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Abstract
The present paper introduces a new model of three-way conflict analysis with similarity degree on an issue set. Specifically,

we introduce an evaluation of similarity degree, from a relative quantitative point of view, to evaluate the attitude similarity

between any two agents. Based on similarity degree, we define a trisection of all pairs of agents on an issue set, and propose

a three-level conflict model induced by such a trisection. More importantly, we solve the threshold-selection problem for

three-level conflict analysis on multiple issues. We prove that the trisection model (resp. the three-level conflict model)

defined in this paper is a conservative extension of the corresponding trisection model (resp. three-level conflict model)

defined in Yao 2019 on multiple issues. Therefore, the present paper extends and improves the results of Yao 2019 on

multiple issues.
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1 Introduction

Conflicts occur naturally in the real world at all levels of

individual and society. So the study and resolution of

conflicts is crucial in both theory and practice. In particular,

conflict analysis plays an important role in political and

lawsuits disputes [23], labor-management negotiations

[24], military operations [20, 21] and so on [22]. In recent

years, many scholars have constructed different types of

conflict analysis models based on their own knowledge

backgrounds [16–19].

In the beginning, Pawlak [20] mapped each agent’s

attitude towards issues into three values f�1; 0; þ1g,
divided all agents and all pairs of agents into three regions,

respectively, with the help of auxiliary function and dis-

tance function, and introduced the most basic conflict

model; then Deja [2] argued that Pawlak’s conflict model is

limited to the outermost layer and does not take into

account the essential causes of conflict; subsequently, Sun

et al. [25] developed a rough set-based conflict analysis

model along with Deja’s thinking and solved the problem

of how to find a feasible consensus strategy. In addition,

Yang et al. [30] investigated evidence conflict and belief

convergence based on the analysis of the degree of

coherence between two sources of evidence and illustrated

the stochastic interpretation for the basic probability

assignment; Yu et al. [37] proposed the supporting proba-

bility distance to characterize the differences among bodies

of evidence, and defined a new combination rule for the

combination of conflicting-evidence; by combining game

theory with conflict analysis, Zia et al. [1] constructed a

new conflict analysis model based on game-theoretic rough

sets; Zhi et al. [42] proposed a model of multilevel conflict

analysis based on fuzzy concept lattices, which incorpo-

rated two types of uncertainties into a unified framework.

In recent years, the theory of three-way decision has also

received more and more attention [5, 11, 14, 27–29,

33, 34, 36, 39, 40]. It was originally proposed by Yao

[31, 32] for thinking, problem solving and information

processing in three levels. Generally speaking, there are

mainly two types of models of three-way decision: one is

based on inclusion relations and the other is based on one

or two evaluations. With the in-depth research, we can find

that three-way decision and conflict analysis are closely

related to each other. Therefore, a growing number of

scholars have applied the idea of three-way decision to

conflict analysis, and established many different types of

three-way conflict analysis models [3, 4, 6–8, 15, 38]. For
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example, Lang et al. [9] combined decision-theoretic rough

sets with three-way decision to design probabilistic con-

flict, neutral and coalition sets on dynamic information

systems; by reformulating and generalizing Pawlak’s con-

flict model, Yao [35] introduced three levels of conflict:

strong conflict, weak conflict and non-conflict; Sun et al.

[26] established an improved Pawlak conflict model by

combining three-way decision with probabilistic rough sets

on dual universes; Zhi et al. [41] considered alliance,

conflict, and neutrality attributes of cliques under a one-

vote veto based on approximate three-way concept lattice.

In addition, some conflict models based on fuzzy infor-

mation systems, such as [10, 12, 13], were also constructed

from different points of view.

The threshold-selection problem has always been a

fundamental issue in three-way conflict analysis. However,

many existing three-way conflict analysis models have not

yet solved the threshold-selection problem. This is one of

the motivations of the present paper. Another motivation of

this paper is from the fifth open problem proposed by Xu

et al. in [29]. In [29], Xu et al. introduced a new method of

three-way decision on hybrid information tables, and sug-

gested in the fifth open problem that: ‘‘Study conflict

problems by using Uða;bÞ or Uhq1:q2i
ða;bÞ . One may introduce

importance ratio into conflict tables and define the model of

conflict analysis induced by the trisections of Uða;bÞ or

Uhq1:q2i
ða;bÞ . We claim that this work will extend the conflict

analysis model of Yao [35].‘‘ So, motivated by this sug-

gestion and following Yao’s work in [35], the present paper

proposes a new method of three-way conflict analysis with

similarity degree so as to extend the work of Yao in [35].

However, we did not use the trisection model Uða;bÞ or

Uhq1:q2i
ða;bÞ proposed in [29] but a newly defined one to induce

the conflict model. Below we summarize the main contri-

bution of this article.

• We propose the evaluation of similarity degree, in a

three-valued situation table, to quantitatively evaluate

the attitude similarity between any two agents, and

propose the evaluation of difference degree to quanti-

tatively evaluate the attitude difference between any

two agents. The proposed difference degree has a

different formulation from the aggregated conflict

function proposed by Yao in [35] on multiple issues,

but it is proved to be equivalent to the latter. Moreover,

it also resolves the inconsistency of Pawlak’s treatment

of any two agents who have the same attitude ‘‘neutral’’

on a single issue.

• Based on the above evaluations, we introduce a

trisection of all pairs of agents on an issue set, and

introduce a three-level conflict model induced by such a

trisection. More importantly, we successfully solve the

threshold-selection problems for both the trisections of

all pairs of agents and the three-level conflicts on

multiple issues, which are achieved by defining unique

measure functions for the trisections and the three-level

conflicts, respectively.

• We prove that the trisection model (resp. the three-level

conflict model) proposed in this paper is a conservative

extension of the corresponding trisection model (resp.

three-level conflict model) proposed by Yao [35].

Therefore, we solve the threshold-selection problem

for Yao’s three-level conflict analysis on multiple

issues.

The rest of this paper is organized as follows. In Sect. 2, we

give a brief review of two models of conflict analysis to

which the later parts of the paper will relate. In Sect. 3, we

introduce the basic concepts of this paper, define the tri-

section of all pairs of agents and the three-level conflict

induced by such a trisection, and discuss the properties of

these trisections and three-level conflicts; at the same time,

we propose two ways of finding the optimal three-level

conflict in finite steps, and therefore solve the threshold-

selection problem for three-level conflict analysis on mul-

tiple issues. Finally, in Sect. 4 we summarize the results of

this paper and look forward to the future work.

2 Preliminaries

In this section, we briefly review two models of conflict

analysis to which the later parts of this paper will relate,

i.e., the model proposed by Pawlak [20] and the model

proposed by Yao [35].

Definition 2.1 [20] A ternary conflict information system

is defined as a triple S ¼ ðU;V; f Þ, where U ¼
fu1; u2; � � � ; umg is a finite non-empty set of agents, V ¼
fv1; v2; � � � ; vng is a finite non-empty set of issues, f :
U � V ! f�1; 0;þ1g is a three-valued evaluation that

maps a pair of an agent and an issue to a value in

f�1; 0;þ1g. The meaning of the mapping is interpreted as

follows:

f ðu; vÞ ¼
�1; agent u is negative about issue v;

0; agent u is neutral about issue v;

þ1; agent u is positive about issue v:

8
><

>:

ð1Þ

In [20], Pawlak first proposed the above definition of

conflict information system which is now also called three-

valued situation table. In the rest of this paper, when we

mention a three-valued situation table, we always mean

S ¼ ðU;V; f Þ defined above. For simplicity, in a three-
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valued situation table we will use f�; 0;þg instead of

f�1; 0;þ1g to represent the agent’s attitude on the issue.

Based on Definition 2.1, Pawlak defined a distance func-

tion to measure the distance between any two agents in a

three-valued situation table, as shown below.

Definition 2.2 [20] In a ternary conflict information sys-

tem S ¼ ðU;V; f Þ, a distance function dðui; ujÞ, for any two

objects ui; uj 2 U, is defined as follows

dðui; ujÞ ¼
P

v2V u
�
vðui; ujÞ

jV j ; ð2Þ

where

u�
vðui; ujÞ ¼

1� uvðui; ujÞ
2

¼
0; if f ðui; vÞ � f ðuj; vÞ ¼ 1 _ ui ¼ uj

0:5; if f ðui; vÞ � f ðuj; vÞ ¼ 0 ^ ui 6¼ uj

1; if f ðui; vÞ � f ðuj; vÞ ¼ �1

8
><

>:

ð3Þ

and

uvðui; ujÞ ¼
1; if f ðui; vÞ � f ðuj; vÞ ¼ 1 _ ui ¼ uj

0; if f ðui; vÞ � f ðuj; vÞ ¼ 0 ^ ui 6¼ uj

�1; if f ðui; vÞ � f ðuj; vÞ ¼ �1

8
><

>:
:

ð4Þ

By using the above distance function d, Pawlak further

defined three relation sets, namely alliance, conflict and

neutrality, as follows:

A ¼ fðui; ujÞjdðui; ujÞ\0:5g;
C ¼ fðui; ujÞjdðui; ujÞ[ 0:5g;
N ¼ fðui; ujÞjdðui; ujÞ ¼ 0:5g:

8
><

>:
ð5Þ

According to the above Pawlak’s definitions, agents ui and

uj are in an alliance relation on a single issue v when

f ðui; vÞ ¼ f ðuj; vÞ ¼ 0 and ui ¼ uj; while agents ui and uj
are in a neutrality relation when f ðui; vÞ ¼ f ðuj; vÞ ¼ 0 and

ui 6¼ uj. Therefore, Pawlak’s definitions have inconsistency

in the treatment of f ðui; vÞ ¼ f ðuj; vÞ ¼ 0 on a single issue

v. In addition, the three relation sets are defined by the

value of 0.5, which may be further improved by intro-

ducing appropriate thresholds. In 2019, Yao [35] refor-

mulated and extended the above Pawlak’s model to a more

general level, and resolved the inconsistency of Pawlak’s

treatment of f ðui; vÞ ¼ f ðuj; vÞ ¼ 0 on a single issue

v. Below we specifically review and explain the results of

Yao [35].

In [35], Yao proposed two types of trisections, namely

the trisection of all agents and the trisection of all pairs of

agents, on a single issue (resp. on multiple issues); at the

same time, Yao proposed two types of three-level conflicts,

namely the one induced by a trisection of all agents and the

one induced by a trisection of all pairs of agents on a single

issue (resp. on multiple issues). It can be verified that the

two types of trisections on a single issue induce the same

three-level conflicts, but the two types of trisections on

multiple issues do not seem to have such result. We firstly

reproduce the two types of trisections on a single issue

defined in [35].

Definition 2.3 [35] In a three-valued situation

table S ¼ ðU;V ; f Þ, the trisection of all agents on a single

issue v 2 V , denoted by � A�
v ;A

0
v ;A

þ
v �, is defined by

A�
v ¼ fu 2 Ujf ðu; vÞ ¼ �1g;
A0
v ¼ fu 2 Ujf ðu; vÞ ¼ 0g;

Aþ
v ¼ fu 2 Ujf ðu; vÞ ¼ þ1g:

8
><

>:
ð6Þ

Definition 2.4 [35] In a three-valued situation

table S ¼ ðU;V; f Þ, the trisection of all pairs of agents on a

single issue v 2 V , denoted by � R¼
v ;R

�
v ;R

	
v �, is defined

by

R¼
v ¼ fðui; ujÞ 2 U � U j jf ðui; vÞ � f ðuj; vÞj=2 ¼ 0g

¼ fðui; ujÞ 2 U � Ujf ðui; vÞ ¼ f ðuj; vÞg;
R�
v ¼ fðui; ujÞ 2 U � U j jf ðui; vÞ � f ðuj; vÞj=2 ¼ 0:5g

¼ fðui; ujÞ 2 U � Ujf ðui; vÞ 6¼ f ðuj; vÞ ^ f ðui; vÞ � f ðuj; vÞ ¼ 0g;
R	
v ¼ fðui; ujÞ 2 U � U j jf ðui; vÞ � f ðuj; vÞj=2 ¼ 1g

¼ fðui; ujÞ 2 U � Ujf ðui; vÞ � f ðuj; vÞ ¼ �1g:

8
>>>>>>>><

>>>>>>>>:

ð7Þ

Based on the above two types of trisections, Yao pro-

posed two types of three-level conflicts on a single issue as

follows.

Definition 2.5 [35] In a three-valued situation

table S ¼ ðU;V ; f Þ, for a single issue v 2 V , the three-level

conflict with respect to the trisection � A�
v ;A

0
v ;A

þ
v � is

defined by

strong conflict: SCðA�
v ;A

þ
v Þ;

weak conflict: WCðA�
v ;A

0
vÞ; WCðA0

v ;A
þ
v Þ;

non-conflict: NCðA�
v ;A

�
v Þ; NCðA0

v ;A
0
vÞ; NCðAþ

v ;A
þ
v Þ:

8
><

>:
ð8Þ

Definition 2.6 [35] In a three-valued situation

table S ¼ ðU;V ; f Þ, for a single issue v 2 V , the three-level

conflict with respect to the trisection � R¼
v ;R

�
v ;R

	
v � is

defined by
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strong conflict: SC ¼ R	
v ;

weak conflict: WC ¼ R�
v ;

non-conflict: NC ¼ R¼
v :

8
><

>:
ð9Þ

One can verify that the above two three-level conflict

models are equivalent to each other when they are induced

by � A�
v ;A

0
v ;A

þ
v � and � R¼

v ;R
�
v ;R

	
v �, respectively,

on the same issue v 2 V . Furthermore, suppose that in a

three-valued situation table f ðu1; vÞ ¼ 0; f ðu2; vÞ ¼ 0 and

u1 6¼ u2. Then by the above method of Yao, ðu1; u2Þ 2 R¼
v

and hence they are in non-conflict, i.e., in alliance, while

they are in neutrality relation by the method of Pawlak.

