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Abstract
Unsupervised person re-identification (Re-ID) is more substantial than the supervised one because it does not require any 
labeled samples. Currently, the most advanced unsupervised Re-ID models generate pseudo-labels to group images into dif-
ferent clusters and then establish a memory bank to calculate contrastive loss between instances and clusters. This framework 
has been proven to be remarkably efficient for unsupervised person Re-ID tasks. However, clustering operation inevitably 
produces misclassification, which brings noises and difficulties to contrastive learning and affects the initialization and updat-
ing of the prototype features stored in the memory bank. To solve this problem, we propose a new robust unsupervised person 
Re-ID model with two developed modules: Cluster Sample Aggregation module (CSA) and Hard Positive Sampling strategy 
(HPS). The CSA module aggregates each sample in the same cluster through the multi-head self-attention mechanism. This 
process enables the initialization of prototypes based on the similarities observed within clusters. Additionally, the HPS 
strategy extracts the dispersion degree of each sample by means of a self-attention aggregation module (SAA) that has been 
trained by CSA module. According to the obtained indicators, the hardest positive sample is sampled to update the prototype 
feature stored in the memory bank. With the self-attention mechanism fusing the information among instances in each cluster, 
the implicit relationships between samples can be better explored in a more refined way. Experiments show that our method 
achieves state-of-the-art results against existing unsupervised baselines on Market-1501, PersonX, and MSMT17 datasets.
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1  Introduction

Given a query image of one person, the Re-ID task aims to 
identify this person from a large number of non-overlap-
ping images recorded by different cameras, contributing to 
the person tracking and retrieval. Supervised person Re-ID 
has achieved significant performance improvement on sev-
eral real-world datasets over many years of development, 
but it is still far from being as effective in applications. 
Because it takes a lot of human efforts to annotate the 
person bounding box and identity for each image and has 
poor generalization and adaptation across various envi-
ronments, unsupervised person Re-ID has received more 
attention in recent years. At present, there are two catego-
ries for unsupervised person Re-ID. One is Unsupervised 
Domain Adaptation (UDA), which is given with a set of 
labeled samples in the source domain and a collection of 
unlabeled samples in the target domain. The goal of UDA 
is to train a model with good cross-domain performance 
[1, 2]. Due to the significant variations between domains, 
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its performance is somehow unstable. The other is pure 
Unsupervised learning (USL), similar to other unsuper-
vised tasks, only unlabeled samples are used to extract 
generalization and discriminative features to obtain a 
model [3–5].

The images of different person Re-ID datasets are col-
lected under different camera angles, illumination, and dis-
tances. All of them have their unique styles, which brings 
challenges for recognition accuracy. The UDA focuses on 
invariant features of the two datasets from the source domain 
and the target domain. Therefore, if the data distribution 
of the source domain is entirely different from the target 
domain, there will be a remarkable decrease in performance. 
In contrast, USL is more flexible and challenging than UDA, 
because it does not need to import additional source domain 
datasets and model can be learned without sample anno-
tation. The training and test sets for unsupervised person 
Re-ID are consistent in style, that is, training and test sets 
are independent and identically distributed (iid). To this end, 
USL mainly extracts the generalized features of all images. 
The performance of the unsupervised person Re-ID model 
depends on the strength of image representation learning. 
Different images belonging to the same ID should be close in 
the feature space, while those with different IDs should be as 
far as possible. The difficulty of unsupervised person Re-ID 
is how to effectively learn image representations without the 
guidance of labels.

The state-of-the-art USL for person Re-ID [5, 6] mainly 
obtains pseudo-labels of instances by clustering algorithms 
[7, 8] and further determines positive and negative sam-
ples for contrastive learning. At the same time, a dynamic 
dictionary based on memory bank is built to store the fea-
tures of samples or prototypes (cluster centers) [9, 10]. This 
framework has achieved excellent performance in unsuper-
vised person Re-ID, even better than supervised ones. First, 
the methodology entails the selection of a pre-trained image 
feature extractor, typically a deep convolution network such 
as ResNet-50 [11], where the feature extractor is fixed to 
produce a feature vector for each image from the training 
dataset. Second, a density-based clustering algorithm is 
employed to obtain pseudo-labels for all images. Meanwhile, 
a small number of outliers will be discarded to reduce the 
risk of misclassifications. Third, the features of each cluster 
center are calculated, and then all the features of images 
and cluster centers are stored in a memory bank, which can 
be continuously updated to improve the diversity of sam-
ples. Many previous works [12, 13] take each image as a 
separate class in the memory bank, yet some others [6, 14] 
only record cluster prototype features. The former focuses 
on discrimination between different samples, whereas the 
latter significantly reduces training complexity and provides 
a broader range of perspectives for cluster centers. For each 
instance, this framework updates its features in the memory 

bank by contrasting it with corresponding prototypes or sam-
ples from different cluster centers.

By incorporating the memory bank mechanism, the 
existing contrastive models undergo training using multiple 
augmented views generated from each sample compared to 
prototype features. These augmented views are subsequently 
compared to prototype features, yielding expected losses, 
such as InfoNCE loss [15], Triplet loss [16], or other multi-
categorization losses [17]. Augmented views contain rich 
semantic information, allowing the model to mine potential 
relationships among samples and be robust during multiple 
iterations of learning [18]. To facilitate this, in each gradient 
backpropagation of loss, the encoder is used to extract aug-
mented features of images to update representations stored in 
the memory bank, which not only keeps the speed of updat-
ing the memory bank consistent with that of the model [14], 
but also compares images from different perspectives of the 
same type in contrastive learning. Although there are several 
ways to update a memory bank, such as using all samples 
in each batch to update the corresponding features in the 
memory bank [19] or selecting the hardest positive sample 
to update [14]. During training at each batch iteration, the 
common way is to use all of its shuffled samples to update 
prototype features with momentum. However, the order of 
images is randomly sampled during each training iteration, 
causing the feature information of the last image to occupy 
most of the weight in the memory bank when updating with 
momentum. Therefore, the update of memory bank features 
can be further optimized by considering the choice or order 
of sampling.

