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Abstract
This paper presents a novel clustering approach that utilizes variational autoencoders (VAEs) with disentangled represen-
tations, enhancing the efficiency and effectiveness of clustering. Traditional VAE-based clustering models often conflate 
generative and clustering information, leading to suboptimal clustering performance. To overcome this, our model distinctly 
separates latent representations into two modules: one for clustering and another for generation. This separation significantly 
improves clustering performance. Additionally, we employ augmented data to maximize mutual information between clus-
ter assignment variables and the optimized latent variables. This strategy not only enhances clustering effectiveness but 
also allows the construction of latent variables that synergistically combine clustering information from original data with 
generative information from augmented data. Through extensive experiments, our model demonstrates superior clustering 
performance without the need for pre-training, outperforming existing deep generative clustering models. Moreover, it 
achieves state-of-the-art clustering accuracy on certain datasets, surpassing models that require pre-training.

Keywords Clustering · Variational autoencoder (VAE) · Disentangling module · Mutual information · Augmented data

1 Introduction

The task of unsupervised clustering aims to partition data 
into distinct categories using unsupervised methods. This 
approach provides a solution to the challenge of relying on 
a large amount of labeled data for classification tasks [33]. 
Traditional techniques, such as K-means [40] and probabil-
istic mixture models [10, 13–15, 44], have been developed 
for unsupervised clustering. However, directly clustering 
the original data often leads to suboptimal results due to 
the presence of numerous irrelevant factors that impact the 
clustering process [63]. Additionally, as the dataset size 
increases, the training time of the model also escalates 
rapidly.

Deep generative models, including autoencoders (AEs), 
variational autoencoders (VAE) [31], and generative adver-
sarial networks (GANs) [21], have demonstrated remark-
able success across diverse domains by effectively extract-
ing meaningful information from raw data using compact 
latent spaces. As a result, these models have received sig-
nificant attention and have been applied in various files [4, 
25, 27, 37, 39, 50, 51]. In the realm of unsupervised cluster-
ing, VAEs, in particular, have been extensively employed. 
A VAE is a sophisticated type of deep generative model 
that combines variational inference [9, 11, 12] with deep 
neural networks. However, previous VAE-based cluster-
ing approaches optimized both the generation and cluster-
ing components within the same framework, leading to 
entanglement of various information in the latent variables, 
where clustering and generating factors interacted. Moreo-
ver, several powerful clustering models required pre-training 
with stacked autoencoders, imposing significant demands 
on computing resources and storage space. To address the 
aforementioned challenges, FSVAE [58] proposed a disen-
tanglement strategy for the latent variable in D dimensions. 
This strategy involves dividing the latent variable into two 
parts. The initial D1 dimensions are assigned to the genera-
tion module, which follows a Gaussian prior distribution. 
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The remaining D2 dimensions form the clustering module, 
which follows a Student’s t mixture model (STMM) prior 
[62]. It is important to note that D = D1 + D2 , and the clus-
tering module benefits from the use of augmented data to 
enhance its effectiveness.

The strategic use of augmented data can markedly 
improve clustering accuracy. Prior models [29, 57] have 
demonstrated a simplistic or constrained approach to lever-
aging augmented data, thereby limiting their effectiveness 
in guiding clustering tasks. In contrast, FSVAE utilizes aug-
mented data more robustly, applying basic constraints to the 
latent space, cluster assignment variables, and encoders. 
However, these models predominantly depend on the mean 
square error loss function, which restricts latent and cluster 
assignment variables to numerical similarities. Our proposed 
method advances this by employing mutual information 
maximization. It uniquely uses cluster assignment variables 
to shape latent variables, thereby generating innovative 
latent constructs. This technique enriches the information 
used during training for both cluster assignment and latent 
variables, potentially enhancing clustering performance.

The limitations of previous models, specifically their 
underutilization of augmented data, have led to suboptimal 
clustering effectiveness. To address this, our research intro-
duces a novel unsupervised clustering model, focused on 
image clustering, leveraging the FSVAE framework. Our 
primary innovation involves the application of mutual infor-
mation maximization, as outlined in Ji et al [28]. Through 
a streamlined objective function, we aim to enhance clus-
tering effectiveness by maximizing mutual information 
between cluster assignment variables in both original and 
augmented data. Further, by leveraging augmented data and 
cluster assignment variables, our model optimizes the latent 
variables, as suggested in Haeusser et al [24]. This opti-
mization not only extracts more informative features in the 
latent space but also significantly improves clustering per-
formance. Finally, our approach introduces a unique method 
that merges the clustering module of the original data with 
the generation module of the augmented data. This synthesis 
results in a new type of latent variable, enabling the model 
to ignore extraneous information not pertinent to clustering, 
thereby further refining clustering effectiveness.

The main contributions of this work can be summarized 
as follows:

– We introduce the mutual information maximization 
technique to optimize the model’s cluster assignment 
variables by the augmented data, thereby improving the 
model’s robustness and clustering effectiveness.

– We constrain latent variables by using augmented data 
and clustering assigning variables, thereby improving the 

robustness of the model and the effectiveness of cluster-
ing.

– We propose a new latent variable construction method 
to help the model ignore irrelevant information, thereby 
improving the robustness of the model and the effective-
ness of clustering.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of existing work that utilizes 
the proposed model. Section  3 provides the necessary 
background knowledge related to our model. In Sect. 4, we 
introduce our deep generative clustering method for VAE, 
which includes disentangling modules and the utilization of 
augmented data. The experimental results obtained using 
our proposed model are presented in Sect. 5. Finally, Sect. 6 
concludes the paper, summarizing the main findings and 
contributions.