Therefore, the above method of Yao resolved the incon-

sistency of Pawlak’s treatment of f ðui; vÞ ¼ f ðuj; vÞ ¼ 0 on

a single issue v. Yao [35] further extended the above tri-

sections and three-level conflict models to the level of

multiple issues, and we reproduce them as follows.

Definition 2.7 [35] In a three-valued situation

table S ¼ ðU;V; f Þ, let f ðu; JÞ 2 ½�1; 1
 be a function with

f ðu; JÞ ¼ 1
jJj
P

v2J f ðu; vÞ, called the aggregated rating

function of agent u 2 U on multiple issues of J � V . Given

a pair of thresholds ðb; aÞ with �1� b\0\a� 1, the

trisection of all agents on multiple issues J, denoted by

� A
½�1;b

J ;A

½b;a

J ;A

½a;1

J �, is defined by

A
½�1;b

J ¼ fu 2 U j f ðu; JÞ� bg;

A
½b;a

J ¼ fu 2 U j b\f ðu; JÞ\ag;
A
½a;1

J ¼ fu 2 U j f ðu; JÞ
 ag:

8
>><

>>:

ð10Þ

Definition 2.8 [35] In a three-valued situation

table S ¼ ðU;V ; f Þ, let cJðui; ujÞ 2 ½0; 1
 be a function with

cJðui; ujÞ ¼ 1
2jJj

P
v2J jf ðui; vÞ � f ðuj; vÞj, called the aggre-

gated conflict function of agents ui; uj 2 U on multiple

issues of J � V . Given a pair of thresholds ðn; gÞ with

0� n\0:5\g� 1, the trisection of all pairs of agents on

multiple issues J, denoted by � C
½0;n

J ;C

½n;g

J ;C

½g;1

J �, is

defined by

C
½0;n

J ¼ fðui; ujÞ 2 U � U j cJðui; ujÞ� ng;

C
½n;g

J ¼ fðui; ujÞ 2 U � U j n\cJðui; ujÞ\gg;
C
½g;1

J ¼ fðui; ujÞ 2 U � U j cJðui; ujÞ
 gg:

8
>><

>>:

ð11Þ

Based on the above two types of trisections, the two

types of three-level conflicts on multiple issues are defined

as follows.

Definition 2.9 [35] In a three-valued situation

table S ¼ ðU;V; f Þ, for multiple issues of J � V , the three-

level conflict with respect to the trisection �
A
½�1;b

J ;A

½b;a

J ;A

½a;1

J � is defined by

strong conflict: SCðA½�1;b

J ;A

½a;1

J Þ;

weak conflict: WCðA½�1;b

J ;A

½b;a

J Þ; WCðA½b;a


J ;A
½a;1

J Þ;

non-conflict: NCðA½�1;b

J ;A

½�1;b

J Þ; NCðA½b;a


J ;A
½b;a

J Þ; NCðA½a;1


J ;A
½a;1

J Þ:

8
>><

>>:

ð12Þ

Definition 2.10 [35] In a three-valued situation

table S ¼ ðU;V; f Þ, for multiple issues of J � V , the three-

level conflict with respect to the trisection �
C
½0;n

J ;C

½n;g

J ;C

½g;1

J � is defined by

strong conflict: SC ¼ C
½g;1

J ;

weak conflict: WC ¼ C
½n;g

J ;

non-conflict: NC ¼ C
½0;n

J :

8
>><

>>:

ð13Þ

As we see, Yao [35] proposed a framework of three-

level conflict analysis on multiple issues, and there are still

some problems needing to be further resolved, such as the

threshold-selection problems for both the two types of

trisections and the two types of three-level conflicts on

multiple issues. Following the work of Yao [35], the pre-

sent paper proposes new evaluations and a whole set of

methods to successfully resolve the threshold-selection

problems for both the trisections of all pairs of agents and

the three-level conflicts on multiple issues. Note that the

forthcoming similarity degree, difference degree, proba-

bility functions and measure of trisections or three-level

conflicts are specially defined on three-valued situation

tables, though the related notations and symbol-manipula-

tion techniques are similar to those of [27–29].

3 Three-way conflict analysis on an issue set

In this section, we introduce the main work of this paper,

including the basic concepts, notations and conclusions of

this paper.

3.1 Similarity degree and difference degree

In this paper, we have two basic concepts, i.e., the evalu-

ation of similarity degree and the evaluation of difference

degree between any two agents. Below we introduce them

in turn.
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Definition 3.1 Let S ¼ ðU;V; f Þ be a three-valued situa-

tion table, and Y � V be a non-empty subset of V. For any

two agents ui; uj 2 U, the similarity degree of ui and uj on

the issue set Y is defined by an evaluation function:

eYðui; ujÞ ¼
P

v2Y qvðui; ujÞ
jY j ; ð14Þ

where

qvðui; ujÞ

¼
1; f ðui; vÞ ¼ f ðuj; vÞ
0:5; f ðui; vÞ 6¼ f ðuj; vÞ ^ f ðui; vÞ � f ðuj; vÞ ¼ 0

0; f ðui; vÞ 6¼ f ðuj; vÞ ^ f ðui; vÞ � f ðuj; vÞ ¼ �1

8
><

>:
:

ð15Þ

Obviously, eYðui; ujÞ 2 ½0; 1
, and the value of eYðui; ujÞ
describes the similarity degree between ui and uj con-

cerning the attitudes to the issues of Y. Specifically, in a

three-valued situation table eYðui; ujÞ ¼ 1 means that ui and

uj have the same attitude on every issue of Y and hence

have the highest similarity degree on Y; eYðui; ujÞ ¼ 0

means that ui and uj have clear opposite attitude on every

issue of Y and hence have the lowest similarity degree on Y;

the other cases of 0\eYðui; ujÞ\1 mean that ui and uj may

have the same attitudes on some issues of Y and have

different attitudes on the other issues of Y. For instance, if

the attitudes of u1 on the issue set Y ¼ fv1; . . .; v5g are

þ;þ;�; 0;þ respectively, and the attitudes of u2 on Y are

þ;�;�; 0; 0 respectively, then

eYðu1; u2Þ ¼ 1þ0þ1þ1þ0:5
5

¼ 0:7. Therefore, the concept of

similarity degree captures the attitude similarity of any two

agents on multiple issues from a relative quantitative point

of view.

Note that, although Definition 3.1 of similarity degree

has a similar form to that of ‘‘matching degree‘‘ in [29],

they are technically different in the following aspects: (1)

matching degree is defined based on general binary rela-

tions in an information table with the numerator

/ðui; viÞ 2 f0; 1g, while similarity degree is defined based

on the equality relation in a three-valued situation

table with the numerator qvðui; ujÞ 2 f0; 0:5; 1g; (2)

matching degree is used to evaluate the matching degree of

any object u and the given reference tuple s in each rank,

while similarity degree is used to evaluate the attitude

similarity of any two agents on multiple issues.

Definition 3.2 Let S ¼ ðU;V; f Þ be a three-valued situa-

tion table, and Y � V be a non-empty subset of V. For any

two agents ui; uj 2 U, the difference degree of ui and uj on

the issue set Y is defined by

dYðui; ujÞ ¼ 1� eYðui; ujÞ; ð16Þ

where eYðui; ujÞ is the similarity degree of ui and uj on Y.

Obviously, dYðui; ujÞ 2 ½0; 1
, and the value of dYðui; ujÞ
describes the difference degree between ui and uj con-

cerning the attitudes to the issues of Y. For instance, if the

attitudes of u1 on the issue set Y ¼ fv1; . . .; v5g are

þ;þ;�; 0;þ respectively, and the attitudes of u2 on Y are

þ;�;�; 0; 0 respectively, then

dYðu1; u2Þ ¼ 1� eYðu1; u2Þ ¼ 0:3. Therefore, the concept

of difference degree captures the attitude difference of any

two agents on multiple issues from a relative quantitative

point of view. In addition, this definition of dYðui; ujÞ is

different from the distance function defined by Pawlak [20]

or Yao [35]. Specifically, when two agents ui and uj have

the same attitude ‘‘0’’ on a single issue v, Pawlak’s distance

function treats them as dðui; ujÞ ¼ 0:5 while our difference

degree treats them as dvðui; ujÞ ¼ 01; our definition of

difference degree is defined on multiple issues while Yao’s

distance function is defined on a single issue.

3.2 Trisection of all pairs of agents on an issue
set

In this part, we introduce the trisection of all pairs of agents

on an issue set, and discuss the properties of such

trisections.

Definition 3.3 Let S ¼ ðU;V; f Þ be a three-valued situa-

tion table, Y � V be a non-empty subset of V, and ða; bÞ be
a pair of thresholds with 0� b\a� 1. The trisection of all

pairs of agents on the issue set Y, denoted by

Qða;bÞðYÞ ¼ hP¼
a ðYÞ;P	

b ðYÞ;P�
ða;bÞðYÞi, is defined by

P¼
a ðYÞ ¼ fðui; ujÞ 2 U � U j eYðui; ujÞ
 ag;

P	
b ðYÞ ¼ fðui; ujÞ 2 U � U j eYðui; ujÞ� bg;

P�
ða;bÞðYÞ ¼ fðui; ujÞ 2 U � U j b\eYðui; ujÞ\ag:

8
><

>:

ð17Þ

An equivalent representation of the above trisection is

by using the difference degree as follows:

P¼
a ðYÞ ¼ fðui; ujÞ 2 U � U j dYðui; ujÞ� 1� ag;

P	
b ðYÞ ¼ fðui; ujÞ 2 U � U j dYðui; ujÞ
 1� bg;

P�
ða;bÞðYÞ ¼ fðui; ujÞ 2 U � U j 1� a\dYðui; ujÞ\1� bg:

8
><

>:

ð18Þ

Remark 3.4

1 When Y ¼ fvg, the difference degree (resp. similarity degree) of ui
and uj on Y should be technically denoted by dfvgðui; ujÞ (resp.

efvgðui; ujÞ). However, we will simply use dvðui; ujÞ (resp. evðui; ujÞ),
when such expression does not cause ambiguity.
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(i) Obviously, the three sets P¼
a ðYÞ;P	

b ðYÞ;P�
ða;bÞðYÞ

are pair-wise disjoint and their union is the entire

product space U � U. In particular, when a ¼ 1,

b ¼ 0 and Y ¼ fvg for some v 2 V , the trisection of

Definition 3.3 is the trisection of all pairs of agents

on the single issue v.

(ii) Since the value of eYðui; ujÞ is equal to the value of

eYðuj; uiÞ for any ðui; ujÞ, the pairs ðui; ujÞ and

ðuj; uiÞ are certain to be in the same set of

P¼
a ðYÞ;P	

b ðYÞ or P�
ða;bÞðYÞ. Therefore, in this paper

we will not differentiate ðui; ujÞ and ðuj; uiÞ. In other
words, suppose that jUj ¼ m, we only consider m �
ðmþ 1Þ=2 different pairs of agents.

Next, we discuss the properties of the trisections defined

in Definition 3.3, which will lay the theoretical foundations

for later discussion.

Theorem 3.5 Let S ¼ ðU;V ; f Þ be a three-valued situation

table, Y � V be a non-empty subset of V with jY j ¼ n, and

ða; bÞ be a pair of thresholds with 0� b\a� 1. For any

pair of thresholds ða; bÞ, there exist two intervals ði�1
2n ;

i
2n


and ½j�1
2n ;

j
2nÞ with i; j 2 f1; 2; . . .; 2ng, such that a 2 ði�1

2n ;
i
2n


and b 2 ½j�1
2n ;

j
2nÞ, respectively, and the following conclu-

sions hold:

P¼
a ðYÞ ¼ P¼

i
2n
ðYÞ;

P	
b ðYÞ ¼ P	

j�1
2n

ðYÞ;

P�
ða;bÞðYÞ ¼ P�

ð i
2n;

j�1
2n Þ
ðYÞ:

8
>><

>>:

ð19Þ

Proof By Definition 3.1, it is easy to obtain that

eYðuk; ulÞ 2 f0; 1
2n ; . . .;

2n�1
2n ; 1g for any ðuk; ulÞ 2 U � U.

Then, for any pair of thresholds ða; bÞ with 0� b\a� 1,

we have that 0\a� 1 and 0� b\1. So it is obvious that

there exists an interval ði�1
2n ;

i
2n
 such that a 2 ði�1

2n ;
i
2n
, and

there exists an interval ½j�1
2n ;

j
2nÞ such that b 2 ½j�1

2n ;
j
2nÞ,

where i; j 2 f1; 2; . . .; 2ng and i
 j. Below we only prove

the conclusion P¼
a ðYÞ ¼ P¼

i
2n
ðYÞ, with the other two being

similar.