The initialization and updating of the memory bank 
rely on pseudo-labels. However, the acquisition of pseudo-
labels through clustering algorithms without the guidance 
of labels will be inevitably prone to misclassification. This 
is due to the fact that images captured by the same per-
son under different camera conditions can also be indis-
tinguishable. Besides, some different persons have high 
similarities, such as similar clothing, resulting in extracted 
features that are too close to each other and thus misclas-
sified as the same category. After that, if the samples in 
the same cluster are saved in the memory bank and fused 
with the misclassified features together, it will affect the 
representation ability of prototypes of clusters. In order 
to solve this problem, we propose a new Cluster Sam-
ple Aggregation module (CSA), which allocates different 
attention to the original features to reduce the weight of 
misclassified and increase the importance of hard positive 
samples containing rich semantics. In this way, we can 
obtain more excellent prototype features in the initiali-
zation stage. Secondly, when unsupervised person Re-ID 
tasks update the prototype features stored in the memory 
bank during training, most of them use all features in the 
batch to update prototypes with momentum. Similar to the 
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above problem, if the misclassified samples are substituted 
into the update process, the model will suffer from confir-
mation bias. In addition, it is also crucial to select some 
excellent augmented samples with rich semantics to update 
the memory bank for improving model’s performance. To 
optimize the problem of iterative update of cluster proto-
types, we propose an attention-based Hard Positive Sam-
pling strategy (HPS) module to learn more representative 
cluster prototypes. As shown in Fig. 1, when CSA and 
HPS are not introduced, misclassified samples in the clus-
ter easily become noise during model learning. On the 
other hand, CSA and HPS suppress the noise effects on the 
initialization and update of the memory bank, respectively.

In summary, the contributions of this paper are as 
follows.

•	 We propose a self-attention module that aggregates all 
the samples in a cluster based on the importance between 
them to generate the corresponding cluster center, which 
avoids the impact of error pseudo-labels generated by 
clustering algorithms.

•	 The proposed multi-head Self-Attention Aggregation 
module (SAA) is used to extract the degree of disper-
sion between samples in the same cluster, and the hardest 
positive sample is selected as the cluster center to update 
prototype feature with momentum. The hardest samples 
can learn more meaningful semantics and reduce the 
impact of misclassification.

•	 Extensive experiments on the current famous large-scale 
person Re-ID dataset using identical test criteria dem-
onstrate that our model outperforms the most advanced 
methods and improves the performance of unsupervised 
person Re-ID.

2 � Related works

Person Re-ID is a mature and extensively studied field 
accompanied by a large amount of works. To lay the stage 
for the proposed method SACL, in this section we provide 
a brief introduction for researches that are closely related to 
SACL. In particular, the most advanced unsupervised person 
Re-ID methods usually adopt techniques including memory 
bank and self-attention. We describe related works from the 
following three perspectives.

2.1 � Unsupervised person Re‑ID

Currently, the most recent unsupervised person Re-ID tasks 
are based on pseudo-labels and a contrastive learning frame-
work, contrasting with features stored in the memory bank. 
Typical approaches include MoCo [20] and SimCLR [21]. 
The application in an unsupervised person Re-ID task can 
usually be divided into four stages: clustering to generate 
pseudo-labels, memory dictionary initialization, memory 
dictionary updating, and model training. The model’s per-
formance can be improved to a certain extent by refining the 
different stages.

SpCL [3] proposes a new self-paced contrastive learning 
framework using hybrid memory to leverage multi-domain 
information. This method stores different domain features in 
the hybrid memory dictionary, where the cluster-level con-
trastive loss is utilized to update the instance-level memory 
dictionary. However, when computing the cluster center of 
the same group instances to acquire cluster prototype, it 
is inevitable to introduce noise generated by misclassified 
samples. Furthermore, the inconsistent speed in updating 
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Fig. 1   The impact of error clustering on the model under noise con-
ditions. a Without CSA and HPS. b With CSA and HPS. CSA is 
adopted to learn the relationship between samples to initialize pro-
totype features. Besides, HPS selects the hardest positive sample to 

update the prototype features in the memory bank, allowing the clus-
ter prototypes more refinement. Both two modules play a key role in 
suppressing the influence of noise on the model
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the instances stored in the memory can lead to poor perfor-
mance. In order to alleviate this situation, CCL [14] pro-
poses to store the cluster-level dynamic memory and the 
contrastive loss between instances and clusters. CCL has 
shown that the inconsistency of prototype representation 
can be effectively resolved through the cluster-level memory 
dictionary. However, the problem of dynamically updating 
memory bank still persists when using an individual feature 
with noise. To mitigate this issue, DCC [4] establishes both 
instance-based and centroid-based update mechanisms in a 
unified cluster contrastive framework, which maintains both 
the instance memory and cluster centroid memory.

Besides, RLCC [22] proposes to refine pseudo-labels with 
aggregated soft labels to improve accuracy. Zhou et al. [23] 
propose a heterogeneous dual model framework with two 
asymmetric networks to mitigate the pseudo-label noise and 
thus maintain the consistency of the feature space. Recently, 
Liu et al. [24] propose CACHE algorithm to refine cluster-
ing results, which includes complementary attention-driven 
contrastive learning and hard-sample exploration modules.

It can be seen that the experimental performance is heav-
ily influenced by the results of clustering. In this paper, we 
focus on reducing the impact of low-quality pseudo-labels 
generated by clustering in USL. Furthermore, the subse-
quent sections of this study explore optimizing the prototype 
features in the memory from different perspectives.

2.2 � Memory dictionary

Contrastive learning combined with memory banks [9] can 
augment sample diversity. Recent unsupervised and weakly 
supervised vision tasks [10, 25] have demonstrated that con-
siderable results can be achieved by constructing dynamic 
dictionaries. Initialization of memory bank features before 
model training and continuous update with data-augmented 
samples can enhance the diversity of learning samples and 
facilitate the training of unsupervised models.

In recent years, the memory bank mechanism has been 
widely used in unsupervised person Re-ID tasks, and vari-
ous different methods being employed to construct memory 
dictionaries have a large performance gap. Some models 
[3, 12] achieve this goal by storing each instance sample in 
a memory bank, which requires a large amount of memory 
space to save these features and leads to the problem of 
inconsistent feature updates. In contrast, some other models 
[4, 5, 14] save cluster centers into a memory bank, which 
reduces memory space requirements but entails selecting an 
appropriate prototype generation method to avoid the noise 
produced by misclassified samples.

During the model training process, the memory dictionary 
undergoes constant updates, leading to the change of positive 
and negative sample pairs in each iteration. This enables the 
model to learn the features of the same person from differ-
ent people. Since the prototype features in the memory bank 
represent each cluster, the dictionary is updated by leverag-
ing feature vectors from the same group. The sample features 
used for updating are extracted from the model after real-time 
updates, thus ensuring the real-time nature of the updated 
samples. The latest experiments indicate that using samples 
to update prototype features in the memory bank directly is 
significantly better than storing all instances in each iteration 
[14, 19]. This approach avoids the problem of updating some 
samples in the same cluster while leaving others unchanged 
during the training process. However, how to generate a good 
prototype feature that can represent all samples in a cluster at 
the time of storage is a crucial consideration.