2  Related works

Unsupervised deep clustering models have exhibited impres-
sive performance in various clustering tasks. Among these 
models, deep unsupervised generative clustering approaches, 
such as AE, VAE, and GAN, have achieved notable success 
in both clustering and data reconstruction tasks.

One widely recognized AE-based deep generative cluster-
ing model is Deep Embedding Clustering (DEC) [54]. DEC 
employs the K-means algorithm in the pre-training stage to 
generate cluster centers for each cluster. These cluster cent-
ers are then iteratively optimized using an auxiliary distri-
bution. However, DEC only utilizes a complete AE model 
during the pre-training stage, discarding the decoder in the 
subsequent training stage, and solely utilizing the encoder 
to optimize the cluster centers. Improved Deep Embedding 
Clustering (IDEC) [22] addresses the limitations of DEC 
by simultaneously training the reconstruction loss and clus-
tering loss in the AE framework. This joint optimization 
enhances the assignment of clustering labels, enables learn-
ing of discriminative clustering features, and preserves the 
local structure. Adding the decoder back to the model dur-
ing training leads to improved clustering results. Another 
DEC-based model, Deep Convolutional Embedding Clus-
tering (DCEC) [23], incorporates convolutional neural net-
works (CNNs) to enhance clustering performance through 
improved feature extraction capabilities. The DSSEC 
model, as detailed in Cai et al [1], innovatively combines 
a sparse autoencoder with DEC for enhanced cluster analy-
sis. Concurrently, the DCN algorithm, introduced in Yang 
et al [56], represents an autoencoder (AE)-based clustering 
approach that principally utilizes the K-means algorithm for 
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cluster formation. A notable development in this field is the 
DEPICT model [20], which marks a significant advance-
ment by employing a softmax layer, derived from stacked 
AE pre-training, for predicting cluster assignments, thereby 
yielding considerable improvements in performance. Fur-
thermore, the DECCA framework, as proposed in Diallo 
et al [6], adopts a contractive learning methodology to cul-
tivate more effective latent variables, ACe/DeC model [46] 
ventures into categorizing the information gleaned by latent 
variables, effectively distinguishing between cluster-specific 
and shared information spaces, TSAE model [16] integrates 
Teacher-Student models and Autoencoders for cluster analy-
sis. Lastly, the IMDGC [61] integrates hierarchical genera-
tive adversarial networks and mutual information maximiza-
tion to improve clustering effectiveness.

Variational Deep Embedding (VaDE) [29] is a deep 
generative clustering model based on the VAE framework. 
Unlike VAE, which utilizes a standard Gaussian distribu-
tion as the prior, VaDE employs a Gaussian mixture model 
as the prior distribution. S3VDC [2] is a generative clus-
tering model that builds upon VaDE. It incorporates initial 
� training to optimize the pre-training of VaDE. Drawing 
inspiration from �-VAE [25], S3VDC introduces periodic � 
annealing to promote disentanglement in the VaDE model, 
allowing it to capture more informative representations. 
S3VDC also adopts mini-batch Gaussian Mixture Model 
(GMM) initialization to enhance scalability and employs 
inverse min-max transformation to mitigate NaN (Not-a-
Number) issues during training. The vMF-VaDE model, as 
elucidated by Yang et al. [59] has demonstrated exceptional 
performance on clustering across various datasets. FSVAE 
[58] extends the VAE model by introducing a distinct treat-
ment of clustering and generation information in the data. 
It utilizes the Student’s t-Mixture model as the prior for the 
clustering module. FSVAE incorporates a bi-augmentation 
module to enhance training stability and notably achieves 
optimal performance without the need for pre-training. Other 
VAE-based generative clustering models include GMVAE 
[7] and DSCDAN [60]. In addition to the previously men-
tioned models, the field of deep generative clustering encom-
passes GAN-based approaches such as clusterGAN [47] and 
Va-GAN [57]. These models integrate a GAN component to 
enhance clustering effectiveness. Another notable model is 
Dual-AAE [19], which extends the Adversarial Autoencoder 
(AAE) [42] framework.

Autoencoder-based models including DEC, IDEC, 
DCEC, DCN, DEPICT, DECCA, and ACe/DeC, have 
shown notable success in clustering, with a primary 
emphasis on feature extraction. Unlike these models, VAE-
based clustering approaches, such as VaDE, S3VDC, and 
GMVAE, generally incorporate Gaussian mixture models 

as priors, thereby enhancing clustering effectiveness. 
However, a limitation arises in these models’ susceptibil-
ity to collapse, particularly when not utilizing the Stu-
dent’s t-distribution. For instance, the vMF-VaDE model, 
despite achieving optimal results, necessitates pre-training 
and is especially prone to collapse due to its reliance on 
the vMF distribution. In contrast, GAN-based models like 
clusterGAN, Va-GAN, and Dual-AAE leverage adversar-
ial networks and employ strategies such as WGAN-GP to 
mitigate model collapse.