For any ðuk; ulÞ 2 P¼
a ðYÞ, we have that eYðuk; ulÞ
 a by

Definition 3.3. The conditions

eYðuk; ulÞ 2 f0; 1
2n ; . . .;

2n�1
2n ; 1g, eYðuk; ulÞ
 a and a 2

ði�1
2n ;

i
2n
 imply that eYðuk; ulÞ
 i

2n. Therefore, ðuk; ulÞ 2
P¼

i
2n
ðYÞ and hence P¼

a ðYÞ � P¼
i
2n
ðYÞ. Conversely, for any

ðuk; ulÞ 2 P¼
i
2n
ðYÞ, we have that eYðuk; ulÞ
 i

2n. Since

a 2 ði�1
2n ;

i
2n
, we obtain that eYðuk; ulÞ
 a and hence

ðuk; ulÞ 2 P¼
a ðYÞ. This means that P¼

i
2n
ðYÞ � P¼

a ðYÞ. There-
fore, we have that P¼

a ðYÞ ¼ P¼
i
2n
ðYÞ. h

Theorem 3.6 Let S ¼ ðU;V ; f Þ be a three-valued situation

table, Y � V be a non-empty subset of V with jY j ¼ n, and

ða; bÞ be a pair of thresholds with 0� b\a� 1. For any

given Y, there are at most nð2nþ 1Þ different trisections of
all pairs of agents, namely the trisections Qð i

2n;
j
2nÞ
ðYÞ with

i ¼ 1 to 2n and j ¼ 0 to i� 1, on the issue set Y.

Proof This is an immediate result by using Theorem 3.5.

For any a 2 ð0; 1
2n
, the fact b\a implies that b is certain to

be in ½0; 1
2nÞ; for any a 2 ð 1

2n ;
2
2n
, b is certain to be in ½0; 1

2nÞ
or ½ 1

2n ;
2
2nÞ, and so on. Combining the conclusions of The-

orem 3.5, we immediately have that there are at most 1þ
2þ � � � þ 2n ¼ nð1þ 2nÞ different trisections of all pairs

of agents on the issue set Y. In other words, the finite

trisections Qð i
2n;

j
2nÞ
ðYÞ involve all possible trisections of all

pairs of agents on Y, where i ¼ 1 to 2n and j ¼ 0 to i� 1.

h

Remark 3.7 Theorems 3.5 and 3.6 describe the properties

of the trisections of all pairs of agents in Definition 3.3, and

they lay the theoretical foundations for later discussion.

They tell us that, although there are infinite pairs of

thresholds ða; bÞ, we only need to consider a finite number

of pairs ð i
2n ;

j
2nÞ and their corresponding trisections of all

pairs of agents. Moreover, these pairs ð i
2n ;

j
2nÞ are imme-

diately obtained by the number of issues of Y.

Example 3.8 Here we take the Middle East conflict [20] as

an example which is shown in the following Table 1. As

Pawlak said in [20], the data in Table 1 may not neces-

sarily reflect the current problems in the Middle East, we

are just using these data for an illustration.

Suppose that the issue set Y ¼ fv1; v2; v3g, then jY j ¼ 3

and we need to consider the attitude similarity between any

two agents on the issue set Y. Since there are 6 agents in U

of Table 1, we only need to consider 6� ð6þ 1Þ=2 ¼ 21

pairs of agents. Table 2 shows the similarity degrees of all

these pairs of agents. By Theorem 3.6, there are at most

3� ð2� 3þ 1Þ ¼ 21 different trisections of all pairs of

agents, and Table 3 shows all these trisections of all pairs

of agents on Y. The next problem is how to evaluate these

trisections so as to find the optimal one. We will solve this

problem in the Sect. 3.4.

3.3 Three-level conflict model on an issue set

In this part, we introduce the three-level conflict model

induced by a trisection of all pairs of agents on an issue set.

Intuitively, any pair of agents ðui; ujÞ 2 P¼
a ðYÞ roughly (but

reasonably) has the same attitudes towards the multiple

issues of Y; any pair of agents ðui; ujÞ 2 P	
b ðYÞ roughly (but
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reasonably) has opposite attitudes towards the multiple

issues of Y; any pair of agents ðui; ujÞ 2 P�
ða;bÞðYÞ has other

cases of attitudes towards the multiple issues of Y. There-

fore, we have the following definition of three-level con-

flict induced by a trisection of all pairs of agents.

Definition 3.9 Let S ¼ ðU;V; f Þ be a three-valued situa-

tion table, Y � V be a non-empty subset of V, and

Qða;bÞðYÞ ¼ hP¼
a ðYÞ;P	

b ðYÞ;P�
ða;bÞðYÞi be a trisection of all

pairs of agents on the issue set Y. The three-level conflict

induced by Qða;bÞðYÞ, denoted by

C
ða;bÞ
Y ¼ hSCb

Y ;WC
ða;bÞ
Y ;NCa

Yi, is defined by

strong conflict : SCb
Y ¼ fðui; ujÞ 2 U � Ujðui; ujÞ 2 P	

b ðYÞg;

weak conflict : WC
ða;bÞ
Y ¼ fðui; ujÞ 2 U � Ujðui; ujÞ 2 P�

ða;bÞðYÞg;
non-conflict : NCa

Y ¼ fðui; ujÞ 2 U � Ujðui; ujÞ 2 P¼
a ðYÞg:

8
>><

>>:

ð20Þ

Conversely, the three-level alliance induced by Qða;bÞðYÞ,
denoted by A

ða;bÞ
Y ¼ hSAa

Y ;WA
ða;bÞ
Y ; NAb

Yi, is defined by

strong alliance : SAa
Y ¼ fðui; ujÞ 2 U � Ujðui; ujÞ 2 P¼

a ðYÞg;
weak alliance : WA

ða;bÞ
Y ¼ fðui; ujÞ 2 U � Ujðui; ujÞ 2 P�

ða;bÞðYÞg;

non-alliance : NAb
Y ¼ fðui; ujÞ 2 U � Ujðui; ujÞ 2 P	

b ðYÞg:

8
>><

>>:

ð21Þ

Remark 3.10 By this definition, we in fact have that

NCa
Y ¼ P¼

a ðYÞ, SC
b
Y ¼ P	

b ðYÞ and WC
ða;bÞ
Y ¼ P�

ða;bÞðYÞ for

any given ða; bÞ and Y. Therefore, the properties of three-

level conflicts are similar to those of trisections of all pairs

of agents, and we omit them for readers to fill.

Example 3.11 Consider Example 3.8 again. In Table 3, we

have obtained 21 trisections of all pairs of agents on the

issue set Y ¼ fv1; v2; v3g. By Definition 3.9, we can obtain

21 three-level conflicts induced by these trisections. We

present all these three-level conflicts in the following

Table 4 which is the result of replacing in Table 3 all

P¼
a ðYÞ, P	

b ðYÞ and P�
ða;bÞðYÞ by NCa

Y , SC
b
Y and WC

ða;bÞ
Y ,

respectively. The next problem is how to find the optimal

three-level conflict, which will be immediately solved in

the following part.

3.4 Threshold-selection problem

In this part, we solve the threshold-selection problem for

three-level conflict analysis on multiple issues. In other

words, we provide strategies to find the final optimal three-

level conflict.2 Intuitively, there are two ways of obtaining

the final optimal three-level conflicts on multiple issues, as

shown in Fig. 1. The first way is firstly finding the optimal

trisection of all pairs of agents and secondly obtaining the

three-level conflict induced by the optimal trisection; the

second way is firstly obtaining all three-level conflicts

induced by all trisections of all pairs of agents and secondly

finding the optimal three-level conflict. Since

SCb
Y ¼ P	

b ðYÞ, NCa
Y ¼ P¼

a ðYÞ and WC
ða;bÞ
Y ¼ P�

ða;bÞðYÞ by

Definition 3.9, the two ways of obtaining the final optimal

three-level conflict are in fact equivalent to each other in

this paper. Below we respectively present the two ways and

show their equivalence relationship.

(1) The first way of finding the final optimal three-

level conflict

As Fig. 1 shows, the first way is firstly finding the

optimal trisection of all pairs of agents and secondly

obtaining the three-level conflict induced by the optimal

trisection by Definition 3.9. So the core of this way is

defining the measure of trisections of all pairs of agents,

namely the forthcoming measure H, and defining the

optimal one among all trisections.

Table 1 Middle East conflict

situation
U n V v1 v2 v3 v4 v5

u1 - þ þ þ þ
u2 þ 0 - - -

u3 þ - - - 0

u4 0 - - 0 -

u5 þ - - - -

u6 0 þ - 0 þ

Table 2 Similarity degrees of all pairs of agents

eY ðui; ujÞ u1 u2 u3 u4 u5 u6

u1 1

u2 1/6 1

u3 0 5/6 1

u4 1/6 2/3 5/6 1

u5 0 5/6 1 5/6 1

u6 1/2 2/3 1/2 2/3 1/2 1

2 Since A
ða;bÞ
Y is the result of replacing in C

ða;bÞ
Y all SCa

Y ; WC
ða;bÞ
Y and

NCb
Y by NAa

Y ; WA
ða;bÞ
Y and SAb

Y , respectively, in this part we only

provide the ways of obtaining the final optimal three-level conflict,

with the ways of obtaining the final optimal three-level alliance being

similar.
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Table 3 All trisections of all pairs of agents on Y

ða; bÞ P¼
a ðYÞ P	

b ðYÞ P�
ða;bÞðYÞ

(1, 0) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu2; u3Þ ðu1; u4Þ ðu4; u2Þ
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu4; u3Þ ðu5; u2Þ ðu5; u4Þ ðu6; u1Þ

ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ ðu6; u5Þ
(1, 1/6) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu2; u3Þ ðu4; u2Þ ðu4; u3Þ ðu5; u2Þ

ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu5; u4Þ ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ
ðu6; u4Þ ðu6; u5Þ

(1, 1/3) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu2; u3Þ ðu4; u2Þ ðu4; u3Þ ðu5; u2Þ
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu5; u4Þ ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ

ðu6; u4Þ ðu6; u5Þ
(1, 1/2) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu2; u3Þ ðu4; u2Þ ðu4; u3Þ ðu5; u2Þ

ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu6; u1Þ ðu6; u3Þ ðu6; u5Þ ðu5; u4Þ ðu6; u2Þ ðu6; u4Þ
(1, 2/3) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu2; u3Þ ðu4; u3Þ ðu5; u2Þ

ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ ðu5; u4Þ
ðu6; u5Þ ðu4; u2Þ

(1, 5/6) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u2Þ ðu1; u3Þ ðu1; u4Þ ðu1; u5Þ ;
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ

ðu6; u5Þ ðu4; u2Þ ðu4; u3Þ ðu5; u2Þ
ðu5; u4Þ ðu2; u3Þ

(5/6, 0) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu4; u2Þ ðu6; u1Þ
ðu5; u5Þ ðu6; u6Þ ðu4; u3Þ ðu3; u5Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ ðu6; u5Þ
ðu2; u3Þ ðu5; u2Þ ðu5; u4Þ

(5/6, 1/6) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu4; u2Þ ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ
ðu5; u5Þ ðu6; u6Þ ðu4; u3Þ ðu3; u5Þ ðu6; u4Þ ðu6; u5Þ
ðu2; u3Þ ðu5; u2Þ ðu5; u4Þ

(5/6, 1/3) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu4; u2Þ ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ
ðu5; u5Þ ðu6; u6Þ ðu4; u3Þ ðu3; u5Þ ðu6; u4Þ ðu6; u5Þ
ðu2; u3Þ ðu5; u2Þ ðu5; u4Þ

(5/6, 1/2) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu4; u2Þ ðu6; u2Þ ðu6; u4Þ
ðu5; u5Þ ðu6; u6Þ ðu4; u3Þ ðu3; u5Þ ðu6; u1Þ ðu6; u3Þ ðu6; u5Þ
ðu2; u3Þ ðu5; u2Þ ðu5; u4Þ

(5/6, 2/3) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ;
ðu5; u5Þ ðu6; u6Þ ðu4; u3Þ ðu3; u5Þ ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ
ðu2; u3Þ ðu5; u2Þ ðu5; u4Þ ðu6; u5Þ ðu4; u2Þ

(2/3, 0) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu6; u1Þ ðu6; u3Þ
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ ðu6; u5Þ
ðu4; u3Þ ðu4; u2Þ ðu6; u4Þ ðu5; u2Þ
ðu5; u4Þ ðu6; u2Þ

(2/3, 1/6) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu6; u1Þ ðu6; u3Þ ðu6; u5Þ
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ
ðu4; u3Þ ðu4; u2Þ ðu6; u4Þ ðu5; u2Þ
ðu5; u4Þ ðu6; u2Þ

(2/3, 1/3) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu6; u1Þ ðu6; u3Þ ðu6; u5Þ
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ
ðu4; u3Þ ðu4; u2Þ ðu6; u4Þ ðu5; u2Þ
ðu5; u4Þ ðu6; u2Þ

(2/3, 1/2) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ;
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ ðu6; u1Þ ðu6; u3Þ ðu6; u5Þ
ðu4; u3Þ ðu4; u2Þ ðu6; u4Þ ðu5; u2Þ
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Definition 3.12 Let S ¼ ðU;V ; f Þ be a three-valued situ-

ation table, Y � V be a non-empty subset of V with

jYj ¼ n. For any ðui; ujÞ 2 U � U, the following three

functions

g1ðui; ujÞ ¼
eYðui; ujÞ �

�
2n � eYðui; ujÞ þ 1

�

2nþ 1
;

ð22Þ

g2ðui; ujÞ ¼
�
1� eYðui; ujÞ

�
�
�
2n �

�
1� eYðui; ujÞ

�
þ 1

�

2nþ 1
;

ð23Þ

g3ðui; ujÞ ¼
4n � eYðui; ujÞ �

�
1� eYðui; ujÞ

�

2nþ 1

ð24Þ

are called P¼-probability, P	-probability and P�-prob-
ability of ðui; ujÞ, respectively.

