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Abstract
Graph Neural Network (GNN) has attracted considerable research interest in various graph data modeling tasks. Most GNNs 
require efficient and sufficient label information during training phase. However, in open environments, the performance 
of existing GNNs sharply decrease according to the data (structure, attribute and label) missing and noising. Several recent 
attempts have been made to improve the performance and robustness of GNNs, most of which are contrastive learning-based 
and auto encoder-based strategies. In this paper, a semi-supervised learning framework is proposed for graph modeling tasks, 
i.e., robust graph neural network with Dirichlet regularization and Residual connection (DRGNN). Specifically, the structure 
and feature of the original graph are both masked to generate the masked graph, which is sent to the graph representation 
learning block (encoder) to learn the latent node representation. Additionally, an initial residual connect is introduced into 
the graph representation learning block to directly transmit the original node feature to the last layer to retain the inherent 
information of the node itself. Finally, the whole network is jointly optimized by the structure reconstructed loss, feature 
reconstructed loss and the classification loss. Note that a Dirichlet regularization constraint is introduced into the learn-
ing objective to dominate the latent node representation into a local smoothing scenario, which is more conforms with the 
manifold assumption of the graph representation learning. Extensive experiments demonstrate the state-of-the-art accuracy 
and the robustness of the proposed DRGNN on benchmark datasets.

Keywords Graph neural networks · Dirichlet regularization · Residual connection · Self-supervised learning · Mask 
strategy

1 Introduction

Many practical applications study graph structure data 
(non-Euclidean data), such as the urban traffic network [1], 
the user-product network in recommendation systems [2], 
social networks in computational social sciences [3], and so 
on. The irregularity and complexity of graph structure data 
tremendously impose significant challenges on traditional 
machine learning methods transferring to graph data mining 
tasks. Recently, graph convolutional networks (GCNs) [4, 
5] have attracted much attention in light of their excellent 
results on various graph structure data mining tasks. Techni-
cally, GCN [6] and its variants investigate to define effec-
tive convolution computation operators with the ability of 
feature representation from different hops of neighbors, i.e., 
generalize the convolution operation to the graph domain as 
different neighbor aggregation strategies or message passing 
schemes [7]. Here we omit a comprehensive review of the 
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existing models. Interested readers can refer to survey papers 
[8, 9] for more details.

Graph neural networks and their extensions have achieved 
remarkable attention in various tasks, their success is largely 
underpinned by a sufficient number of available labels for 
learning the discriminating representations. However, data 
labeling is very time-consuming and lacking in many practi-
cal applications. Insufficient label information severely lim-
its the expressive power of GNN and most of its extensions. 
On the other hand, in open environments, the structure and 
the attribute of the graph data may be missing, noising or 
adversarial attacked, which have a great influence on the 
robustness and security of GNNs.

Recently, several efforts have been made to improve 
the weakly-supervised learning capability of GNNs [10, 
11]. Contrastive learning, a widespread technique for self-
supervised learning in computer vision [12, 13], has been 
developed to graph modeling tasks under weakly-supervised 
scenarios [14, 15]. However, the construction of the negative 
samples is a very laborious and time-consuming process, 
which are necessary for most graph contrastive learning 
objectives, e.g., GraphCL [16] and GCA [17]. Recently, 
there have been several works focus on augmentation-free 
based graph contrastive learning methods, which aims to 
avoid data augmentations [18–21]. Actually, these augmen-
tation-free based graph contrastive learning methods need 
to use cluster strategies or similarity computing methods 
to recalculate similarity nodes (corresponds to generating 
positive/negative pairs), however, which will bring extra cal-
culation cost. Further, the effectiveness of most graph con-
trastive learning models have serious dependence on high-
quality data augmentation, e.g., JOAO [22] and DiGCL [23]. 
Finally, most graph contrastive learning methods highly rely 
on specialized and complex training strategies, e.g., BYOL 
[24] and GCC [25].