The primary limitation of the aforementioned models 
is their methodology of performing cluster analysis on the 
entire latent variable space. Differing from this approach, 
FSVAE introduces an innovative disentanglement strategy, 
segregating latent variables into two distinct categories: 
clustering variables and generated variables. Furthermore, 
FSVAE employs a Student’s t-mixture model to prevent 
model collapse, a technique that has proven to significantly 
improve clustering effectiveness. Despite these advance-
ments, FSVAE relies primarily on a simple mean square 
error loss function to direct the clustering of latent vari-
ables using augmented data, which could be seen as a 
constraint on its potential. In contrast, our model expands 
the utility of augmented data by implementing mutual 
information maximization. This enhancement not only 
constrains latent variables but also facilitates the construc-
tion of new latent variables, thereby allowing augmented 
data to more effectively guide the clustering process within 
the model.

Motivated by the works of Ji et al [28]; Haeusser et al 
[24], we incorporate the technique of maximizing mutual 
information in our generative model and introduce con-
straints on the latent variables. Furthermore, building upon 
the FSVAE framework mentioned earlier, we propose a 
novel method for constructing latent variables that allows 
the model to disregard irrelevant information for clustering. 
These three approaches collectively enhance the robustness 
and effectiveness of our model.

3  Preliminary

3.1  Variational autoencoder

The VAE is a neural network architecture that employs a 
Gaussian distribution as the prior for the latent space. This 
choice provides VAE with enhanced capabilities compared 
to the AE, such as the ability to estimate prediction uncer-
tainties [17]. The primary objective of optimizing the VAE 
model can be formulated as follows:
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where �[⋅] denotes the expectation evaluation. In Eq. 1, the 
first term is commonly referred to as the reconstruction 
error, while the second term represents the regularization 
term, defined by the Kullback–Leibler (KL) divergence.

3.2  VAE with Gaussian mixture prior

The Gaussian mixture model has found applications in 
various fields [32, 38, 49] and can be utilized as a prior 
for the VAE.

For a given dataset X, we assume that the data x is 
generated by a random process. Moreover, for any poten-
tial embedding z of the data x, we consider it to follow a 
Gaussian Mixture Model (GMM) with K clusters. This 
GMM serves as the prior for the VAE model [29]. In the 
VAE’s generation process with a GMM prior, we can gen-
erate z from the GMM distribution, which is defined by

where �y and �2
y
 represent the parameters of the Gaussian 

distribution for cluster y. The variable y follows a categori-
cal distribution Cat(�) , where p(y) = Cat(�) , and Cat(�) 
denotes the categorical distribution parameterized by �.

By employing the GMM as the prior for the VAE, the 
final optimization objective can be expressed as:

where L represents the number of Monte Carlo samples. �⃗𝜇 , 
�⃗𝜎2 are parameters of the Gaussian distribution modeled by 
the encoder. D denotes the dimensionality of x, �(l)

x
 and �(l)

x
 . 

J is the dimensionality of the parameters �y , �y , �⃗𝜇 , and �⃗𝜎2 . 
The cluster assignment variable q(y|x) can be obtained using 
the SGVB estimator as:

(1)
L(�,�;x) =Eq�(z|x)[log p�(x|z)]
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where N(⋅) represents the Gaussian distribution, and p(y) is 
the prior probability of cluster y.

3.3  VAE with student’s t mixture prior

The Student’s t mixture model is widely employed across 
diverse domains [5, 18, 45] and offers a robust alternative 
to the Gaussian mixture model, particularly when handling 
outliers.

In Sect. 3.2, we introduced a deep generative clustering 
model that employed a GMM as the prior for the VAE. 
While this approach demonstrated significant clustering 
capabilities, it suffered from performance degradation 
in the presence of outliers. To overcome this limitation, 
we utilize the Student’s t distribution as a more robust 
alternative, owing to its heavy-tailed characteristics. By 
incorporating the Student’s t mixture model (STMM) into 
the VAE framework, we can enhance the model’s robust-
ness [62]. The probability density function (PDF) of the 
Student’s t distribution is defined by

where v, � , and � are the distribution parameters, and �  
denotes the gamma function. We adopt the reparameteriza-
tion trick for the Student’s t distribution [43, 48],which is 
similar to that of the Gaussian distribution:

where � ∼ N(0, 1) , and ̃z ∼ G(
v

2
, 1) . Here, ̃z is obtained using 

the reparameterization trick for the Gamma distribution as

where � ∼ N(0, 1).
In the VAE model using STMM as the prior, a notable 

distinction from Sect. 3.2 is the assumption that z is gen-
erated by STMM, thus conforming to the Student’s t dis-
tribution in the latent space. This assumption necessitates 
the encoder to provide an additional parameter v, which is 
unique to the Student’s t distribution.
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4  The proposed model

This section outlines our clustering model, which inte-
grates VAE with disentangled representations to enhance 
clustering performance. Figure 1 provides a visual rep-
resentation of the model’s architecture. The methodol-
ogy is systematically detailed across several subsections: 
Sect. 4.1 delves into the process of disentangling latent 
variables within the model. Section 4.2 describes the bi-
augmentation modules employed in FSVAE, enhancing 
its efficacy. In Sect. 4.3, we articulate our approach for 
maximizing mutual information, ensuring a robust cor-
relation between original and augmented data. Section 4.4 
explains how we impose constraints on the latent variables 
using cluster assignment variables and augmented data to 
refine the clustering process. Finally, Sect. 4.5 presents our 
innovative latent variables, offering both the mathematical 
formulation and the algorithmic structure of the model, 
underscoring its practical and theoretical contributions.

4.1  Disentanglement of latent representations

Various disentangling methods have been proposed in 
the past, aiming to ensure that a single latent variable 

corresponds to a single factor [3, 8, 25, 30, 64]. In this 
subsection, we provide a comprehensive elucidation of 
the methodology employed to disentangle the model’s 
latent variables into two distinct modules: clustering and 
generative. Additionally, we present the training formulas 
specifically tailored for the disentangled clustering model.