Remark 3.13 For any given issue set Y, the functions

g1ðui; ujÞ, g2ðui; ujÞ and g3ðui; ujÞ describe the probabilities
of ðui; ujÞ’s being in the sets P¼

a ðYÞ, P	
b ðYÞ and P�

ða;bÞðYÞ,
respectively. For example, the probability of ðu1; u2Þ’s
being in the set P¼

a ðYÞ is 1
21
in Table 3 of Example 3.8; one

can verify that the value of g1ðu1; u2Þ in Definition 3.12 is

Table 3 (continued)

ða; bÞ P¼
a ðYÞ P	

b ðYÞ P�
ða;bÞðYÞ

ðu5; u4Þ ðu6; u2Þ
(1/2, 0) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ

ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ
ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ
ðu6; u5Þ ðu4; u3Þ ðu4; u2Þ ðu5; u2Þ
ðu5; u4Þ

(1/2, 1/6) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u2Þ ðu1; u3Þ ðu1; u4Þ ðu1; u5Þ ;
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ
ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ
ðu6; u5Þ ðu4; u3Þ ðu4; u2Þ ðu5; u2Þ
ðu5; u4Þ

(1/2, 1/3) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u2Þ ðu1; u3Þ ðu1; u4Þ ðu1; u5Þ ;
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ
ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ
ðu6; u5Þ ðu4; u3Þ ðu4; u2Þ ðu5; u2Þ
ðu5; u4Þ

(1/3, 0) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ
ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ
ðu6; u5Þ ðu4; u3Þ ðu4; u2Þ ðu5; u2Þ
ðu5; u4Þ

(1/3, 1/6) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u2Þ ðu1; u3Þ ðu1; u4Þ ðu1; u5Þ ;
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ
ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ
ðu6; u5Þ ðu4; u3Þ ðu4; u2Þ ðu5; u2Þ
ðu5; u4Þ

(1/6, 0) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ;
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ
ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ
ðu6; u5Þ ðu4; u3Þ ðu4; u2Þ ðu5; u2Þ
ðu5; u4Þ ðu1; u2Þ ðu1; u4Þ
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Table 4 All three-level conflicts on Y

ða; bÞ NCa
Y SCb

Y WC
ða;bÞ
Y

(1, 0) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu2; u3Þ ðu1; u4Þ ðu4; u2Þ
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu4; u3Þ ðu5; u2Þ ðu5; u4Þ ðu6; u1Þ

ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ ðu6; u5Þ
(1, 1/6) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu2; u3Þ ðu4; u2Þ ðu4; u3Þ ðu5; u2Þ

ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu5; u4Þ ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ
ðu6; u4Þ ðu6; u5Þ

(1, 1/3) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu2; u3Þ ðu4; u2Þ ðu4; u3Þ ðu5; u2Þ
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu5; u4Þ ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ

ðu6; u4Þ ðu6; u5Þ
(1, 1/2) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu2; u3Þ ðu4; u2Þ ðu4; u3Þ ðu5; u2Þ

ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu6; u1Þ ðu6; u3Þ ðu6; u5Þ ðu5; u4Þ ðu6; u2Þ ðu6; u4Þ
(1, 2/3) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu2; u3Þ ðu4; u3Þ ðu5; u2Þ

ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ ðu5; u4Þ
ðu6; u5Þ ðu4; u2Þ

(1, 5/6) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u2Þ ðu1; u3Þ ðu1; u4Þ ðu1; u5Þ ;
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ

ðu6; u5Þ ðu4; u2Þ ðu4; u3Þ ðu5; u2Þ
ðu5; u4Þ ðu2; u3Þ

(5/6, 0) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu4; u2Þ ðu6; u1Þ
ðu5; u5Þ ðu6; u6Þ ðu4; u3Þ ðu3; u5Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ ðu6; u5Þ
ðu2; u3Þ ðu5; u2Þ ðu5; u4Þ

(5/6, 1/6) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu4; u2Þ ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ
ðu5; u5Þ ðu6; u6Þ ðu4; u3Þ ðu3; u5Þ ðu6; u4Þ ðu6; u5Þ
ðu2; u3Þ ðu5; u2Þ ðu5; u4Þ

(5/6, 1/3) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu4; u2Þ ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ
ðu5; u5Þ ðu6; u6Þ ðu4; u3Þ ðu3; u5Þ ðu6; u4Þ ðu6; u5Þ
ðu2; u3Þ ðu5; u2Þ ðu5; u4Þ

(5/6, 1/2) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu4; u2Þ ðu6; u2Þ ðu6; u4Þ
ðu5; u5Þ ðu6; u6Þ ðu4; u3Þ ðu3; u5Þ ðu6; u1Þ ðu6; u3Þ ðu6; u5Þ
ðu2; u3Þ ðu5; u2Þ ðu5; u4Þ

(5/6, 2/3) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ;
ðu5; u5Þ ðu6; u6Þ ðu4; u3Þ ðu3; u5Þ ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ
ðu2; u3Þ ðu5; u2Þ ðu5; u4Þ ðu6; u5Þ ðu4; u2Þ

(2/3, 0) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu6; u1Þ ðu6; u3Þ
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ ðu6; u5Þ
ðu4; u3Þ ðu4; u2Þ ðu6; u4Þ ðu5; u2Þ
ðu5; u4Þ ðu6; u2Þ

(2/3, 1/6) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu6; u1Þ ðu6; u3Þ ðu6; u5Þ
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ
ðu4; u3Þ ðu4; u2Þ ðu6; u4Þ ðu5; u2Þ
ðu5; u4Þ ðu6; u2Þ

(2/3, 1/3) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ðu6; u1Þ ðu6; u3Þ ðu6; u5Þ
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ
ðu4; u3Þ ðu4; u2Þ ðu6; u4Þ ðu5; u2Þ
ðu5; u4Þ ðu6; u2Þ

(2/3, 1/2) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ ;
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ ðu6; u1Þ ðu6; u3Þ ðu6; u5Þ
ðu4; u3Þ ðu4; u2Þ ðu6; u4Þ ðu5; u2Þ
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exactly 1
21
, where n ¼ 3 and eYðu1; u2Þ ¼ 1

6
. In addition, one

can verify that 0� gkðui; ujÞ� 1 (k ¼ 1; 2; 3) and

g1ðui; ujÞ þ g2ðui; ujÞ þ g3ðui; ujÞ ¼ 1 for any pair ðui; ujÞ.

Definition 3.14 Let S ¼ ðU;V ; f Þ be a three-valued situ-

ation table, Y � V be a non-empty subset of V, ða; bÞ be a

pair of thresholds with 0� b\a� 1, and Qða;bÞðYÞ ¼
hP¼

a ðYÞ;P	
b ðYÞ;P�

ða;bÞðYÞi be a trisection of all pairs of

agents on the issue set Y. The measure H of Qða;bÞðYÞ is

defined by:

H
�
Qða;bÞðYÞ

�
¼

P3
i¼1 qi; ð25Þ

where

q1 ¼
P

ðui;ujÞ2P¼
a ðYÞ g1ðui; ujÞP

ðui;ujÞ2U�U g1ðui; ujÞ
;

q2 ¼

P
ðui;ujÞ2P	

b ðYÞ
g2ðui; ujÞ

P
ðui;ujÞ2U�U g2ðui; ujÞ

;

q3 ¼

P
ðui;ujÞ2P�

ða;bÞðYÞ
g3ðui; ujÞ

P
ðui;ujÞ2U�U g3ðui; ujÞ

:

ð26Þ

Definition 3.15 Let S ¼ ðU;V ; f Þ be a three-valued situ-

ation table, Y � V be a non-empty subset of V, Qða;bÞðYÞ be
any trisection of all pairs of agents on the issue set Y. A

Table 4 (continued)

ða; bÞ NCa
Y SCb

Y WC
ða;bÞ
Y

ðu5; u4Þ ðu6; u2Þ
(1/2, 0) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ

ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ
ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ
ðu6; u5Þ ðu4; u3Þ ðu4; u2Þ ðu5; u2Þ
ðu5; u4Þ

(1/2, 1/6) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u2Þ ðu1; u3Þ ðu1; u4Þ ðu1; u5Þ ;
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ
ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ
ðu6; u5Þ ðu4; u3Þ ðu4; u2Þ ðu5; u2Þ
ðu5; u4Þ

(1/2, 1/3) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u2Þ ðu1; u3Þ ðu1; u4Þ ðu1; u5Þ ;
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ
ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ
ðu6; u5Þ ðu4; u3Þ ðu4; u2Þ ðu5; u2Þ
ðu5; u4Þ

(1/3, 0) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ðu1; u2Þ ðu1; u4Þ
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ
ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ
ðu6; u5Þ ðu4; u3Þ ðu4; u2Þ ðu5; u2Þ
ðu5; u4Þ

(1/3, 1/6) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u2Þ ðu1; u3Þ ðu1; u4Þ ðu1; u5Þ ;
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ
ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ
ðu6; u5Þ ðu4; u3Þ ðu4; u2Þ ðu5; u2Þ
ðu5; u4Þ

(1/6, 0) ðu1; u1Þ ðu2; u2Þ ðu3; u3Þ ðu4; u4Þ ðu1; u3Þ ðu1; u5Þ ;
ðu5; u5Þ ðu6; u6Þ ðu3; u5Þ ðu2; u3Þ
ðu6; u1Þ ðu6; u2Þ ðu6; u3Þ ðu6; u4Þ
ðu6; u5Þ ðu4; u3Þ ðu4; u2Þ ðu5; u2Þ
ðu5; u4Þ ðu1; u2Þ ðu1; u4Þ
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trisection Q�
ðh;#ÞðYÞ of all pairs of agents on the issue set Y

is optimal when it satisfies the condition that

HðQ�
ðh;#ÞðYÞÞ ¼ max

8Qða;bÞðYÞ
HðQða;bÞðYÞÞ: ð27Þ

Remark 3.16

(i) It is obvious that 0� qi � 1 (i ¼ 1; 2; 3) and

therefore 0�H
�
Qða;bÞðYÞ

�
� 3 for any trisection

Qða;bÞðYÞ in Definition 3.14.

(ii) We think that the whole trisection of all pairs of

agents gets an optimal state when its measure is

maximal. Note that this does not ensure any one

set of the trisection is separately optimal.

(iii) By the previous Theorems 3.5 and 3.6, here we

only need to compare a finite number of

H
�
Qða;bÞðYÞ

�
to find the maximal one.

Example 3.17 Continue with Example 3.8. By Defini-

tion 3.12, we can compute the P¼-probabilities, P	-prob-
abilities and P�-probabilities, respectively, for all pairs of
agents as shown in Tables 5, 6 and 7.

By Definitions 3.14 and 3.15, we can further compute

the measures of all trisections that have been listed in

Table 3 so as to find the optimal one. Table 8 shows such

results, from which we find that the optimal trisections of

all pairs of agents are Qð1;1=6ÞðYÞ and Qð1;1=3ÞðYÞ with

HðQð1;1=6ÞðYÞÞ ¼ HðQð1;1=3ÞðYÞÞ � 2:1475.

Example 3.18 In the above example, we have obtained the

optimal trisection Qð1;1=6ÞðYÞ or Qð1;1=3ÞðYÞ with

HðQð1;1=6ÞðYÞÞ ¼ HðQð1;1=3ÞðYÞÞ � 2:1475 on the issue set

Y ¼ fv1; v2; v3g. According to the first way of obtaining the

final optimal three-level conflict, the three-level conflict

induced by Qð1;1=6ÞðYÞ or Qð1;1=3ÞðYÞ is what we find. So, by
Definition 3.9 and Table 3, we obtain the final optimal

three-level conflict induced by Qð1;1=6ÞðYÞ as follows.

