly detection in multivariate time series. In: Pro-
ceedings of the 28th ACM SIGKDD Conference on knowledge
discovery and data mining, pp 2977–2986, https://​doi.​org/​10.​
1109/​JIOT.​2021.​31005​09

	 6.	 He Q, Zheng Y, Zhang C et al (2020) Mtad-tf: multivariate time
series anomaly detection using the combination of temporal pat-
tern and feature pattern. Complexity 2020:8846608. https://​doi.​
org/​10.​1155/​2020/​88466​08

	 7.	 He S, Li Z, Wang J et al (2021) Intelligent detection for key per-
formance indicators in industrial-based cyber-physical systems.
IEEE Trans Ind Inf 17(8):5799–5809. https://​doi.​org/​10.​1109/​TII.​
2020.​30361​68

	 8.	 He S, Guo M, Li Z et al (2023) A joint matrix factorization
and clustering scheme for irregular time series data. Inf Sci
644:119220. https://​doi.​org/​10.​1016/j.​ins.​2023.​119220

	 9.	 He S, Guo M, Yang B et al (2023) Fine-grained multivariate
time series anomaly detection in iot. Comput Mater Continua
75(3):5027–5047. https://​doi.​org/​10.​32604/​cmc.​2023.​038551

	10.	 Hundman K, Constantinou V, Laporte C, et al (2018) Detecting
spacecraft anomalies using lstms and nonparametric dynamic
thresholding. In: Proceedings of the 24th ACM SIGKDD Inter-
national Conference on knowledge discovery & data mining, pp
387–395, https://​doi.​org/​10.​1145/​32198​19.​32198​45

Fig. 12   The impact of missing values

https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs_SWAT/
https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs_SWAT/
https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs_WADI/
https://itrust.sutd.edu.sg/itrust-labs-home/itrust-labs_WADI/
https://s3-us-west-2.amazonaws.com/telemanom/data.zip
https://s3-us-west-2.amazonaws.com/telemanom/data.zip
https://doi.org/10.1145/3394486.3403392
https://doi.org/10.1145/3394486.3403392
https://doi.org/10.1109/JIOT.2021.3100509
https://doi.org/10.1109/JIOT.2021.3100509
https://doi.org/10.1609/AAAI.V35I5.16523
https://doi.org/10.1609/AAAI.V35I5.16523
https://doi.org/10.1007/978-3-319-71368-7_8
https://doi.org/10.1007/978-3-319-71368-7_8
https://doi.org/10.1109/JIOT.2021.3100509
https://doi.org/10.1109/JIOT.2021.3100509
https://doi.org/10.1155/2020/8846608
https://doi.org/10.1155/2020/8846608
https://doi.org/10.1109/TII.2020.3036168
https://doi.org/10.1109/TII.2020.3036168
https://doi.org/10.1016/j.ins.2023.119220
https://doi.org/10.32604/cmc.2023.038551
https://doi.org/10.1145/3219819.3219845

International Journal of Machine Learning and Cybernetics	

	11.	 Khoshnevisan F, Fan Z (2019) Rsm-gan: a convolutional recur-
rent gan for anomaly detection in contaminated seasonal multi-
variate time series. arXiv preprint arXiv:​1911.​07104

	12.	 Li D, Chen D, Jin B, et al (2019) Mad-gan: Multivariate anom-
aly detection for time series data with generative adversarial
networks. In: International Conference on artificial neural net-
works, Springer, pp 703–716

	13.	 Li Y, Yu R, Shahabi C, et al (2017) Diffusion convolutional
recurrent neural network: Data-driven traffic forecasting. arXiv
preprint arXiv:​1707.​01926

	14.	 Liu FT, Ting KM, Zhou ZH (2008) Isolation forest. In: 2008
Eighth IEEE International Conference on data mining, pp 413–
422, https://​doi.​org/​10.​1109/​ICDM.​2008.​17

	15.	 Liu Y, Zheng Y, Zhang D, et al (2022) Towards unsupervised
deep graph structure learning. In: WWW ’22: The ACM Web
Conference 2022, Virtual Event, Lyon, France, April 25-29,
2022, pp 1392–1403, https://​doi.​org/​10.​1145/​34854​47.​35121​86

	16.	 Meng F, Gao Y, Wang H et al (2022) TSLOD: a coupled general-
ized subsequence local outlier detection model for multivariate
time series. Int J Mach Learn Cybern 13(5):1493–1504. https://​
doi.​org/​10.​1007/​S13042-​021-​01462-X

	17.	 Park D, Hoshi Y, Kemp CC (2018) A multimodal anomaly detec-
tor for robot-assisted feeding using an lstm-based variational
autoencoder. IEEE Robot Autom Lett 3(3):1544–1551. https://​
doi.​org/​10.​1109/​LRA.​2018.​28014​75

	18.	 Scheinert D, Acker A, Thamsen L, et al (2021) Learning depend-
encies in distributed cloud applications to identify and localize
anomalies. In: 2021 IEEE/ACM International Workshop on cloud
intelligence (CloudIntelligence), pp 7–12

	19.	 Shang C, Chen J, Bi J (2021) Discrete graph structure learning for
forecasting multiple time series. arXiv preprint arXiv:​2101.​06861

	20.	 Su Y, Zhao Y, Niu C, et al (2019) Robust anomaly detection for
multivariate time series through stochastic recurrent neural net-
work. In: Proceedings of the 25th ACM SIGKDD International
Conference on knowledge discovery & data mining, pp 2828–
2837, https://​doi.​org/​10.​1145/​32925​00.​33306​72