2.3 � Self‑attention

Self-attention is a technique for the calculation of dependen-
cies between different units of the input sequence, using the 
relationships between the sequences to generate focal regions 
like human attention. The most classic self-attention model is 
the Transformer model [26], which has been widely used for 
feature representation computation in sequential tasks. It is not 
only excellent for traditional NLP tasks but also suitable for 
migrating to computer vision [27, 28] and graph networks [29, 
30]. Transformer calculates the relationship between different 
units in the sequence as the attention weight and iteratively 
aggregates the information from similar units. Self-attention 
in Transformer is usually combined with multi-head attention 
to divide the sequence into several parts, each of which maps 
to a different feature space. Multi-head attention mechanism 
enables the model to focus on different aspects of information 
in different feature subspaces, allowing for more comprehen-
sive and effective results obtained from multiple perspectives.

This paper mainly applies the multi-head self-attention 
mechanism to mine the implied relationships between sam-
ples within a cluster beyond the original features and view 
the connections between samples from multiple perspectives. 
In person Re-ID task, the photos of the same person taken by 
different cameras can vary considerably. In contrast, differ-
ent persons captured by cameras at a certain angle can reach 
a level of recognition that even surpasses the human visual 
system. In such cases, it is difficult to mine hard positive and 
negative samples solely relying on the original spatial similar-
ity without the right metrics to guide the model. Therefore, it 
is crucial to learn implicit information among samples through 
a multi-head self-attention mechanism.
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3 � Proposed method

3.1 � Overview

Training an unsupervised person Re-ID model needs to give 
an unlabeled dataset X =

{
x1, x2,… , xN

}
 , where N repre-

sents the number of images in the dataset. The goal is to 
train a model that can generate powerful discriminative fea-
tures, allowing the images of the same person under different 
shooting conditions to be as close as possible.

This paper proposes an unsupervised person Re-ID 
model, which is illustrated in Fig. 2. As can be seen from 
the figure, the learning of the model is mainly divided into 
two parts: initialization and training. It is worth mentioning 
that the gray SAA and encoder modules are shared with 
the green ones that are updated during the initialization and 
training phases, respectively. In other words, gray modules 
do not participate in backpropagation for parameter updates.

During initialization, given training set X  is passed 
through the feature extractor ResNet-50 [11], which has 
been pre-trained on the ImageNet [31] dataset, to obtain 
the feature vector F =

{
f1, f2,… , fN

}
, fi ∈ ℝ

C×H×W , where 
C, H, and W represent the number of channels, height, and 
width of the corresponding an image feature, respectively. 
The image features F are subjected to Global Average 

Pooling (GAP) or Generalized Mean pooling (GeM) to 
obtain the higher-level representations of the image fea-
tures V =

{
v1, v2,… , vN

}
, vi ∈ ℝ

D . The Jaccard distance 
[32] between all images is then computed to produce dif-
ferent clusters using the clustering method. Most samples 
are assigned pseudo-labels, yet a small number of outliers 
that cannot be clustered together are ignored. The method 
of density-based clustering is adopted to group images that 
are very close in the feature space into the same cluster. To 
a certain extent, the supervised learning method can be con-
sidered for unlabeled datasets with pseudo-labels.

As for the training of each epoch progress, it is necessary 
to split each batch of the dataset into P × K samples, where 
P is the number of sample clusters defined before each epoch 
training phase, K is the number of samples per cluster, and 
P × K is equivalent to the batch size. This division allows 
the positive and negative sample pairs to maintain a constant 
proportion. Consequently, if each sample in the batch has a 
fixed number of positive and negative sample pairs, we can 
calculate the contrastive loss among samples. Specifically, 
the prototype corresponding to the samples within the same 
group is taken as positive sample pair, and other cluster cent-
ers of the same batch are regarded as negative sample pairs. 
The contrastive loss between samples and clusters can be 
expressed as
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Fig. 2   The overall diagram of our unsupervised person Re-ID 
method. During each training epoch, a batch of P × K samples are 
randomly prefetched according to the pseudo-labels obtained at each 
initialization period, where P and K represent P clusters and the num-
ber of samples in each cluster, respectively. There are mainly two 
modules, which are represented by Cluster Sample Aggregation mod-
ule (CSA), and the Hard Positive Sampling strategy (HPS), respec-

tively. The Self-Attention Aggregation (SAA) module is updated 
during the initialization phase by the Mean Square Error (MSE) loss 
between the input feature and output global cluster feature (bottom), 
while the encoder and HPS module (top) are updated during train-
ing loop by the defined clusterNCE loss between different IDs and the 
prototypes saved in the memory bank
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where the symbol ⋅ represents an element-wise product, va 
denotes the sample feature belonging to the a-th cluster, ci 
indicates the i-th prototype feature stored in the memory 
bank, and �c is a temperature hyperparameter.

In addition to the cluster contrastive loss, the overall loss 
also includes LHPS loss for suppressing the influence of 
noise using hard positive sampling strategy (introduced in 
the subsequent Sect. 3.3). The overall loss of our method is 
defined as

The existing benchmark models employ contrastive learning 
by using different augmented views of various class sam-
ples, which significantly develops the representation ability 
of the feature extraction model. Despite the advancements 
achieved by current models, there is still great potential for 
improvement in these models. First, these models heavily 
relied on the assumption that pseudo-labels are equal to 
ground-truth labels. There are some challenging samples 
that are very difficult to identify and may be easily classified 
into other classes, which can affect the learning and training 
of the model. Therefore, it is crucial to find hard positive and 
negative sample pairs to improve the representation ability 
of model. The second one is to select an augmented view 
with an intense expression ability while updating the feature 
vectors stored in the memory bank to further optimize the 
contrastive loss.

As shown in Fig. 2, our self-attention contrastive learning 
model consists of two modules: Cluster Sample Aggregation 
module (CSA) and Hard Positive Sampling strategy (HPS). 
First, CSA is designed to optimize and initialize prototype 
features stored in the memory bank, which are acquired by 
aggregating all samples of the same cluster. Second, HPS 
strategy is adopted to update the prototype features by com-
puting the hard positive sample of each cluster at each batch 
iteration. The hard positive samples contain more substantial 
information that can further improve the performance of the 
model.

