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Abstract
In practical scenarios, many graphs dynamically evolve over time. The new node classification without labels and histori-
cal information is challenging. To address this challenge, we design a double-layer attentive graph convolutional network 
(DLA-GCN) based on the transfer learning, which mainly includes three deep learning components: the double-layer graph 
convolutional network (DLGCN), node multi-parameter learning (NMPL) algorithm, and domain-adversarial transfer learn-
ing (DATL) method. In terms of dynamic spatial correlation, DLGCN jointly exploits the pre-defined and adaptive adjacency 
matrix to capture local and global feature aggregation. An inter-graph attention mechanism is further used to produce a unified 
representation for each node in graphs by automatically merging different spatial correlations. To reduce the complexity and 
improve accuracy, the matrix decomposition method is designed to learn the node-specific patterns of nodes in the NMPL 
component. In terms of dynamic time correlation, DATL is proposed to learns and transfers similar features as historical 
information of new nodes by optimizing three different loss functions, namely source classifier loss, domain classifier loss, 
and target classifier loss as a whole. The experimental results on two real-world graph classification datasets show that the 
proposed approach can improve the accuracy by 18% and 10%, respectively, compared with the state-of-art baselines.

Keywords  Double-layer graph convolutional network · Node multi-parameter learning · Transfer learning · Dynamic graph 
classification task

1  Introduction

Learning node embeddings in graphs is an important yet 
challenging task due to its wide application in various fields 
such as social media and medicine [1, 2]. The existing 
approaches of graph representation learning mainly focus 
on static graphs, which can be divided into two categories: 
solutions based on the pre-defined adjacent matrix [3–5] 
and solutions based on the adaptive adjacency matrix [6–8]. 
The former solutions employ a spatial-based or spectrum-
based graph convolution neural network [1, 2] to capture 

local spatial correlation. However, these approaches do not 
extract global information and are difficult to achieve global 
optimization. The latter solutions employ a well-designed 
learning parameter matrix and one-hop graph convolu-
tion neural network to capture the hidden inter-depend-
encies between distant nodes adaptively. However, these 
approaches do not consider local and global consistency for 
feature aggregation.

Many methods [1, 2] based on graph convolution neural 
network (GCN) employ sharing parameters as a common 
training method to capture the prominent patterns across all 
nodes. However, owing to complex spatio-temporal factors 
and external factors (such as weather), adjacent nodes may 
have diverse patterns [6]. It is not reasonable to only capture 
the significant patterns and specific patterns of each node 
must be considered.

Generally, many graphs in the real world are dynamic, 
which indicates that their structure evolves over time. Owing 
to new nodes do not have labels and historical information, 
new node classification faces challenges in the dynamic 
graph. Recurrent approaches [9, 10] employ the Recurrent 
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Neural Network (RNN) to learn historical information from 
graph snapshots and use the classical GCN model to extract 
spatial correlation. These approaches perform well on node 
representation learning, but they cannot perform reliably for 
unsupervised classification [9]. Self-attentional approaches 
[11, 12] can dynamically capture long-term temporal cor-
relation and have a good link prediction performance. How-
ever, the performance is still weak in the classification task 
of new nodes without historical information.

Transfer learning is a method of knowledge transfer 
between domains. It aims to transfer the information of 
source domains and improve the performance of target 
domains. Nowadays, with the success of graph convolu-
tion, many approaches [13, 14] is transfer knowledge from 
the graph of an existing domain where nodes are labeled 
to classify nodes in the target domain to solve the problem 
of unlabeled nodes in the target domain. Inspired by these 
methods, we employ transfer learning on the time steps and 
transfer the features of known nodes to make the new nodes 
lean rich historical information so as to enhance the clas-
sification performance of unknown nodes.

To resolve these problems, we propose a novel deep 
learning model based on transfer learning named DLA-
GCN, which employs multiple components along spatial and 
temporal dimensions. Specifically, we design the DLGCN 
component to fulfill local and global feature aggregation and 
propose NMPL algorithm to capture different patterns of 
nodes. Then, we propose the DATL method to learn and 
transfer dynamic temporal correlation. On two real-world 
dynamic graph datasets, we evaluate DLA-GCN for the 
unsupervised dynamic graph node classification task. The 
experimental results show that DLA-GCN performs con-
sistently over time and outperforms several state-of-the-art 
baselines. The main contributions of this paper are sum-
marized as follows:

•	 To capture adaptively global and local spatial correla-
tion, we propose the DLGCN component. Specifically, 
we employ two different adjacency matrices and an inter-
graph attention mechanism to integrate local and global 
consistency automatically and learn effective node fea-
ture embedding in the network.

•	 By modeling the node parameters, we design the NMPL 
algorithm. Specifically, the matrix decomposition 
method is designed to learn the two smaller parameter 
matrices instead of learning the unique parameter space 
of each node. The approach can enhance the perception 
of spatial-temporal features and improve the classifica-
tion performance.

•	 We propose the DATL method to exploit source informa-
tion and target information with different loss functions, 
so that domain-invariant and feature representations can 
be effectively learned to reduce the domain discrepancy 

for new node classification. DATL can significantly 
accelerate the training speed and boost the classification 
accuracy.