T
h
e
fi
rs
t
w
ay

Measure H

Definition 3.9

All trisections of all

pairs of agents
Q(α,β)(Y )

The optimal trisection

Q∗
(θ,ϑ)(Y )

Three-level conflict C
(θ,ϑ)
Y

induced by Q∗
(θ,ϑ)(Y )

T
h
e
se
co

n
d

w
ay

Measure M

Definition 3.9

All trisections of all

pairs of agents
Q(α,β)(Y )

All three-level conflicts

induced by Q(α,β)(Y )

The optimal three-level

conflict C
(θ,ϑ)
Y

Fig. 1 Two ways of finding the

final optimal three-level conflict

Table 5 P¼-probabilities of all pairs

g1ðui; ujÞ u1 u2 u3 u4 u5 u6

u1 1

u2 1/21 1

u3 0 5/7 1

u4 1/21 10/21 5/7 1

u5 0 5/7 1 5/7 1

u6 2/7 10/21 2/7 10/21 2/7 1

strong conflict: SC
1=6
Y ¼ fðu1; u3Þ; ðu1; u5Þ; ðu1; u2Þ; ðu1; u4Þg;

weak conflict: WC
ð1;1=6Þ
Y ¼ fðu2; u3Þ; ðu4; u2Þ; ðu4; u3Þ; ðu5; u2Þ; ðu5; u4Þ; ðu6; u1Þ; ðu6; u2Þ; ðu6; u3Þ; ðu6; u4Þ; ðu6; u5Þg;

non-conflict: NC1
Y ¼ fðu1; u1Þ; ðu2; u2Þ; ðu3; u3Þ; ðu4; u4Þ; ðu5; u5Þ; ðu6; u6Þ; ðu3; u5Þg:

8
><

>:
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Conversely, the final optimal three-level alliance induced

by Qð1;1=6ÞðYÞ is the following three sets:

strong alliance: SA1
Y ¼ fðu1; u1Þ; ðu2; u2Þ; ðu3; u3Þ; ðu4; u4Þ;

ðu5; u5Þ; ðu6; u6Þ; ðu3; u5Þg;
weak alliance: WA

ð1;1=6Þ
Y ¼ fðu2; u3Þ; ðu4; u2Þ; ðu4; u3Þ;

ðu5; u2Þ; ðu5; u4Þ; ðu6; u1Þ; ðu6; u2Þ; ðu6; u3Þ; ðu6; u4Þ; ðu6; u5Þg;
non-alliance: NA

1=6
Y ¼ fðu1; u3Þ; ðu1; u5Þ; ðu1; u2Þ; ðu1; u4Þg:

8
>>>>>><

>>>>>>:

To sum up the first way of finding the optimal three-

level conflict, we give Algorithm 1 which contains the

following three main steps.

Step 1 (lines 2–5): For the given Y, let n ¼ jYj and

compute the values of eYðuk; ulÞ, g1ðuk; ulÞ, g2ðuk; ulÞ and

g3ðuk; ulÞ for each pair of agents ðuk; ulÞ 2 U � U;

Step 2 (lines 6–24): For i ¼ 1 to 2n and j ¼ 0 to i� 1,

compute all possible trisections Qð i
2n;

j
2nÞ

of all pairs of

agents, find the first emerging maximal measure HðQð i
2n;

j
2nÞ
Þ

among all nð2nþ 1Þ trisections, and regard this trisection

as the final determined optimal one, namely Q�
ðh;#Þ in

Algorithm 1;

Table 6 P	-probabilities of all pairs

g2ðui; ujÞ u1 u2 u3 u4 u5 u6

u1 0

u2 5/7 0

u3 1 1/21 0

u4 5/7 1/7 1/21 0

u5 1 1/21 0 1/21 0

u6 2/7 1/7 2/7 1/7 2/7 0

Table 7 P�-probabilities of all pairs

g3ðui; ujÞ u1 u2 u3 u4 u5 u6

u1 0

u2 5/21 0

u3 0 5/21 0

u4 5/21 8/21 5/21 0

u5 0 5/21 0 5/21 0

u6 3/7 8/21 3/7 8/21 3/7 0

Table 8 The measures of all trisections of all pairs of agents on Y

Qða;bÞðYÞ q1 q2 q3 HðQða;bÞðYÞÞ

Qð1;0Þ 0.5720 0.4078 1 1.9798

Qð1;1=6Þ 0.5720 0.6990 0.8765 2.1475

Qð1;1=3Þ 0.5720 0.6990 0.8765 2.1475

Qð1;1=2Þ 0.5720 0.8738 0.5432 1.9890

Qð1;2=3Þ 0.5720 0.9612 0.2469 1.7801

Qð1;5=6Þ 0.5720 1.0000 0 1.5720

Qð5=6;0Þ 0.8054 0.4078 0.7531 1.9663

Qð5=6;1=6Þ 0.8054 0.6990 0.6296 2.1340

Qð5=6;1=3Þ 0.8054 0.6990 0.6296 2.1340

Qð5=6;1=2Þ 0.8054 0.8738 0.2963 1.9755

Qð5=6;2=3Þ 0.8054 0.9612 0 1.7666

Qð2=3;0Þ 0.9222 0.4078 0.4568 1.7868

Qð2=3;1=6Þ 0.9222 0.6990 0.3333 1.9545

Qð2=3;1=3Þ 0.9222 0.6990 0.3333 1.9545

Qð2=3;1=2Þ 0.9222 0.8738 0 1.7960

Qð1=2;0Þ 0.9922 0.4078 0.1235 1.5235

Qð1=2;1=6Þ 0.9922 0.6990 0 1.6912

Qð1=2;1=3Þ 0.9922 0.6990 0 1.6912

Qð1=3;0Þ 0.9922 0.4078 0.1235 1.5235

Qð1=3;1=6Þ 0.9922 0.6990 0 1.6912

Qð1=6;0Þ 1 0.4078 0 1.4078

The numbers in bold are the maximal measures of all trisections of all pairs of agents on Y
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Step 3 (lines 25–26): By Definition 3.9, compute and

output the optimal three-level conflict induced by Q�
ðh;#Þ,

namely hSC#
Y ;WC

ðh;#Þ
Y ;NCh

Yi, and its thresholds ðh; #Þ.

Remark 3.19 Suppose that jUj ¼ m. The time complexity

of Step 1 is obviously Oðm2Þ. As Algorithm 1 shows, Step

2 mainly contains three iterations, where the outermost and

the 2nd iterations terminate in nð2nþ 1Þ steps, and the

innermost iteration terminates in m2 steps. So Step 2 ter-

minates in nð2nþ 1Þm2 steps. However, n is the number of

issues of Y and m is the number of agents of U, and we

usually have that n � m. Therefore, the time complexity of

Step 2 is Oðm2Þ, and hence the time complexity of Algo-

rithm 1 is Oðm2Þ.

(2) The second way of finding the final optimal three-

level conflict

As Fig. 1 shows, the second way is firstly obtaining all

three-level conflicts induced by all trisections of all pairs of

agents by Definition 3.9 and secondly finding the optimal

three-level conflict. So the core of this way is defining the

measure of three-level conflicts, namely the forthcoming

measure M, and defining the optimal one among these

three-level conflicts.

Definition 3.20 Let S ¼ ðU;V ; f Þ be a three-valued situ-

ation table, Y � V be a non-empty subset of V with

jYj ¼ n. For any ðui; ujÞ 2 U � U, the following three

functions

Algorithm 1: An algorithm for computing the optimal three-level conflict in the first way
Input: A three-valued situation table S = (U, V, f), an issue set Y ⊆ V

Output: The optimal three-level conflict and its thresholds
1 begin
2 let: n = |Y |;
3 foreach (uk, ul) ∈ U × U do
4 compute: eY (uk , ul), g1(uk, ul), g2(uk, ul), g3(uk , ul);
5 end
6 let: P= = ∅, P = ∅, P ≈ = ∅, Max = 0;
7 for i = 1 to 2n do
8 for j = 0 to i − 1 do
9 foreach (uk, ul) ∈ U × U do

10 if eY (uk, ul) ≥ i
2n

then
11 P= = P= ∪ {(uk , ul)};
12 else if eY (uk , ul) ≤ j

2n
then

13 P = P ∪ {(uk, ul)};
14 else P ≈ = P ≈ ∪ {(uk, ul)};
15 ;
16 end
17 let: Q( i

2n , j
2n ) = P=, P , P ≈ ;

18 compute: H(Q( i
2n , j

2n ));

19 if H(Q( i
2n , j

2n )) > Max then

20 Max = H(Q( i
2n , j

2n )), (θ, ϑ) = ( i
2n

, j
2n

), P=
θ = P=, Pϑ = P , P ≈

(θ,ϑ) = P ≈,

21 Q∗
(θ,ϑ) = Q( i

2n , j
2n );

22 end
23 let: P= = ∅, P = ∅, P ≈ = ∅;
24 end
25 end

26 let: SCϑ
Y = Pϑ , WC

(θ,ϑ)
Y = P ≈

(θ,ϑ), NCθ
Y = P=

θ ;

27 return: SCϑ
Y , WC

(θ,ϑ)
Y , NCθ

Y , (θ, ϑ)
28 end
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f1ðui; ujÞ ¼
�
1� eYðui; ujÞ

�
�
�
2n �

�
1� eYðui; ujÞ

�
þ 1

�

2nþ 1
;

ð28Þ

f2ðui; ujÞ ¼
4n � eYðui; ujÞ �

�
1� eYðui; ujÞ

�

2nþ 1
;

ð29Þ

f3ðui; ujÞ ¼
eYðui; ujÞ �

�
2n � eYðui; ujÞ þ 1

�

2nþ 1

ð30Þ

are called strong-conflict probability, weak-conflict

probability and non-conflict probability of ðui; ujÞ,
respectively.

Remark 3.21 For any given issue set Y, the functions

f1ðui; ujÞ, f2ðui; ujÞ and f3ðui; ujÞ describe the probabilities

of ðui; ujÞ’s being in the sets SCb
Y , WC

ða;bÞ
Y and NCa

Y ,

respectively. For example, the probability of ðu1; u2Þ’s
being in the set SCb

Y is 15
21
¼ 5

7
in Table 4 of Example 3.11;

one can verify that the value of f1ðu1; u2Þ in Definition 3.20

is exactly 5
7
, where n ¼ 3 and eYðu1; u2Þ ¼ 1

6
. It is easy to

verify that 0� fkðui; ujÞ� 1 (k ¼ 1; 2; 3) and f1ðui; ujÞ þ
f2ðui; ujÞ þ f3ðui; ujÞ ¼ 1 for any pair ðui; ujÞ 2 U � U.

Definition 3.22 Let S ¼ ðU;V ; f Þ be a three-valued situ-

ation table, Y � V be a non-empty subset of V, ða; bÞ be a

pair of thresholds with 0� b\a� 1, and C
ða;bÞ
Y ¼

hSCb
Y ;WC

ða;bÞ
Y ;NCa

Yi be a three-level conflict on the issue

set Y. The measure M of C
ða;bÞ
Y is defined by:

M
�
C
ða;bÞ
Y

�
¼

P3
i¼1 pi; ð31Þ

where

p1 ¼
P

ðui;ujÞ2SCb
Y
f1ðui; ujÞ

P
ðui;ujÞ2U�U f1ðui; ujÞ

;

p2 ¼
P

ðui;ujÞ2WC
ða;bÞ
Y

f2ðui; ujÞ
P

ðui;ujÞ2U�U f2ðui; ujÞ
;

p3 ¼
P

ðui;ujÞ2NCa
Y
f3ðui; ujÞ

P
ðui;ujÞ2U�U f3ðui; ujÞ

:

ð32Þ

Definition 3.23 Let S ¼ ðU;V ; f Þ be a three-valued situ-

ation table, Y � V be a non-empty subset of V, and C
ða;bÞ
Y

be any three-level conflict on the issue set Y. A three-level

conflict C
ðh;#Þ
Y on the issue set Y is optimal when it satisfies

the condition that

MðCðh;#Þ
Y Þ ¼ max

8Cða;bÞ
Y

MðCða;bÞ
Y Þ: ð33Þ

Remark 3.24

(i) It is obvious that 0� pi � 1 (i ¼ 1; 2; 3) and

therefore 0�MðCða;bÞ
Y Þ� 3 for any three-level

conflict C
ða;bÞ
Y in Definition 3.22.

(ii) We think that the whole three-level conflict C
ða;bÞ
Y

gets an optimal state when its measure is maximal.

Note that this does not ensure any one of the three

sets SCb
Y ;WC

ða;bÞ
Y ;NCa

Y is separately optimal.

(iii) Since the properties of three-level conflicts are

similar to those of trisections of all pairs of agents,

here we only need to compare a finite number of

MðCða;bÞ
Y Þ to find the maximal one.

Table 9 Strong-conflict probabilities of all pairs

f1ðui; ujÞ u1 u2 u3 u4 u5 u6

u1 0

u2 5/7 0

u3 1 1/21 0

u4 5/7 1/7 1/21 0

u5 1 1/21 0 1/21 0

u6 2/7 1/7 2/7 1/7 2/7 0

Table 10 Weak-conflict probabilities of all pairs

f2ðui; ujÞ u1 u2 u3 u4 u5 u6

u1 0

u2 5/21 0

u3 0 5/21 0

u4 5/21 8/21 5/21 0

u5 0 5/21 0 5/21 0

u6 3/7 8/21 3/7 8/21 3/7 0

Table 11 Non-conflict probabilities of all pairs

f3ðui; ujÞ u1 u2 u3 u4 u5 u6

u1 1

u2 1/21 1

u3 0 5/7 1

u4 1/21 10/21 5/7 1

u5 0 5/7 1 5/7 1

u6 2/7 10/21 2/7 10/21 2/7 1
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Example 3.25 We have obtained all three-level conflicts

on the issue set Y in Table 4 of Example 3.11. By Defi-

nition 3.20, we can compute the strong-conflict, weak-

conflict and non-conflict probabilities, respectively, for all

pairs of agents as shown in Tables 9, 10 and 11.