Another important self-supervised learning methods to 
graph modeling tasks are the autoencoders (AEs) [26, 27]. 
In contrast to graph contrast learning methods, most graph 
autoencoders (GAEs) do not require complex negative sam-
pling and data augmentation, which are easily integrated 
to most GNNs without complex pre-works. However, the 
performance of most GAEs is weaker than most graph con-
trast learning models in node-level and graph-level classi-
fication tasks. A major reason is that most GAEs leverage 
graph structure reconstruction as the auxiliary optimization 
objectives, while the over-emphasized structure information 
is not consistent with the classification principle in some 
extent, e.g., VGAE [28], NWR-GAE [29] and DGI [30]. 
On the other hand, the loss function of most GAEs chooses 
the mean square error (MSE) loss, while the MSE loss may 
lead to global over-smoothing issue. Finally, existing GAEs 
directly take the input structure or attributes as the self-
supervised information, however, once the input features 

are attacked or existing deficiencies, the GAEs can not be 
trained effectively to learn robust representations.

To sum up, there are three specific problems to be dealt 
with:

• Q1), how to improve the robustness of the GAEs?
• Q2), how to alleviate the over-emphasized structure 

information in GAEs?
• Q3), how to alleviate the global over-smoothing problem 

in GAEs?

Motivated by the above issues, in this paper, we develop a 
robust graph neural network with Dirichlet regularization 
and Residual connection (DRGNN). Specifically, for Q1), 
it has been shown that traditional deep neural networks are 
vulnerable to adversarial examples that are generated by 
adding perturbations and noise to original inputs. Essen-
tially, GAE is a classical neural network-based model, as 
with the traditional deep neural networks, GAEs are also 
vulnerable to adversarial examples (generated by adding per-
turbations and noise). There has been several works focus 
on how to enhance the robustness of GAEs, such as [31, 
32]. To address the Q1), we introduce the mask strategy 
into our model, i.e., the topology structure and attributes 
of the original graph are masked to generate the masked 
graph, which is sent to the graph representation learning 
block (encoder) to learn the latent node representation. For 
Q2), most GAEs leverage the graph structure reconstruc-
tion as the optimization objective to encourage the topo-
logical connections between neighbour nodes (such as [28, 
33]), which has influenced and weakened the nature of the 
node itself to some extent. To alleviate this issue, we add an 
initial residual connect in the graph representation learn-
ing block, which can directly transmit the original node 
feature to the last layer to retain its inherent information. 
Then, the latent node representation is sent to the structure 
decoder and feature decoder to reconstruct the original graph 
structure and attribute. For Q3), most neural network based 
models adopt the MSE loss function and stochastic gradi-
ent descent (SGD) to as the training strategy, which may 
cause the global over-smoothing issue [34, 35]. To alleviate 
this issue, we introduce a Dirichlet regularization constraint 
to learn a latent node representation with local smoothing, 
which is more conformed to the classification principle. The 
learned latent node representation is utilized to classification 
tasks with a multilayer perceptron. Finally, the whole model 
is jointly optimized by the structure reconstruction loss, fea-
ture reconstruction loss and the classification loss. Our main 
contributions are summarized as follows: 

1) We propose a robust residual graph neural network to 
improve the weakly-supervised learning capability and 
robustness of graph neural networks.
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2) We introduce an initial residual connect to alleviate the 
over-emphasized structure information in GAEs, which 
can directly transmit the original node feature to the last 
layer to retain its inherent information.

3) We introduce a Dirichlet regularization constraint to 
learn a latent node representation with local smoothing, 
which is more conformed to the classification principle.

2  Related works

In this section, we review the related works, which include 
graph convolutional networks, graph contrastive self-super-
vised learning models and graph autoencoders.

2.1  Graph convolutional networks

As an important tool of graph representation learning, graph 
convolutional networks have achieved much attention after 
its proposition. Technically, graph convolutional network 
is defined by the spectral graph theory [36] and convolu-
tion theorem in graph domain (non-Euclidean domain). 
For a graph signal x ∈ ℝ

N , in graph signal processing filed, 
the graph Fourier transform (GFT) is defined as x̂ = UTx , 
and the inverse form is x = Ux̂ [37], where U represents 
the matrix of eigenvectors of the graph Laplacian matrix 
L = I − D

−
1

2AD
−

1

2 , D is the degree matrix, A is the adja-
cency matrix. Then, the graph convolution operation ∗G can 
be defined in the graph Fourier domain [38], which is for-
mulated as:

where ⊙ represents the Hadamard product.
Furthermore, the graph convolution operation can be 

further expressed as a graph filter g� multiplying the graph 
signal x, i.e.,

where ⋆ denotes the convolution operation. Most of the ear-
lier spectral-based graph convolutional networks are based 
on the Eqs. (1) and (2).