	21.	 Sun Q, Li J, Peng H, et al (2022) Graph structure learning with
variational information bottleneck. In: Proceedings of the AAAI
Conference on artificial intelligence, pp 4165–4174, https://​doi.​
org/​10.​1609/​AAAI.​V36I4.​20335

	22.	 Yang Z, Zhang G, Wu J, et al (2023) Minimum entropy principle
guided graph neural networks. In: Proceedings of the Sixteenth
ACM International Conference on web search and data mining,

WSDM 2023, Singapore, 27 February 2023-3 March 2023, pp
114–122, https://​doi.​org/​10.​1145/​35395​97.​35704​67

	23.	 Yang Z, Zhang G, Wu J, et al (2023) State of the art and potentiali-
ties of graph-level learning. arXiv preprint arxiv:​2301.​05860

	24.	 Yue Z, Wang Y, Duan J, et al (2022) Ts2vec: Towards universal
representation of time series. In: Proceedings of the AAAI Con-
ference on artificial intelligence, pp 8980–8987, https://​doi.​org/​
10.​1609/​AAAI.​V36I8.​20881

	25.	 Zhang C, Song D, Chen Y, et al (2019) A deep neural network
for unsupervised anomaly detection and diagnosis in multivariate
time series data. In: Proceedings of the AAAI Conference on arti-
ficial intelligence, pp 1409–1416, https://​doi.​org/​10.​1609/​AAAI.​
V33I01.​33011​409

	26.	 Zhang C, Zuo W, Yin A et al (2021) ADET: anomaly detection in
time series with linear time. Int J Mach Learn Cybern 12(1):271–
280. https://​doi.​org/​10.​1007/​S13042-​020-​01171-X

	27.	 Zhang W, Zhang C, Tsung F (2022) Grelen: multivariate time
series anomaly detection from the perspective of graph relational
learning. In: Proceedings of the Thirty-First International Joint
Conference on artificial intelligence, IJCAI-22, pp 2390–2397,
https://​doi.​org/​10.​24963/​IJCAI.​2022/​332

	28.	 Zhao H, Wang Y, Duan J, et al (2020) Multivariate time-series
anomaly detection via graph attention network. In: 20th IEEE
International Conference on data mining. IEEE, pp 841–850,
https://​doi.​org/​10.​1109/​ICDM5​0108.​2020.​00093

	29.	 Zong B, Song Q, Min MR, et al (2018) Deep autoencoding gauss-
ian mixture model for unsupervised anomaly detection. In: Inter-
national Conference on learning representations

	30.	 Zou D, Peng H, Huang X, et al (2023) SE-GSL: a general and
effective graph structure learning framework through structural
entropy optimization. In: Proceedings of the ACM Web Confer-
ence 2023, WWW 2023, Austin, TX, USA, 30 April 2023-4 May
2023, pp 499–510, https://​doi.​org/​10.​1145/​35435​07.​35834​53

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/1911.07104
http://arxiv.org/abs/1707.01926
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1145/3485447.3512186
https://doi.org/10.1007/S13042-021-01462-X
https://doi.org/10.1007/S13042-021-01462-X
https://doi.org/10.1109/LRA.2018.2801475
https://doi.org/10.1109/LRA.2018.2801475
http://arxiv.org/abs/2101.06861
https://doi.org/10.1145/3292500.3330672
https://doi.org/10.1609/AAAI.V36I4.20335
https://doi.org/10.1609/AAAI.V36I4.20335
https://doi.org/10.1145/3539597.3570467
http://arxiv.org/abs/2301.05860
https://doi.org/10.1609/AAAI.V36I8.20881
https://doi.org/10.1609/AAAI.V36I8.20881
https://doi.org/10.1609/AAAI.V33I01.33011409
https://doi.org/10.1609/AAAI.V33I01.33011409
https://doi.org/10.1007/S13042-020-01171-X
https://doi.org/10.24963/IJCAI.2022/332
https://doi.org/10.1109/ICDM50108.2020.00093
https://doi.org/10.1145/3543507.3583453

	Uni-directional graph structure learning-based multivariate time series anomaly detection with dynamic prior knowledge
	Abstract
	1 Introduction
	2 Background
	3 Related work
	3.1 Temporal feature-based anomaly detection methods
	3.2 Graph-based anomaly detection methods
	3.3 Graph structure learning-based anomaly detection methods

	4 Problem definition and preliminaries
	4.1 Problem definition
	4.2 Anti-symmetric matrix
	4.3 Graph structure learning

	5 Our proposed methodology
	5.1 Overview
	5.2 Uni-directional graph structure learner
	5.3 Dynamic prior graph generator
	5.3.1 Feature extractor
	5.3.2 KNN graph generator

	5.4 DCRNN predictor based on timestamp mask
	5.4.1 Timestamp masking
	5.4.2 DCRNN predictor

	5.5 Loss function
	5.6 Anomaly score calculation
	5.7 Threshold selection

	6 Experiments and performance analysis
	6.1 Datasets
	6.2 Evaluation metrics
	6.3 Baselines
	6.4 Settings
	6.5 RQ1. Detection performance, efficiency and computation complexity
	6.5.1 Detection performance
	6.5.2 Training time and computation complexity

	6.6 RQ2. Parameter influence
	6.6.1 Window size
	6.6.2 Regularization parameters

	6.7 RQ3. Graph structure learner performance
	6.7.1 k-neighbour method
	6.7.2 Undirected graph method
	6.7.3 Fully parameterized method

	6.8 RQ4. Ablation studies

	7 Conclusion and future work
	References