The remainder of this paper is organized as follows. A brief 
review of related work is provided in Sect. 2. In Sect. 3, 
we detail the DLGCN, NMPL, and DATL components to 
capture spatial-temporal evolutionary features of dynamic 
graphs. The experiment settings and results are shown in 
Sect. 4. Section 5 comes to concluding remarks.

2 � Related work

Our work involves static graph representation learning, 
dynamic graph classification task, and transfers learning, 
and this section will cover the most recent developments.

Static graph embeddings. Recently, many approaches 
based on graph neural network architectures have achieved 
great success. Amit Roy et al. [5] proposes the unified spa-
tio-temporal graph convolution network (USTGCN) frame-
work. Based on STSGCN, the framework employs the tem-
poral mask to improve the ability to learn spatiotemporal 
correlations and models different historical data components 
(such as hourly, daily, and weekly components) to improve 
the fine-grained representation. Lei Bai et al. [6] designs the 
adaptive adjacency matrix to learn spatial correlation auto-
matically and captures hidden correlation between distant 
nodes easily. However, these approaches only focus on an 
aspect of spatial correlation and do not both consider local 
and global consistency [15]. Meanwhile, These methods 
only employ the shared parameter to capture the prominent 
patterns. Therefore, we propose the double-layer graph con-
volution network and NMPL to learn the spatial structural 
properties and diversified patterns of nodes.

Dynamic graph The dynamic graphs include two common 
ways: snapshot sequence [11], which consists of a series of 
graph snapshots at different time steps, and timestamped 
graph [16], which is a dynamic graph with evolves over con-
tinuous time. Although snapshot-based approaches can be 
employed to timestamped graphs by reducing the number of 
time steps, these approaches may not perform reliably due to 
the lack of a fine-grained snapshot sequence [17].

Dynamic graph classification task: Dynamic graph 
classifications mainly fall into two categories. One class 
of these approaches employs the recurrent convolutional 
network, such as evolving graph convolutional networks 
(EvolveGCN), proposed by Aldo Pareja et al. [9]. The 
model captured spatio-temporal dynamics by employing 
long short-term memory (LSTM) or gated recurrent units 
(GRUs) to evolve the GCN parameters. It is worth men-
tioning that GCN is not trained, and its parameters are 
only updated using RNN. Although the performance of 
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the model is good in short-term dynamic graph node clas-
sification, the performance is degraded as the number of 
time steps increases. The other class uses a self-attention 
mechanism to capture historical information. Aravind 
Sankar et al. [11] proposed dynamic self-attention network 
(DYSAT), which employed the encoder of transformer 
[18] to learn the dynamic temporal evolution. However, 
it could not learn the historical information of new nodes 
and model them [19].

These methods focus on discussing and evaluating the 
classification performance of nodes with labels and do not 
extract the historical information of new unseen nodes. 
We seek to employ the transfer learning method to model 
new nodes.

Transfer learning: The existing approaches are cur-
rently divided into three categories. (1) Instance-based 
transfer learning. For example, Dai Wenyuan et al. [20] 
proposes the TrAdaBoost algorithm, which calculates task 
similarity to make the feature distribution of the target 
domain close to that of the source domain. This approach 
is easy to implement. However, the algorithm performs 
poorly when the source and target domains come from 
different domains [21]. (2) Feature-based transfer learn-
ing. For example, Yaroslav Ganin et al. [22] proposes 
the DANN framework. The model learns similar features 
between the source and target domains and transferred 
them using the DAN method. (3) Parameter-based trans-
fer learning, such as pre-learning models. For example, 
Google [23] proposes bidirectional encoder representa-
tion from transformers (BERT), which tackles downstream 
tasks by pre-training and fine-tuning model parameters.

Instance-based transfer learning requires the source and 
target domains to come from the same domain. Parameter-
based transfer learning needs a large amount of data and 
the performance is not outstanding for a single task such as 
the dynamic graph classification task [24–26]. Therefore, 

we propose the DATL method to learn and transfer similar 
features at adjacent time steps with three loss functions.

3 � Methodology

In this section, we will present the problem definition and 
the neural network structure design. The main parameters 
used in DLA-GCN are summarized in Table 1.

3.1 � System model

In this section, the definition of the dynamic graph 
can be defined on a series of observed snapshots 
G =

{

�1, �2,⋯ , � t,⋯ , �T
}

 as the research subject, where 
T is the number of time steps. At each time step t, each 
graph snapshot � t = (V , �t) is a weighted undirected graph 
with a node-set V, a link set �t , an adjacency matrix At , 
and a node feature matrix Xt . Dynamic graph representation 
learning is to learn the embeddings et

v
∈ Rd for each node 

v ∈ V  in graphs at the time step t = {1, 2,⋯ , T} . And the 
embeddings et

v
∈ Rd represent the aggregation of the spa-

tial features and temporal evolution such as link connection 
and node addition at time step t. New node classification in 
dynamic graphs aims to identify the labels of new node by 
employing the original label set lo in the source domain and 
the embeddings et

v
∈ Rd.