Furthermore, by Definitions 3.22 and 3.23, we can com-

pute the measures of all three-level conflicts that have been

listed in Table 4. Table 12 shows such results, from which

we find that the optimal three-level conflict is C
ð1;1=6Þ
Y or

C
ð1;1=3Þ
Y with MðCð1;1=6Þ

Y Þ ¼ MðCð1;1=3Þ
Y Þ � 2:1475. Accord-

ing to the second way of finding the final optimal three-

level conflict, the three-level conflict C
ð1;1=6Þ
Y or C

ð1;1=3Þ
Y is

what we find, and we list it below by Table 4.

Table 12 The measures of all three-level conflicts on Y

C
ða;bÞ
Y

p1 p2 p3 MðCða;bÞ
Y Þ

C
ð1;0Þ
Y

0.4078 1 0.5720 1.9798

C
ð1;1=6Þ
Y

0.6990 0.8765 0.5720 2.1475

C
ð1;1=3Þ
Y

0.6990 0.8765 0.5720 2.1475

C
ð1;1=2Þ
Y

0.8738 0.5432 0.5720 1.9890

C
ð1;2=3Þ
Y

0.9612 0.2469 0.5720 1.7801

C
ð1;5=6Þ
Y

1.0000 0 0.5720 1.5720

C
ð5=6;0Þ
Y

0.4078 0.7531 0.8054 1.9663

C
ð5=6;1=6Þ
Y

0.6990 0.6296 0.8054 2.1340

C
ð5=6;1=3Þ
Y

0.6990 0.6296 0.8054 2.1340

C
ð5=6;1=2Þ
Y

0.8738 0.2963 0.8054 1.9755

C
ð5=6;2=3Þ
Y

0.9612 0 0.8054 1.7666

C
ð2=3;0Þ
Y

0.4078 0.4568 0.9222 1.7868

C
ð2=3;1=6Þ
Y

0.6990 0.3333 0.9222 1.9545

C
ð2=3;1=3Þ
Y

0.6990 0.3333 0.9222 1.9545

C
ð2=3;1=2Þ
Y

0.8738 0 0.9222 1.7960

C
ð1=2;0Þ
Y

0.4078 0.1235 0.9222 1.5235

C
ð1=2;1=6Þ
Y

0.6990 0 0.9222 1.6912

C
ð1=2;1=3Þ
Y

0.6990 0 0.9222 1.6912

C
ð1=3;0Þ
Y

0.4078 0.1235 0.9222 1.5235

C
ð1=3;1=6Þ
Y

0.6990 0 0.9222 1.6912

C
ð1=6;0Þ
Y

0.4078 0 1 1.4078

The numbers in bold are the maximal measures of all three-level conflicts on Y

strong conflict: SC
1=6
Y ¼ fðu1; u3Þ; ðu1; u5Þ; ðu1; u2Þ; ðu1; u4Þg;

weak conflict: WC
ð1;1=6Þ
Y ¼ fðu2; u3Þ; ðu4; u2Þ; ðu4; u3Þ; ðu5; u2Þ; ðu5; u4Þ; ðu6; u1Þ; ðu6; u2Þ; ðu6; u3Þ; ðu6; u4Þ; ðu6; u5Þg;

non-conflict: NC1
Y ¼ fðu1; u1Þ; ðu2; u2Þ; ðu3; u3Þ; ðu4; u4Þ; ðu5; u5Þ; ðu6; u6Þ; ðu3; u5Þg:

8
><

>:

Similarly, we can obtain the final optimal three-level alliance as follows:

strong alliance: SA1
Y ¼ fðu1; u1Þ; ðu2; u2Þ; ðu3; u3Þ; ðu4; u4Þ; ðu5; u5Þ; ðu6; u6Þ; ðu3; u5Þg;

weak alliance: WA
ð1;1=6Þ
Y ¼ fðu2; u3Þ; ðu4; u2Þ; ðu4; u3Þ; ðu5; u2Þ; ðu5; u4Þ; ðu6; u1Þ; ðu6; u2Þ; ðu6; u3Þ; ðu6; u4Þ; ðu6; u5Þg;

non-alliance: NA
1=6
Y ¼ fðu1; u3Þ; ðu1; u5Þ; ðu1; u2Þ; ðu1; u4Þg:

8
><

>:
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To sum up the second way of finding the optimal three-

level conflict, we give the following Algorithm 2. It is

similar to Algorithm 1 to some extent, with the differences

that: (1) here we need to compute the values of f1ðuk; ulÞ,
f2ðuk; ulÞ and f3ðuk; ulÞ; (2) we compute all possible three-

level conflicts right after the innermost iteration, and find

the first emerging maximal measure MðCð i
2n;

j
2nÞ

Y Þ and regard

this three-level conflict as the final determined optimal one,

namely C
ðh;#Þ
Y ¼ hSC#

Y ;WC
ðh;#Þ
Y ;NCh

Yi in Algorithm 2.

Obviously, the time complexity of Algorithm 2 is also

Oðm2Þ with m ¼ jUj.

(3) Conclusion of the threshold-selection problem

According to the above discussion, we immediately

have the following conclusion:

Theorem 3.26 For any given three-valued situation

table S ¼ ðU;V; f Þ and non-empty issue set Y � V , the two

ways of finding the final optimal three-level conflict on

Y can be finished in finite steps, and they bring about the

same result in this paper.

Proof For any given three-valued situation

table S ¼ ðU;V; f Þ and non-empty issue set Y � V with

jYj ¼ n, there are at most nð2nþ 1Þ different trisections of
all pairs of agents on Y by Theorem 3.6, and the finite

trisections are determined by known pairs of thresholds

ða; bÞ. Therefore, the optimal trisection of all pairs of

agents can be found in finite steps by the measure H. This

shows that the first way of finding the final optimal three-

level conflict can be finished in finite steps. For the second

way, we firstly compute all three-level conflicts induced by

all trisections of all pairs of agents on Y. So there are also at

most nð2nþ 1Þ different three-level conflicts on Y. For

these finite three-level conflicts, we use the measure M to

compute their measures and find the maximal one among

these finite measures. Therefore, this procedure can also be

finished in finite steps.

For any given Y � V and pair of thresholds ða; bÞ, we
have that SCb

Y ¼ P	
b ðYÞ, NCa

Y ¼ P¼
a ðYÞ and WC

ða;bÞ
Y ¼

P�
ða;bÞðYÞ by Definition 3.9. At the same time, we have that

HðQða;bÞðYÞÞ ¼ MðCða;bÞ
Y Þ by Definitions 3.15 and 3.23,

Algorithm 2: An algorithm for computing the optimal three-level conflict in the second way
Input: A three-valued situation table S = (U, V, f), an issue set Y ⊆ V

Output: The optimal three-level conflict and its thresholds
1 begin
2 let: n = |Y |;
3 foreach (uk, ul) ∈ U × U do
4 compute: eY (uk , ul), f1(uk , ul), f2(uk , ul), f3(uk , ul);
5 end
6 let: P= = ∅, P = ∅, P ≈ = ∅, Max = 0;
7 for i = 1 to 2n do
8 for j = 0 to i − 1 do
9 foreach (uk, ul) ∈ U × U do

10 if eY (uk, ul) ≥ i
2n

then
11 P= = P= ∪ {(uk , ul)};
12 else if eY (uk , ul) ≤ j

2n
then

13 P = P ∪ {(uk, ul)};
14 else P ≈ = P ≈ ∪ {(uk, ul)};
15 ;
16 end

17 let: C
( i
2n , j

2n )
Y = P , P ≈, P= ;

18 compute: M(C
( i
2n , j

2n )
Y );

19 if M(C
( i
2n , j

2n )
Y ) > Max then

20 Max = M(C
( i
2n , j

2n )
Y ), (θ, ϑ) = ( i

2n
, j
2n

), SCϑ
Y = P , WC

(θ,ϑ)
Y = P ≈, NCθ

Y = P=,

21 C
(θ,ϑ)
Y = C

( i
2n , j

2n )
Y ;

22 end
23 let: P= = ∅, P = ∅, P ≈ = ∅;
24 end
25 end

26 return: SCϑ
Y , WC

(θ,ϑ)
Y , NCθ

Y , (θ, ϑ)
27 end
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where Qða;bÞðYÞ ¼ hP¼
a ðYÞ;P	

b ðYÞ;P�
ða;bÞðYÞi and

C
ða;bÞ
Y ¼ hSCb

Y ;WC
ða;bÞ
Y ;NCa

Yi. Therefore, the two ways

proposed in this paper bring about the same resulting

three-level conflict on an issue set Y. h

3.5 Comparison and discussion

In this part, we mainly compare our approach with the

approach of Yao [35] from different aspects, and give more

discussions about the three-level conflicts on a single issue.

(1) The three-level conflict induced by Qða;bÞðYÞ ver-
sus the three-level conflict induced by

� C
½0;n

Y ;C

½n;g

Y ;C

½g;1

Y �. Firstly, we compare our evalua-

tion of similarity degree (resp. deference degree) with the

aggregated conflict function in Definition 2.8, and compare

the three-level conflict induced by Qða;bÞðYÞ with the three-

level conflict induced by � C
½0;n

Y ;C

½n;g

Y ;C

½g;1

Y �.

Proposition 3.27 Let S ¼ ðU;V; f Þ be a three-valued sit-

uation table, and Y � V be a non-empty issue set. For any

ðui; ujÞ 2 U � U, the following conclusion holds:

cYðui; ujÞ ¼ 1� eYðui; ujÞ ¼ dYðui; ujÞ: ð34Þ

Proof By Definition 2.8, the aggregated conflict function

cYðui; ujÞ ¼ 1
2jY j

P
v2Y jf ðui; vÞ � f ðuj; vÞj for any agents

ui; uj 2 U on an issue set Y � V . For any v 2 Y , jf ðui; vÞ �
f ðuj; vÞj=2 ¼ 1 if and only if f ðui; vÞ 6¼ f ðuj; vÞ and

f ðui; vÞ � f ðuj; vÞ ¼ �1. At the same time, f ðui; vÞ 6¼ f ðuj; vÞ
and f ðui; vÞ � f ðuj; vÞ ¼ �1 if and only if qvðui; ujÞ ¼ 0 by

Definition 3.1. Therefore, jf ðui; vÞ � f ðuj; vÞj=2 ¼ 1 if and

only if qvðui; ujÞ ¼ 0. Similarly, jf ðui; vÞ � f ðuj; vÞj=2 ¼
0:5 if and only if f ðui; vÞ 6¼ f ðuj; vÞ and

f ðui; vÞ � f ðuj; vÞ ¼ 0, which in turn if and only if

qvðui; ujÞ ¼ 0:5. jf ðui; vÞ � f ðuj; vÞj=2 ¼ 0 if and only if

f ðui; vÞ ¼ f ðuj; vÞ, which in turn if and only if

qvðui; ujÞ ¼ 1. Therefore, we have that cYðui; ujÞ ¼ 1�
eYðui; ujÞ ¼ dYðui; ujÞ for any ðui; ujÞ 2 U � U. h

Proposition 3.28 Given a three-valued situation

table S ¼ ðU;V; f Þ and a non-empty issue set Y � V, the

trisection model of all pairs of agents Qða;bÞðYÞ in this

paper is a conservative extension of the trisection model of

all pairs of agents � C
½0;n

Y ;C

½n;g

Y ;C

½g;1

Y � in Yao [35].

Proof For a given three-valued situation

table S ¼ ðU;V; f Þ and a given non-empty issue set Y, we

have that cYðui; ujÞ ¼ dYðui; ujÞ for any ðui; ujÞ 2 U � U by

Proposition 3.27. Furthermore, the scope of thresholds is

0� n\0:5\g� 1 in the model � C
½0;n

Y ;C

½n;g

Y ;C

½g;1

Y �,

while the scope of thresholds is 0� b\a� 1 in the model

Qða;bÞðYÞ. Therefore, the trisections generated by the model

Qða;bÞðYÞ includes the trisections generated by the model

� C
½0;n

Y ;C

½n;g

Y ;C

½g;1

Y �. h

Proposition 3.29 Given a three-valued situation

table S ¼ ðU;V; f Þ and a non-empty issue set Y � V, the

three-level conflict model C
ða;bÞ
Y in this paper is a conser-

vative extension of the three-level conflict model induced

by � C
½0;n

Y ;C

½n;g

Y ;C

½g;1

Y � in Yao [35].