Graph convolutional neural network is a new graph rep-
resentation learning tool that designed for graph modeling 
tasks, which is the combination of deep learning and graph 
computing method. There are two main types graph con-
volutional networks, i.e. spectral-based and spatial-based 
models. For the spatial-based graph convolutional networks, 
representative models like inductive representation learning 
on large graphs (Graph-SAGE) [39], diffusion-convolution 
operation-based graph neural networks (DCNN), geometric 
deep learning on graphs and manifolds using mixture model 
cnns (MoNet) [40], neural message passing-based graph 

(1)x ⋆G y = U((UTx)⊙ (UTy)),

(2)g𝜃 ⋆ x = g𝜃(L)x = g𝜃(UΛUT)x = Ug𝜃(Λ)U
Tx,

neural networks (MPNN) [7], graph isomorphism networks 
(GIN) [41]. Representative spectral-based graph models 
such as Chebyshev polynomial-based fast localized spectral 
filtering model (ChebNet) [42], widely used graph convolu-
tional network (GCN) [6], graph attention network (GAT) 
[43], shortest path graph attention network (SPAGAN) [44], 
variance reduction-based graph convolutional network [45], 
fast learning-based graph convolutional networks via impor-
tance sampling (FastGCN) [46]. And other spectral graph 
convolution operation-based GCN models such as Fast Haar 
transform-based graph neural network (HANet) [47], wave-
let transform-based graph neural network (GWNN) [48].

2.2  Graph contrastive self‑supervised learning

Contrastive learning is an important form of self-supervised 
learning, usually leverages positive and negative pairs of 
input samples to formulate the task of finding similar and 
dissimilar things for machine learning models. Recently, 
graph contrastive learning has become a popular strategy 
to benefit graph modeling tasks in a self-supervised way 
[49, 50]. Negative sampling is an essential process for most 
graph contrastive learning models. ProGCL [51] uses mixed 
distribution estimation to guide the generation of negative 
samples. Zhao et al. [52] use pseudo labels to alleviate the 
invalid negative problem. However, the negative sampling 
is a very labrious and time-consuming work. Additionally, 
the effectiveness of most graph contrastive learning models 
rely on high-quality data augmentation, e.g., feature pertur-
bation-based [16, 53] and graph sampling-based [25, 54] 
data augmentation. Finally, most graph contrastive learning 
models require specialized and complex training strategies, 
e.g., BYOL [24] and GCC [25].

2.3  Graph autoencoders

Another important self-supervised learning model to graph 
modeling tasks is the graph autoencoder (GAE), a form of 
generative models, which is designed to encode the input 
graph to a low-dimensional embedding, and then decode the 
low-dimensional embedding to reconstruct the input graph. 
The first GAE-based model i.e., VGAE [28] take the graph 
convolutional network [6] as the encoder and the dot-product 
as the decoder to reconstruct the graph structure. Then most 
of its extensions also follow this pattern, i.e., take the graph 
reconstruction as objective, however, the over-emphasized 
structure information is not consistent with the classification 
principle in some extent, e.g., MSVGAE [55], NWR-GAE 
[29] and DGI [30]. The over-emphasized structure informa-
tion may limit the performance of GAEs in classification 
tasks, how to alleviate the over-emphasized structure infor-
mation is one purpose of our work. Recently, many feature 
reconstruction-based GAEs are proposed, e.g., GALA [56] 
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and MGAE [57]. Most feature reconstruction-based GAEs 
adopt the MSE loss as the loss function, however, the MSE 
loss may cause the global over-smoothing problem. Actu-
ally, the graph representation learning follows the manifold 
hypothesis (i.e., local smoothing assumption). Finally, most 
existing GAEs directly take the input graph structure and 
node feature as the self-supervised information to train the 
model. However, in open environment, the providing input 
graph data maybe nosing and missing or attacked by artifi-
cial disturbance, which have a great influence on the perfor-
mance and robustness of GAEs.