We propose a new neural network structure named DLA-
GCN. As shown in Fig. 1, the model consists of the DLGCN, 
DATL, and NMPL components. These approaches learn the 
spatial structural properties by combining the DLGCN and 
NMPL and employs the DATL algorithm to learn and trans-
fer similar features of dynamic graphs at adjacent time steps. 
Note that nodes in this section dynamically evolve. In other 
words, the number of nodes in each time step is different. 
Therefore, after feature extraction at t, we add 0 to match the 

Table 1   Key notation and definition

Symbol Meaning Symbol Meaning

G The series of observed snapshots b1, b2, b3 The first, second and third learnable bias
� t = (V , �t) The graph snapshot and its nodes, links at the time step t Auv, euv, �uv The pre-defined adjacent matrix, attention weight and 

attention value of two adjacent nodes v and u
T, N The total number of time steps and nodes �(⋅) The activation function
v, u The target node and its neighbor Su, xu The feature embedding and matrix of the neighbor node u
At,Xt The node adjacency and feature matrix at the time step t Zlocal,Zglobal The local and global feature representation
et
v

The embeddings of the node v at the time step t EA, dc The learnable node embedding and its dimension
lo, lp The original and predicted labels IN ,D The identity and degree matrix
Ws The learnable parameter shared by all nodes �l, �g The importance of local feature and global feature
xv, Sv The feature matrix and embedding of the target node Z The spatial feature representation of nodes
d, �, ur The binary variable, adaptive parameter and learning rate E� ,W� The decomposed shared and specific parameter
Ly,Ld ,L The label, domain and total loss b�1

, b�2
The first and second decomposed learnable bias
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dimension in adjacent time steps t and t + 1 . This approach 
avoids dimension mismatches and prevents the occurrence 
of the multi-zero matrix.

3.2 � Spatial module

We proposes DLGCN to capture local and global features of 
spatial structure properties and learn more hidden informa-
tion. Figure 2 illustrates the overall architecture of DLGCN. 
The network consists of a local spatial module, a global spa-
tial module, and an inter-graph attention mechanism. Essen-
tially, the spatial feature representation is the aggregation 
of spatial information at each time step. In other words, 
all operations of DLGCN should be completed in a time 
step and the total number of nodes in a time step remain 
unchanged.

3.2.1 � Local spatial module

The one-hop neighbors of the each node v are aggregated by 
an attention mechanism to capture the local features.

First, the feature embedding of each node is defined as:

where Ws denotes a learnable parameter shared by all nodes, 
xv is the feature matrix of each node v as input of the layer, 
and b1 is a learnable bias.

(1)Sv = Wsxv + b1

The pre-defined adjacent matrix is obtained by the graph 
snapshot � at the time step t, and the one-hop neighbors of the 
each node v are selected as node topology information through 
the pre-defined adjacent matrix. Furthermore, the attention 
weight of the node v and its neighbors can be calculated by:

where Auv denotes the pre-defined adjacency matrix of two 
adjacent nodes u and v and �(⋅) is activation functions, such 
as ReLu, Sigmoid, and so on. Note that the attention weight 
is obtained by adding the embedding matrix. Other tech-
niques, such as splicing, can also be used to calculate the 
embedding matrix.

Then the calculated attention is normalized by the follow-
ing equation:

Finally, the local feature representation of each node v is 
calculated by aggregating the one-hop neighbors according 
to the previously required attention weight method:

(2)
Su = Wsxu + b2

euv = �(Auv[Su + Sv])∀(u, v) ∈ �

(3)
�uv =

exp(euv)

n
∑

w∈Nv

exp(euv)

(4)Zlocal = zv = �(

n
∑

w∈Nv

�uv(W
sxu + b2))∀v ∈ V

Fig. 1   Network architecture of DLA-GCN
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3.2.2 � Global spatial module

In addition to local feature learning which calculated by 
distance or similarity, we employ an adaptive adjacency 
matrix to model the global information.

Specifically, a learnable node embedding EA ∈ RN×d is 
randomly initialized, where N denotes the total number of 
nodes and dc is the each node embedding dimension (gen-
erally dc ≪ N ). The global features of nodes are calculated 
by multiplying EA and ET

A
:

The learned adjacency matrix is normalized by softmax. The 
adaptive adjacency matrix captures global spatial informa-
tion using EA , which is more simple than [35]. Finally, the 
global feature embedding is represented as:

(5)Aadp = IN + D
−

1

2AD
−

1

2 = Softmax(ReLU(EA ⋅ E
T
A
))

where X denotes the node feature matrix, Ws is the learn-
able parameter shared by all nodes, and b3 is the learnable 
node bias.

3.2.3 � Inter‑graph attention

After performing the DLGCN component, we obtain two 
feature embeddings Zlocal , Zglobal . We need to aggregate dif-
ferent embeddings to produce a unified representation. As 
embeddings from the local and global spatial module con-
tribute differently to learning the representation, we propose 
an inter-graph attention scheme to capture the significance 
of each feature embedding.

(6)Zglobal = (Softmax(Relu(EA ⋅ E
T
A
)))XWs + b3

Fig. 2   Framework of the 
DLGCN method
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The attention mechanism between the local and global fea-
ture representation is calculated by the equation:

where �l and �g denote the importance of local feature and 
global feature, respectively.

