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Abstract
One of the current research gaps in multi-scale data analysis is studying information systems characterized by attributes 
with interval sets as attribute values and multiple scales. To address this gap, we first introduce the concepts of a multi-scale 
interval-set information system (MISIS) and a multi-scale interval-set decision table (MISDT). We then define the similarity 
relation between objects in an MISIS and the corresponding rough approximations. We further propose the positive region 
optimal scale, the modified conditional entropy optimal scale, and the positive complementary conditional entropy optimal 
scale in an MISDT. We examine the relationships among these optimal scales in consistent and inconsistent MISDTs and 
show that the positive region optimal scale and the modified conditional entropy optimal scale are equivalent in a consist-
ent MISDT, while in an inconsistent MISDT, the positive region optimal scale is the same as the positive complementary 
conditional entropy optimal scale, and the modified conditional entropy optimal scale is not greater than the positive com-
plementary conditional entropy optimal scale. Based on the optimal scale, we also develop attribute reduction approaches in 
MISDTs. Finally, through experimental analysis of data on the UCI dataset, we verify the effectiveness and reasonableness 
of our proposed methods.

Keywords  Attribute reduction · Granular computing · Information entropy · Multi-scale information systems · Optimal 
scale

1  Introduction

Granular computing (GrC) [16, 21, 42, 43] is crucial for 
knowledge discovery in big data. The primary idea of GrC is 
to decompose large data sets or complex problems into gran-
ules through information granulation [44], and to integrate 

and represent the information at different granularity levels 
to solve complex problems effectively.

One of the fundamental models in GrC is rough set 
theory, initiated by Pawlak [19], which shows promise in 
handling uncertain information [1, 2, 20]. This theory spe-
cifically focuses on information systems (ISs) [18], which 
consist of datasets composed of objects and their associated 
attribute values. For a target set of objects in an IS, we can 
represent it by a pair of operators called upper and lower 
approximations. We can find a similar way of expressing 
information in the interval sets [40]. An interval set is an 
extended interval number. The main idea of an interval set 
is to represent uncertain information by using two definite 
sets as upper and lower bounds. In real life, achieving an 
accurate representation of information or data is challenging 
due to the uncertainty and redundancy of the information 
and data volume. For example, in the course selection of 
students [48], we take the set of compulsory courses as the 
lower bound and the set of required courses and elective 
subjects as the upper bound. Therefore, the course selec-
tion of students constitutes an interval set. There are many 
similar situations. To represent ISs in which attribute values 
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are interval sets, Yao and Liu [41] proposed the concept of 
an interval-set information system (ISIS), which has gained 
significant attention in recent research [10, 14, 26, 45–48].

Nevertheless, current equivalence relations used in ISISs 
impose on strict conditions that limit the comprehensive rep-
resentation of relationships between objects. To overcome 
this limitation, Wang and Yue [26] proposed fuzzy domi-
nance relations to define four uncertainty measures. They 
further explored the relationships among these uncertainty 
measures. Similarly, Zhang et al. [48] introduced similarity 
relations for objects in an ISIS.

In real-life situations, information is understood at various 
levels and depths. Objects in ISs may own different attribute 
values at different scales. To describe such multi-scale infor-
mation, Wu and Leung [31] employed rough set methods 
to investigate knowledge discovery in multi-scale informa-
tion systems (MISs) and multi-scale decision tables (MDTs), 
known as Wu–Leung model. In an MIS, there is a granular 
information transformation mapping to ease the transforma-
tion of object attribute values across different scales. Thus, 
the selection of an optimal scale is a key step for final deci-
sion in MDTs and has become a main direction in multi-
scale data analysis [4, 11, 17, 25, 27, 33, 35, 49, 51]. Wu and 
Leung [32] defined seven types of optimal scales in an MDT 
and examined their relationships. These optimal scales are 
equivalent when an MDT is consistent, but they may be no 
longer equivalent in an inconsistent MDT. On the base of 
the Wu–Leung model, Li and Hu [9] proposed a generalized 
MIS, which relaxes the requirement that all attributes in MIS 
have the same scale level. A key step to rule acquisition in 
a generalized MDT is to seek for an optimal scale for each 
attribute to determine a single scale decision table with some 
requirement for final decision, which is called the optimal 
scale combination selection. For example, Wu and Leung 
[34] discussed seven optimal scale combinations in a gener-
alized MDT. In addition, the optimal scales or optimal scale 
combinations based on matrix [6] and cost [50] were studied.

Information entropy [23] is an important measure to 
evaluate uncertainty of information. Various information 
entropies were used to study attribute reduction and rule 
acquisition in rough set data analysis [7, 8, 22, 37–39, 52]. 
Recently, information entropies have also been utilized to 
select optimal scales in multi-scale data analysis [3, 30]. Bao 
et al. [3] introduced a method of optimal scale combination, 
using Shannon entropy as the guiding principle that main-
tains the measurement of uncertainty in knowledge. Wang 
et al. [30] introduced multi-scale fuzzy entropy to integrate 
granular information across different scales.

With the increasing application of rough set data analysis, 
attribute values in data sets were emerged as sets [24], inter-
vals [5], and fuzzy numbers [29]. Various types of attribute 
values were also found in multi-scale date analysis, see e.g. 
[12, 13, 28]. Despite the increasing interest of researchers in 

multi-scale data analysis models and ISISs, the issue of attrib-
ute multi-scale problems in ISISs has received limited atten-
tion. Furthermore, the problem of entropy optimal scale selec-
tion is also worth investigating. These facts have motivated our 
research on knowledge discovery in multi-scale interval-set 
information systems (MISISs). In [36], Xie et al. introduced 
the notion of MISISs and defined optimal scale in multi-scale 
interval-set decision tables (MISDTs). The main objective of 
this paper is to study further the selection of entropy optimal 
scales and the corresponding attribute reductions in MISDTs.

In the next section, we review some basic notions related 
to ISISs and information entropies. In Sect. 3, we introduce 
MISISs with the representations of information granules as 
well as rough approximations in MISISs. In Sect. 4, we give 
some concepts with their properties in MISDTs. In Sect. 5, we 
discuss optimal scale selection and attribute reduction in MIS-
DTs. In Sect. 6, we give experiments evaluating algorithms. 
We summarize this research in Sect. 7.

2 � Preliminaries

In this section, we overview the fundamental concepts of inter-
val sets, interval-set information systems and information 
entropies. Throughout this paper, we adopt C(n,m) = n!

m!(n−m)!
 

to represent the combination number formula and | ⋅ | to denote 
the cardinality of a set.

2.1 � Interval sets

Definition 1  [40] Let V be a finite set and 2V the power set of 
V, a closed interval set on 2V is defined as follows:

where X1 and X2 are the lower and upper bounds of X  , 
respectively, and satisfy X1 ⊆ X2 ⊆ V  . Note that [X1,X2] 
degenerates into an ordinary set X1 when X1 = X2.

In this paper, we use I(2V ) to represent the set of all interval 
sets on the power set of a finite set V. For two interval sets 
X = [X1,X2] and Y = [Y1, Y2] on 2V , the interval-set intersec-
tion and union operations are defined, respectively, as follows 
[40]:

Definition 2  [48] Let X = [X1,X2] and Y = [Y1, Y2] be two 
interval sets on the power set of a finite set V, the similarity 
degree of X  and Y is defined as follows:

(1)X = [X1,X2] = {X ∈ 2V |X1 ⊆ X ⊆ X2},

(2)X ⊓ Y = [X1 ∩ Y1,X2 ∩ Y2] = {X ∩ Y|X ∈ X, Y ∈ Y},

(3)X ⊔ Y = [X1 ∪ Y1,X2 ∪ Y2] = {X ∪ Y|X ∈ X, Y ∈ Y}.
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where

Moreover, note that the function GS(X,Y) is symmetric. We 
assume that X ⊓ Y = [Z1, Z2] , then Eq. (4) can be represented 
as follows:

2.2 � Interval‑set information systems

Definition 3  [18] An information system (IS) is a pair 
S = (O,C) , where O = {o1, o2,… , on} is a nonempty 
finite set of objects called the universe of discourse, and 
C = {c1, c2,… , cm} a nonempty finite set of attributes such 
that cj ∶ O → Vj for all cj ∈ C , where Vj is the domain of 
attribute cj.

Definition 4  [41] An interval-set information system (ISIS) 
is a pair S = (O,C) , where O = {o1, o2,… , on} is the uni-
verse of discourse, and C = {c1, c2,… , cm} the nonempty 
finite set of attributes such that cj ∶ O → I(2Vj ) for all 
cj ∈ C , i.e. cj(o) = [A1

j
(o),A2

j
(o)] ∈ I(2Vj ) , o ∈ O , where Vj 

is the domain of attribute cj , and A1
j
(o) ⊆ A2

j
(o) ⊆ Vj.

In Definition 4, cj(o) = [A1
j
(o),A2

j
(o)] indicates that, under 

attribute cj , object o must contain A1
j
(o) and possibly A2

j
(o) . 

For example, Table  1 depicts an ISIS, in which 
O = {o1, o2,… , o8} represents eight residents, with c1 and c2 
show the abilities of listening and writing, respectively. The 
attribute values “E”, “G”, “R”, “V”, “T” mean “English”, 
“German”, “Russian”, “Ukrainian”, “Tibetan”, respectively. 
We can observe that the attribute value of o3 under c1 is 
[{E,G}, {E,G,T}] . The attribute value [{E,G}, {E,G,T}] 
indicates that in terms of the ability of listening, resident o3 
has definitely mastered English and German, while possibly 
done Tibetan.

Let S = (O,C) be an ISIS, � ∈ [0, 1] , and B ⊆ C , a simi-
larity relation w.r.t. � and B is defined as follows [48]:

Based on the similarity relation R�
B
 , it can be inferred that the 

similarity class of each object o ∈ O w.r.t. � and B is denoted 
as [48] SC�

B
(o) = {p|(o, p) ∈ R�

B
, p ∈ O} . Additionally, 

(4)GS(X,Y) =
1

2
(PDX−Y + PDY−X),

(5)PDX−Y =
1

2

��X
1

⋂
Y
1
�

�X
1
� +

�X
2

⋂
Y
2
�

�X
2
�

�
.