3.2 � Cluster sample aggregation module (CSA)

The initialization of prototype features plays a significant 
role in the early iterations of contrastive learning. Suppose 
a good prototype representation can be generated accord-
ing to pseudo-label categories. In this context, it can guide 
the model to learn and cluster more high-quality pseudo-
labels, with continuous interaction playing a key role in 
model learning. Therefore, initializing a prototype feature 
with refined cluster representation in the memory bank can 

(1)LIC = �

�
− log(

exp(< va ⋅ ca > ∕𝜏c))�∑�P�
i=1

exp(< va ⋅ ci > ∕𝜏c)

�
,

(2)LA�� = �LIC + �LHPS.

effectively improve the performance of the model. Addi-
tionally, mislabeling in clusters is one of the critical factors 
affecting the discriminative of the model. To this end, it is 
necessary to assign different levels of attention to samples 
clustered as the same class, which avoids the influence of 
mislabeling and reduces the proportion of misclassified sam-
ples in the clusters to a certain extent.

The proposed CSA module is used to solve the above 
problem. As shown in Fig. 3, we concatenate all samples 
in the same cluster into a group, and insert a blank token 
with the same dimension as sample features in the head to 
form an input sequence Zi = {z0

i
, z1

i
, z2

i
,… , z

ti
i
} ∈ ℝ

(ti+1)×D , 
where Zi denotes the sequence of tokens generated by 
the i-th cluster, z0

i
 represents the blank token at the first 

position of the sequence, and zj
i
 indicates the j-th sam-

ple in the i-th cluster, containing a total of ti samples. 
Then, the sequence Zi is fed into the Self-Attention 

weight
matrix

MSE
Loss

ID-1 ID-2 ID-3 ID-4

Prototypes

Averaging

SAA

Feature

read out

weight
matrix

Fig. 3   Structure diagram of Cluster Sample Aggregation module 
(CSA), where SAA refers to the Self-Attention Aggregation model 
(SAA). Each sample with the same cluster ID is fed into the SAA 
module in parallel to obtain the corresponding global feature g0 . 
The prototype feature of each cluster is achieved through a process 
of multiplying the relationship weight matrix with the features of all 
samples within the cluster, followed by an average pooling process
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Aggregation model (SAA) to obtain the aggregation fea-
ture Gi = {g0

i
, g1

i
, g2

i
,… , g

ti
i
} ∈ ℝ

(ti+1)×D , which is a variant 
of self-attention mechanism [26]. Gi is composed of the 
aggregated global feature g0

i
 and the sample aggregation 

feature gj
i
 , where j ∈ [1, ti] . g0i  is the global cluster feature 

generated by the i-th cluster, which ideally should be as 
close as possible to all samples in the same cluster in the 
original feature space.

Specifically, as shown in Fig. 4, SAA first maps the 
sequence data to a new feature space, and the mapping 
feature Z̃i is formulated as

where Z̃i ∈ ℝ
(ti+1)×Dv , Dv is the dimension size of the map-

ping space, and Win ∈ ℝ
D×Dv denotes the learnable fully con-

nected parameters.
Then, a LayerNorm (LN) operation and multi-head 

self-attention mechanism (MHA) are performed on the 
sequence Z̃i . Then, the middle feature is obtained via 
residual connection as shown:

Finally, Gi is generated by mapping Zi to a new feature 
space after the residual connection and multi-layer percep-
tron (MLP) operation, with the same dimensionality as the 
initial feature.

(3)Z̃i = Norm
(
ZiWin

)
,

(4)Zi = MHA
(
LN

(
Z̃i

))
+ Z̃i.

where Wout ∈ ℝ
Dv×D also represents the learnable fully con-

nected parameters, and Dv is the dimension of the sequence 
unit of the SAA module.

Denote HAh(X) as the self-attention function of the h-th 
head. It is designed by using the parameters WQh

 , WKh
 , and WVh

 
on the input mapping to obtain Q, K, and V, then the interre-
lationships is calculated on the mapping space of Q and K as 
weights assigned to V as

The MHA(X) consists of multiple self-attention heads, called 
multi-head self-attention modules, where k self-attention 
heads are concatenated together and a learnable weight 
parameter Wcon is adopted to measure the degree of influence 
of each self-attention head. Multi-head attention allows the 
model to focus on information from different representation 
subspaces. Formally, MHA(X) is defined as

For a given cluster, the g0
i
 in the sequence Gi can be cal-

culated as the global cluster feature, making it as close as 
possible to all samples in the same cluster. Hence, this part 
of learning can be regarded as a regression problem rather 
than a classification problem. In particular, we employ Mean 
Squared Error (MSE) as the measure of loss,

The mean square error between the global cluster feature g0
i
 

and the original feature vj of each sample within the cluster 
is calculated to promote g0

i
 as a suitable cluster center. The 

g0
i
 acquired from z0

i
 with an empty initial vector after execut-

ing SAA can fairly learn the self-attention among samples. 
This loss can guide g0

i
 closer to the expected cluster center, 

and the model will also induce other gh
i
 (h = 1, 2,… , ti) to 

fusion neighborhood samples from different perspectives. In 
practical, a prototype feature can be achieved by calculating 
the relationship between gh

i
 to replace the global cluster fea-

ture g0
i
 . Since the model involves multiple residual connec-

tions, gh
i
 not only preserves the relationship in the original 

feature space but also includes the one between multi-angle 
domains. By calculating the relationship among the feature 
mapping gh

i
 as the weight, we can get a refined attention rela-

tionship among cross-domain samples in the same cluster. 
In SAA mapping space, the relationship weight aij and the 
aggregated features Hi are defined as

(5)Gi =
(
MLP

(
LN

(
Zi

))
+ Zi

)
Wout,

(6)HAh(X) = Softmax

��
(XWQh

)(XWKh
)T
�

√
(Dv)

�
�
XWVh

�
.

(7)MHA(X) =
[
HA1(X);HA2(X);… ;HAk(X)

]
Wcon.

(8)LCSA =

ti∑

j=1

(
g0
i
− vj

)2

ti
.

Add & Norm

Feed Forward

Concat & Add & Norm

Norm & Linear 

Input Features

Head-1 
Attention

Output Features

Head-2 
Attention

Head-3 
Attention

Head-
Attention

Q1 K1 V1 Q3 K3 V3Q2 K2 V2 Qk Kk Vk

Fig. 4   Structure diagram of Self-Attention Aggregation model 
(SAA). An empty token is incorporated into the input clustering ID 
feature to gain the global cluster feature g0
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where Ai ∈ ℝ
ti×ti is the relationship weight matrix of the 

i-th cluster composed of entry a(i)
m,n

 , and T denotes the total 
number of clusters. Vi and Hi ∈ ℝ

ti×D are the original fea-
tures of the i-th cluster and the aggregated SAA features, 
respectively. Finally, the prototype feature can be acquired 
for i-th cluster by averaging the aggregated features Hi.