Furthermore, the spatial feature representation of nodes is 
denoted as:

3.3 � Node multi‑parameter learning

In deep learning models, parameter sharing is a widely used 
technique that can significantly reduce the number of model 
parameters during training, thus accelerating training and 
improving the model’s generalization ability. However, in 
dynamic graphs, each node may have unique features and 
attributes, so the use of shared parameters may not accurately 
capture the unique characteristics of each node. Moreover, 
if only one shared parameter space is learned, it may not be 
able to handle the complexity and dynamic variability of node 
parameters. Therefore, to fully exploit node parameter infor-
mation while maintaining node uniqueness, we propose the 
NMPL algorithm, which can learn individual parameters for 
each node and improve the model’s performance. As a result, 
each node should maintain its own parameter space to learn 
node-specific patterns.

By considering the matrix decomposition method, this 
NMPL method learns two smaller parameter matrices instead 
of learning the unique parameter space of each node. The 
parameter Ws can be represented by Ws = E� ⋅W� : (1) a 
shared parameter E� ∈ RN×dc , where dc denotes the embedding 
dimension, and dc ≪ N . (2) a specific parameter W� ∈ Rd×N . 
The method can be interpreted as capturing the node-specific 
patterns from a set of candidate patterns discovered from all 
nodes in graphs. As a result, NMPL not only reduces the num-
ber of parameters but also learns the more fine-grained pat-
terns of the nodes.

By employing EA as a shared parameter between local and 
global features, Eqs. 4 and 6 can be re-expressed as:

(7)

�l =
exp(Zlocal)

exp(Zlocal) + exp(Zglobal)

�g =
exp(Zglobal)

exp(Zlocal) + exp(Zglobal)

(8)Z = �lZlocal + �gZglobal

(9)
Zlocal = zv = �(

n
∑

w∈Nv

�uv(EAW�xu + EAb�1
))∀v ∈ V

Zglobal = (Softmax(Relu(EA ⋅ E
T
A
)))XEA� + EAb�2

3.4 � Domain‑adversarial transfer learning

To better learn a knowledge transfer across different time 
step to assist in the dynamic node classification task, our 
model consists of a adversarial module, a source classifier 
as well as a target classifier working together to to learn 
both domain node representations, thus enabling classify-
ing nodes in the next time step. The overall objective is 
as follows:

where � and � denote the hyper-parameters that tune the 
trade-off between domain loss, target loss function and total 
loss function during the learning process. The LS , LDA , LT 
are the source classifier loss, the domain classifier loss and 
the target classifier loss, respectively.

Source classifier loss: For the source classifier, the 
negative log-probability method is employed as the loss 
function and is written as:

where yi denotes the label of the i-th node in the source 
domain, ŷt is the classification prediction for the i-th source 
labeled node, respectively. The loss of the source classifier 
is minimized to improve the prediction accuracy.

Domain classifier loss: Different from minimizing the 
loss of the label classifier, the domain classifier can make the 
features of the source and target domains indistinguishable 
by maximizing the domain discriminator loss. To achieve 
this, we learn a domain classifier with an adversarial transfer 
training. On the one hand, the source classifier can classify 
each node into the correct class via minimizing the source 
classifier loss. On the other hand, node representations from 
different domains can be similar, so that the domain clas-
sifier cannot differentiate if the node comes from source 
domain or target domain. In this paper, Gradient Reversal 
Layer (GRL) [27] is used for adversarial training. Learning 
a GRL is adversarial in such a way that: the reversal gradi-
ent enforces to be maximized, at the same time, the cross-
entropy domain classifier loss is be minimized:

where Nsum denotes the total number of nodes in the source 
and target domain, d is the binary variable, which indicates 
whether the feature comes from the source or target domain. 
The m̂t+1

i
 and m̂t

i
 are the domain prediction for the i-th docu-

ment in the target domain and source domain, respectively.

(10)
L(Zt

,Yt
,Zt+1) = LS(Z

t
,Yt) − � ∗ LDA(Z

t
,Zt+1) − � ∗ LT (Z

t+1)

(11)L(Zt
, Yt) = −

1

NK
t

NK
t

∑

i=1

log(ŷt)

(12)

LDA(Z
t
, Zt+1) = −

1

Nsum

Nsum
∑

i=1

dlog(m̂t+1
i

) + (1 − d)log(1 − m̂t
i
)
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Target classifier loss: An entropy loss is placed on the 
target classifier. Unlike the source classifier, we do not use 
cross-entropy as the label loss, because we do not have the 
label information for the new node in the target domain. In 
order to utilize the data in the target domain, we employ an 
entropy loss for the target classifier:

Where ŷi denotes the the classification prediction for the i-th 
node the target domain.

LT (Z
t, Yt) , LDA(Zt,Zt+1) and ZT (Zt+1) are jointly optimized 

via our objective function in Eq. 10, and all parameters are 
optimized using the standard backpropagation algorithms.

(13)LT (Z
t+1) = −

1

NU
t+1

NU
t+1
∑

i=1

ŷilog(ŷi)

Algorithm 1 summarizes the unsupervised dynamic graph classification learning model.