3  The proposed approach

In this section, we introduce the proposed robust graph 
neural network with Dirichlet regularization and Residual 
connection (DRGNN) in detail. In essence, the proposed 
DRGNN is a form of GAEs, the architecture of the proposed 
model is shown in Fig. 1.

3.1  Input graph and masked graph

Given a graph G = {V ,A,X} , the set V comprises of N nodes, 
and each node includes a feature vector x ∈ ℝ

M , X ∈ ℝ
N×M 

denotes the feature matrix of G. A ∈ ℝ
N×N denotes the adja-

cency matrix of the graph.
Most GAEs directly take the graph G = {A,X} as the input, 

however, once structure or feature of the graph G is missing 
or is attacked, the effectiveness of the GAEs degrades sig-
nificantly. To improve the robustness of the GAEs, we intro-
duce the mask strategy into GAEs from both structure and 
feature. Specifically, for the structure masking, we generate 
a binary structure mask Ms with size ‖E‖ (where ‖E‖ is the 
number of edges of the input graph G) to mask the edges in the 
graph structure, which follows a Bernoulli distribution B(ps) , 
where the ps denotes the masking rate of the graph structure. 

Similarly, we generate a binary mask with size M for each 
node to mask the node feature of the input graph, which also 
follows a Bernoulli distribution B(pf ) , where the pf  denotes the 
masking rate of each node feature. Finally, the masked graph 
structure and node feature are defined as:

where Ã ∈ ℝ
N×N denotes the masked adjacency matrix and 

X̃ ∈ ℝ
N×M denotes the masked feature matrix. Ms ∈ ℝ

N×N 
denotes the structure mask matrix and Mf ∈ ℝ

N×M denotes 
the feature mask matrix. ⊙ denots the Hadamard product.

3.2  Encoder

The masked graph G̃ = {V , Ã, X̃} is fed to the Encoder to learn 
the low-dimension embedding representation of the graph:

where H denotes the leaned low-dimension representation 
of the graph. fEncoder denotes the Encoder, specifically, we 
proposed a residual-based graph convolutional network as 
the Encoder, which is formulated as:

where �(⋅) denotes the activation function, and the com-
monly choice is ReLU(⋅) = max(0, ⋅) . Θ(l) denotes the learn-
able parameters of the l-th layer. H(l) denotes the representa-
tion of the l-th layer of the Encoder. Specially, to make the 
residual feature size the same as the feature of the hidden 
layer, we add a Multilayer Perceptron (MLP) to the original 
feature, i.e., H(0) = fMLP(X̃) , which is the introduced initial 
feature residual connect layer. Further, the introduction of 
the initial feature residual connection is designed to alleviate 

(3)
Ã = A⊙Ms,

X̃ = X ⊙Mf ,

(4)H = fEncoder(Ã, X̃),

(5)
H(l+1) = fEncoder(Ã,H

(l))

= 𝜎(ÃH(l)Θ(l) + 𝜆H0),

Fig. 1  The architecture of the proposed DRGNN, which includes the graph representation learning module (encoder), graph information recon-
struction module (structure decoder and feature decoder), and the downstream task modeling module (Prediction)
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the over-emphasized structure information. Specifically, the 
original feature of the graph can be directly passed to the 
hidden layer, which can make the node retain its original 
feature in some extent to alleviate the over-emphasized 
structure information that most GAEs faced.

3.3  Decoder

As shown in Fig. 1, the Decoder consists of two parts: Struc-
ture Decoder and Feature Decoder. As for the Structure 
Decoder, which is a basic component of most GAEs. The 
main objective of the Structure Decoder is reconstructing the 
graph structure by using the low-dimension node representa-
tion learned by the Encoder. Specifically, we take the inner 
product of the latent node representation to implement the 
Structure Decoder, which is formulated as:

where hj denotes the latent representation of the i-th node 
learned by Encoder. âij denotes the reconstructed adjacency 
weight between i-th node and j-th node.

For the Feature Decoder, its main purpose is that recon-
struct the original node feature by utilizing the latent repre-
sentation of the node, which is formulated as:

where x̂ denotes the reconstructed feature of the i-th 
node. fF−MLP denotes an MLP network structure that is 
used to increase the dimension to reconstruct the original 
high-dimension feature. The activation of the fF−MLP is 
ReLU(⋅) = max(0, ⋅).