In the VAE model, the presence of a decoder respon-
sible for generating reconstructed data suggests that the 
latent variable z contains valuable information for the gen-
eration process. Expanding on this idea, we can consider 
the latent variable z as composed of two distinct modules: 
the clustering module and the generation module [58]. 
The generation module zg follows a Gaussian distribution, 
while the clustering module zc aligns with the descrip-
tion in Sect. 3.3, utilizing the Student’s t Mixture Model 
(STMM) as its prior. The concatenation operation ⊕ com-
bines the two modules as follows:

By allowing each module to fulfill its respective role, the 
clustering effectiveness and generation capabilities of the 
model can be enhanced.

(8)z = zg ⊕ zc.

Fig. 1  The network architecture of the proposed model. Initially, we 
employ both feature augmentation and data augmentation techniques 
to enrich the training dataset. The model uniquely integrates a disen-
tanglement strategy for latent variables, segregating them into two 
modules: Zg for general features and Zc for cluster-specific features. 
To enforce constraints, we utilize mean square error loss on both Z 
and Z̃ , the latter representing augmented latent variables. Similar 

constraints are also applied to the cluster assignment variables. The 
function Fc is designated for maximizing mutual information between 
the original and augmented data, while Fz focuses on constraining the 
latent variables. Additionally, we introduce a novel latent variable, 
synthesized by combining the latent variables of both the original and 
augmented images, which is depicted at the top of the figure
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Based on the discussions in Sects. 3.1, 3.2, and 3.3, the 
final optimization objective of the model can be expressed as

where the optimization objective consists of three parts: the 
reconstruction error, the loss of the generation module, and 
the loss of the clustering module with the STMM as the 
prior.

4.2  Bi‑augmentation module

In this subsection, we present a thorough analysis of the bi-
augmentation modules implemented in the FSVAE. These 
modules play a pivotal role in augmenting the clustering 
capabilities of the model.

The bi-augmentation module consists of two components: 
feature augmentation and data augmentation, both of which 
play a crucial role in the clustering process. Firstly, we intro-
duce a transformed image, denoted as x̃  , into the model. 
Since x and x̃  represent the same image, we assume that 
their corresponding latent variables, z̃  and z, are similar or 
identical. To align z and z̃  , data augmentation is applied. 
Similarly, data augmentation is also performed on the clus-
ter assignment variables � = q(y|x) and �̃ = q(y|̃x) . The loss 
function for data augmentation can be formulated as follows:

where C denotes the mean square error loss function.
Secondly, we enhance the model by splitting the CNN 

into two parts and incorporating feature normalization [35, 
36] on the output of the preceding CNN segment. The fea-
ture normalization operation is defined as:

where h represents the input to the subsequent CNN seg-
ment, while �⃗h denotes the output of the image from the pre-
ceding CNN segment. The parameters �⃗𝜇 and �⃗𝜎 correspond 
to the mean and variance of �⃗h , respectively. Similarly, the 
augmented image undergoes the same processing to obtain 
�̂  and �̂ for feature normalization.

(9)

Lfs(x) = Eq(zg,zc,y|x)
[
log

p(x, zg, zc, y)

q(zg, zc, y|x)
]

= Eq(zg,zc,y|x)[log p(x|zg, zc)]
− DKL(q(zg|x)||p(zg))
− DKL(q(zc, y|x)||p(zc, y)),

(10)Laug = C(zc, z̃c) + C(zg, z̃g) + C(� , �̃),

(11)h = �𝜇 + �𝜎
�⃗h − �⃗𝜇

�⃗𝜎
,

4.3  Augmented mutual information

In this subsection, we delve into a comprehensive expla-
nation of the techniques employed to maximize mutual 
information between the original and augmented data. By 
emphasizing the synergy between original and augmented 
data, we aim to elucidate how this strategy significantly 
enhances the model’s performance.

While the augmentation techniques discussed in 
Sect. 4.2 provide some assistance for clustering, there 
remain several deficiencies that require improvement. 
In Sect. 4.2, the data augmentation module is employed 
to enforce a mean square error loss between the cluster 
assignment variables of the original and augmented data. 
This aligns with the intuitive perception that the original 
and augmented data represent the same underlying infor-
mation, and therefore, their cluster assignment variables 
should be consistent. Inspired by the work of Ji et al. [28], 
we posit that maintaining consistency in the information 
of cluster assignment variables between original and aug-
mented data is crucial. Consequently, our research further 
investigates the maximization of mutual information in 
this context. Specifically, our focus lies in enhancing the 
mutual information of the cluster assignment variables. 
This approach is designed to facilitate the discovery of 
more refined and effective cluster assignment represen-
tations, thereby improving the overall clustering perfor-
mance of our model.