(6)GS(X,Y) =
1

4

2∑
i=1

(|Zi|
|Xi| +

|Zi|
|Yi|

)
.

(7)R�

B
= {(o, p) ∈ O × O|GS(c(o), c(p)) ≥ �,∀c ∈ B}.

the granular structure w.r.t. � and B is defined as [48] 
SC�

B
= {SC�

B
(o1), SC

�
B
(o2),… , SC�

B
(on)}.

It is obvious that o ∈ SC�
B
(o) for all o ∈ O , i.e., ⋃

o∈O

SC�
B
(o) = O and SC�

B
(o) ≠ ∅ , so the granular structure 

SC�
B
 forms a covering on O.

An interval-set decision table (ISDT) [48] is a pair 
S = (O,C ∪ {d}) , where (O, C) is an ISIS, and d ∉ C the 
decision such that d ∶ O → Vd , where Vd is the domain of 
d. A binary relation on objects induced by d is defined as 
follows:

Then, the Rd constitutes a partition O∕Rd on O, writ-
ten as O∕Rd = {Rd(o)|o ∈ O} = {D1,D2,… ,Dt} , where 
Rd(o) = {p|(o, p) ∈ Rd, p ∈ O}.

Definition 5  Let S = (O,C ∪ {d}) be an ISDT and � ∈ [0, 1] , 
if SC𝜏

C
(o) ⊆ Rd(o) for all o ∈ O , then we say that S is consist-

ent. Otherwise, S is inconsistent.

Definition 6  [48] Let S = (O,C ∪ {d}) be an ISDT, 
� ∈ [0, 1] , and B, F ⊆ C , if SC𝜏

B
(o) ⊆ SC𝜏

F
(o) for all o ∈ O , 

then we say that SC�
B
 is finer than SC�

F
 and mark it as 

SC�
B
⪯ SC�

F
.

Proposition 1  [48] Let S = (O,C ∪ {d}) be an ISDT, 
� ∈ [0, 1] , and B,F ⊆ C . If F ⊆ B , then 

(1)	 R𝜏
B
⊆ R𝜏

F
,

(2)	 SC�
B
⪯ SC�

F
.

2.3 � Information entropies

Entropy measurement has become an important method to 
describe uncertainty in rough set theory. In this subsection, 
to better quantitatively analyze the information in ISISs, we 
review two types of conditional entropies.

(8)Rd = {(o, p) ∈ O × O|d(o) = d(p)}.

Table 1   An interval-set information system

O c
1

c
2

o
1

[{R}, {R,G}] [{E}, {G,E}]

o
2

[{V}, {T ,V}] [{V}, {V ,R}]

o
3

[{E,G}, {E,G,T}] [{R,G}, {R,G}]

o
4

[∅, {E}] [{T ,V}, {T ,V}]

o
5

[{T}, {T}] [{E}, {G,E}]

o
6

[{E,G}, {E,G,R}] [{R}, {R,G}]

o
7

[{T}, {T ,V}] [{E}, {E}]

o
8

[{T}, {T}] [{G,E}, {G,E}]
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Definition 7  [48] Let S = (O,C ∪ {d}) be an ISDT, 
� ∈ [0, 1] , and B ⊆ C , a modified conditional entropy w.r.t. 
B and � is defined as follows:

where n and t are the cardinalities of O and O∕Rd , respec-
tively. In this paper, we define |SC

�
B
(oi)∩Dj|
n2

log2

(|SC�
B
(oi)∩Dj|

|SC�
B
(oi)|

)
= 0 

when |SC�
B
(oi) ∩ Dj| = 0.

According to Definition 7, the range of the modified con-
ditional entropy is [0, log2 n].

Definition 8  [15] Let O be a nonempty finite set, with 
Q = {Q1,Q2,… ,Qn1

} and P = {P1,P2,… ,Pn2
} as two 

partitions of O, a complementary conditional entropy of Q 
about P is defined as follows:

where Q∁
i
= O − Qi = {o ∈ O|o ∉ Qi} is the complement of 

Qi in O.

3 � Multi‑scale information systems 
and multi‑scale interval‑set information 
systems

In practical applications, attribute values of an object may 
exhibit variations across different scales. Therefore, Wu and 
Leung introduced MISs [31]. To facilitate the description in 
this paper, we assume that each attribute has L scale levels.

Definition 9  [31] An MIS is a pair S = (O,C) , where 
O = {o1, o2,… , on} is the universe of discourse and 
C = {c1, c2,… , cm} the set of attributes. Both O and C are 
nonempty finite sets, and each attribute in C has L scale lev-
els. Therefore, an MIS can be represented as follows:

where cl
j
∶ O → Vl

j
 and Vl

j
 is the domain of attribute cj at the 

l-th scale. For each l ∈ {1, 2,… , L − 1} and j ∈ {1, 2,… ,m} , 
there exists a surjective mapping gl,l+1

j
∶ Vl

j
→ Vl+1

j
 such that 

cl+1
j

= g
l,l+1
j

◦cl
j
 , i.e.

(9)

H� (d|B) = −

n∑
i=1

t∑
j=1

|SC�
B
(oi) ∩ Dj|
n2

log2

(|SC�
B
(oi) ∩ Dj|

|SC�
B
(oi)|

)
,

(10)CH(Q|P) =
n1∑
i=1

n2∑
j=1

|Qi ∩ Pj|
|O|

|Q∁
i
∩ Pj|
|O| ,

(11)S = (O,C) = (O, {cl
j
|j = 1, 2,… ,m, l = 1, 2,… , L}),

(12)cl+1
j

(o) = g
l,l+1
j

(cl
j
(o)), o ∈ O,

where gl,l+1
j

 is called a granular information transformation 
mapping.

For l ∈ {1, 2,… , L} , we denote the attribute set under the 
l-th scale as Cl = {cl

j
|j = 1, 2,… ,m}. Therefore, an MIS can 

be decomposed into L single-scale sub-ISs, denoted as 
Sl = (O,Cl) , l = 1, 2,… , L.

Definition 10  [31] A multi-scale decision table (MDT) is a 
pair S = (O,C ∪ {d}) = (O, {clj|j = 1, 2,… ,m, l = 1, 2,… , L} ∪ {d}) , where 
(O,C) = (O, {cl

j
|j = 1, 2,… ,m, l = 1, 2,… , L}) is an MIS, 

and d ∉ {cl
j
|j = 1, 2,… ,m, l = 1, 2,… , L} the decision such 

that d ∶ O → Vd , where Vd is the domain of d.

When all attribute values in an MIS are interval sets, we 
refer to this system as a multi-scale interval-set information 
system (MISIS).

Definition 11  An MISIS is a pair S = (O,C) , where 
O = {o1, o2,… , on} is the universe of discourse, and 
C = {c1, c2,… , cm} the set of attributes. Both O and C are 
nonempty finite sets, and each attribute in C has L scale 
l e v e l s ,  i . e . ,  C  c a n  b e  r e p r e s e n t e d  a s 
{cl

j
|j = 1, 2,… ,m, l = 1, 2,… , L} such that cl

j
∶ O → I(2V

l
j ) 

for  a l l  j ∈ {1, 2,… ,m} and l ∈ {1, 2,… , L} ,  i .e . 
cl
j
(o) = [A1

j,l
(o),A2

j,l
(o)] , where Vl

j
 is the domain of the attrib-

ute cj at the l-th scale, and A1
j,l
(o) ⊆ A2

j,l
(o) ⊆ Vl

j
.

For each l ∈ {1, 2,… , L − 1} and j ∈ {1, 2,… ,m} , there 
exist two surjective mappings, one is hl,l+1

j
∶ Vl

j
→ Vl+1

j
 such 

that

and the other is � l,l+1
j

∶ I(2V
l
j ) → I(2V

l+1
j ) such that 

cl+1
j

= �
l,l+1
j

◦cl
j
 , i.e.

where hl,l+1
j

 is the granular information transformation map-
ping and � l,l+1

j
 is the domain information transformation 

mapping.

Re m a r k  1   L e t  S = (O,C) = (O, {cl
j
|j = 1, 2,… ,m, l =

1, 2,… ,L}) be an MISIS. For any l ∈ {1, 2,… , L − 1} and 
cj ∈ C , we employ the granular information transformation 

(13)vl+1
j

= h
l,l+1
j

(vl
j
), vl

j
∈ Vl

j
,

(14)

cl+1
j

(o) = �
l,l+1
j

(cl
j
(o))

= �
l,l+1
j

([A1
j,l
(o),A2

j,l
(o)])

= [hl,l+1
j

(A1
j,l
(o)), hl,l+1

j
(A2

j,l
(o))]

= [A1
j,l+1

(o),A2
j,l+1

(o)], o ∈ O,
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mapping hl,l+1
j

 to assign every element in Vl
j
 to its corre-

sponding element in Vl+1
j

 , with the cardinality of Vl+1
j

 must 
not surpass the cardinality of Vl

j
 . We use the domain infor-

mation transformation mapping � l,l+1
j

 to map each element 
from attribute value cl

j
(o) = [A1

j,l
(o),A2

j,l
(o)] of object o under 

the l-th scale of attr ibute cj to attr ibute value 
cl+1
j

(o) = [A1
j,l+1

(o),A2
j,l+1

(o)] under the ( l + 1)-th scale. The 
cardinality of A1

j,l+1
(o) must not exceed the cardinality of 

A1
j,l
(o) , and the cardinality of A2

j,l+1
(o) can not be greater than 

the cardinality of A2
j,l
(o).

For any l ∈ {1, 2,… , L} , cj ∈ C and k ≤ |Vl
j
| , the ele-

ments in Vl
j
 can generate C(|Vl

j
|, k) different subsets with a 

cardinality of k, with each subset serving as an upper 
bound for a different interval set. According to Defini-
tion 1, there are at most 2k different lower bounds for an 
upper bound of cardinality k. Therefore, we conclude that 

�I(2Vl
j )� =

�Vl
j
�∑

k=0

2kC(�Vl
j
�, k).