3.4  Prediction

As shown in Fig. 1, the latent node embedding learned by 
Encoder is finally used for the downstream tasks. In this 
paper, the main concern is focused on the node classification 
task, thus we design an MLP network for the classification 
task, which is formulated as:

where Ŷ  denotes the final prediction category distribution. 
fC-MLP denotes the MLP network that used for the node clas-
sification task. �C denotes the trainable parameters of the 
fC-MLP . The activation of the fC-MLP is softmax, which is 
formulated as:

(6)âij = fS−Decoder(hi, hj) = sigmoid
(
hT
i
hj
)
,

(7)x̂i = fF−Decoder(hi) = fF−MLP(𝜃F, hi),

(8)Ŷ = fC-MLP(𝜃C,H),

(9)softmax(Y∗
ij
) =

exp(Y∗
ij
)

∑C

j=1
exp(Y∗

ij
)
,

where C denotes the number of categories.

3.5  Learning target

For the learning objective, the loss for the proposed DRGNN 
consists of two parts: reconstruction loss and classification 
loss. Specifically, the reconstruction loss contains graph struc-
ture reconstruction loss and feature reconstruction loss. For 
the feature reconstruction loss, different from other traditional 
GAEs, we directly recover the original features for each node 
under the masked scenario. It should be noted that several 
existing GAEs adopted the MSE loss as the feature reconstruc-
tion loss [56, 57]. However, the MSE loss may cause the global 
over-smoothing problem, while the graph representation learn-
ing follows the manifold hypothesis, i.e., the local smoothing 
assumption. This is a main reason that why few existing GAEs 
adopt the feature reconstruction loss (MSE loss) as the unique 
loss function to train the model. To alleviate the above issue, 
we introduce a Dirichlet regularization constraint into the fea-
ture reconstruction loss:

where LFeature denotes the feature reconstruction loss func-
tion. LMSE denotes the MSE loss, which is formulated as:

where N is the number of nodes. xi is the raw feature of the 
i-th node. x̂i is the reconstructed feature of the i-th node. The 
Dirichlet regularization constraint is formalized as:

where H denotes the latent node representation learned by 
encoder. L denotes the Laplacian matrix. For Eq. (12), it is 
the definition of the Dirichlet (semi) norm, which is an ana-
logue of the corresponding concept from complex/harmonic 
analysis. Recall the graph Laplacian is the analogue of the 
Laplacian in ℝn , essentially the Dirichlet regularization is 
reasonable to take as a possible measure of how much f devi-
ates from constant, so we have the quantity trace(HTLH) 
(i.e., a special case of Laplacian regularization).

For the graph structure reconstruction, we also reconstruct 
the original structure under the masked condition. Specifically, 
the structure reconstruction loss LStructure , calculating the loss 
between the reconstructed structure (i.e., the reconstructed 
adjacency matrix Â ) and the raw graph structure (i.e., the raw 
adjacency matrix A). The structure reconstruction loss is for-
mulated as:

(10)LFeature = LMSE + LDirichlet,

(11)LMSE =
1

N

N∑

i=1

(xi − x̂i)
2,

(12)LDirichlet = trace(HTLH),
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where aij denotes the value of the i-th row and j-th column in 
original adjacency matrix A. The value of aij is 0 or 1, which 
denotes the neighborhood relationship between the i-th node 
and j-th node. âij ∈ [0, 1] denotes the element of the i-th row 
and j-th column in reconstructed adjacency matrix Â . ‖E‖ 
denotes the number of edge number of the original graph. 
The main objective of the structure reconstruction loss is 
to make the reconstructed graph structure be as closely as 
possible with the original graph structure.