The relationship among gh
i
 is used to generate the proto-

type feature in the initialization phase instead of the global 
cluster feature g0

i
 obtained by SAA. This is mainly due to 

the fact that large-scale models (e.g., self-attention) require 
plenty of data sources to achieve superior results. However, 
SAA only inputs the sample sequence of the same cluster in 
each iteration, and the number of iterations depends on the 
size of clusters. These data volumes are far from enough to 
support the training model in the early stage. If the original 
feature space is directly fused with the insufficient aggrega-
tion space, a significant deviation may occur, leading the 
model parameters to develop in an unpredictable direction. 
Although SAA projects each sample from the original fea-
ture space to a new feature space, the inter-sample relation-
ships within the new feature space remain consistent with 
those of the original feature space. In a nutshell, the feature 
mapping of SAA module with few samples in the early stage 
can cause significant changes in the feature space, while the 
inter-sample dependencies in any feature space can maintain 
relatively invariant in terms of their relationship. As training 
progresses, the relationship among each feature in multi-
angle will be gradually mined, and the new relationship will 
be assigned to the original features as weights.

3.3 � Hard positive sampling strategy (HPS)

Before training, we use the CSA module to generate ini-
tialized prototype features and store them in the memory 
bank. During the training period, each batch includes P × K 
augmented images fed into the model, where the memory 
bank is updated with the corresponding P cluster prototypes 
when the loss gradient is returned. In this way, the diversity 
of cluster prototypes can be augmented through the features 
of the same person from different angles.

The method using momentum to update the corre-
sponding cluster center is based on the assumption that the 
ground-truth labels of all samples in the same cluster belong 
to the identical person. However, this assumption may lead 
to some degree of error impact when updating cluster pro-
totypes involving misclassified samples. In addition, giving 

(9)Hi = AiVi (i ∈ 1, 2,… , T),

(10)a(i)
m,n

=
exp(Norm(gm ⋅ gn))

∑ti
k=1

exp
�
Norm(gm ⋅ gk

� ,

equivalent rewards to all samples of the same cluster in the 
batch to update cluster prototypes hinders the model from 
focusing on the differences and regions of interest for clus-
tering, which is detrimental to feature representation. Fur-
thermore, a cluster with a large number of samples updates 
its corresponding prototype more frequently than a cluster 
with a small amount of samples because of the difference 
in cluster magnitude and the update time. Therefore, it is 
particularly crucial to select representative samples for a 
cluster with a smaller number of samples.

To address the issue, we propose a novel strategy named 
Hard Positive Sampling Strategy (HPS), as shown in Fig. 5, 
in which the most representative and informative samples 
in the cluster are selected to participate in the update. This 
allows the model to learn more discriminative and compre-
hensive prototype representation. Actually, the self-attention 
mechanism is calculated for all samples within a cluster, and 
then a sample with the lowest scores is selected as positive 
sample after sorting. In this way, we can obtain the sample 
that measures the affinity with other samples in the same 
cluster.

Firstly, the features in each batch divided into P clusters 
are parallel passed into the trained SAA from CSA module 
in the initialization stage to obtain the aggregated features 
of P clusters. For the convenience of description, we will 
refer to these clusters as “batch clusters”. The internal self-
attention is then calculated in terms of units of these batch 
clusters. The calculation method is shown in Eqs. (3)–(5) 
and Eq. (10) to obtain A ∈ ℝ

P×K×K , where A and P are the 
self-attention matrix and the number of batch clusters in 

SAA
Cluster Feature (i-th)

ID-i

Instances-Instances

Instances-Cluster

Dispersion Score

Sort and Sampling

Fig. 5   Structure diagram of hard positive sampling strategy (HPS). 
The hardest positive sample is selected according to the index with 
the lowest score in dispersion score, which is used to update the cor-
responding prototype in the memory bank



1787International Journal of Machine Learning and Cybernetics (2024) 15:1779–1793	

1 3

each batch respectively, and K is the number of samples 
in each batch cluster. Since A represents the relationship 
between instances, the multi-angle consideration with SAA 
will be limited to the relationship between instances. There-
fore, it is necessary to evaluate the degree of outlier for each 
sample in combination with the relationship between cal-
culation instances and clusters. Sample dispersion score of 
the i-th batch cluster Si ∈ ℝ

K (i = 1, 2,… ,P) in each batch 
is given by

where Vi ∈ ℝ
K×D indicates the K sample features of the i-th 

batch cluster, and ci ∈ ℝ
D is the prototype feature corre-

sponding to each cluster stored in the memory bank. The 
obtained score Si demonstrates the relationship between 
instances-instances and instances-cluster into account to 
better measure the dispersion degree of each sample in the 
cluster and its structure is depicted in Fig. 6.

Finally, according to the index with the lowest score in 
Si , we select the sample with this index as the feature vhard 
of the hardest positive sample to update the corresponding 
prototype feature in the memory bank.

Compared with updating every sample to memory bank 
in the batch for P × K times, the method of updating only 
the hardest sample for P times is more effective. CCL [14] 
only uses the relationship between instances and clusters to 
select hard samples. However, our method also considers 
the self-attention relationship among instances through SAA 
to evaluate the degree of outliers from different angles to 
achieve better results.

(11)Si = Ai ⋅ Softmax(Vi ci),

(12)ca ← �ca + (1 − �)vhard.

Although hard sample updating is better than the previ-
ous methods, it also suffers from a lack of robustness. Hard 
positive and negative samples are often difficult to distin-
guish due to the lack of label guidance. The fault-tolerant 
rate of hard samples that rely on outlier scores is meager. If 
the model selects non-positive samples in some exceptional 
cases, it will further affect the performance of the model. 
For example, the model is stuck in the situation of confir-
mation bias. In order to prevent the model from selecting 
non-positive samples as hard positives, we modify the triplet 
loss [16] to improve the classification ability and the validity 
of hard samples. The LHPS is defined as

where m is the boundary of triplet loss, and dhp and dhn 
denote the distances between an anchor sample and its cor-
responding hardest positive sample, as well as the anchor 
sample and its corresponding hardest negative sample, 
respectively. It is worth mentioning that anchor samples are 
derived from prototypes stored in the memory bank, and 
the hardest positive and negative samples are selected from 
vhard . If the cluster ID of a sample is identical to the anchor, 
the sample is considered a positive sample; otherwise, it is 
classified as a negative one. In addition, the hardest negative 
sample is chosen based on the criterion that the negative 
sample with the closest Euclidean distance to the anchor 
point.