In our model, for each data point xi in the dataset 
X = {x1, x2, ..., xN} , we obtain the probability of data xi 
belonging to each category using Equation (4). The aug-
mentation of mutual information aims to maximize the 
alignment of cluster assignment variables between the 
original and augmented data. The augmented mutual infor-
mation loss is defined by

where � represents the cluster assignment variable for the 
original data and � ′ represents the cluster assignment vari-
able for the augmented data. Since � can be treated as a 
discrete random variable distributed across K categories, we 
can directly compute I(� , � �

) as

For any two pairs of samples (x, x�) , the conditional joint 
distribution is given by P(� = y, �

�

= y
� |x, x�

) = �y�y
�

 . By 
marginalizing over the dataset, we can obtain the joint dis-
tribution P of the cluster assignment variables using the fol-
lowing equation

(12)LI = max I(� , �
�

),

(13)I(� , �
�

) =

K∑
y=1

K∑
y�=1

Pyy
� ⋅ log

Pyy
�

Py ⋅ Py�
.
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where n denotes the number of sample pairs.
We considered the order of sample pairs as (x, x�) . How-

ever, it is also valid to consider the order as (x�, x) . Conse-
quently, we obtain the following joint distribution:

where the marginal distributions Py and Py′ can be obtained 
by summing the rows and columns of Pyy′ . Maximizing the 
mutual information of the cluster assignment variables helps 
to identify the similarities between samples, thereby improv-
ing the accuracy of clustering.

4.4  Augmenting latent variables

In Sect. 4.3, we discussed the constraints imposed on the 
cluster assignment variables. While acknowledging the 
utility of this approach, we recognize that the application 
of mean square error loss to latent variables, in isolation, 
may not yield substantial improvements in clustering per-
formance. Inspired by Haeusser et al [24], this subsection 
introduces a strategy to apply more stringent constraints on 
the latent variables of the data. This enhanced approach is 
aimed at further refining the model’s clustering capabilities, 
drawing upon advanced methodologies to achieve more sig-
nificant improvements.

For a sample pair (xi, xj) , we construct the loss as follows:

where �2 represents the cross-entropy loss function. Since 
we only constrain the clustering modules in the latent vari-
ables, we refer to them as zc in the equation. The latent vari-
able zc is derived from the original data, while z′

c
 is obtained 

from the augmented data.
Unlike in Sect. 4.3, where the sample pair consists of the 

original data and its augmented counterpart, Ltrafo has two 
optimized forms. In the first case, we set xj to be the aug-
mented data of xi . In this scenario, when the cluster assign-
ment variables are similar, the latent variables zi and zj of 
the image become more alike, thereby imposing a stronger 
constraint on the latent variables. In the second case, we set 
xi and xj to correspond to different data and optimize Ltrafo . 
By doing so, we encourage the latent variables zi and zj to be 
similar when their cluster assignment variables are similar. 
However, if the cluster assignment variables are dissimi-
lar, the latent variables zi and zj will be different. Since we 
believe that cluster assignment variables belonging to the 
same category should be similar, this approach encourages 

(14)P =
1

n

n∑
i=1

�i ⋅ �i
�T

,

(15)Pyy
� = (P + PT )∕2,

(16)Ltrafo = |1 − zT
c,i
z
�

c,j
− �2(�i, �

�

j
)|,

the latent variables of the same category to be more com-
pact, while keeping the latent variables of different catego-
ries more separated.

We conducted a comparison of clustering accuracy and 
NMI (Normalized Mutual Information) for the two cases 
on the MNIST dataset, and the results are presented in 
Table 1. In the table, “Baseline” refers to the experimental 
results without utilizing the trafo loss, “Case1” represents 
the experimental results of the first case where trafo loss is 
applied to the baseline model, and “Case2” corresponds to 
the experimental results of the second case where trafo loss 
is applied to the baseline model. The table clearly demon-
strates that the trafo loss in the first case yields significantly 
better clustering performance compared to the second case. 
For the sake of brevity, we rewrite equation (16) in the form 
of the first case as

4.5  Latent variable construction

In this subsection, we provide a comprehensive description 
of our method for constructing new latent variables for train-
ing purposes. We also briefly discuss the rationale behind 
this approach and present a figure illustrating the process of 
creating these new latent variables. Additionally, the final 
formulation and algorithm of the model are outlined.

In the previous section, we employed the latent variable 
z, derived from the original data via the encoder, for recon-
struction in the decoder. This method operates under the 
assumption that z contains ample information for effective 

(17)Lt = |1 − zT
c
z
�

c
− �2(� , �

�

)|.

Table 1  Experimental results of 
two different tarfo loss on the 
MNIST dataset

ACC(↑) NMI(↑)

Baseline 97.0 92.5
Case1 97.4 93.2
Case2 97.0 92.4

Fig. 2  New latent variables constructed on all datasets
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clustering, while it overlooks the potential contributions of 
augmented data. However, using augmented data for recon-
struction might inadvertently incorporate irrelevant informa-
tion into z, which could impede clustering performance. For 
example, in cases where simple rotations are used for data 
augmentation, the latent variable may inadvertently encode 
rotation-related information. We hypothesize, though, that 
if the latent variables can assimilate a modest amount of 
additional information, the model could, during its training 
phase, learn to autonomously disregard this extraneous data 
along with other irrelevant factors, thus enhancing cluster-
ing accuracy. As illustrated in Fig. 2, we suggest substitut-
ing the generation component associated with the original 
data’s latent variable with that of the augmented data’s latent 
variable for reconstruction. This alteration enables the latent 
variable to encompass a broader range of information, facili-
tating its ability to eliminate non-essential elements for clus-
tering and consequently improving the overall efficiency of 
the clustering model.

We express our newly constructed latent variables as

Similar to the latent variables in the original model, we 
utilize z in the decoder to obtain x , and then compute the 
cross-entropy loss between x and x. Our objective function 
is defined as

where � represents the cross-entropy loss function. Nota-
bly, our proposed method for constructing latent variables 
exclusively relies on augmented data, making it applicable 
to other models with disentangled latent variables.