The purpose of reconstruction loss is to recover the origi-
nal graph information, while the latent node embedding that 
dominated by the reconstruction task may not completely 
fit for the classification task. Thus, we introduce the clas-
sification loss into the loss function to make the latent node 
embedding more suitable for the classification task. For the 
classification loss, we choose the commonly used cross-
entropy error in classification tasks as the loss function, 
which is formulated as:

(13)
LStructure = −

1

‖E‖

��
aij log âij

+ (1 − aij) log(1 − âij)

�
,

where VL represents the labeled nodes set. Y ∈ ℝ
N×C rep-

resents the label indicator matrix. Ŷ ∈ ℝ
N×C represents the 

predicted label indicator matrix learned by the DRGNN. 
Finally, the overall learning objective to train the whole 
model is formulated as:

where L denotes the final loss function. The learning proce-
dures of the proposed DRGNN are outlined in Algorithm 1.

(14)LClassification = −
∑

k∈VL

C∑

j=1

Ykj ln Ŷkj,

(15)L = LFeature + LStructure + LClassification,

Algorithm 1  Framework of DRGNN.

Input: Original graph: G = {V,A,X}; Encoder: fEncoder (see Eq. (4) and
5)); Feature Decoder: fF−Decoder (see (7)); Structure Decoder: fS−Decoder

(see Eq. (6)).
Output: The predicted label indicator matrix Ŷ .
1: Initialize all parameters θ of the whole model randomly;
2: while not converged do
3: Generate masked graph structure Ã and masked feature
4: X̃ via Eq. (3);
5: H ← fEncoder(Ã, X̃);
6: Â ← fS−Decoder(H);
7: X̂ ← fF−Decoder(H);
8: Ŷ ← fC−MLP (H);
9: L ← LFeature + LStructure + LClassification;

10: Update θ by gradient descent based on L;
11: end while
12: return Ŷ .

Table 1  Statistics of the datasets

Dateset Cora Citeseer Pubmed ogbn-arxiv Reddit

Nodes 2708 3327 19,717 169,343 231,443
Edges 5429 4732 44,338 1,166,243 11,606,919
Features 1433 3703 500 128 602
Classes 7 6 3 40 41
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4  Experiments

In this section, we compare the proposed DRGNN with sev-
eral state-of-the-art methods under three benchmark datasets 
to verify its performance and robustness. The code is avail-
able on GitHub.1

4.1  Baselines

To demonstrate the effectiveness of our DRGNN, we com-
pare it against several baseline models. Including traditional 
graph embedding models e.g., DeepWalk [58] and Planetoid 
[59]. GNN-based graph representation learning models, e.g., 
GraphSAGE [39], GCN [6], GAT [43], BGRL [24], CCA-
SSG [60] and DGI [30]. Graph autoencoder-based models, 
e.g., GAE [28], ARVGA [61], GraphMAE [21], NWR-GAE 
[62]. Semi-supervised learning methods based on pseudo-
label extension [63, 64], e.g., Co-training, Self-training, 
Union, Intersection, MultiStage, M3S, GRACE [65].

4.2  Datesets

Three benchmark citation datasets, Cora, Citeseer and Pub-
med, are used in the experiments. For these datasets, the 
nodes and edges represent the papers and citation relations, 
respectively. The node feature is a vector of bag-of-words 
that represents the corresponding paper, each paper belongs 
to a research field that corresponding to its category. The 
details of datasets are summarized in Table 1. It should be 
noted that the public split for training/validation/testing sets 
[66] is used in the simulations. To verify the superiority of 
the proposed framework in a large data environment, we 

further conduct several comparative experiments under 
large-scale datasets, such as Ogbn-arxiv and Reddit.

4.3  Experiment setup

For the node classification task, the dimension of the latent 
layer in Encoder is set to 16. The optimizer used in experi-
ments to train the proposed model is Adam [67] with learn-
ing rate 0.01 and weight decay 0.0005. The trainable weights 
of all layers are initialized by the Glorot uniform initializer 
[68]. The dropout operation [69] with dropping rate 0.5 is 
implemented for all layers. Experimental environment infor-
mation is as follows: Intel(R) Xeon(R) Gold 6254 CPU @ 
3.10GHz, 36 kernel, 512 G memory, NVIDIA RTX 3090 
GPU.