On the one hand, because P hardest positive samples 
sampled from P batch cluster in a mini-batch can be seen as 
new various prototypes to some extent, the triplet loss over 
P hardest negative samples is calculated to facilitate the fit 
of the new cluster centers. On the other hand, the triplet 
loss further pulls the hardest positive samples and anchor 
points closer together, and pushes away the hardest negative 
samples from anchor points, thereby improving the represen-
tation ability of the model. As a result, this loss effectively 
mitigates the influence of non-positive samples, thereby 
facilitating HPS module in guiding the model to learn more 
robust and discriminative features for the memory update 
operation. As shown in Eq. (2), LIC and LHPS are taken as 
our final loss. The learning algorithm of the proposed model 
is summarized in Algorithm 1.

4 � Experiments

4.1 � Datasets and Evaluation Metrics

To evaluate the performance of the proposed SACL, we con-
duct comparative experiments on three widely-used person 
Re-ID datasets, including Market-1501 [33], MSMT17 [34] 

(13)LHPS =
[
dhp − dhn + m

]
+
,

ID-i

Cluster feature (i-th)

Instances-Instances

Instances-Cluster

Fig. 6   Calculation of schematic diagram of dispersion score Si . The 
green arrow indicates the relationship among instances, and the 
brown arrow indicates the relationship between instances and the 
cluster prototype



1788	 International Journal of Machine Learning and Cybernetics (2024) 15:1779–1793

1 3

and PersonX [35]. The statistics of datasets are shown in 
Table 1 and the details are described as follows.

Market-1501 [33] is composed of a total of 32,668 
images with 1,501 person identities, and each person is cap-
tured by up to 6 cameras, where 750 identities are used for 
training and 751 identities are assigned for testing. The train-
ing set comprises 12,936 images, the query set has 3,368 
images, and the gallery set consists of 19,732 images. All 
images are cropped with a pedestrian detector. There are also 
some poorly detected samples as distractors in this dataset.

MSMT17 [34] is the largest available dataset and more 
challenging for research in person Re-ID task, which con-
tains 126,441 images of 4101 identities taken from 15 cam-
era views over a 4-day period. Specifically, 32,621 images 
with 1041 identities are used for training, and 11,659 and 
82,621 images consist of 3,060 identities for validation and 
testing, respectively. Extreme lighting variations can be 
observed in different camera views.

PersonX [35] is a dataset synthesized using Unity [36] 
technology, which contains 1266 manually modeled pedes-
trians, including 547 women and 719 men, covering various 
types of clothing, walking posture, age, body shape and skin 
tones. There are 9840 images of 410 identities in the train-
ing set, and 5136 and 30,816 images of 856 identities in the 
query and test sets, respectively.

To measure the performance of model, the Cumulative 
Matching Characteristic (CMC) [37] measurement including 
Rank-1, Rank-5 and Rank-10, and mean Average Accuracy 
(mAP) are employed as common criteria. The matching 
accuracy Rank-k (k = 1, 5, 10) indicates the top k similar 
features with matching values for a given query image fea-
ture. Moreover, person Re-ID is a multi-category retrieval 
problem, thus it is suitable to use mAP to evaluate the effect 
of the model.

4.2 � Baselines

In this subsection, we provide a brief overview of eleven 
baseline models for comparative analysis, including BUC 
[13], SSL [38], JVCT [39], MMCL [17], GCL [40], SpCL 
[3], CAP [41], CACL [42], CCL [14], DCC [4], and HHCL 
[5]. The descriptions of each baseline model are as follows:

BUC [13] utilizes a bottom-up clustering approach to 
concurrently optimize the relationship between a convolu-
tional neural network and individual samples. A softened 
similarity learning method is proposed by SSL [38] that aims 
to mitigate the effects of hard quantization losses incurred 
by clustering. JVTC [39] integrates local one-hot classifica-
tion and global multi-class classification to jointly enforce 
visual and temporal consistency to ensure the quality of label 
prediction, thereby enhancing the quality of label predic-
tion. An innovative loss function termed memory-based 
multi-label classification loss (MMCL) [17] is introduced 
with the purpose of generating discriminative features for 
person Re-ID tasks. GCL [40] combines generative adver-
sarial networks and contrastive learning modules within a 
joint training framework, aiming to acquire view-invariant 
representations. SpCL [3] presents a novel self-paced con-
trastive learning framework, which is introduced in Sect. 2.1. 
In each cluster, CAP [41] introduces the concept of camera-
aware proxies to generate reliable pseudo-labels, which are 

Algorithm 1 Learning algo-
rithm for SACLÍ

Input: Dataset X , model parameter θ, hyperparameters.
Output: Feature mapping fθ, SAA module Sθ.
1: for epoch in {1, · · · , n} do
2: X obtains T pseudo-labels through DBSCAN algorithm;
3: for SAA iterative training in {1, · · · , T} do
4: Compute the CSA loss LCSA with Eq. (8);
5: Update the parameters of Sθ by minimizing LCSA;
6: end for
7: Calculate the weights in each cluster to initialization prototype features (CSA);
8: Cut the batch with P ×K size;
9: for batch in {1, · · · , batchnum} do

10: Compute the total loss LAll with Eq. (2);
11: Update the parameters of fθ by minimizing LAll;
12: Select hard samples to update prototype features (HPS);
13: end for
14: end for

Table 1   Statistics of datasets

DataSet Market-1501 MSMT17 PersonX

Train images 12,936 32,621 9840
Query images 3368 11,659 5136
Gallery 19,732 82,161 30,816
Train IDs 751 1041 410
Query IDs 750 3060 856
Cameras 6 15 6
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further used for intra- and inter-camera contrastive learning. 
An asymmetric contrastive learning framework is designed 
in CACL [42] to help the siamese network efficiently mine 
invariants in representation learning. A dynamic memory 
bank cluster contrastive loss is proposed by CCL [14] and 
introduced in Subsection 2.1. DCC [4] introduces a novel 
dual cluster contrastive framework that leverages two mem-
ory banks for exchanging cross-view information during 
optimization. HHCL [5] presents bootstrap cluster-level and 
instance-level with hard samples for loss calculation.