Algorithm 1 Unsupervised dynamic graph node classification

Input: Dynamic graph snapshot datasets G =
{
ζ1, ζ2, · · · , ζt, · · · , ζT

}

Output: The classification results
{
l1p, l

2
p, · · · , ltp, · · · , lTp

}

1: Acquire the feature matrix Xt, adjacency matrix At
adp and original label lo

2: At the spatial dimension:
3: for t in T do
4: Calculate local spatial representation Zt

local by(1)-(4)
5: Use NMPL algorithm, Calculate Zt

local replace (4) by (9)
6: Determine global spatial representation Zt

global by (5)-(6)
7: Use NMPL algorithm, Calculate Zt

global replace (6) by (9)
8: In order to fuse global and local features, employ adaptive weights ∂t

l

and ∂t
g by (7), then Calculate Zt by (8)

9: end for
10: At the time dimension:
11: for t in T do
12: Calculate the source classifier loss LS of t by (11)
13: Determine the domain loss LDA of t and t+ 1 by (12)
14: Determine the target loss LT of t+ 1 by (13)
15: Calculate the total loss L of t and t + 1 by (10), transfer the similar

feature
16: end for

4 � Experiments and analysis

4.1 � Dataset

This paper uses two real-world dynamic graph datasets: Cora 
dataset [28] and the BlogCatalog dataset [29].

The Cora dataset consists of 2708 nodes classified into 
one of seven classes, including Case_Based, Genetic_
Algorithms, Neural_Networks, Probabilistic_Methods, 
Reinforcement_Learning, Rule_Learning, and Theory. 
Meanwhile, the citation network consists of 5429 edges. 
Each node represents a scientific paper, and the edges 
denote reference flows of scientific papers. The Cora 
dataset is widely used in the field of dynamic graph 
classification task [30, 31]. And our purpose is to more 

accurately study the impact of research papers. Specifi-
cally, as time progresses, the influence of papers tends to 
evolve. By learning the dynamic graph, we can investi-
gate the impact and its variations more accurately. We use 
temporal directed edges that represent citations from one 
paper to another, with timestamps of the citing paper’s 
publication date as in [32].The method of transforming the 
Cora static graph dataset into a dynamic graph dataset is 
as follows: Firstly, select these papers between 1900 and 
1988 as known nodes, and use their connection relation-
ships, feature attributes, and corresponding classification 
labels to construct the first static graph of the initial time 
step. Secondly, for each additional time stamp, papers’ 
feature attributes and connection relationships until 1999 
are added to incorporate new nodes without labels, and 
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complete the construction of the topologies of graphs at 
different time stamps. Finally, a dynamic graph dataset 
with 12 time steps is formed.

The given adjacency matrix of Cora is simply formulated 
based on the practical citation outcome between the two 
papers. In terms of the technical components, papers i and 
j are on completely different topics, for example computer 
sciences and chemistry, while the citation between them is 
barely because the algorithm/model developed in paper i is 
used in j for special application. It means, apart from the 
given adjacency matrix, there are other possible viewpoints 
to better represent the relationship between papers i and j 
[33, 34]. To achieve this, we utilize the similarity of node 
features and an attention mechanism when computing the 
representations of each node in the graph. Specifically, dur-
ing the representation process, we assign different weights 
to neighboring node features based on their dissimilarity. 
This allows us to capture more diverse and informative infor-
mation. By incorporating the node feature similarity and 
attention mechanism, we enhance the learning of richer and 
more relevant information for each node in the computa-
tional graph [35, 36].

The BlogCatalog dataset is a network of social relation-
ships in the BlogCatalog website, which consists of 5196 
nodes and 171743 edges. And the 8189 nodes’ attributes 
are constructed by keywords, which are generated by users 
as a short description of their blogs. The social network has 
6 labels which represents the topic categories provided by 
the authors. The BlogCatalog dataset is a network dataset 
that contains social relationships between blog users. This 
dataset is widely used in the field of social network analysis 
and dynamic graph classification task. Moreover, the Blog-
Catalog dataset is used as a dataset in many important work 
[37, 38].

4.2 � Experimental setting

We implement DLA-GCN in Python3.6 with Tensorflow 
[39] and employ mini-batch gradient descent with Adam 
optimizer for training. On the Cora data set, for structural 
multi-head self-attention of graph attention network (GAT), 
the number of layer and attention heads are 1and 16, respec-
tively. Each attention calculates 8 features(for a total of 128 
dimensions). For DATL, the adaptive parameter � is chosen 
among 9 values between 10−3 and 1 on a logarithmic scale. 
� ≈ 0.31 has the best performance and the learning rate is 
set as ur = 10−3 . Two MLP layers and softmax are used to 
perform multi-classification training of the target and source 
domains. The balance parameters set to 0.8. On the Blog-
Catalog data set, self-attention GAT layers and attention 
heads are 2 and 16, respectively. Each attention calculates 
16 features. For DATL, the adaptive parameter � is set as 
0.64, and fix the learning rate ur is fixed as 10−3 . The balance 
parameters set to 0.8. Finally, we select 60% of all data sets 
as training sets, 15% as validation sets, and 25% as test sets.