4.4  Results

The results of node classification task are summarized in 
Table 2. In particular, the experimental results of the com-
pared models are obtained from their corresponding papers. 
As we can see, the experimental results show that the per-
formance of the graph neural networks-based models is 
obviously better than traditional graph embedding-based 
models. Further, it is observed that the proposed DRGNN 
provides more apparent effectiveness comparing to tradi-
tional GAEs. This confirms the fact that the latent represen-
tation learned by the Encoder dominated by the generated 
task (graph reconstruction task) may not completely fit for 
the classification task. In other words, the proposed semi-
supervised learning framework is demonstrated to have bet-
ter representation capability. Further, to verify the superior-
ity of the proposed framework in large data environment, 
we also conduct comparative experiments under large-scale 
datasets, the results show that our model still perform well in 

Table 2  Summary of the semi-
supervised node classification 
accuracy (%) on different 
datasets

Method Datasets

Cora Citeseer Pubmed Ogbn-arxiv Reddit

DeepWalk 67.2 43.2 65.3 – 0.691
Planetoid 75.7 64.7 77.2 – –
GAE 74.9 65.6 74.2 – –
CCA-SSG 83.5 72.9 81.0 71.24 95.07
BGRL 82.7 71.1 79.6 71.64 94.22
ARVGA 79.5 66.0 81.5 – –
GRACE 81.9 71.2 80.6 71.51 94.72
Graph-SAGE 75.3 68.2 77.4 – –
GCN 81.5 70.3 79.0 71.74 95.3
GAT 83.0 72.5 79.0 71.10 95.9
DGI 82.3 71.8 76.8 70.34 94.0
GraphMAE 83.8 73.0 80.9 71.7 95.9
DRGNN (ours) 83.8 ± 0.2 73.1 ± 0.3 81.9 ± 0.2 72.8 ± 0.4 95.9 ± 0.2

1 https:// github. com/ sxu- yaokx/ DRGNN.

https://github.com/sxu-yaokx/DRGNN
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large-scale datasets. It should be noted that several results of 
large datasets not reported are because of unavailable code 
or out-of-memory. Furthermore, as for the over-smoothing 
issue, we compared the proposed model and baseline mod-
els with different number of layers. Results show that the 
performance of baseline models decreased with the increase 
of layer number, while the proposed DRGNN still perform 
well with the increase of layer number, as shown in Table 3.

4.5  Robustness analysis

As noted above, the superiority of the proposed DRGNN 
on the node classification task has been verified by com-
parison experiments. To indicate the robustness of the 
proposed DRGNN, we first implement baseline methods 
under different label rate on three benchmark datasets. The 
low label rate can lead to potential perturbations and affect 

Table 3  Results of baseline methods under different number of layers

Datasets Methods Layers

2 8 32 64

Cora GCN 80.4 69.5 60.3 28.7
GCN (DropEdge) 82.0 75.8 62.5 49.5
JKNet 80.2 80.7 81.1 71.5
JKNet (DropEdge) 83.3 82.6 82.5 83.2
IncepGCN 77.6 76.5 81.7 80.0
IncepGCN (DropEdge) 82.9 82.5 83.1 83.5
DRGNN (Ours) 83.7 83.9 84.0 84.5

Citeseer GCN 67.6 30.2 25.0 20.0
GCN (DropEdge) 70.6 61.4 41.6 34.4
JKNet 80.2 80.7 81.1 71.5
JKNet (DropEdge) 72.6 71.8 70.8 72.2
IncepGCN 69.3 68.4 68.0 67.5
IncepGCN (DropEdge) 72.7 71.4 72.6 71.0
DRGNN (Ours) 73.0 73.3 73.7 73.9

Table 4  Classification accuracy (%) on Cora datasets with different 
label rates

Method Label rate

0.5% 1% 2% 3% 4%

LP 56.4 62.3 65.4 67.5 69.0
GCN 50.9 62.3 72.2 76.5 78.4
Co-training 56.6 66.4 73.5 75.9 78.9
Self-training 53.7 66.1 73.8 77.2 79.4
Union 58.5 69.9 75.9 78.5 80.4
Intersection 49.7 65.0 72.9 77.1 79.4
MultiStage 61.1 63.7 74.4 76.1 77.2
M3S 61.5 67.2 75.6 77.8 78.0
DRGNN (ours) 62.7 71.5 76.3 79.6 82.0

Table 5  Classification accuracy (%) on Citeseer datasets with differ-
ent label rates