Proposition 2  Let S = (O,C) = (O, {cl
j
|j = 1, 2,… ,m, l =

1, 2,… , L}) be an MISIS. For l ∈ {1, 2,… , L − 1} and 
cj ∈ C , we have 

(1)	 |Vl+1
j

| ⩽ |Vl
j
|,

(2)	 |I(2Vl+1
j )| ⩽ |I(2Vl

j )|.

Proof  (1) For any vl+1,wl+1 ∈ Vl+1
j

 , if vl+1 ≠ wl+1 , according 
to the property of surjective mappings, there exist vl,wl ∈ Vl

j
 , 

where vl ≠ wl , such that vl+1 = hl,l+1(vl) and wl+1 = hl,l+1(wl) , 
therefore |Vl+1

j
| ≤ |Vl

j
|.

(2) For any k ⩽ |Vl+1
j

| , according to (1), we have 
2kC(|Vl+1

j
|, k) ⩽ 2kC(|Vl

j
|, k) , then

|Vl+1
j

|∑
k=0

2kC(|Vl+1
j

|, k) ⩽
|Vl+1

j
|∑

k=0

2kC(|Vl
j
|, k) ⩽

|Vl
j
|∑

k=0

2kC(|Vl
j
|, k).

Therefore, we conclude that |I(2Vl+1
j )| ⩽ |I(2Vl

j )| . 	�  ◻

Like MISs, an MISIS can be decomposed into L single-
scale sub-ISISs, denoted as Sl = (O,Cl) , l = 1, 2,… , L.

For an MISIS, the similarity degree between objects 
may decrease as the scale becomes coarse. For exam-
ple, in Table  2, o3 and o6 are two objects in O, where 
c1
1
(o3) = [{E,G}, {E,G,T}] ,  c2

1
(o3) = [{Wb}, {Wb, Tb}] , 

c1
1
(o6) = [{E,G}, {E,G,R}] , and c2

1
(o6) = [{Wb}, {Wb,Eb}] . 

Then we have

Therefore, if the threshold � in Eq. (7) remains unchanged, 
there is a possibility of smaller similarity classes as the scale 
becomes coarse. To address this issue, we define a similarity 
relation that changes with the scale.

Proposition 3  Let S = (O,C) = (O, {cl
j
|j = 1, 2,… ,m, l =

1, 2,… ,L}) be an MISIS and B ⊆ C . For l ∈ {1, 2,… , L} 
and � l ∈ (0, 1] , we define

If � l+1 ≤ �l+1 ≤ � l for all l ∈ {1, 2,… , L − 1} , where

then we have R𝜏 l

Cl
⊆ R𝜏 l+1

Cl+1.

Proof  For any (o, p) ∈ R� l

Cl
 and c ∈ C , we have

i.e., GS(cl+1(o), cl+1(p)) ≥ �l+1 ≥ � l+1 , hence (o, p) ∈ R� l+1

Cl+1 , 
therefore R𝜏 l

Cl
⊆ R𝜏 l+1

Cl+1 . 	�  ◻

GS(c1
1
(o3), c

1
1
(o6)) =

5

6
>

3

4
= GS(c2

1
(o3), c

2
1
(o6)).

(15)R� l

Bl = {(o, p) ∈ O × O|GS(cl(o), cl(p)) ≥ � l,∀c ∈ B}.

(16)

�l+1 = min

(
min
c∈C

(
min

(o,p)∈R�l

Cl

(
GS(cl+1(o), cl+1(p))

))
, � l

)
,

GS(cl+1(o), cl+1(p)) ≥ min
a∈C

(
min

(x,y)∈R�l

Cl

(
GS(al+1(x), al+1(y))

))
,

Table 2   A multi-scale interval-
set information system

O c
1

1
c
2

1
c
1

2
c
2

2

o
1

[{R}, {R,G}] [{Eb}, {Eb,Wb}] [{E}, {G,E}] [{Wb}, {Wb}]

o
2

[{V}, {T ,V}] [{Eb}, {Tb,Eb}] [{V}, {V ,R}] [{Eb}, {Eb}]

o
3

[{E,G}, {E,G,T}] [{Wb}, {Wb,Tb}] [{R,G}, {R,G}] [{Eb,Wb}, {Eb,Wb}]

o
4

[∅, {E}] [∅, {Wb}] [{T ,V}, {T ,V}] [{Tb,Eb}, {Tb,Eb}]

o
5

[{T}, {T}] [{Tb}, {Tb}] [{E}, {G,E}] [{Wb}, {Wb}]

o
6

[{E,G}, {E,G,R}] [{Wb}, {Wb,Eb}] [{R}, {R,G}] [{Eb}, {Eb,Wb}]

o
7

[{T}, {T ,V}] [{Tb}, {Tb,Eb}] [{E}, {E}] [{Wb}, {Wb}]

o
8

[{T}, {T}] [{Tb}, {Tb}] [{G,E}, {G,E}] [{Wb}, {Wb}]
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Remark 2  In Proposition  3, �l+1 denotes the maximum 
value of threshold � l+1 , ensuring that the similarity relations 
between objects at the l-th scale hold at the ( l + 1)-th scale. 
For example, suppose that in Table 2, the set of attributes 
only includes c1 , the universe of discourse only consists of 
objects o3 and o6 , i.e., C = {c1} , O = {o3, o6} , and �1 = 5

6
 . 

Objects o3 and o6 have the similarity relation R�1

C1
 at the 1-th 

scale since GS(c1
1
(o3), c

1
1
(o6)) =

5

6
≥ �1 . By Eq.  (16), we 

obtain �2 = 3

4
 . If �2 ≤ �2 , then o3 and o6 remain similarity 

relation R�2

C2
 at the 2-th scale.

Based on the above discussion, hereafter we always 
assume that 

(1)	 � l+1 ≤ �l+1 ≤ � l for all l ∈ {1, 2,… , L − 1},
(2)	 � l ∈ (0, 1] for all l ∈ {1, 2,… , L}.

Proposition 4  Let S = (O,C) = (O, {cl
j
|j = 1, 2,… ,m, l =

1, 2,… , L}) be an MISIS, for l ∈ {1, 2,… , L} , and B ⊆ C , 
we have 

(1)	 R� l

Bl
 is reflexive, i.e., (o, o) ∈ R� l

Bl
 for all o ∈ O,

(2)	 R� l

Bl
 is symmetric, i.e., if (p, o) ∈ R� l

Bl
 , then (o, p) ∈ R� l

Bl
.

By adjusting the threshold, we define a similarity relation 
that adapts to the scale change, like Eq. (7), we then give 
the concepts of similarity class and granular structure in an 
MISIS, and we can directly derive the monotonicity of these 
concepts with scale according to Proposition 3.

Proposition 5  Let S = (O,C) = (O, {cl
j
|j = 1, 2,… ,m, l =

1, 2,… ,L}) be an MISIS, for l ∈ {1, 2,… , L} , and B ⊆ C , 
we define

Then, for l ∈ {1, 2,… , L − 1} , we have 

(1)	 SC𝜏 l

Cl
(o) ⊆ SC𝜏 l+1

Cl+1(o) for all o ∈ O,
(2)	 SC� l

Cl
⪯ SC� l+1

Cl+1.

(17)SC� l

Bl (o) = {p|(o, p) ∈ R� l

Bl , p ∈ O}, ∀o ∈ O,

(18)SC� l

Bl = {SC� l

Bl (o1), SC
� l

Bl (o2),… , SC� l

Bl (on)}.

Proposition 5 establishes the monotonicity of the granu-
lar structure in an MISIS, which indicates that, as the scale 
increases, the covering on the universe becomes coarse.

Definition 12  Let S = (O,C) = (O, {cl
j
|j = 1, 2,… ,m, l =

1, 2,… , L}) be an MISIS, for l ∈ {1, 2,… , L} , T ⊆ O and 
B ⊆ C , the lower and upper approximations of T w.r.t. Bl and 
� l are defined as follows:

Proposition 6  Let  S = (O,C) = (O, {cl
j
|j = 1, 2,… ,m,

l = 1, 2,… , L}) be  an  MISIS  and  T ⊆ O  .  For 
l ∈ {1, 2,… , L − 1} , we have 

(1)	 R𝜏 l+1

Cl+1(T) ⊆ R𝜏 l

Cl (T) ⊆ T ,

(2)	 T ⊆ R
𝜏 l

Cl (T) ⊆ R
𝜏 l+1

Cl+1(T).

4 � Multi‑scale interval‑set decision Tables

In this section, we introduce basic notions of multi-scale 
interval-set decision tables (MISDTs) and present their 
properties.

Definition 13  An MISDT is a pair S = (O,C ∪ {d})
= (O, {clj|j = 1, 2,… ,m, l = 1, 2,… , L} ∪ {d})  ,  whe re 

(O,C) = (O, {cl
j
|j = 1, 2,… ,m, l = 1, 2,… , L}) is an MISIS, 

and d ∉ {cl
j
|j = 1, 2,… ,m, l = 1, 2,… , L} a decision with a 

single scale such that d ∶ O → Vd , where Vd is the domain of 
d.

R e m a r k  3   F o r  a n  M I S D T  S = (O,C ∪ {d}) =

(O, {cl
j
|j = 1, 2,… ,m, l = 1, 2,… , L} ∪ {d}) ,  it  can be 

decomposed into L sub-ISDTs with the same decision, 
denoted as Sl = (O,Cl ∪ {d}) , l = 1, 2,… , L.

Definition 14  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,m, l

= 1, 2,… ,L} ∪ {d}) be an MISDT, S is said to be consistent 
if S1 = (O,C1 ∪ {d}) is consistent, i.e., SC𝜏1

C1
(o) ⊆ Rd(o) for 

all o ∈ O . Otherwise, S is inconsistent.

(19)R𝜏 l

Bl (T) = {o ∈ O|SC𝜏 l

Bl (o) ⊆ T},

(20)R
� l

Bl (T) = {o ∈ O|SC� l

Bl (o) ∩ T ≠ ∅}.
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Definition 15  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,m,

l = 1, 2,… , L} ∪ {d}) be an MISDT, for l ∈ {1, 2,… , L} , 
and B ⊆ C , the positive region of d w.r.t. Bl and � l is defined 
as follows:

where t is the cardinality of O∕Rd.