Proof Since the three-level conflict model is induced by

� C
½0;n

Y ;C

½n;g

Y ;C

½g;1

Y � by Definition 2.10, i.e.,

SC ¼ C
½g;1

J , WC ¼ C

½n;g

J and NC ¼ C

½0;n

J , we immediately

obtain the above conclusion by Proposition 3.28. h

Conclusion: Proposition 3.28 tells us that we remove

the limitation of 0� n\0:5\g� 1 and extend the trisec-

tion model of Yao [35], namely Definition 2.8, to a more

general level; Proposition 3.29 tells us that we extend the

three-level conflict model of Yao [35], namely Defini-

tion 2.10, to a more general level. In the previous part, we

have solved the threshold-selection problem for three-level

conflict analysis on multiple issues in two ways. So in this

paper we in fact solve the threshold-selection problem for

three-level conflict analysis proposed by Yao [35] on

multiple issues.

(2) Trisection of all pairs of agents on a single issue.

Now we focus on three-level conflict analysis on a single

issue, through which one can see the relationship between

our approach and Yao’s approach in [35] on a single issue.

Firstly, it is easy to obtain the following equivalent defi-

nition of trisection of all pairs of agents on a single issue

v 2 V , when we limit the issue set Y to a single-issue set

fvg in Definition 3.3.

Definition 3.30 Let S ¼ ðU;V ; f Þ be a three-valued situ-

ation table, v 2 V be an issue in V. The trisection of all

pairs of agents on the single issue v, denoted by Qv ¼
hP¼

v ;P
	
v ;P

�
v i is defined by

P¼
v ¼ fðui; ujÞ 2 U � U j evðui; ujÞ ¼ 1g;

P	
v ¼ fðui; ujÞ 2 U � U j evðui; ujÞ ¼ 0g;

P�
v ¼ fðui; ujÞ 2 U � U j evðui; ujÞ ¼ 0:5g:

8
><

>:
ð35Þ

An equivalent representation of the above trisection is

by using the difference degree as follows:

P¼
v ¼ fðui; ujÞ 2 U � U j dvðui; ujÞ ¼ 0g;

P	
v ¼ fðui; ujÞ 2 U � U j dvðui; ujÞ ¼ 1g;

P�
v ¼ fðui; ujÞ 2 U � U j dvðui; ujÞ ¼ 0:5g:

8
><

>:
ð36Þ

Remark 3.31 Obviously, the three sets P¼
v ;P

	
v ;P

�
v are

pair-wise disjoint and their union is the entire product
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space U � U. At the same time, by Definition 3.30, it is

easy to obtain the following facts3:

P¼
v ¼ fðþ;þÞ; ð�;�Þ; ð0; 0Þg;

P	
v ¼ fðþ;�Þg;

P�
v ¼ fðþ; 0Þ; ð�; 0Þg:

8
><

>:

Example 3.32 Here we give an example to compare Def-

inition 3.30 with Definition 2.4 of Yao [35]. Consider

Table 1 of Example 3.8 again. We take the issue v1 to

discuss, with the other issues being similar. Firstly, by

Definition 3.30, we can obtain the trisection of all pairs of

agents on the single issue v1 as follows:

P¼
v1
¼ fðu2; u3Þ; ðu2; u5Þ; ðu3; u5Þ; ðu4; u6Þ; ðu1; u1Þ;
ðu2; u2Þ; ðu3; u3Þ; ðu4; u4Þ; ðu5; u5Þ; ðu6; u6Þg;

P	
v1
¼ fðu1; u2Þ; ðu1; u3Þ; ðu1; u5Þg;

P�
v1
¼ fðu1; u4Þ; ðu1; u6Þ; ðu2; u4Þ; ðu2; u6Þ; ðu3; u4Þ;

ðu3; u6Þ; ðu5; u4Þ; ðu5; u6Þg:

8
>>>>>><

>>>>>>:

Secondly, by Definition 2.4 we can obtain the trisection of

all pairs of agents on the single issue v1 in Yao [35] as

follows:

R¼
v1
¼ fðu2; u3Þ; ðu2; u5Þ; ðu3; u5Þ; ðu4; u6Þ; ðu1; u1Þ;
ðu2; u2Þ; ðu3; u3Þ; ðu4; u4Þ; ðu5; u5Þ; ðu6; u6Þg;

R	
v1
¼ fðu1; u2Þ; ðu1; u3Þ; ðu1; u5Þg;

R�
v1
¼ fðu1; u4Þ; ðu1; u6Þ; ðu2; u4Þ; ðu2; u6Þ; ðu3; u4Þ;

ðu3; u6Þ; ðu5; u4Þ; ðu5; u6Þg:

8
>>>>>><

>>>>>>:

Conclusion: We see that Definitions 3.30 and 2.4 generate

the same trisection of all pairs of agents on a single issue.

This conclusion is not accidental, and it is due to the

fundamental fact — evðui; ujÞ ¼ 1 iff

jf ðui; vÞ � f ðuj; vÞj=2 ¼ 0, evðui; ujÞ ¼ 0 iff

jf ðui; vÞ � f ðuj; vÞj=2 ¼ 1, and evðui; ujÞ ¼ 0:5 iff

jf ðui; vÞ � f ðuj; vÞj=2 ¼ 0:5.

(3) Trisection of all agents on a single issue. Following

the work of Yao [35], below we aim to propose a trisection

of all agents on a single issue. For this purpose, we will

have to introduce the following definition of ‘‘reference

agent‘‘.

Definition 3.33 Let S ¼ ðU;V ; f Þ be a three-valued situ-

ation table, and Y � V be a non-empty subset of V. For any

given Y, a reference agent on Y is an agent s 2 U satis-

fying the condition that there exists at least one issue v 2 Y

such that f ðs; vÞ 6¼ 0.

Intuitively, a reference agent s on an issue set Y is any

agent as long as it does not have the attitudes ‘‘0’’ on all

issues of Y, and it will be used to induce a trisection of all

agents on Y.4 When Y ¼ fvg in particular, the reference

agent s on Y can be any agent that has the attitude ‘‘þ‘‘ or

‘‘-’’ on the issue v by Definition 3.33; the reason why s can
not be the agent that has the attitude ‘‘0‘‘ on v is that, when

s is such an agent, we will not be able to differentiate the

attitudes ‘‘þ’’ and ‘‘-‘‘ in the trisection of all agents

induced by s on v.

Definition 3.34 Let S ¼ ðU;V ; f Þ be a three-valued situ-

ation table, v 2 V be an issue in V, and s be a reference

agent on fvg. The trisection of all agents induced by s on
the single issue v, denoted by

TvðsÞ ¼ hAg¼v ðsÞ;Ag	v ðsÞ;Ag�v ðsÞi, is defined by

Ag¼v ðsÞ ¼ fu 2 Ujevðu; sÞ ¼ 1g;
Ag	v ðsÞ ¼ fu 2 Ujevðu; sÞ ¼ 0g;
Ag�v ðsÞ ¼ fu 2 Ujevðu; sÞ ¼ 0:5g:

8
><

>:
ð37Þ

An equivalent representation of the above trisection is

by using the difference degree as follows:

Ag¼v ðsÞ ¼ fu 2 Ujdvðu; sÞ ¼ 0g;
Ag	v ðsÞ ¼ fu 2 Ujdvðu; sÞ ¼ 1g;
Ag�v ðsÞ ¼ fu 2 Ujdvðu; sÞ ¼ 0:5g:

8
><

>:
ð38Þ

Note that here different reference agents may induce dif-

ferent trisections of all agents on the single issue v. Hence

this definition generates more trisections than that of Yao

[35]. Below we give an example to further illustrate this

point.

Example 3.35 Consider Table 1 of Example 3.8 again. We

still select the issue v1, i.e., let Y ¼ fv1g, with the other

issues being similar. Then, by our approach of Definition

3.34, there are the following two situations. Note that the

reference agent s on fv1g can not be u4 or u6, because u4 or

u6 has the attitude ‘‘0’’ on the single issue v.

(i) If s ¼ u2, then we can compute the similarity degree

of each agent and s as Table 13 shows. Obviously, the case

of s ¼ u3 or s ¼ u5 is similar to this case.

Then, by Definition 3.34, we have the following tri-

section of all agents induced by s ¼ u2 on the single issue

v1:

3 Here we informally express the three sets of pairs of agents, the

meaning of which should be clear.

4 As we see, the concept of reference agent, namely Definition 3.33,

is defined on any issue set Y, and Y may contain multiple issues.

However, in this paper we will only use this concept to induce the

trisection of all agents on a single issue. In the future, we will use

Definition 3.33 to induce the trisection of all agents on multiple

issues.
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Ag¼v1ðu2Þ ¼ fu2; u3; u5g;
Ag	v1ðu2Þ ¼ fu1g;

Ag�v1ðu2Þ ¼ fu4; u6g:

8
><

>:

(ii) If s ¼ u1, then we can similarly obtain the following

trisection of all agents induced by s ¼ u1 on the single

issue v1:

Ag¼v1ðu1Þ ¼ fu1g;
Ag	v1ðu1Þ ¼ fu2; u3; u5g;
Ag�v1ðu1Þ ¼ fu4; u6g:

8
><

>:

So we obtain the above two trisections of all agents by our

approach, and the two trisections are meaningful from

different trisecting points of view. Let us now consider the

approach of Yao [35]. By Definition 2.3, we can obtain the

following trisection of all agents on the single issue v1:

Aþ
v1
¼ fu 2 Ujf ðu; v1Þ ¼ þg ¼ fu2; u3; u5g;
A�
v1
¼ fu 2 Ujf ðu; v1Þ ¼ �g ¼ fu1g;

A0
v1
¼ fu 2 Ujf ðu; v1Þ ¼ 0g ¼ fu4; u6g:

8
><

>:

Conclusion: One can see that Yao’s trisection of all agents

on a single issue is exactly one case of our trisections,

namely the case of s ¼ u2. Therefore, our approach of

Definition 3.34 produces more trisections than Yao’s

approach of Definition 2.3 on a single issue. In other

words, the trisection model of all agents on a single issue in

this paper is a conservative extension of the trisection

model of all agents in Yao [35] on the same single issue.

(4) The relationship between the two types of tri-

sections on a single issue. Next, we present a theorem to

show the relationship between trisections of all agents and

trisections of all pairs of agents on a single issue.

Theorem 3.36 Let S ¼ ðU;V; f Þ be a three-valued situa-

tion table, v 2 V be an issue in V, and s be a reference

agent on fvg. The relationship of the six sets Ag¼v ðsÞ,
Ag	v ðsÞ, Ag�v ðsÞ, P¼

v , P
	
v and P�

v is as follows:

P¼
v ¼ ðAg¼v ðsÞ � Ag¼v ðsÞÞ [ ðAg	v ðsÞ � Ag	v ðsÞÞ

[ðAg�v ðsÞ � Ag�v ðsÞÞ;
P	
v ¼ Ag¼v ðsÞ � Ag	v ðsÞ;

P�
v ¼ ðAg¼v ðsÞ � Ag�v ðsÞÞ [ ðAg	v ðsÞ � Ag�v ðsÞÞ:

ð39Þ

Proof Suppose that f ðs; vÞ ¼ þ, then we have

Ag¼v ðsÞ ¼ fu 2 Ujf ðu; vÞ ¼ þg,
Ag	v ðsÞ ¼ fu 2 Ujf ðu; vÞ ¼ �g,
Ag�v ðsÞ ¼ fu 2 Ujf ðu; vÞ ¼ 0g. On the other hand, by

Definition 3.30, we have that

P¼
v ¼ fðþ;þÞ; ð�;�Þ; ð0; 0Þg, P	

v ¼ fðþ;�Þg and

P�
v ¼ fðþ; 0Þ; ð�; 0Þg. Hence the conclusion holds for the

case of f ðs; vÞ ¼ þ.

Suppose that f ðs; vÞ ¼ �, then we have Ag¼v ðsÞ ¼ fu 2
Uj f ðu; vÞ ¼ �g, Ag	v ðsÞ ¼ fu 2 Ujf ðu; vÞ ¼ þg,
Ag�v ðsÞ ¼ fu 2 Ujf ðu; vÞ ¼ 0g. Similar to the case of

f ðs; vÞ ¼ þ, it is easy to obtain that the conclusion also

holds for the case of f ðs; vÞ ¼ �. h

Remark 3.37 This theorem also explains why we agree

that f ðs; vÞ ¼ 0 is illegal on a single issue v. Assume that

f ðs; vÞ ¼ 0, then we have Ag¼v ðsÞ ¼ fu 2 Ujf ðu; vÞ ¼ 0g,
Ag	v ðsÞ ¼ ;, and

Ag�v ðsÞ ¼ fu 2 Ujf ðu; vÞ ¼ þg [ fu 2 Ujf ðu; vÞ ¼ �g.
Then, Ag¼v ðsÞ � Ag¼v ðsÞ ¼ fð0; 0Þg, Ag	v ðsÞ � Ag	v ðsÞ ¼ ;,
and Ag�v ðsÞ � Ag�v ðsÞ ¼ fðþ;þÞ; ð�;�Þ; ðþ;�Þ; ð�;þÞg.
So in this case we have that ðAg¼v ðsÞ � Ag¼v ðsÞÞ [ ðAg	v ðsÞ
�Ag	v ðsÞÞ [ ðAg�v ðsÞ �Ag�v ðsÞÞ ¼ fð0; 0Þ; ðþ;þÞ; ð�;�Þ;
ðþ;�Þ; ð�;þÞg and Ag¼v ðsÞ � Ag	v ðsÞ ¼ ;. Thus, the

conclusion of Theorem 3.36 does not hold when

f ðs; vÞ ¼ 0. In other words, we are not able to differentiate

the attitudes þ and - within the trisection set Ag�v ðsÞ or P¼
v

when f ðs; vÞ ¼ 0 on the single issue v.