The overall loss function of the model can be expressed as

where the hyperparameter �I , �t, �r is used to tune the con-
tribution of the loss term LI ,Lt,Lr.

The algorithm of our model through the SGVB estimator 
is shown in Algorithm 1. 

(18)z = �zg ⊕ zc.

(19)Lr = �(x, x),

(20)Ltotal = −Lfs(x) + Laug + �ILI + �tLt + �rLr,

Algorithm 1  Training steps
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5  Experimental results

In this section, we present the experimental results obtained 
from evaluating our approach on five distinct image datasets. 
We assess the performance using two metrics. The hardware 
setup used for the experiments includes an Intel i7-11700 
CPU running at 2.50GHz, a GeForce RTX 3060 GPU, and 
32GB of memory. The software environment consists of 
Python version 3.6 and PyTorch version 1.10.0.

5.1  Datasets

MNIST: LeCun et al [34] The MNIST dataset comprises 
70,000 handwritten digit images, featuring 10 distinct 
classes ranging from ’0’ to ’9’. The resolution is 28× 28 
pixels. To augment the dataset, we apply random rotations 
within the range of -25 to 25 degrees, adjust the image con-
trast, and use PIL.ImageChops.offset() to randomly shift the 
image by up to 0.35 times its size.

USPS: The USPS dataset comprises 9,298 handwritten 
digit images, covering the numbers ’0’ to ’9’. The resolu-
tion is 16× 16 pixels. Unlike the MNIST dataset, this dataset 
includes random rotations ranging from -35 to 35 degrees.

GTSRB: Houben et al [26] The GTSRB dataset com-
prises images of 43 different categories of traffic signs. For 
our experiments, we select 10 categories, resulting in a total 
of 15,540 images. The resolution is 28× 28 pixels. Similar 
to the USPS dataset, the GTSRB dataset includes random 
rotations ranging from -180 to 180 degrees.

YTF: Wolf et al [52] The YTF dataset comprises 4,733 
face images in 20 categories. The resolution is 32× 32 pixels. 

Table 2  Summary of the benchmark datasets

Data Sets #Samples #Dimensions #Clusters

MNIST 70000 1*28*28 10
USPS 9298 1*16*16 10
GTSRB 15540 3*32*32 10
YTF 4733 3*32*32 20
F-MNIST 70000 1*28*28 10

Table 3  Network settings for all datasets

Layers Dncoder Eecoder

1 Input z Input X ∈ R

2 FC, ReLU 4× 4 conv 64
stride 2, pad 1
BN, ReLU

3 FC, BN, ReLU 4× 4 conv 128
stride 2, pad 1
BN, ReLU

4 4× 4 conv 64 FC, BN, ReLU
stride 2, pad 1
BN, ReLU

5 4× 4 upconv 1 FC
stride 2, pad 1, Sigmoid

Table 4  Latent dimension for all data sets

MNIST USPS GTSRB YTF F-MNIST

zc 7 7 25 25 10
zg 3 3 5 5 5

Table 5  The ACC results by 
different methods without pre-
training

Methods MNIST USPS GTSRB YTF F-MNIST
ACC(↑) ACC(↑) ACC(↑) ACC(↑) ACC(↑)

K-means Lloyd [40] 53.2 66.8 30.2 34.3 51.1
GMM McLachlan et al [44] 55.3 53.0 33.1 34.8 52.3
AE + k-means 81.8 68.4 50.3 60.4 57.1
DEC Xie et al [54] 84.3 77.1 54.1 50.3 58.8
IDEC Guo et al [22] 88.1 77.3 55.4 52.2 59.2
GMVAE Dilokthanakul et al [7] 88.5 81.2 57.1 59.3 59.6
ClusterGAN Mukherjee et al [47] 95.2 90.1 61.2 66.0 63.3
S3VDC Cao et al [2] 95.3 87.1 58.0 63.6 61.1
DECCA Diallo et al [6] 96.4 77.3 55.9 59.7 60.1
TSAE Fei et al [16] 95.3 94.0 66.7 67.4 64.4
IMDGC Yang et al [61] 97.0 93.5 67.5 68.7 66.5
FSVAE Yang et al [58] 97.0 92.3 67.3 67.8 65.3
Ours 98.1 96.9 68.9 69.8 65.8
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The augmented image method used in this dataset aligns 
with the approach employed for the GTSRB dataset.

Fashion-MNIST: Xiao et al [53] The Fashion-MNIST 
dataset comprises 70,000 images, encompassing 10 catego-
ries of fashion items such as T-shirts, coats, sandals, etc. 
The resolution is 28× 28 pixels. The augmentation procedure 

employed for this dataset aligns with that of the MNIST 
dataset.

Detailed information about these datasets is shown in 
Table 2.