Proposition 7  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,m,

l = 1, 2,… , L} ∪ {d})  b e  a n  M I S D T .  F o r 
l ∈ {1, 2,… , L − 1} , we have

Definition 15 of the positive region is employed for the 
qualitative analysis in MISDTs. Meanwhile, information 
entropy is a quantitative analysis method widely used in 
the uncertainty measurement of rough sets. In what fol-
lows, we study the monotonicity of the modified condi-
tional entropy in Definition 7 and its related properties.

Proposition 8  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,m,

l = 1, 2,… , L} ∪ {d}) be an MISDT, for l ∈ {1, 2,… , L} , 
and B ⊆ C , we define

where n and t are the cardinalities of O and O∕Rd , 
respectively. Then, for l ∈ {1, 2,… , L − 1} , we have 
H� l (d|Cl) ≤ H� l+1(d|Cl+1).

Proof  On the one hand, according to [48], we see that 
f (x, y) = −xlog2

x

x+y
 is a monotonically increasing function 

(21)Pos�
l

Bl (O∕Rd) =
⋃
1≤j≤t

R� l

Bl (Dj),

Pos𝜏
l+1

Cl+1(O∕Rd) ⊆ Pos𝜏
l

Cl (O∕Rd).

(22)

H� l (d|Bl) = −

n∑
i=1

t∑
j=1

|SC� l

Bl
(oi) ∩ Dj|
n2

log2

(|SC� l

Bl
(oi) ∩ Dj|

|SC� l

Bl
(oi)|

)
,

when x > 0 and y ≥ 0 . And Eq.  (22) can be expressed as 
follows:

On the other hand, according to Proposition 5, for any oi ∈ O 
and Dj ∈ O∕Rd , we have

and

Hence 0 ≤ f (|SC� l

Cl
(oi) ∩ Dj|, |SC� l

Cl
(oi) ∩ D∁

j
|) ≤ f (|SC� l+1

Cl+1(oi)

∩Dj|, |SC� l+1

Cl+1(oi) ∩ D∁
j
|) . Therefore, by Eq. (23), we obtain 

that H� l (d|Cl) ≤ H� l+1(d|Cl+1).
	�  ◻

Proposition 9  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,m, l

= 1, 2,… , L} ∪ {d}) be an MISDT. For l1, l2 ∈ {1, 2,… , L} , 
if SC� l1

Cl1
= SC� l2

Cl2
 , then H� l1 (d|Cl1 ) = H� l2 (d|Cl2 ).

Example 1  Table 3 is an MISDT S = (O,C ∪ {d}) , in which 
the MISIS (O, C) is Table 2, O = {o1, o2,… , o8} represents 
eight residents, with c1 and c2 show the abilities of listening 
and writing, respectively. The attribute values “E”, “G”, “R”, 
“V”, “T”, “Eb”, “Wb”, “Tb” mean “English”, “German”, 
“Russian”, “Ukrainian”, “Tibetan”, “East Slavic branch”, 
“West Germanic branch”, “Tibetan branch”, respectively. 
The granular information transformation mappings of the 
MISDT in Table 3 are as follows:

(23)

H� l (d|Cl) =

n∑
i=1

t∑
j=1

1

n2
f (|SC� l

Cl (oi) ∩ Dj|, |SC� l

Cl(oi) ∩ D∁
j
|).

(24)|SC� l

Cl(oi) ∩ Dj| ≤ |SC� l+1

Cl+1(oi) ∩ Dj|,

(25)|SC� l

Cl(oi) ∩ D∁
j
| ≤ |SC� l+1

Cl+1(oi) ∩ D∁
j
|.

Table 3   A multi-scale interval-
set decision table

O c
1

1
c
2

1
c
1

2
c
2

2
d

o
1

[{R}, {R,G}] [{Eb}, {Eb,Wb}] [{E}, {G,E}] [{Wb}, {Wb}] 1
o
2

[{V}, {T ,V}] [{Eb}, {Tb,Eb}] [{V}, {V ,R}] [{Eb}, {Eb}] 0
o
3

[{E,G}, {E,G,T}] [{Wb}, {Wb,Tb}] [{R,G}, {R,G}] [{Eb,Wb}, {Eb,Wb}] 1
o
4

[∅, {E}] [∅, {Wb}] [{T ,V}, {T ,V}] [{Tb,Eb}, {Tb,Eb}] 0
o
5

[{T}, {T}] [{Tb}, {Tb}] [{E}, {G,E}] [{Wb}, {Wb}] 0
o
6

[{E,G}, {E,G,R}] [{Wb}, {Wb,Eb}] [{R}, {R,G}] [{Eb}, {Eb,Wb}] 1
o
7

[{T}, {T ,V}] [{Tb}, {Tb,Eb}] [{E}, {E}] [{Wb}, {Wb}] 0
o
8

[{T}, {T}] [{Tb}, {Tb}] [{G,E}, {G,E}] [{Wb}, {Wb}] 0
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Figure 1 shows the flowcharts of granular information trans-
formation mappings and domain information transformation 
mappings from the 1-th scale to the 2-th scale in Table 3, 
respectively, where j = 1, 2 . We assume that �1 = �2 = 0.5 . 
It can be calculated that

And,

5 � Optimal scale selection and attribute 
reduction in MISDTs

In this section, we discuss optimal scale selection with attrib-
ute reduction in MISDTs. It is well known that entropy is a 
tool for quantitatively analyzing and measuring uncertainty 
in information. We aim to investigate optimal scale selection 
and attribute reduction from the perspective of information 
uncertainty and quantitative analysis. To achieve this, we 
introduce the concept of entropy in the process of optimal 
scale selection and attribute reduction. Furthermore, this 
section suggests choosing the optimal scale according to 
the positive region.

h
1,2

j
(v) =

⎧
⎪⎨⎪⎩

Wb, v ∈ {G,E},

Eb, v ∈ {V ,R},

Tb, v ∈ {T},

j = 1, 2.

O∕Rd =
{
{o1, o3, o6}, {o2, o4, o5, o7, o8}

}
,

SC�1

C1 =
{
{o1}, {o2}, {o3, o6}, {o4}, {o5, o7, o8},

{o3, o6}, {o5, o7, o8}, {o5, o7, o8}
}
,

SC�2

C2 =
{
{o1}, {o2}, {o3, o6}, {o4}, {o5, o7, o8},

{o3, o6}, {o5, o7, o8}, {o5, o7, o8}
}
.

Pos�
1

C1 (O∕Rd) = O, H�1 (d|C1) = 0,

Pos�
2

C2 (O∕Rd) = O, H�2 (d|C2) = 0.

Definition 16  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,m, l

= 1, 2,… , L} ∪ {d}) be an MISDT. For l ∈ {1, 2,… , L} , we 
say that

(1) Sl = (O,Cl ∪ {d}) is positive region consistent to S 
if Pos� l

Cl
(O∕Rd) = Pos�

1

C1
(O∕Rd) . If Sl is positive region con-

sistent to S and Sl+1 is not positive region consistent to S (if 
l + 1 ≤ L ), then l is the positive region optimal scale (we 
hereafter represent it using l� l

Pos
 ) of S.

(2) Sl = (O,Cl ∪ {d}) is modified conditional entropy 
consistent to S if H� l (d|Cl) = H�1 (d|C1) . If Sl is modified 
conditional entropy consistent to S and Sl+1 is not modified 
conditional entropy consistent to S (if l + 1 ≤ L ), then l is 
the modified conditional entropy optimal scale (we hereafter 
depict it using l� l

H
 ) of S.

Remark 4  According to Definition 16, we explain the opti-
mal scale as follows:

(1) The positive region optimal scale l� l
Pos

 is the coarsest 
scale to ensure that the positive region of Sl�

l

Pos is the same as 
the positive region of S1.

(2)The modified conditional entropy optimal scale l� l
H

 is 
the coarsest scale which guarantees that the modified con-
ditional entropy w.r.t. � l�

l

H and Cl�
l

H is equal to the modified 
conditional entropy w.r.t. �1 and C1.

5.1 � Optimal scale selection in consistent MISDTs

Proposition 10  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,

m, l = 1, 2,… , L} ∪ {d}) be an MISDT. For l ∈ {1, 2,… , L} , 
H� l (d|Cl) = 0 iff Sl is consistent.

Proof  “⇒ ” Assume that H� l (d|Cl) = 0 . By Proof of 
Proposition  8, for any o ∈ O and D ∈ O∕Rd , we have 
f (|SC� l

Cl
(o) ∩ D|, |SC� l

Cl
(o) ∩ D∁|) = 0 . Hence, there are 

two, and only two outcomes, one is |SC� l

Cl
(o) ∩ D| = 0 

and |SC� l

Cl
(o) ∩ D∁| = |SC� l

Cl
(o)| ,  and the  other  i s 

(a) the granular information transforma-
tion mappings

(b) the domain information transformation
mappings

Fig. 1   Conversion flowchart of the granular information transformation mappings and the domain information transformation mappings
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|SC� l

Cl
(o) ∩ D| = |SC� l

Cl
(o)| and |SC� l

Cl
(o) ∩ D∁| = 0 . It follows 

that SC𝜏 l

Cl
(o) ⊆ Rd(o) for all o ∈ O , i.e., Sl is consistent.

“⇐ ” It is a direct consequence of Definition 5 and Proof 
of Proposition 8. 	� ◻

Proposition 11  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,

m, l = 1, 2,… , L} ∪ {d}) be an MISDT. For l ∈ {1, 2,… , L} , 
we have

Proof  “⇒ ” Assume that H� l (d|Cl) = 0 . For any D ∈ O∕Rd 

and o ∈ R
� l

Cl (D) , according to Proof of Proposition  10, 
we have SC𝜏 l

Cl
(o) ⊆ Rd(o) = D , i.e., o ∈ R� l

Cl (D) , which 

means R
𝜏 l

Cl(D) ⊆ R𝜏 l

Cl (D) . By Proposition  6, we have 

R
� l

Cl(D) = D = R� l

Cl (D) . Therefore, we conclude that 

R
� l

Cl(D) − R� l

Cl (D) = �.