(5) Two types of three-level conflicts on a single issue.

Now, we discuss two types of three-level conflicts on a

single issue: one is induced by a trisection of all agents, and

the other is induced by a trisection of all pairs of agents.

We have defined the trisection of all agents hAg¼v ðsÞ,
Ag	v ðsÞ, Ag�v ðsÞi for any given s and v. The three sets are

pair-wise disjoint, and their union is the set of all agents.

Furthermore, we have obtained that: with f ðs; vÞ ¼ þ or

f ðs; vÞ ¼ �, all the agents in any one of the three sets have

Table 13 Similarity degree of each agent and s ¼ u2 on fv1g

u1 u2 u3 u4 u5 u6

v1 - þ þ 0 þ 0

ev1 ðui; sÞ 0 1 1 0.5 1 0.5
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the same attitudes towards the issue v. So, for a single

issue, it is easy to define the three-level conflict induced by

a trisection of all agents.

Definition 3.38 Let S ¼ ðU;V ; f Þ be a three-valued situ-

ation table, v 2 V be an issue in V, s be a reference agent

on fvg, and hAg¼v ðsÞ;Ag	v ðsÞ;Ag�v ðsÞi be a trisection of all

agents induced by s on fvg. The three-level conflict

induced by hAg¼v ðsÞ;Ag	v ðsÞ;Ag�v ðsÞi is defined by

strong conflict : SCðAg¼v ðsÞ;
Ag	v ðsÞÞ;

weak conflict : WCðAg¼v ðsÞ;Ag�v ðsÞÞ;
WCðAg	v ðsÞ;Ag�v ðsÞÞ;

non-conflict : NCðAg¼v ðsÞ;Ag¼v ðsÞÞ;NCðAg	v ðsÞ;
Ag	v ðsÞÞ;NCðAg�v ðsÞ;Ag�v ðsÞÞ:

8
>>>>>>>><

>>>>>>>>:

ð40Þ

Conversely, the three-level alliance induced by

hAg¼v ðsÞ;Ag	v ðsÞ;Ag�v ðsÞi is defined by

strong alliance : SAðAg¼v ðsÞ;Ag¼v ðsÞÞ; SAðAg	v ðsÞ;
Ag	v ðsÞÞ; SAðAg�v ðsÞ;Ag�v ðsÞÞ;

weak alliance : WAðAg¼v ðsÞ;Ag�v ðsÞÞ;
WAðAg	v ðsÞ;Ag�v ðsÞÞ;

non-alliance : NAðAg¼v ðsÞ;Ag	v ðsÞÞ:

8
>>>>>><

>>>>>>:

ð41Þ

Remark 3.39 Although our trisection model

hAg¼v ðsÞ;Ag	v ðsÞ;Ag�v ðsÞi is an extension of the trisection

model � A�
v ;A

0
v ;A

þ
v � of Yao [35], the three-level con-

flict model defined above is equivalent to Yao’s three-level

conflict model of Definition 2.5 on a single issue. One may

verify this conclusion through the following Example 3.40.

Example 3.40 Consider Table 1 again. In Example 3.35,

we have obtained the trisections hAg¼v1ðu2Þ, Ag	v1ðu2Þ,
Ag�v1ðu2Þi and hAg¼v1ðu1Þ, Ag	v1ðu1Þ, Ag�v1ðu1Þi. Then, by

Definition 3.38, we obtain that the three-level conflict

induced by hAg¼v1ðu2Þ, Ag
	
v1
ðu2Þ, Ag�v1ðu2Þi is

strong conflict: SCðfu2; u3; u5g;
fu1gÞ;

weak conflict: WCðfu2; u3; u5g; fu4; u6gÞ;
WCðfu1g; fu4; u6gÞ;

non-conflict: NCðfu2; u3; u5g; fu2; u3; u5gÞ;
NCðfu1g; fu1gÞ;NCðfu4; u6g; fu4; u6gÞ:

8
>>>>>>>><

>>>>>>>>:

Similarly, the three-level conflict induced by hAg¼v1ðu1Þ,
Ag	v1ðu1Þ, Ag

�
v1
ðu1Þi is

strong conflict:

SCðfu1g; fu2; u3; u5gÞ;
weak conflict: WCðfu1g; fu4; u6gÞ;

WCðfu2; u3; u5g; fu4; u6gÞ;
non-conflict: NCðfu1g; fu1gÞ;

NCðfu2; u3; u5g; fu2; u3; u5gÞ;NCðfu4; u6g; fu4; u6gÞ:

8
>>>>>>>><

>>>>>>>>:

Conclusion: We can see that the two different trisections

in fact induce the same three-level conflicts. Therefore, our

conclusion is—for any given single issue v 2 V , the two

different trisections hAg¼v1ðu2Þ, Ag	v1ðu2Þ, Ag�v1ðu2Þi and

hAg¼v1ðu1Þ, Ag
	
v1
ðu1Þ, Ag�v1ðu1Þi induce the same three-level

conflicts.

We have defined the trisection of all pairs of agents hP¼
v ,

P	
v , P

�
v i on a single issue v in Definition 3.30. The three

sets are also pair-wise disjoint, and their union is the set of

all pairs of agents. By the previous discussion, we have

obtained that: for any pair of agents ðui; ujÞ 2 P¼
v , ui and uj

have the same attitudes towards issue v; for any pair of

agents ðui; ujÞ 2 P	
v , ui and uj have clearly opposite atti-

tudes towards issue v; for any pair of agents ðui; ujÞ 2 P�
v ,

ui and uj have other cases of attitudes towards issue

v. Therefore, we have the following definition of three-

level conflict induced by a trisection of all pairs of agents.

Definition 3.41 Let S ¼ ðU;V ; f Þ be a three-valued situ-

ation table, v 2 V be an issue in V, and hP¼
v ;P

	
v ;P

�
v i be a

trisection of all pairs of agents on v. The three-level

conflict induced by hP¼
v ;P

	
v ;P

�
v i is defined by

strong conflict : SC¼fðui;ujÞ2U�Ujðui;ujÞ2P	
v g;

weak conflict : WC¼fðui;ujÞ2U�Ujðui;ujÞ2P�
v g;

non-conflict : NC¼fðui;ujÞ2U�Ujðui;ujÞ2P¼
v g:

8
><

>:

ð42Þ

Conversely, the three-level alliance induced by

hP¼
v ;P

	
v ;P

�
v i is defined by

strong alliance : SA¼fðui;ujÞ2U�Ujðui;ujÞ2P¼
v g;

weak alliance : WA¼fðui;ujÞ2U�Ujðui;ujÞ2P�
v g;

non-alliance : NA¼fðui;ujÞ2U�Ujðui;ujÞ2P	
v g:

8
><

>:

ð43Þ

Example 3.42 In Example 3.32, we have obtained the tri-

section of all pairs of agents on v1, namely hP¼
v1
;P	

v1
;P�

v1
i.

Now, by Definition 3.41, we obtain the three-level conflict

induced by hP¼
v1
;P	

v1
;P�

v1
i is
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strong conflict:

SC ¼ P	
v1
¼ fðu1; u2Þ; ðu1; u3Þ; ðu1; u5Þg;

weak conflict: WC ¼ P�
v1
¼ fðu1; u4Þ; ðu1; u6Þ;

ðu2; u4Þ; ðu2; u6Þ; ðu3; u4Þ; ðu3; u6Þ; ðu5; u4Þ; ðu5; u6Þg;
non-conflict: NC ¼ P¼

v1
¼ fðu2; u3Þ; ðu2; u5Þ;

ðu3; u5Þ; ðu4; u6Þ; ðu1; u1Þ; ðu2; u2Þ; ðu3; u3Þ; ðu4; u4Þ;
ðu5; u5Þ; ðu6; u6Þg:

8
>>>>>>>>>>><

>>>>>>>>>>>:

Conclusion: By comparing this resulting three-level con-

flict with that of Example 3.40, we can see that they in fact

represent equivalent three-level conflicts in two different

forms. Therefore, our conclusion is—for any given single

issue v 2 V , the two types of trisections hAg¼v ðsÞ;Ag	v ðsÞ,
Ag�v ðsÞi and hP¼

v ;P
	
v ;P

�
v i induce the equivalent three-level

conflicts.

(6) Three-way strong alliance on a single issue.

Finally, we give one more discussion about the strong

alliance on a single issue, through which one can see the

role of reference agent in trisecting process. Since P¼
v ¼

fðþ;þÞ; ð�;�Þ; ð0; 0Þg according to the above discussion,

we further define the following trisection of P¼
v so as to

differentiate the pairs ðþ;þÞ; ð�;�Þ and (0, 0).

Definition 3.43 Let S ¼ ðU;V ; f Þ be a three-valued situ-

ation table, v 2 V be an issue in V, and s be a reference

agent on fvg satisfying the condition that f ðs; vÞ ¼ þ. The

trisection of P¼
v is defined by

PP¼
v ¼ fðui; ujÞ 2 P¼

v j evðui; sÞ ¼ 1g;
NP¼

v ¼ fðui; ujÞ 2 P¼
v j evðui; sÞ ¼ 0g;

BP¼
v ¼ fðui; ujÞ 2 P¼

v j evðui; sÞ ¼ 0:5g:

8
><

>:
ð44Þ

One can see that we can define a trisection flexibly by

employing different appropriate s on fvg. And this is

exactly what the reference agent plays.

Example 3.44 By Definition 3.43, we can further compute

the trisection of P¼
v1

as follows, where P¼
v1

has been com-

puted in Example 3.32:

PP¼
v1
¼ fðu2; u3Þ; ðu2; u5Þ; ðu3; u5Þ; ðu2; u2Þ;

ðu3; u3Þ; ðu5; u5Þg;
NP¼

v1
¼ fðu1; u1Þg;

BP¼
v1
¼ fðu4; u6Þ; ðu4; u4Þ; ðu6; u6Þg:

8
>>><

>>>:

One can see that PP¼
v1
¼ fðþ;þÞg, NP¼

v1
¼ fð�;�Þg and

BP¼
v1
¼ fð0; 0Þg. Therefore, the pairs ðþ;þÞ; ð�;�Þ and

(0, 0) are effectively differentiated from each other by

Definition 3.43.

By employing Definition 3.43, we can further divide the

strong alliance SA ¼ P¼
v into the following three parts so as

to differentiate the types of alliances in SA.

Definition 3.45 Let S ¼ ðU;V ; f Þ be a three-valued situ-

ation table, v 2 V be an issue in V, hP¼
v ;P

	
v ;P

�
v i be the

trisection of all pairs of agents on v, and hPP¼
v , NP

¼
v , BP

¼
v i

be the trisection of P¼
v . The three-way strong alliance

induced by hPP¼
v , NP

¼
v , BP

¼
v i is defined by

support-strong alliance : SSA

¼ fðui; ujÞ 2 P¼
v jðui; ujÞ 2 PP¼

v g;
opposition-strong alliance :

OSA ¼ fðui; ujÞ 2 P¼
v jðui; ujÞ 2 NP¼

v g;
neutrality-strong alliance :

NSA ¼ fðui; ujÞ 2 P¼
v jðui; ujÞ 2 BP¼

v g:

8
>>>>>>>><

>>>>>>>>:

ð45Þ

Example 3.46 In Example 3.44, we have obtained the tri-

section hPP¼
v1
, NP¼

v1
, BP¼

v1
i, and therefore we immediately

obtain the following three-way strong alliance by

Definition 3.45:

support-strong alliance: SSA

¼ fðu2; u3Þ; ðu2; u5Þ; ðu3; u5Þ; ðu2; u2Þ; ðu3; u3Þ; ðu5; u5Þg;
opposition-strong alliance: OSA ¼ fðu1; u1Þg;

neutrality-strong alliance:

NSA ¼ fðu4; u6Þ; ðu4; u4Þ; ðu6; u6Þg:

8
>>>>>><

>>>>>>:

4 Conclusion

A new model of three-way conflict analysis, namely the

three-level conflict induced by a trisection of all pairs of

agents on an issue set, is introduced in this paper. The

threshold-selection problem for the defined three-level

conflicts is successfully solved in two different ways. By

comparing the approach of Yao [35], the present paper

proves that the trisection model (resp. the three-level

conflict model) defined in this paper is a conservative

extension of the corresponding trisection model (resp.

three-level conflict model) in Yao [35]. Therefore, the

present paper extends and improves the results of Yao [35]

on multiple issues.

When we limit three-level conflict model to the one on a

single issue, we find that the three-level conflict induced by

a trisection of all agents is equivalent to the three-level

conflict induced by a trisection of all pairs of agents.

However, we fail to obtain a similar result on multiple

issues. So this problem will be further studied in the future

work. In addition, there are usually importance difference

among multiple issues. So we will introduce importance
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into the multiple issues, and study three-way conflict

analysis with importance on multiple issues in the future.
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