Table 6  The NMI results by 
different methods without pre-
training

Values in bold represent the best performance

Methods MNIST USPS GTSRB YTF F-MNIST
NMI(↑) NMI(↑) NMI(↑) NMI(↑) NMI(↑)

K-means Lloyd [40] 51.6 45.0 34.1 41.0 39.2
GMM McLachlan et al [44] 50.1 62.1 36.0 41.1 40.9
AE + k-means 72.5 65.2 54.2 64.0 56.7
DEC Xie et al [54] 81.2 80.3 56.3 54.1 51.0
IDEC Guo et al [22] 82.7 79.9 56.0 58.3 51.0
GMVAE Dilokthanakul et al [7] 85.8 73.0 61.4 70.1 57.0
ClusterGAN Mukherjee et al [47] 89.0 87.2 63.0 74.3 64.0
S3VDC Cao et al [2] 90.2 84.1 63.3 71.8 61.0
DECCA Diallo et al [6] 90.7 80.5 60.1 68.7 63.9
TSAE Fei et al [16] 88.1 88.2 68.2 76.2 65.0
IMDGC Yang et al [61] 92.5 88.5 69.2 77.7 64.8
FSVAE Yang et al [58] 92.5 87.1 68.9 76.6 63.7
Ours 94.8 92.5 70.9 78.5 63.3

Table 7  The performance 
comparison of different 
methods with or without the 
pre-training step, where the 
values in brackets denote the 
performance obtained without 
using pre-training

Values in bold represent the best performance

Methods MNIST USPS GTSRB YTF F-MNIST
ACC(↑) ACC(↑) ACC(↑) ACC(↑) ACC(↑)

DCEC 89.0(85.3) 79.0(73.1) 52.2(46.1) 57.3(53.2) 58.2(52.3)
DCN 91.2(83.0) 73.4(67.4) 51.3(46.2) 55.0(50.1) 57.3(50.5)
VaDE 94.5(84.2) 80.0(72.8) 55.0(49.3) 60.1(55.0) 62.9(58.3)
DEPICT 96.5(87.3) 96.4(88.4) 59.3(53.3) 62.1(55.3) 64.2(60.1)
DSCDAN 97.8(84.4) 87.2(80.3) 62.3(55.1) 69.1(62.3) 66.2(60.1)
Dual-AAE 97.6(88.4) 85.3(76.4) 60.0(53.3) 66.1(59.3) 67.1(61.2)
Va-GAN 95.8(89.0) 86.4(80.5) 59.4(55.0) 64.2(59.7) 67.0(60.3)
ACe/Dec 98.0(94.0) 88.0(73.0) 68.0(56.0) 67.3(64.1) 65.0(62.5)
vMF-VaDE 98.7(96.2) 93.2(90.1) 67.5(60.7) 70.3(66.4) 67.2(62.9)
Ours 98.1 96.9 68.9 69.8 65.8

Fig. 3  Results of clustering 
visualization on the MNIST 
dataset. We selected epoch0, 
epoch200 and the final results 
for display

(a)Epoch #0 (b)Epoch #200 (c)Epoch #500
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5.2  Implementation details

We evaluate the performance of our approach using two 
metrics: clustering accuracy (ACC) and normalized mutual 
information (NMI) [55]. Our model is implemented in 
PyTorch and optimized using the Adam optimizer with 
hyperparameters �1 = 0.5 and �2 = 0.99 . The learning rate 
for all datasets is set to 2e-3 and decays by 95% every 10 
epochs to prevent overfitting. We use a batch size of 64 and 

train the model for 500 epochs. The network architecture of 
our model is summarized in Table 3, and the distribution 
of latent variables across different datasets is provided in 
Table 4.

5.3  Experimental results

In this experiment, we compare our method, which does not 
involve pre-training, to several deep clustering algorithms, 
including K-means [40], GMM [44], AE+K-means, DEC 
[54], IDEC [22], GMVAE [7], ClusterGAN [47], S3VDC 
[2], DECCA [2], TSAE [16] and IMDGC [61]. Addition-
ally, we assess the effectiveness of our newly added loss by 
comparing it to the baseline model FSVAE [58]. The experi-
mental results across multiple experiments are reported in 
Tables 5 and 6. With the exception of ACC and NMI on the 
F-MNIST dataset, our model achieves the highest perfor-
mance in terms of ACC and NMI among the models without 
pre-training. Moreover, it outperforms the baseline model 
FSVAE, demonstrating the effectiveness of our newly added 
loss.

Moreover, we conduct a comprehensive comparison 
between our proposed model and nine advanced cluster-
ing methods that incorporate pre-training. These meth-
ods include DCEC [23], DCN [56], VaDE [29], Va-GAN 

λ

(a) MNIST

λ

(b) MNIST

λ

(c) MNIST

Fig. 4  This figure shows the ACC and NMI of the model under different hyperparameters on the MNIST dataset

λ

(a) USPS

λ

(b) USPS

λ

(c) USPS

Fig. 5  This figure shows the ACC and NMI of the model under different hyperparameters on the USPS dataset

Table 8  Ablation experiments of different components on the MNIST 
and USPS dataset

Method MNIST USPS

ACC(↑) NMI(↑) ACC(↑) NMI(↑)

Baseline 97.0 92.5 92.3 87.1
Ours w/o Lt+Lr 97.5 93.4 94.1 89.3
Ours w/o LI+Lr 97.4 93.2 95.1 90.2
Ours w/o LI+Lt 97.1 92.6 94.0 88.3
Ours w/o Lr 97.8 94.1 95.4 90.7
Ours w/o Lt 97.9 94.4 95.3 89.9
Ours w/o LI 97.5 93.5 96.4 91.5
Ours 98.1 94.8 96.9 92.5
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[57], DEPICT [20], Dual-AAE [19], DSCDAN [22], ACe/
Dec [46], and vMF-VaDE [59]. The comparative results 
are detailed in Table 7. Notably, the performance metrics 
within parentheses correspond to results achieved without 
the use of pre-training. Our model not only matches but 
in some instances, surpasses the clustering accuracy of 
these pre-training based methods across various datasets. 
This underlines the robustness and effectiveness of our 
approach, even in the absence of pre-training.