4.3 � Baseline

In order to demonstrate the effectiveness of our proposed 
model, we employ the following methods as baselines. We 
compare our approaches with both state-of-the-art GCN-
based dynamic node classification models and models 
based on graph transfer learning methods. Note that to apply 
GCN to dynamic graphs, two inputs are required: a feature 
matrix composed of all the nodes in the graph, which can 
be obtained by considering the nodes at each time step, and 
an adjacency matrix representing the connections between 
nodes at each time step. In this paper, the adjacency matrix 
is obtained by calculating the similarity between node fea-
tures. In summary, we apply GCN to the task of node classi-
fication on dynamic graphs using the feature matrix of nodes 
at each time step and the pre-defined adjacency matrix.

Table 2   Comparison between 
different models

Bold indicates the optimal metric result

Cora BlogCatalog

Model Accuracy AUC​ F1 Accuracy AUC​ F1

GCN 28.8 52.2 15.4 61.6 88.3 67.3
GAT-AE 34.0 54.3 27.2 60.1 86.4 64.8
DYSAT 41.8 70.1 30.4 70.4 90.7 69.7
DS-TAGCN 56.1 72.6 40.3 72.6 91.4 74.1
FADGC 59.2 75.3 45.1 75.8 92.8 76.9
TL-DCRNN 61.5 78.4 52.7 78.3 93.2 77.4
NodeTrans 61.5 85.3 63.2 80.2 95.8 81.1
DLA-GCN 76.3 92.4 76.1 88.2 98.3 86.2
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State-of-the-art GCN-based dynamic node classification 
models:

•	 GCN [28]: It is a classic network which can efficiently 
capture the spatial information.

•	 GAT-AE [40]: The model is a graph convolutional net-
work with an attention mechanism, which is an autoen-
coder to model the spatial correlation.

•	 DySAT [11]: DySAT is a dynamic self-attention 
approach, which uses GAT to capture spatial correlation, 
and uses the self-attentional architecture of transformer 
encoder to capture dynamic temporal correlation

•	 DS-TAGCN [12]: DS-TAGCN is a a dual-stream topology 
attentive graph convolutional network for dynamic graph 
node classification, which can learn the evolution pattern 
of node attributes and graph topology simultaneously.

•	 FADGC [41]: The model is a stable and scalable dynamic 
GCN method using a fine-grained attention mechanism.

Dynamic node classification models based on graph transfer 
learning:

•	 TL-DCRNN [42]: TL-DCRNN is a diffusion convolu-
tional recurrent neural network based on a new transfer 
learning approach. The network performs dynamic node 
classification through downstream fine-tuning, such as 
the MLP and Conv operations.

•	 NodeTrans [14]: NodeTrans is a graph transfer learning 
approach which combines the spatial-temporal graph net-
work and transfer learning. The model performs dynamic 
node classification through downstream fine-tuning, such 
as the MLP and Conv operations.

4.4 � Experimental results

Table 2 summarizes the performances of different models 
on the Cora and BlogCatalog datasets. We adopt accuracy, 
AUC and Fl as our evaluation metrics.

Short-term classification performance analysis: As 
shown in Table 2, DLA-GCN is superior to the baselines 
for all three metrics with significant improvements. In par-
ticular, DLA-GCN achieves 18% and 10% improvements in 
the accuracy on the Cora and BlogCatalog dataset compared 
with DYSAT, which is the state-of-the-art method. Dynamic 
Graph-based methods (DYSAT, DS-TAGCN and FADGC) 
have better performances than the traditional static graph 
embedding methods (GCN and GAT-AE). It shows that the 
spatio-temporal dynamics GCN with an attention mecha-
nism encoding both local graph structure and nodes evo-
lution pattern have competitive advantages than traditional 
GCN-based models in dynamic node classification. Com-
pared with dynamic GCN-based node classification methods 
( DS-TAGCN and FADGC), TL-DCRNN and NodeTrans 
have better performance, confirming the superiority of trans-
fer learning in dynamic node classification.

Long-term classification performance analysis: Fig. 3 
further shows the accuracy performance of different mod-
els over the 12 time steps in Cora and BlogCatalog datasets. 
As can be seen from the results: (1) The a dynamic GCN-
based node classification methods (DS-TAGCN, FADGC) 
can achieve high accuracy in short-term timesteps(the first 
step), but the accuracy will decline rapidly with the accu-
mulation of missing historical information for new nodes 
in long-term nodes classification. (2) DLA-GCN balances 
short-term and long-term classification well and achieves 
the best performance for almost all horizons. This finding 
shows that the robustness of the DLA-GCN is superior to 