H� l (d|Cl) = 0 ⇔ R
� l

Cl (D) − R� l

Cl (D) = �, ∀D ∈ O∕Rd.

“⇐ ” Assume that 
R
� l

Cl(D) − R� l

Cl (D) = �
 for all D ∈ O∕Rd . 

For any o ∈ O , according to Proposition 6, there exists 

D ∈ O∕Rd such that Rd(o) = D = R
� l

Cl (D) . Since R
� l

Cl(D) = D , 

for any D1 ∈ O∕Rd − {D} , we have o ∉ D1 = R
� l

Cl(D1) , i.e., 

SC� l

Cl
(o) ∩ D1 = � , hence SC𝜏 l

Cl
(o) ⊆ D = Rd(o) , which means 

Sl is consistent, thus H� l (d|Cl) = 0 . 	�  ◻

Proposition 12  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,

m, l = 1, 2,… , L} ∪ {d}) be an MISDT. For l ∈ {1, 2,… , L} , 
we have

By Proposition 12, we can obtain Theorem 1.

Theorem  1  Let  S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,

m, l = 1, 2,… , L} ∪ {d}) be a consistent MISDT, we have

H� l (d|Cl) = 0 ⇔ Pos�
l

Cl (O∕Rd) = O.

(26)l�
l

Pos
= l�

l

H
.

Algorithm 1   Calculate the modified conditional entropy optimal scale in an MISDT

Input: An MISDT S = (O,C ∪ {d}) = (O, {clj |j = 1, 2, . . . ,m, l = 1, 2, . . . , L} ∪ {d}).
Output: The modified conditional entropy optimal scale lτ

l

H .
1: l ← 1;
2: τ1 ← 0.5;
3: Compute O/Rd;
4: Compute SCτ1

C1 ;

5: Compute Hτ1
(d|C1);

6: Temp ← Hτ1
(d|C1);

7: while Temp = Hτ1
(d|C1) do

8: l ← l + 1;
9: if l = L+ 1 then
10: break;
11: end if
12: Compute λl;
13: τ l ← λl;
14: Compute SCτl

Cl ;

15: Compute Hτl
(d|Cl);

16: Temp ← Hτl
(d|Cl);

17: end while
18: lτ

l

H ← l − 1;

19: return lτ
l

H .
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Definition 17  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,

m, l = 1, 2,… , L} ∪ {d}) be an MISDT and B ⊆ C . For 
l ∈ {1, 2,… , L} , the positive complementary conditional 
entropy is defined as follows:

where t and h are, respectively, the cardinalities of O∕Rd 
and Pos�1

C1
(O∕Rd) . Additionally, we define PCH� l (d|Bl) = 0 

when |O∕Rd| = 1 and specify PCH� l (d|Bl) = 1 when 
|Pos�1

C1
(O∕Rd)| = 0. Note that in the following we always 

assume that the positive region of d w.r.t. C1 and τ1 is a 
nonempty set.

Proposition 14  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,

m, l = 1, 2,… , L} ∪ {d})  b e  a n  M I S D T ,  f o r 
l ∈ {1, 2,… , L − 1} , we have

Proof  Let g(x, y) = xy be a monotonically increasing func-
tion for x ≥ 0 and y ≥ 0 . In this case, Eq.  (28) can be 
expressed as follows:

Then, for any o ∈ Pos�
1

C1

(
O∕Rd

)
 and D ∈ O∕Rd , Eqs. (24) 

and (25) hold. According to the monotonicity of g(x, y), we 
have

Therefore, we conclude that PCH� l (d|Cl) ≤ PCH� l+1

(d|Cl+1) . 	�  ◻

Proposition 15  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,

m, l = 1, 2,… , L} ∪ {d}) be an MISDT. For l ∈ {1, 2,… , L} , 
if Sl is consistent, then PCH� l (d|Cl) = 0.

Proof  Since Sl is consistent, by Propositions  7,  10, 
and  12,  we have Pos�

l

Cl
(O∕Rd) = Pos�

1

C1
(O∕Rd) = O . 

(28)

PCH� l (d|Bl) =
1

th

∑
o∈Pos�

1

C1
(O∕Rd)

t∑
j=1

|SC� l

Bl
(o) ∩ Dj|
|Dj|

|SC� l

Bl
(o) ∩ D∁

j
|

|D∁
j
| ,

PCH� l (d|Cl) ≤ PCH� l+1 (d|Cl+1).

(29)

PCH� l (d|Cl) =
1

th

∑
o∈Pos�

1

C1
(O∕Rd)

t∑
j=1

g(|SC� l

Cl
(o) ∩ Dj|, |SC� l

Cl
(o) ∩ D∁

j
|)

|Dj||D∁
j
| .

g(|SC� l

Cl(o) ∩ D|, |SC� l

Cl(o) ∩ D∁|)
≤ g(|SC� l+1

Cl+1(o) ∩ D|, |SC� l+1

Cl+1(o) ∩ D∁|).

Algorithm 1 is to search for the modified conditional 
entropy optimal scale in an MISDT. The time complexity 
(TC) of calculating both SC� l

Cl
 and O∕Rd in Algorithm 1 is 

O(n2) . The TC of step 5 is O(n2) because each object itself 
forms a decision class and a similarity class in the worst 
case. The worst case for step 12 is all similarity classes 
are the universe itself. Therefore, the TC of step 12 is 
O(mn2) . Additionally, in the worst case, the modified 
conditional entropy optimal scale is the coarsest. Conse-
quently, O(Lmn2) is the overall TC of Algorithm 1.

Example 2  In Example 1, it is easy to observe that S1 is con-
sistent. It can be calculated that Pos�1

C1
(O∕Rd) = Pos�

2

C2
(O∕Rd) 

and H�1 (d|C1) = H�2 (d|C2) , we then conclude that 
l�

l

Pos
= l�

l

H
= 2.

5.2 � Optimal scale selection in inconsistent MISDTs

In this subsection, we discuss the optimal scales in an 
inconsistent MISDT. Firstly, by strengthening the condi-
tions of Proposition 9, we obtain Proposition 13.

Proposition 13  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,

m, l = 1, 2,… , L} ∪ {d}) be an inconsistent MISDT, for 
l1, l2 ∈ {1, 2,… , L} and l1 ≤ l2 , we have

(1) H� l1 (d|Cl1 ) = H� l2 (d|Cl2 ) iff SC� l1

Cl1
(o) = SC� l2

Cl2
(o) for all 

o ∈ {p ∈ O|p ∉ Pos�
l2

Cl2
(O∕Rd)},

( 2 )  I f  H� l1 (d|Cl1 ) = H� l2 (d|Cl2 )  ,  t h e n 
Pos�

l1

Cl1
(O∕Rd) = Pos�

l2

Cl2
(O∕Rd).

Proposition 13 shows that, in an inconsistent MISDT, 
if Sl is modified conditional entropy consistent to S, then 
Sl must be positive region consistent to S. Therefore, we 
obtain Theorem 2.

Theorem 2  Let S = (O,C ∪ {d}) = (O, {clj|j = 1, 2,… ,m, l = 1, 2,… , L} ∪ {d}) 
be an inconsistent MISDT, we have

According to Theorem  2, the modified conditional 
entropy optimal scale in an inconsistent MISDT is not 
greater than the positive region optimal scale. For this 
reason, we propose a new entropy based on Eq. (10) to 
quantify the amount of information in each scale and select 
a coarser scale to simplify the complexity.

(27)l�
l

H
≤ l�

l

Pos
.
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Hence, for any o ∈ O and D ∈ O∕Rd  ,  we have 
g(|SC� l

Cl
(o) ∩ D|, |SC� l

Cl
(o) ∩ D∁|) = 0 . Thus, by Eq. (29), we 

conclude that PCH� l (d|Cl) = 0 . 	�  ◻

Proposition 16  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,

m, l = 1, 2,… , L} ∪ {d}) be an inconsistent MISDT, for 
l1, l2 ∈ {1, 2,… , L}  a n d  l1 ≤ l2   ,  i f 
PCH� l1 (d|Cl1 ) = PCH� l2 (d|Cl2 )   ,  t h e n 
Pos�

l1

Cl1
(O∕Rd) = Pos�

l2

Cl2
(O∕Rd).

Proof  Since PCH� l1 (d|Cl1 ) = PCH� l2 (d|Cl2 ) , on the one hand, 
for any o ∈ Pos�

l1

Cl1
(O∕Rd) , by Proof of Proposition 14, we 

have g(|SC�l2
Cl2

(o) ∩ D|, |SC�l2
Cl2

(o) ∩ D∁
|) = g(|SC�l1

Cl1
(o) ∩ D|, |SC�l1

Cl1
(o) ∩ D∁

|) = 0 
for all D ∈ O∕Rd , i.e., SC𝜏 l2

Cl2
(o) ⊆ Rd(o) , which means 

o ∈ Pos�
l2

Cl2
(O∕Rd) , hence Pos𝜏 l1

Cl1
(O∕Rd) ⊆ Pos𝜏

l2

Cl2
(O∕Rd) . 

On the other hand, by Proposition  7, we have 
Pos𝜏

l2

Cl2
(O∕Rd) ⊆ Pos𝜏

l1

Cl1
(O∕Rd) . Thus, we conclude that 

Pos�
l1

Cl1
(O∕Rd) = Pos�

l2

Cl2
(O∕Rd) . 	�  ◻

Definition 18  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,

m, l = 1, 2,… , L} ∪ {d}) be an MISDT. For l ∈ {1, 2,… , L} , 
if PCH� l (d|Cl) = PCH�1 (d|C1) , then Sl = (U,Cl ∪ {d}) is 
said to be positive complementary conditional entropy con-
sistent to S. If Sl is positive complementary conditional 
entropy consistent to S and Sl+1 is not positive complemen-
tary conditional entropy consistent to S (if l + 1 ≤ L ), then l 
is called the positive complementary conditional entropy 
optimal scale (we hereafter represent it using l� l

PCH
 ) of S.