4.3 � Implementation Details

We choose ResNet-50 [11] pre-trained on ImageNet [31] 
as the feature extractor, and the extracted feature maps are 
passed through the Global Average Pooling (GAP) and Gen-
eralized Mean Pooling (GeM) [43] to obtain 2048-dimen-
sional representation feature for each image. Before the 
training at each epoch, the features of all images in the 
training set are extracted under the current model param-
eters. The Jaccard distances [32] between image features 
are calculated. Pseudo-labels are then generated by using 
clustering methods, such as DB-SCAN [7] and Infomap 
[44], which find the k = 30 nearest neighbors of each image. 
There are only images with pseudo-labels are regarded as 
input samples for training, while samples that cannot be 
clustered are considered outliers without any pseudo-label 
assigned. Further, each image with pseudo-label is resized 
to 256 × 128 , and several image-augmented operations are 
further performed, including random flipping, pixel filling, 
random clipping, and random erasing.

The augmented image features are randomly sampled 
from knowledge of pseudo-labels with batch size 128 and 
passed to ResNet-50. Each batch comprises a P × K tensor, 
where P is the number of clusters in the batch and K denotes 
the number of samples in each cluster. The hyperparameters 

of the proposed SACL are set up the same as CCL [14], 
which is a Re-ID model trained with the Adam optimizer. 
The initial learning rate is set to 3.5e − 4 and the weights 
are decayed to 5e − 4 . The model is trained for a total of 60 
epochs with a reduction of 10 percent in the learning rate 
after every 20 epochs. The SAA module has an initial learn-
ing rate of 1.2e − 3 , the dimension of self-attention mapping 
space is fixed at 768, and the head number of multi-head 
attention is set to 16.

4.4 � Comparison results

We compare our proposed method with the state-of-the-art 
unsupervised Re-ID models mentioned above. The com-
parative results on the Market-1501 dataset are reported in 
Table 2.

As shown in Table 2, our unsupervised person Re-ID 
model SACL has achieved SOTA performance in mAP 
of 84.8% and Rank-1 of 93.6% , while keeping comparable 
performance to other baselines on Market-1501. Although 
the proposed SACL model becomes a new state-of-the-art 
model with only a 0.6% improvement in mAP, it is still 
prominent for unsupervised models. The merits of our pro-
posed method in terms of mAP metric can be visually dem-
onstrated through Fig. 7, providing a more intuitive under-
standing of its effectiveness.

To investigate the generalizability of our model across 
diverse styles of datasets, we conducted verification on the 
3D animation dataset PersonX, and the results are demon-
strated in Table 3. The method with source domain is an 
unsupervised domain adaptation person Re-ID task, which 
requires a source dataset with labeled information for aux-
iliary training. Notably, the experimental outcomes demon-
strate the robust stability of our proposed SACL method, 
exhibiting significantly superior performance compared 
to other approaches. To further validate the generalization 

Table 2   Unsupervised person 
Re-ID performance comparison 
on Market-1501

The best performance is highlighted in bold

Method Full name Market-1501

mAP R1 R5 R10

BUC [13] Bottom-Up Clustering 38.3 66.2 79.6 84.5
SSL [38] Softened Similarity Learning 37.8 71.7 83.8 87.4
JVTC [39] Joint Visual and Temporal Consistency 41.8 72.9 84.2 88.7
MMCL [17] Memory-based Multi-label Classification Loss 45.5 80.3 89.4 92.3
GCL [40] Generative and Contrastive Learning 66.8 87.3 93.5 95.5
SpCL [3] Self-paced Contrastive Learning 73.1 88.1 95.1 97.0
CAP [41] Camera-aware Proxy 79.2 91.4 96.3 97.7
 CCL [14] Cluster Contrast Learning 82.6 93.0 97.0 98.1
DCC [4] Dual Cluster Contrastive 83.8 93.4 97.1 98.1
CACL [42] Cluster-guided Asymmetric Contrastive Learning 80.9 92.7 97.4 98.5
HHCL [5] Hard-sample Guided Hybrid Contrast Learning 84.2 93.4 97.7 98.5
SACL Ours 84.8 93.6 97.5 98.2
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capability, we conducted a comparative analysis between 
SACL and existing USL and UDA models using the more 
challenging MSMT17 dataset, renowned for its large-scale 
and complex background environment. Based on the results 
presented in Table 4, it is evident that the evaluation metrics 
on MSMT17 dataset generally exhibit relatively low values. 
However, even in the face of this challenging dataset, the 
proposed method demonstrates a substantial improvement 
in performance. Therefore, Table 3 and Table 4 confirm our 
SACL is more effective in unsupervised person Re-ID task.

4.5 � Ablation Studies

The SACL achieves state-of-the-art performance in unsu-
pervised person Re-ID tasks mainly due to the two pro-
posed modules: CSA and HPS. In the following, we perform 

ablation studies on Market-1501 to verify their validity, as 
shown in Table 5.

During the initialization phase, we explored three dif-
ferent methods for prototype generation. The first method 
involved averaging all samples with the same cluster ID to 
generate prototypes, called Mean (the baseline CCL model). 
This method yields 83.2% (the latest version of source code 
opened by the authors) in mAP on Market-1501 dataset. 
The second method, denoted as Self-Attention (Original 
features), where the self-attention mechanism is used in the 
original feature space, and the method has a slight improve-
ment in mAP. Thirdly, it can be observed that the model’s 

BUC SSL JVTC MMCL GCL SPCL CAP CCL DCC CACL HHCL SACL
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Fig. 7   Intuitive comparison of unsupervised person Re-ID on Market-1501

Table 3   Unsupervised person Re-ID performance comparison on Per-
sonX

The best performance is highlighted in bold

Method Source Domain PersonX

mAP R1 R5 R10

SpCL [3] None 72.3 88.1 96.6 98.3
MMT [45] Market-1501 78.9 90.6 96.8 98.2
SpCL [3] Market-1501 78.5 91.1 97.8 99.0
CCL [14] None 84.8 94.5 98.4 99.2
SACL None 86.0 94.7 98.8 99.4

Table 4   Unsupervised person Re-ID performance comparison on 
MSMT17

The best performance is highlighted in bold

Method Source Domain MSMT17

mAP R1 R5 R10

ECN [12] DukeMTMC-reID 10.2 30.2 41.5 46.8
MMCL [17] None 11.2 35.4 44.8 49.8
TAUDL [46] None 12.5 28.4 – –
UGA [47] None 21.7 49.5 – –
MMT [45] Market-1501 24.0 50.1 63.5 69.3
CycAs [48] None 26.7 50.1 – –
SpCL [3] None 19.1 42.3 55.6 61.2
SpCL [3] Market-1501 26.8 53.7 65.0 69.8
CCL [14] None 27.6 56.0 66.8 71.5
SACL None 31.8 58.0 69.6 74.2
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performance degrades when using g0
i
 as the initial proto-

type, thereby providing empirical evidence that supports our 
explanation in Subsection 3.2. Finally, the model using CSA 
module has a mAP of 84.0% and a Rank-1 of 93.5%. Com-
pared with the baseline models, this module is confirmed to 
improve mAP and Rank-1 by 0.8% and 0.4% in mAP and 
Rank-1 respectively.