To visualize the separation of cluster assignments 
among latent variables during training, we utilize t-SNE 
[41] on the entire MNIST dataset, as shown in Fig. 3.

In Equation (20), our newly proposed loss function 
incorporates three hyperparameters: �I , �t , and �r . We 
assessed the impact of various hyperparameter settings 
on the model’s Accuracy (ACC) and Normalized Mutual 
Information (NMI) using the MNIST and USPS datasets, 
as illustrated in Figs. 4 and 5.

In Fig.  4, our investigation into the MNIST dataset 
involved adjusting all three hyperparameters within the range 
of 0.0001 to 1. For �I and �t , we observed minimal varia-
tions in performance in the 0.0001 to 0.1 range, followed 
by a consistent increase, achieving optimal performance at 

a setting of 1. Based on these findings, we selected �I =1 
and �t =1 for subsequent experiments. In contrast, �r dis-
played a decreasing trend in performance, leading us to 
choose �r=0.01 for further experimentation. Regarding the 
USPS dataset, as depicted in Fig. 5, we similarly adjusted 
the hyperparameters from 0.0001 to 1. Across the board, 
an increase in hyperparameter values corresponded with an 
upward trend in the model’s performance. Consequently, we 
set all three hyperparameters to 1 for subsequent analyses.

To further analyze the impact of our two newly added 
losses on the model’s clustering performance, we conduct an 
ablation experiment, and the results are presented in Table 8. 
In the table, “Baseline” refers to the original model, “Ours 
w/o Lt+Lr ” indicates the absence of both augmented latent 
variables and the construction of new latent variables, “Ours 
w/o LI+Lr ” indicates the absence of both augmented mutual 
information and the construction of new latent variables, 
“Ours w/o LI+Lt ” indicates the absence of both augmented 
mutual information and augmented latent variables, “Ours 
w/o Lr ” indicates the absence of constructing new latent 
variables, “Ours w/o Lt ” indicates the absence of augmented 
latent variables, “Ours w/o LI ” indicates the absence of aug-
mented mutual information, and “Ours” corresponds to the 
final model.

Finally, we evaluated the model’s robustness to outli-
ers. Following the approach described in FSVAE [58], we 
conducted experiments by introducing outliers. We com-
pared our model against several pre-trained deep genera-
tive clustering methods, including VaDE, Dual-AAE, and 
VaGAN, as well as a selection of non-pre-trained deep gen-
erative clustering methods, including VaDE, Dual-AAE, 
VaGAN, GMVAE, S-VaDE, and S3VDC. Additionally, we 
compared our results with the baseline FSVAE to highlight 
the enhanced robustness of our model. Table 9 presents the 
ACC values on the MNIST test dataset with 5%, 10%, and 
15% outliers. We observed that our model exhibits supe-
rior robustness compared to all non-pre-trained models, 
surpasses certain pre-trained models, and outperforms the 
baseline model FSVAE in terms of robustness.

The computational complexity of our proposed method 
is O(m ⋅ n ⋅ s) , where m represents the number of epochs, n 
quantifies the ratio of the total data volume to the batch size, 
and s signifies the execution time of the encoder and decoder 
neural networks. As illustrated in Table 10, a comparative 
analysis of the epoch-wise runtime between our model and 
existing models is presented. To ensure a fair comparison, 
we standardized the encoder and decoder across all models. 
A distinctive advantage of our model is its elimination of the 
need for pre-training. This attribute significantly contributes 
to its efficiency, particularly in achieving a reduced runtime 
when compared with other methods.

Table 9  The ACC performance with different outlier ratios on the 
MNIST-test dataset

Outlier ratios 5% 10% 15%

VaDE 86.1(77.4) 79.2(72.3) 74.3(68.1)
Dual-AAE 93.2(83.1) 83.3(76.4) 77.4(73.2)
VaGAN 94.4(86.1) 89.3(80.1) 87.3(79.8)
GMVAE 79.4 73.3 70.1
S-VaDE 80.3 75.2 73.4
S3VDC 88.1 80.4 77.3
FSVAE 94.7 87.3 86.8
Ours 95.6 88.3 88.0

Table 10  The Running time results by different methods on the 
MNIST dataset

Methods Running time

DCEC (Guo et al [23]) 68.3S/epoch
DCN (Yang et al [56]) 68.4S/epoch
VaDE (Jiang et al [29]) 72.7S/epoch
DEPICT (Ghasedi Dizaji et al [20]) 70.8S/epoch
DSCDAN (Guo et al [22]) 73.6S/epoch
Dual-AAE (Ge et al [19]) 82.1S/epoch
Va-GAN (Yang et al [57]) 75.0S/epoch
ACe/Dec (Miklautz et al [46]) 70.2S/epoch
vMF-VaDE (Yang et al [59]) 74.4S/epoch
Ours 66.4S/epoch
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6  Conclusion

In this work, we introduce a novel generative clustering 
approach based on FSVAE aimed at significantly enhanc-
ing clustering performance. Our methodology encompasses 
several key advancements. First, we optimize clustering effi-
ciency by maximizing the cluster assignment variables for 
both original and augmented data. Second, by integrating 
augmented data and cluster assignment variables, we impose 
more rigorous constraints on the latent variables, thereby 
achieving improved clustering results. Finally, our approach 
includes the innovative creation of new latent variables, 
which are then utilized in the reconstruction process to fur-
ther boost the clustering effect. Comparative experimental 
results affirm that our model outperforms existing methods, 
demonstrating its superior capabilities in clustering tasks.
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