Method Label rate

0.5% 1% 2% 3% 4%

LP 34.8 40.2 43.6 45.3 46.4
GCN 43.6 55.3 64.9 67.5 68.7
Co-training 47.3 55.7 62.1 62.5 64.5
Self-training 43.3 58.1 68.2 69.8 70.4
Union 46.3 59.1 66.7 66.7 67.6
Intersection 42.9 59.1 68.6 70.1 70.8
MultiStage 53.0 57.8 63.8 68.0 69.0
M3S 56.1 62.1 66.4 70.3 70.5
DRGNN (ours) 58.5 62.5 69.0 70.6 71.5

Table 6  Classification accuracy (%) on Pubmed datasets with differ-
ent label rates

Method Label rate

0.03% 0.05% 0.1%

LP 61.4 66.4 65.4
GCN 60.5 57.5 65.9
Co-training 62.2 68.3 72.7
Self-training 51.9 58.7 66.8
Union 58.4 64 70.7
Intersection 52.0 59.3 69.4
MultiStage 57.4 64.3 70.2
M3S 59.2 64.4 70.6
DRGNN (ours) 62.8 70.7 73.2

Fig. 2  Test performance comparison of GCN, GAT, and the proposed 
DRGNN on Cora dataset with different levels of random topology 
attack (RTA)
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the classification performance. Specifically, for the Cora 
and Citeseer datasets, we choose five different label rates 
{0.5%, 1%, 2%, 3%, 4%} to train the proposed DRGNN and 
baseline methods. For the Pubmed, the label retes are set 
to {0.03%, 0.05%, 0.1%} . The results are summarized in 
Tables 4, 5 and 6. As we can see, the performance of our 
model is better than the baseline self-supervised learn-
ing methods under different label rates, which claims that 
the superiority of the proposed DRGNN in dealing with 
practical problems where the original graph data has few 
labels.

To further verify the robustness of the proposed model, 
we test the performance of DRGNN, GCN and GAT when 
dealing with two uncertainty issues (feature/structure miss-
ing) in the node classification tasks. That is, we use the Cora 
dataset and conduct two types of uncertainty: random topol-
ogy attack (RTA) and random feature attack (RFA), which 
can lead to potential perturbations and affect the classifica-
tion performance. Specifically, we random delete some edges/
features with a given ratio to get the modified graph structure 
(i.e. adjacency matrix) and graph feature matrix. The experi-
mental results are shown in Figs. 2 and 3. As we can see, the 

performance of all methods decays rapidly with respect to the 
random attack rate, while it is clear that the proposed DRGNN 
consistently outperforms GCN and GAT.

4.6  Ablation study

To investigate how the different parts of the proposed algo-
rithm contribute to the final prediction accuracy, we conduct 
different setup of the proposed model to verify the effective-
ness of different parts. Specifically, we consider three different 
setup: DRGNN Without Feature Reconstruction (DRGNN-
FR), DRGNN Without Structure Reconstruction (DRGNN-
SR), DRGNN Without Dirichlet Regularization (DRGNN-
DR). The comparison results are summarized in Table 7. As 
we can see, the deletion of different parts affect the perfor-
mance of the proposal model, which indirectly testifies the 
effectiveness of different parts.

5  Conclusion

In this paper, we propose a semi-supervised learning 
framework, i.e., robust graph neural network with Dirichlet 
regularization and residual connection, termed DRGNN. 
Specifically, we introduced a mask strategy into the graph 
autoencoder, i.e., the topology structure and the features of 
the original graph are masked before sent into the Encoder. 
Additionally, we add an initial residual connection into the 
graph representation learning block (Encoder) to directly 
transmit the original node feature to the last layer to retain 
the inherent information of the node itself. Finally, we intro-
duce a Dirichlet regularization constraint into the learning 
objective to dominate the latent node representation into a 
local smoothing scenario, which is more conforms with the 
manifold assumption of the graph representation learning. 
We test the proposed DRGCN on several benchmarks and 
verify that the proposal is superior to the state-of-the-art on 
the node classification task. Further, we compare the pro-
posed model with baseline methods under some uncertainty 
issues in the node classification tasks, the results show the 
superiority and robustness of the proposed DRGNN.
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