As for the training phase, there are four ways to update 
the prototypes stored in the memory bank. Because the data 
in a mini-batch is divided into P × K samples, it is neces-
sary to update prototype features based on the current K 
samples within the same cluster. The first update prototype 
method is the baseline model, which employs a momentum-
based approach to randomly update the prototype using K 

samples from the same cluster. Due to the sequential update 
process, the last image in the sequence takes up a very large 
proportion. Moreover, the K samples in the batch cluster are 
selected by random sampling, thus the selection order and 
results exit random situation. It can be seen that the results of 
the baseline model on the Market-1501 are 83.2% mAP and 
92.9% Rank-1. The second method is to calculate the mean 
feature of K samples within the same cluster, and use the 
mean feature as the basis for updating. However, this method 
achieves lower performance compared to the baseline mod-
el’s update approach. The reason may be due to the fact that 
the model is not confident enough in the initial stage, and the 
frequent update of the mean feature in K clusters leads the 
model to fall into the confirmation bias. The third method 
adopts the HPS strategy without considering the instance-
instance relationship. Notably, this method shows signifi-
cant improvement in mAP, but is slightly changed in Rank-k 
metrics, which indicates that the strategy of selecting hard 
positive samples proves to be effective. Upon incorporating 
the two modules CSA and HPS, it is easy to observe that 
the mAPs of the SACL are up to 84.0% with 0.8% improve-
ment and 84.3% with 1.1% gain respectively. In addition, it 
is noteworthy that the introduced triplet loss has a certain 
impact on HPS module. It not only optimizes HPS module 
to some extent, but also enhances the robustness brought 
by the method of updating only with the hardest sample. 
As a result of incorporating the triplet loss, the mAP scores 
on Market-1501 dataset show a significant improvement, 
reaching 84.4% ( 1.2% increase) and 84.8% ( 1.6% increase), 
respectively.

Furthermore, because there is only one prototype 
assigned to each cluster ID in the memory bank, we adopt 
HPS strategy to find the hardest positive sample within 
each batch cluster for prototype update. In order to inves-
tigate whether selecting the hardest negative sample is 
the best way, we conducted an additional evaluation by 

Table 5   Ablation studies of different key components of SACL on 
Market-1501

The best performance is highlighted in bold

Method Market-1501

mAP R1 R5 R10

Initialization method
 Mean (BaseLine) 83.2 92.9 97.0 97.7
 Self-Attention (Original features) 83.4 92.8 96.9 97.9
 Global feature g0

i
81.1 92.0 96.7 97.6

 CSA 84.0 93.5 97.1 98.0
Update method
 Random (BaseLine) 83.2 92.9 97.0 97.7
 Mean 83.0 92.6 96.7 97.7
 Hard Sample (Instances-Clusters) 83.7 93.0 97.0 98.1
 HPS 84.3 93.6 97.2 98.0

Initialization and Update Method
 CSA + HPS (w/o Triplet) 84.4 93.2 97.4 98.3
 CSA + HPS (w/ Triplet) 84.8 93.6 97.5 98.2

(a) (b) (c)

Fig. 8   Parameter sensitivity analysis. a Denotes the average number of different positive samples based on the top-k lowest scoring. b, c Denote 
the effect of different weight parameters on the model, respectively
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considering an alternative approach, that is, selecting 
the lowest top-k positive samples based on the ranking 
of scores in Si . Subsequently, a fused feature is formed 
by averaging these samples for comparative analysis. The 
results are depicted in Fig. 8a, which is easy to find that 
the proposed HPS strategy outperforms the fused fea-
ture significantly, especially in terms of mAP metric. We 
believe this is due to the inclusion of noise in the fused 
feature, which adversely affects their performance com-
pared to HPS strategy. Figure 8b, c present the results of 
the parameter sensitivity analysis for prototype contrastive 
loss and HPS loss on the Market-1501 dataset, respec-
tively. The experimental results indicate that the model 
exhibits remarkable stability concerning the R1 and R5 
metrics. However, when it comes to the mAP metric, the 
optimal parameter values are approximately around 1 for 
contrastive loss and 0.1 for HPS loss, respectively, and 
any increase or decrease will lead to a decrease in model 
performance. The experimental results of each component 
mentioned above show the effectiveness of the proposed 
CSA and HPS modules.

5 � Conclusion

In this paper, a novel unsupervised person Re-ID model, 
named SACL, is proposed. SACL comprises two key mod-
ules, i.e., Cluster Sample Aggregation module (CSA) and 
Hard Positive Sampling strategy (HPS). On the one hand, 
SACL reduces the risk of instance misclassification when 
assigning pseudo-labels for contrasting in the dominant 
unsupervised person Re-ID framework. On the other hand, 
it focuses on the hidden attentions among cluster samples 
at the initialization of the memory bank, and updates the 
initialized prototype features by considering the differ-
ent importance of each sample via the multi-head self-
attention mechanism. The learned CSA module is lever-
aged on samples in each batch to evaluate the closeness 
of each sample in the current fixed number of batch clus-
ters. Besides, the prototype features in the memory bank 
are dynamically updated with the closest samples in the 
batch clusters using HPS module, so that hard samples 
can better facilitate contrastive learning. By introducing 
these two modules, SACL shows the SOTA performance, 
which is clearly confirmed by extensive experiments on 
benchmarks: Market-1501, PersonX, and MSMT17.

A potential limitation of our approach is that model 
clustering relies on DBSCAN algorithm to assign pseudo-
labels. The choice of an effective clustering method is ben-
eficial to prevent the model from getting stuck to confir-
mation bias. Therefore, in the future, we plan to explore 
transfer learning and combine it with current existing clus-
tering methods to further improve the model performance. 

We also hope the proposed model can provide a promising 
direction for future research in the unsupervised person 
Re-ID task.
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