Fig. 3   Performance changes over 12 time steps of different models on the Cora and BlogCatalog datasets
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those of the other methods. Our model mainly utilizes the 
double-layer graph and transfer learning methods to improve 
the classification performance. On the 12 time steps, our 
model gradually decreases due to the continuous increase of 
new nodes. In contrast, most other models rapidly decrease 
in the first few time steps because the new nodes can only 
be classified through spatial information extraction, without 
any historical information or corresponding labels, making it 
impossible to learn better feature performance from known 
nodes. The accuracy of the GCN method using static graph 
is 0.81, however, the accuracy of the DLA-GCN method 
using dynamic graph is only 0.76. The main reason is that 
static and dynamic graphs contain different node infor-
mation. Dynamic graphs have less node information such 
as the missing label and historical information. After the 
static graph is converted to dynamic graph, the accuracy 
of the existing method decreases because of the missing 
node information [31, 32, 43, 44]. Our method effectively 
improves the prediction accuracy of dynamic graphs. The 
dynamic graph consists of a series of graph snapshots at 
12 different time steps, and new nodes have no labels or 
historical information. When converting the Cora dataset 
into a dynamic graph with 12 temporal steps, only the first 
temporal step contains nodes between 1900 and 1988 with 
corresponding labels, and the additional nodes until 1999 
added in each temporal step do not have labels. Therefore, 
new node are only classified through unsupervised learning. 
As the number of temporal steps increases, the performance 
will decrease, and the overall performance is only 0.76. In 
contrast to the dynamic graph dataset, the Cora static graph 
dataset consists of 2708 labeled nodes that can be classified 
through supervised learning. It has the complete knowledge 

for node classification tasks, which does not change with the 
increase of temporal steps.

4.5 � Model ablation analysis

To sufficiently investigate the effect of different components 
and source domains input in the DLA-GCN, we evaluate the 
prediction performance of eight variants of the DLA-GCN.

(1) Effectiveness evaluation of DATL component: Table 3 
summarizes classification performances of the different 
DLA-GCN variants on the Cora and BlogCatalog data-
set. Compared with “without (w/o) DATL” and “r/ DATL 
w/ SAT” variants, the DLA-GCN achieves significant 
improvements in dynamic node classification. The com-
parison results proves that the effectiveness of the DATL 
component. According to the left panel of Fig. 4, our 
model consistently outperforms the “r/ DATL w/ SAT” 
variant, which demonstrates that the DATL component 
obtains the better performance in almost all time steps 
compared with the self-attention mechanism. When the 
the “without (w/o) DATL” and “r/ DATL w/ SAT” vari-
ants are compared, the slightly better performance indi-
cates that the self-attention mechanism improves learning 
efficiency [11] by capturing some historical information 
of other nodes.
(2) Effectiveness evaluation of different source domains 
input: Experimental results of models based on differ-
ent source domains input on Cora and BlogCatalog data-
sets are shown in the right panel of Fig. 4. When the 
DLA-GCN is compared with the “r/ SF w/ OR” vari-
ant, the smaller performance indicates that information 
of similar features may be slightly less than the original 

Table 3   Comparisons of 
classification performances of 
the different DLA-GCN variants

Bold indicates the optimal metric result
Note that w/o represents “without”, w/ represents “with”, “r/” represents “replace”, “SAT’ denotes a self-
attention mechanism, “ADP” denotes the adaptive adjacency matrix, “OR” denotes original nodes with 
labels as the source domain input, “SF” denotes similar nodes as the source domain input, “CN” denotes 
similar nodes as the concatenation operation, “IG” denotes inter-graph attention method, “SP” denotes 
sharing parameters method

Cora BlogCatalog

Model Accuracy AUC​ F1 Accuracy AUC​ F1

DLA-GCN 76.3 92.4 76.1 88.2 98.3 86.2
w/o DATL 67.5 85.2 66.4 74.7 92.1 75.6
w/o ADP 72.7 91.2 73.6 84.8 96.3 83.4
w/o SAT 74.6 91.8 74.8 86.2 97.5 84.2
w/o NMPL 71.3 90.7 69.7 81.4 96.1 81.6
r/ DATL w/ SAT 70.3 89.6 73.5 76.0 92.8 76.9
r/ SF w/ OR 74.4 91.5 74.1 85.7 97.2 84.8
r/ IG w/ CN 71.9 91.0 72.3 80.1 95.8 81.1
r/ NMPL w/ SP 74.3 91.7 74.6 83.5 96.2 82.3
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features in the shot-term time step. However, with time 
steps increase, DLA-GCN achieves significant improve-
ments compared with the “r/ SF w/ OR” variant. The 
results prove that the effectiveness of the similar features 
in the long-term node classification task. In other words, 
The correlation between the new nodes and the original 
nodes gets weaker over time to lower the performance of 
transferring features.
(3) Effectiveness evaluation of double-layer graph con-
volutional network component: From table 3, We can 
observe that (1) Compared with the “without (w/o) 
ADP”, the better performance of the DLA-GCN demon-
strates the importance of capturing strong local depend-
encies. (2) the “without (w/o) SAT” variant is superior 
to the “without (w/o) ADP”, which shows that global 
feature extraction methods are more effective than local 
feature extraction approaches, which indicates global spa-
tial module based on the adaptive matrix can capture the 
local correlation of some nodes.