Remark 5  Based on Definition 18, we obtain that the posi-
tive complementary conditional entropy optimal scale l� l

PCH
 

is the coarsest scale to ensure that the positive complemen-
tary conditional entropy w.r.t. � l�

l

PCH and Cl�
l

PCH is equal to the 
positive complementary conditional entropy w.r.t. �1 and C1.

Proposition 17  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,

m, l = 1, 2,… , L} ∪ {d}) be an inconsistent MISDT. If 
l ∈ {1, 2,… , l�

l

PCH
} , then PCH� l (d|Cl) = 0.

Proof  For l ∈ {1, 2,… , l�
l

PCH
} , according to Definition 18 

and Proposition 14, we have PCH�1 (d|C1) = PCH� l (d|Cl) . 
Then,  by Proof of  Proposit ion  15,  we have 
g(|SC�1

C1
(o) ∩ D|, |SC�1

C1
(o) ∩ D∁|) = 0 for all o ∈ Pos�

1

C1
(O∕Rd) 

and D ∈ O∕Rd , which means PCH�1 (d|C1) = 0 . Therefore, 
PCH� l (d|Cl) = 0 . 	�  ◻

Proposition 18  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,

m, l = 1, 2,… , L} ∪ {d}) be an inconsistent MISDT. If 
l ∈ {1, 2,… , l�

l

PCH
} , then PCH� l (d|Cl) ≤ H� l (d|Cl).

Proof  It is evident. 	�  ◻

By using Propositions 12, 13, and 16, we can obtain 
the relationship between H� l (d|Cl) and PCH� l (d|Cl) as 
Proposition 19.

Proposition 19  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,

m, l = 1, 2,… , L} ∪ {d})  b e  a n  M I S D T .  Fo r 
l, l1, l2 ∈ {1, 2,… , L} , we have

(1)  I f  S is consistent ,  then H� l (d|Cl) = 0 i f f 
PCH� l (d|Cl) = 0,

( 2 )  I f  H� l1 (d|Cl1 ) = H� l2 (d|Cl2 )  ,  t h e n 
PCH� l1 (d|Cl1 ) = PCH� l2 (d|Cl2 ),

(3) If l1 < l2 and 0 < PCH𝜏 l1 (d|Cl1 ) < PCH𝜏 l2 (d|Cl2 ) , then 
H𝜏 l1 (d|Cl1 ) < H𝜏 l2 (d|Cl2 ).

Proof  (1) Assume that S is consistent, accord-
ing to Definition  14 and Proof of Proposition  15, we 
obtain  Pos�

1

C1
(O∕Rd) = O  and PCH�1 (d|C1) = 0  .  I f 

PCH� l (d|Cl) = 0 , then Proposition  16 implies that 
Pos�

l

Cl
(O∕Rd) = O . As a result, Sl is consistent, and it follows 

that H� l (d|Cl) = 0 . Conversely, if H� l (d|Cl) = 0 , then by 
Proposition 12, we have Pos� l

Cl
(O∕Rd) = O . Therefore, based 

on Proof of Proposition 15, we deduce that PCH� l (d|Cl) = 0.
(2) It is direct consequence of Proposition 13 and Proof 

of Proposition 14.
(3) Assume that 0 < PCH𝜏 l1 (d|Cl1 ) < PCH𝜏 l2 (d|Cl2 ) . 

Based on Proof of Proposition  14, there exists at 
least one o ∈ U  such that SC𝜏 l1

Cl1
(o) ⊂ SC𝜏 l2

Cl2
(o) and 

o ∉ Pos�
l2

Cl2
(O∕Rd) . Therefore, by Proposition 13, we have 

H𝜏 l1 (d|Cl1 ) < H𝜏 l2 (d|Cl2 ) . 	� ◻

Theorem 3  Let S = (O,C ∪ {d}) = (O, {clj|j = 1, 2,… ,m, l = 1, 2,… , L} ∪ {d}) 
be an inconsistent MISDT, we have

P r o o f   S u p p o s e  l = l�
l

PCH
  ,  w e  h a v e 

PCH�1 (d|C1) = PCH� l (d|Cl) . By Proposition 16, we obtain 
Pos�

l

Cl
(O∕Rd) = Pos�

1

C1
(O∕Rd) , hence l� l

PCH
≤ l�

l

Pos
 . Now, 

we are to prove l� l
Pos

≤ l�
l

PCH
 . Suppose l = l�

l

Pos
 , we see that 

Pos�
l

Cl
(O∕Rd) = Pos�

1

C1
(O∕Rd) . Then, by Proof of Proposi-

tion 15, we observe that PCH� l (d|Cl) = 0 = PCH�1 (d|C1) , 
thus l� l

Pos
≤ l�

l

PCH
 . Therefore, l� l

Pos
= l�

l

PCH
 . 	�  ◻

(30)l�
l

PCH
= l�

l

Pos
.
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Remark 6  According to Theorems 2 and 3, we conclude that 
l�

l

H
≤ l�

l

Pos
= l�

l

PCH
 in an inconsistent MISDT.

Algorithm 2 is utilized to seek for the positive comple-
mentary conditional entropy optimal scale when the positive 
region under the finest scale is a nonempty set. In step 6, the 
TC of identifying the positive region is O(n2) . The TC of 
steps 7 and 18 is O(n2) because the universe is equal to the 
positive region in the worst case. Consequently, the overall 
TC is O(Lmn2).

Table 4   An inconsistent multi-
scale interval-set decision table

O c
1

1
c
2

1
c
1

2
c
2

2
d

o
1

[{R}, {R,V}] [{Eb}, {Eb}] [{R}, {R,V}] [{Eb}, {Eb}] 1
o
2

[{E,G}, {E,G}] [{Wb}, {Wb}] [{E,G}, {E,G}] [{Wb}, {Wb}] 3
o
3

[{R}, {R,E}] [{Eb}, {Wb,Eb}] [{R,T}, {R,E,T}] [{Eb,Tb}, {Wb,Eb,Tb}] 3
o
4

[{E,V}, {E,V}] [{Wb,Eb}, {Wb,Eb}] [{E,V}, {E,V}] [{Wb,Eb}, {Wb,Eb}] 1
o
5

[{G,V}, {G,V ,E}] [{Wb,Eb}, {Wb,Eb}] [{G,V}, {G,V ,E}] [{Wb,Eb}, {Wb,Eb}] 3
o
6

[{T}, {T}] [{Tb}, {Tb}] [{V ,T}, {V ,T}] [{Eb,Tb}, {Eb,Tb}] 2
o
7

[{G,R}, {G,R}] [{Wb,Eb}, {Wb,Eb}] [{G,R}, {G,R}] [{Wb,Eb}, {Wb,Eb}] 1
o
8

[{E}, {E,G}] [{Wb}, {Wb}] [{E,V}, {E,G,V}] [{Wb,Eb}, {Wb,Eb}] 2

Algorithm  2   Calculate the positive complementary 
conditional entropy optimal scale in an MISDT 

Input: An MISDT S = (O,C ∪ {d}) = (O, {clj |j = 1, 2, . . . ,m, l = 1, 2, . . . , L} ∪ {d}).
Output: The positive complementary conditional entropy optimal scale lτ

l

PCH .
1: Temp1 ← 0;
2: l ← 1;
3: τ1 ← 0.5;
4: Compute O/Rd;
5: Compute SCτ1

C1 ;

6: Compute Posτ
1

C1 (O/Rd);

7: Compute PCHτ1
(d|C1);

8: while Temp1 = PCHτ1
(d|C1) do

9: l ← l + 1;
10: if l = L+ 1 then
11: break;
12: end if
13: Compute λl;
14: τ l ← λl;
15: for o ∈ Posτ

1

C1 (O/Rd) do

16: Compute SCτl

Cl (o);
17: end for
18: Compute PCHτl

(d|Cl);
19: Temp1 ← PCHτl

(d|Cl);
20: end while
21: lτ

l

PCH ← l − 1;

22: return lτ
l

PCH .
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Example 3  Table 4 depicts an inconsistent MISDT. We 
assume that �1 = �2 = 0.5 . It can be calculated that

And,

Since Pos�2
C2
(O∕Rd) = Pos�

1

C1
(O∕Rd) and PCH�2 (d|C2) =

PCH�1 (d|C1) , we obtain that l� l
Pos

= l�
l

PCH
= 2 . Subsequently, 

notice that H�2 (d|C2) ≠ H�1 (d|C1) , we conclude that l� l
H
= 1 . 

Thus, l� l
H
≤ l�

l

Pos
= l�

l

PCH
.

5.3 � Attribute reduction in MISDTs

In [48], the reduction of single-scale decision tables based 
on modified conditional entropy was discussed. In this sub-
section, based on the positive region optimal scale and the 
positive complementary conditional entropy optimal scale, 
we study attribute reduction in MISDTs.

Definition 19  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,

m, l = 1, 2,… , L} ∪ {d}) be an MISDT and ∅ ≠ B ⊆ C . For 
the positive complementary conditional entropy optimal 
scale l� l

PCH
 and the positive region optimal scale l� l

Pos
 , we say 

that

(1) B is an l� l
PCH

-reduct if PCH�
l
�l

PCH
(d|Cl

�l

PCH ) = PCH�
l
�l

PCH

(d|Bl
�l

PCH ) and PCH�
l�
l

PCH (d|Cl�
l

PCH ) ≠ PCH�
l�
l

PCH (d|{B − c}l
�l

PCH ) 
for all c ∈ B.

(2) B is an l� l
Pos

-reduct if Pos�
l�
l

Pos

C
l�
l

Pos

(O∕Rd) = Pos�
l�
l

Pos

B
l�
l

Pos

(O∕Rd) 

and Pos�
l�
l

Pos

C
l�
l

Pos

(O∕Rd) ≠ Pos�
l�
l

Pos

{B−c}
l�
l

Pos

(O∕Rd) for all c ∈ B.

Proposition 20  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,

m, l = 1, 2,… , L} ∪ {d}) be an MISDT. For B ⊆ C and 
l ∈ {1, 2,… , L} , we have

(1) Pos𝜏 l
Bl
(O∕Rd) ⊆ Pos𝜏

l

Cl
(O∕Rd),

O∕Rd =
{
{o1, o4, o7}, {o2, o3, o5}, {o6, o8}

}
,

SC�1

C1 =
{
{o1, o3, o7}, {o2, o4, o5, o7, o8}, {o1, o3},

{o2, o4, o5, o8}, {o2, o4, o5}, {o6}, {o1, o2, o7}, {o2, o4, o8}
}
,

SC�2

C2 =
{
{o1, o3, o4, o5, o7}, {o2, o4, o5, o7, o8}, {o1, o3, o4, o5, o7},

O − {o6},O − {o6}, {o6},O − {o6}, {o2, o4, o5, o7, o8}
}
.

Pos�
1

C1 (O∕Rd) = {o6}, H
�1 (d|C1) = 0.45, PCH�1 (d|C1) = 0,

Pos�
2

C2 (O∕Rd) = {o6}, H
�2 (d|C2) = 0.86, PCH�2 (d|C2) = 0.

(2) PCH� l (d|Cl) ≤ PCH� l (d|Bl).

Proof  (1) It follows immediately from Proposition 1 and 
Definition 15.

(2) For any o ∈ Pos�
1

C1
(O∕Rd) , and Rd(o) = D ∈ O∕Rd , 

according to Propositions 1 and 7, we have SC𝜏 l

Cl
(o) ⊆ SC𝜏 l

Bl
(o) , 

and Pos𝜏 l
Bl
(O∕Rd) ⊆ Pos𝜏

l

Cl
(O∕Rd) ⊆ Pos𝜏

1

C1
(O∕Rd) . When 

o ∈ Pos�
1

C1
(O∕Rd) − Pos�

l

Cl
(O∕Rd) , we have SC𝜏 l

Cl
(o) ⊄ D , 

which means

When o ∈ Pos�
l

Cl
(O∕Rd) − Pos�

l

Bl
(O∕Rd) , we have SC𝜏 l

Cl
(o) ⊆ D 

v

When o ∈ Pos�
l

Bl
(O∕Rd) , we have SC𝜏 l

Bl
(o) ⊆ D , which shows 

that

Therefore, by Proof of Proposition 14, we have 
PCH� l (d|Cl) ≤ PCH� l (d|Bl) . 	�  ◻

Propositions 21 and 22 can be derived similar to Propo-
sitions 15, 16, and 17.

Proposition 21  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,

m, l = 1, 2,… , L} ∪ {d}) be an MISDT. For B ⊆ C and 

l ∈ {1, 2,… , L} ,  i f  PCH� l (d|Cl) = PCH� l (d|Bl) ,  then 
Pos�

l

Cl
(O∕Rd) = Pos�

l

Bl
(O∕Rd).

Proposition 22  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,

m, l = 1, 2,… , L} ∪ {d}) be an MISDT. For B ⊆ C and 

l ∈ {1, 2,… , L} , if Pos�1
C1
(O∕Rd) = Pos�

l

Bl
(O∕Rd) ≠ � , then 

PCH� l (d|Bl) = 0.

Proposition 23  Let S = (O,C ∪ {d}) = (O, {cl
j
|j = 1, 2,… ,

m, l = 1, 2,… , L} ∪ {d})  b e  a n  M I S D T .  Fo r 
l1, l2 ∈ {1, 2,… , L} and A, B ⊆ C , if SC� l1

Bl1
(o) = O for all 

o ∈ Pos�
1

C1
(O∕Rd) , then PCH� l2 (d|Al2) ≤ PCH� l1 (d|Bl1).

0 < g(|SC𝜏 l

Cl(o) ∩ D|, |SC𝜏 l

Cl (o) ∩ D∁|)
≤ g(|SC𝜏 l

Bl(o) ∩ D|, |SC𝜏 l

Bl (o) ∩ D∁|).

0 = g(|SC𝜏 l

Cl(o) ∩ D|, |SC𝜏 l

Cl (o) ∩ D∁|)
< g(|SC𝜏 l

Bl(o) ∩ D|, |SC𝜏 l

Bl (o) ∩ D∁|).

0 = g(|SC� l

Cl(o) ∩ D|, |SC� l

Cl (o) ∩ D∁|)
= g(|SC� l

Bl(o) ∩ D|, |SC� l

Bl (o) ∩ D∁|).
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Then, by Proof of Proposition  14, we conclude that 
PCH� l2 (d|Al2) ≤ PCH� l1 (d|Bl1) = 1 . 	�  ◻

Remark 7  By Propositions 22 and 23, we see that the domain 
of positive complementary conditional entropy is [0, 1].

According to Propositions 16, 17, 21, and 22, we can 
obtain the relationship between an l� l

Pos
-reduct and an l� l

PCH

-reduct as Theorem 4.

Theorem 4  Let S = (O,C ∪ {d}) = (O, {clj|j = 1, 2,… ,m, l = 1, 2,… , L} ∪ {d}) 
be an MISDT. For B ⊆ C , B is an l� l

Pos
-reduct iff B is an l� l

PCH

-reduct.

Table 5   A description of data sets

ID Data sets Samples Attributes Deci-
sion 
classes

1 Breast cancer 286 9 2
2 Breast tissue 106 9 6
3 Ecoli 336 7 8
4 Fertility 100 9 2
5 Glass identification 214 9 7
6 Iris 150 4 3
7 Wholesale customers (region) 440 6 3
8 Vertebral column 310 6 3

Table 6   A description of k value selection for data sets

Data sets Breast cancer Breast tissue Ecoli Fertility Glass identification Iris Wholesale customers (region) Vertebral column

k 4 7 5 5 5 6 14 7
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Fig. 2   A comparison of the performance of optimal scales obtained from three similarity benchmarks in the dataset Breast cancer

Proof  Since SC� l1

Bl1
(o) = O for all o ∈ Pos�

1

C1
(O∕Rd) , we 

obtain that |SC� l2

Al2
(o) ∩ D∁| ≤ |D∁| = |SC� l1

Bl1
(o) ∩ D∁| and 

|SC� l2

Al2
(o) ∩ D| ≤ |D| = |SC� l1

Bl1
(o) ∩ D| for all D ∈ O∕Rd . 
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Fig. 3   A comparison of the performance of optimal scales obtained from three similarity benchmarks in the dataset Breast tissue
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Fig. 4   A comparison of the performance of optimal scales obtained from three similarity benchmarks in the dataset Ecoli
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Fig. 5   A comparison of the performance of optimal scales obtained from three similarity benchmarks in the dataset Fertility
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Fig. 6   A comparison of the performance of optimal scales obtained from three similarity benchmarks in the dataset Glass identification
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Fig. 7   A comparison of the performance of optimal scales obtained from three similarity benchmarks in the dataset Iris
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Fig. 8   A comparison of the performance of optimal scales obtained from three similarity benchmarks in the dataset Wholesale customers 
(region)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Parameter 1

95.4

95.6

95.8

96

A
cc

ur
ac

y 
(%

)

M1 M2 M3

(a) the modified conditional entropy

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Parameter 1

95.4

95.6

95.8

96

A
cc

ur
ac

y 
(%

)

M1 M2 M3

(b) the positive complementary conditional
entropy

Fig. 9   A comparison of the performance of optimal scales obtained from three similarity benchmarks in the dataset Vertebral column
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Algorithm 3   Calculate an l� l
PCH

-reduct in an MISDT 

Input: An MISDT S = (O,C ∪ {d}) = (O, {clj |j = 1, 2, . . . ,m, l = 1, 2, . . . , L} ∪ {d}).
Output: An lτ

l

PCH -reduct.

1: l ← lτ
l

PCH ;
2: A ← ∅;
3: B ← {clj |j = 1, 2, . . . ,m};
4: Compute PCHτl

(d|Bl);
5: temp2 ← PCHτl

(d|Bl);
6: while PCHτl

(d|Bl) = temp2 do
7: A ← B;
8: B ← B − {clj};
9: if B = ∅ then
10: break;
11: end if
12: for o ∈ Posτ

1

C1 (O/Rd) do

13: Compute SCτl

Bl (o);
14: end for
15: Compute PCHτl

(d|Bl);
16: end while
17: lτ

l

PCH -reduct ← A;

18: return lτ
l

PCH -reduct.

Table 7   A comparison of 
classification performance at 
various scales

Data sets l
Fin l

� l

H
l
� l

PCH
l
Coa

Breast cancer 97.16±3.69 97.16±3.69 97.15±3.7 96.69±4.23
Breast tissue 94.84±2.33 94.91±2.36 94.91±2.36 94.84±3.07
Ecoil 96.13±3.93 96.13±3.93 96.25±3.83 93.48±4.18
Fertility 98.89±1.31 98.91±1.26 98.98±1.1 98.56±1.32
Glass identification 94.84±3.17 94.84±3.17 94.84±3.17 93.85±3.28
Iris 98.75±0.93 98.75±0.93 98.75±0.93 96±4.06
Wholesale customers (region) 96.94±3.97 96.94±3.97 96.94±3.97 96.92±3.98
Vertebral column 96.02±2.09 96.02±2.09 96.03±2.09 95.52±3.36
Average 96.7±2.68 96.71±2.68 96.73±2.64 95.73±3.44

Table 8   A description of the optimal scale of the data sets

Data sets Breast cancer Breast tissue Ecoli Fertility Glass identi- 
fication

Iris Wholesale cus-
tomers (region)

Vertebral column

l
� l

H
1±0 2.2±0.4 1±0 2.3±0.64 1±0 1±0 2.2±0.4 1±0

l
� l

PCH
1.2±0.4 2.2±0.4 1.6±0.49 3.5±0.81 1±0 1.1±0.3 2.2±0.4 1.3±0.46

Compared to l� l
Pos

-reduct, the advantage of l� l
PCH

-reduct 
lies in its ability to measure the information content of 
a dataset as a whole and represent the overall informa-
tion content of the data with a single numerical value. 
Algorithm 3 is used to find an l� l

PCH
-reduct. The TC of 

steps 12 to 14 is O(n2m) . Additionally, in the worst case, 

each attribute forms an l� l
PCH

-reduct. Therefore, the overall 
TC of Algorithm 3 is O(n2 m2).