(4) Effectiveness evaluation of inter-graph attention com-
ponent: As shown as Fig. 5, the accuracy curves of DLA-
GCN are above the curves of the “r/ IG w/ CN” variant. 
This result demonstrates that local and global spatial cor-
relations are different and dynamic and prove that the 
inter-graph attention component enables the dynamic 
selection of information flows from two different spatial 
feature extraction modules.
(5) Effectiveness evaluation of NMPL component: The 
experimental results of models based on different param-
eters are shown in the right panel of Fig. 5. From the 
sub-figure, the performance of DLA-GCN is generally 
better than the “r/ NMPL w/ SP” variant at different time 
slots. Its good performance proves that the effectiveness 
of NMPL component. We can conclude from the com-
parison that sharing parameters only learn the prominent 
patterns of all nodes and do not capture the possible node-
specific patterns. In brief, the NMPL algorithm not only 
employs the sharing parameters to learn prominent pat-

Fig. 4   Influence of transfer learning on the Cora and BlogCatalog datasets
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terns but independent parameters to capture more fine-
grained patterns.
(6) Reasonableness evaluation of time steps: In order to 
demonstrate the relationship between time steps and time 
complexity, we conducted comparative experiments as 
shown in Table 4. From Table 4, it can be observed that 
the model complexity exhibits an exponential relation-
ship with the number of nodes. As the number of nodes 
in the dynamic graph increases with each time step, we 
need to consider the relationship between the number of 

Fig. 5   Ablation experiment of the different spatial modules,attention weight and NMPL on the Cora and BlogCatalog datasets

Table 4   Time complexity comparison between different time steps on 
BlogCatalog datasets

Model TrainingTime(s/espoch) Statics

The 12th time 
step

The 14th time 
step

The 16th time 
step

O(N2)

DLA-GCN 45.27 68.15 103.597

Fig. 6   Influence of embedding dimension on the Cora dataset
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time steps and time complexity. By comparing the time 
complexity between time steps the 16th, 14th, and 12th, 
we found that the time complexity increases significantly 
after the 12th time steps, which indicates that we should 
balance the relationship between long-term analysis and 
complexity. Meanwhile inspired by the time step usage 
in other authoritative papers on dynamic graphs. [30, 
37], we chose 12 time steps for long-term performance 
analysis.

4.6 � Model analysis

Embedded dimension: The dimension of node embed-
ding is a key hyper-parameter in DLA-GCN. It influences 
DLGCN to capture spatial correlation and decides the shared 
parameter diversity. The performance of different embedded 
dimensions on the Cora dataset is given in Fig. 6. DLA-
GCN has good performance on all embedded dimensions. 
Besides, DLA-GCN has the best performance when the 
embedding dimension is 10. An excessively small or large 
embedded dimension makes the performance of DLA-GCN 
weaker. Therefore, DLA-GCN may employ the appropriate 

embedding dimension to balance the performance and 
complexity.

The NMPL algorithm time complexity: To demonstrate 
the appropriateness of the parameter increase in the NMPL 
algorithm, we present in Table 5 the time complexity and 
model performance of the DLA-GCN and the ’r/ NMPL w/ 
SP’ variant. From Table 5, it can be observed that DLA-
GCN exhibits significant improvement in performance com-
pared to the ’r/ NMPL w/ SP’ variant on both datasets, while 
the increase in time complexity is not significant. Therefore, 
considering the significant performance improvement, the 
computational cost of the NMPL algorithm is moderate.

Computation cost: In order to further evaluate the computa-
tion cost between DLA-GCN and baseline models, we com-
pare training time with GCN, GAT-AE, DYSAT, DS-TAGCN, 
FADGC, TL-DCRNN. and NodeTrans models (as shown in 
Table 6). FADGC has a longer training time and DS-TAGCN 
has the longest training time owing to the complex spatio-
temporal self-attention mechanism. DLA-GCN employs the 
DATL method to transfer the similar feature, resulting in a 
decrease in the trainingtime.

5 � Conclusion

In this work, we propose DLGCN to capture more spatial 
correlation. Specifically, The network employs the differ-
ent adjacency matrices to exploit both local and global 
information of the graphs. Furthermore, we propose an 
inter-graph attention mechanism to adaptively aggregate 
a unified embedding for node classification task. To both 
capture prominent patterns and node-specific patterns, we 
design the NMPL algorithm. Specifically, the algorithm 
employs the matrix decomposition method to learn the 
two smaller parameter matrices instead of learning the 
unique parameter space of each node. In terms of dynamic 
temporal correlation, we propose DATL method to learn 
and transfer similar features at different time steps as his-
torical information of new nodes. The experiments verify 
the effectiveness of the double-layer graph and NMPL in 
terms of spatial feature aggregation, and also verify the 
effectiveness of DATL in terms of temporal dynamics.
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Table 5   Time complexity comparison and model performance on 
the Cora and BlogCatalog datasets. Note that “SP” denotes sharing 
parameters method

Bold indicates the optimal metric result

Cora BlogCatalog

Model Training 
Epoch

Accuracy Training 
Epoch

Accuracy

DLA-GCN 80 76.3 95 88.2
r/ NMPL w/ SP 75 74.4 87 83.5

Table 6   Computation cost comparison on the Cora and BlogCatalog 
datasets

Bold indicates the optimal metric result

TrainingTime(s/epoch)

Model Cora BlogCatalog

GCN 7.58 15.43
GAT-AE 10.45 16.72
DYSAT 30.76 35.21
DS-TAGCN 146.08 218.84
FADGC 128.35 164.08
TL-DCRNN 24.66 32.54
NodeTrans 18.08 24.65
DLA-GCN 13.78 18.37
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