Example 4  In Example 3, we have l� l
Pos

= l�
l

PCH
= 2 . It can be 

calculated that
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And,

SC�2

{c1}
2 =

{
{o1, o3, o4, o5, o7}, {o2, o4, o5, o7, o8}, {o1, o3, o4, o5, o7},

O − {o6},O − {o6}, {o6},O − {o6}, {o2, o4, o5, o7, o8}
}
,

SC�2

{c2}
2 =

{
O − {o2}, {o2, o4, o5, o7, o8},O − {o2},

O,O,O − {o2},O,O
}
.

S i n c e  Pos�
2

C2
(O∕Rd) = Pos�

2

{c1}
2
(O∕Rd)  a n d 

PCH�2 (d|{c1}2) = PCH�2 (d|C2) , we conclude that {c1} is 
both an l� l

Pos
-reduct and an l� l

PCH
-reduct.

6 � Experiments

In this section, we validate the feasibility and effective-
ness of the proposed MISDT model, as well as its corre-
sponding optimal scale selection algorithm and attribute 
reduction algorithm with experiments. All experimental 
hardware setups are configured as Windows 10, Intel(R) 
Core(TM) i7-6700HQ CPU @ 2.60GHz, and 8GB memory. 

Pos�
2

{c1}
2 (O∕Rd) = {o6}, PCH

�2 (d|{c1}2) = 0,

Pos�
2

{c2}
2 (O∕Rd) = �, PCH�2 (d|{c2}2) = 0.77.

Fig. 10   The impact of different parameter settings on the optimal scale performance

Table 9   A description of the l� l
PCH

-reduct classification performance

Data sets l
� l

PCH
-reduct

Breast cancer 97.79±3.77
Breast tissue 94.2±2.26
Ecoil 96.25±3.83
Fertility 98.79±1.38
Glass identification 94.73±2.43
Iris 96.94±3.97
Wholesale customers (region) 96.54±4.09
Vertebral column 96.73±2.64
Average 96.5±3.05
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The software environment for executing the algorithm is 
MATLAB R2019a.

The experimental data is obtained from 8 datasets in the 
UCI database, as shown in Table 5. Since no existing MIS-
DTs are available in the datasets, it is necessary to preproc-
ess the data and construct the corresponding MISDTs.

The construction of MISDTs is based on the data con-
struction methods analogized in [9] and [47]. The specific 
construction processes are as follows:

step 1. If an object’s attribute value is a semantic data 
value, it must be converted to an integer value.

step 2. Following the construction method of MDTs in 
[9], we determine the domain of any attribute under any 
scale. In this experiment, we first standardize all attribute 
values of the initial ISs, and we then adjust the cardinality 
to 8 within the domain of each attribute at the finest scale. 
As the scale becomes coarse by one unit, the cardinality of 
the domain of each attribute decreases by one unit until they 
reach 3, completing the construction of domains of each 
attribute under each scale. Hence, in this experiment, the 

Fig. 11   The impact of different parameter settings on the optimal scale performance

scales of each conditional attribute in all the datasets are 
uniformly set to 6.

step 3. Following the construction method of ISDTs in 
[47], we construct an ISIS for each IS that has been stand-
ardized at the finest scale. In construction, a fixed number 
of missing values are randomly assigned to an original IS 
to create interval sets. Here, the parameter � represents the 
extent of missing data, where, for example, � = 0.25 indi-
cates a 25% loss of items c(o) in the original information 
system.

step 4. We achieve the interval set transformation at each 
scale using the domain information transformation mapping 
�

l,l+1
j

 defined in Definition 11, which results in an MISDT. 
Moreover, we describe the parameter �1 as the threshold in 
the similarity relation R�1

C1
 at the finest scale.

Our experiments utilize Algorithms 1 and 2 to obtain the 
modified conditional entropy optimal scale and the positive 
complementary conditional entropy optimal scale, respec-
tively. Then, we obtain an l� l

PCH
-reduct through Algorithm 3. 

In this experiment, we employ the ten-fold cross-validation 
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method and the K-Nearest Neighbor (KNN) classifier to 
evaluate the classification performance of two optimal scales 
and l� l

PCH
-reduct. To obtain the best classification accuracy in 

the KNN classifier, we select the k values for each dataset, 
as shown in Table 6. Additionally, Eq. (4) is employed to 
construct the distance function Dis(X,Y) between any two 
interval sets X  and Y on the power set of a finite set V. The 
specific expression of the distance function Dis(X,Y) is as 
follows:

6.1 �  Similarity measures comparison experiments

In [48], the authors compared the effects of different similar-
ity measures on the classification performance of attribute 
reduction. However, there needs to be more research on the 
impact of distinct similarity measures on the classification 
performance of the optimal scale in MISDTs. To address this 
gap, we compare the performance of entropy optimal scales 
with three similarity measures. These similarity measures 
are derived from Eq. (4), [14] and [46]. For any two interval 
sets X = [X1,X2] and Y = [Y1, Y2] on the power set of a finite 
set V, the similarity degree in [46] is denoted as follows:

while the similarity degree in [14] is described as follows:

where U1(X) = X1 , U2(X) = X2 − X1 , and U3(X) = O − X2.
Additionally, we provide specific experimental results 

depicted in Figs. 2, 3, 4, 5, 6, 7, 8, 9, in which the parameter 
�1 ∈ {0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9} and the 
parameter � = 0.25 . In the legends of Figs. 2, 3, 4, 5, 6, 7, 
8, 9, M1, M2, and M3 indicate the classification accuracy 
achieved by the optimal scale obtained via formulas Eqs.  
(4), (32), and (33) as similarity measures, respectively. Fig-
ures 2, 3, 4, 5, 6, 7, 8, 9 demonstrate that using the similarity 
in Eq. (4) as a benchmark, the positive complementary con-
ditional entropy optimal scale yields the highest classifica-
tion accuracy for most datasets. Similarly, the performance 
evaluation of the modified conditional entropy optimal scale 
also leads to the same conclusion. Figures 2, 3, 4, 5, 6, 7, 8, 9 
suggest that the similarity formula used in this paper can bet-
ter evaluate the relationship between different interval sets, 
thus we obtain an appropriate scale for knowledge discovery 

(31)Dis(X,Y) = 1 − GS(X,Y).

(32)GS(X,Y) =
|X1 ∩ Y1|
2|X1 ∪ Y1| +

|X2 ∩ Y2|
2|X2 ∪ Y2| ,

(33)GS(X,Y) =
1

3

3∑
i=1

|Ui(X) ∩ Ui(Y)|
|Ui(X) ∪ Ui(Y)| ,

and rule extraction. In addition, in Figs. 6 and 7, the clas-
sification accuracy based on the optimal scales of two entro-
pies is the same, which indicates positive complementary 
conditional entropy simplifies information complexity while 
ensuring classification capability.

6.2 � Optimal scale performance experiments

For each dataset, we compare the classification accuracies 
under the finest scale lFin , the coarsest scale lCoa , the modi-
fied conditional entropy optimal scale l� l

H
 , and the positive 

complementary conditional entropy optimal scale l� l
PCH

.
Experimental results are shown in Table 7, where the 

parameters used are � = 0.25 and �1 = 0.5 . From Table 7, 
the proposed optimal scales perform well on most datasets. 
Among the eight datasets, the positive complementary con-
ditional entropy optimal scale achieves the highest classifi-
cation accuracy in seven datasets. In comparison, the modi-
fied conditional entropy optimal scale achieves the highest 
classification accuracy in five datasets. Experimental results 
indicate that the optimal scale balances the fitting effect on 
training data and the generalization ability, resulting in 
higher classification accuracy on test datasets.

Additionally, under the conditions of � = 0.25 and 
�1 = 0.5 , Table  8 illustrates the average optimal scale 
obtained through ten-fold cross-validation, while Table 9 
shows the classification accuracy achieved through an l� l

PCH

-reduct.

6.3 � Parameter evaluation experiments

Finally, we discuss the impact of parameters � and �1 on 
the performance of the positive complementary conditional 
entropy optimal scale. Figures 10 and 11 describe the effect 
of parameter variations. The x-axis represents parameter �1 , 
ranging from 0.5 to 0.9. The y-axis indicates parameter � , 
ranging from 0.25 to 0.55. Furthermore, the z-axis expresses 
the classification accuracy obtained using the KNN classi-
fier. From Figs. 10 and 11, we can observe that parameter 
� significantly impacts the classification accuracy across all 
datasets. However, parameter �1 minimizes classification 
accuracy for specific datasets, as shown in Fig. 10a. More-
over, different combinations of parameter values result in 
varying classification accuracy. For instance, in Fig. 11a, the 
classification accuracy reaches its minimum value of 93.23% 
when � = 0.4 and �1 = 0.65 , and the classification accuracy 
reaches its maximum value of 95.79% when � = 0.3 and 
�1 = 0.9 in Fig. 10b.
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7 � Conclusion

Multi-scale data analysis has attracted significant attention in 
the research of GrC. However, the study of information sys-
tems that involve multiple scales and interval sets of attrib-
ute values still needs to be explored. In this paper, we have 
studied optimal scale selection and attribute reduction in 
MISDTs. We have first introduced the concept of an MISIS, 
and have defined a scale-adaptive similarity relation for each 
attribute set with each scale. In consistent MISDTs, we have 
proposed two optimal scale selection methods based on the 
positive region and modified conditional entropy, and exam-
ined their equivalence through rigorous proof. For inconsist-
ent MISDTs, we have defined a new entropy measure called 
positive complementary conditional entropy, established the 
positive complementary conditional entropy optimal scale, 
and investigated its relationship with those above two opti-
mal scales. Based on an optimal scale, we have also devel-
oped attribute reduction methods in MISDTs. Finally, we 
have conducted experiments on our proposed algorithms to 
verify three points, i.e., the reasonableness of the similarity 
formula used in this paper, the advantages of the effective-
ness of the proposed optimal scale, and the productivity of 
the presented algorithm.

Our future research will consider optimal scale selec-
tion by integrating various measures of uncertainty and will 
focus on rule extraction in MISDTs. Moreover, we will aim 
to investigate knowledge acquisition in generalized MISDTs 
and incomplete MISDTs.
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