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Abstract

The present paper introduces a new model of three-way conflict analysis with similarity degree on an issue set. Specifically,
we introduce an evaluation of similarity degree, from a relative quantitative point of view, to evaluate the attitude similarity
between any two agents. Based on similarity degree, we define a trisection of all pairs of agents on an issue set, and propose
a three-level conflict model induced by such a trisection. More importantly, we solve the threshold-selection problem for
three-level conflict analysis on multiple issues. We prove that the trisection model (resp. the three-level conflict model)
defined in this paper is a conservative extension of the corresponding trisection model (resp. three-level conflict model)
defined in Yao 2019 on multiple issues. Therefore, the present paper extends and improves the results of Yao 2019 on

multiple issues.
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1 Introduction

Conflicts occur naturally in the real world at all levels of
individual and society. So the study and resolution of
conflicts is crucial in both theory and practice. In particular,
conflict analysis plays an important role in political and
lawsuits disputes [23], labor-management negotiations
[24], military operations [20, 21] and so on [22]. In recent
years, many scholars have constructed different types of
conflict analysis models based on their own knowledge
backgrounds [16-19].

In the beginning, Pawlak [20] mapped each agent’s
attitude towards issues into three values {—1,0, +1},
divided all agents and all pairs of agents into three regions,
respectively, with the help of auxiliary function and dis-
tance function, and introduced the most basic conflict
model; then Deja [2] argued that Pawlak’s conflict model is
limited to the outermost layer and does not take into
account the essential causes of conflict; subsequently, Sun
et al. [25] developed a rough set-based conflict analysis
model along with Deja’s thinking and solved the problem
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of how to find a feasible consensus strategy. In addition,
Yang et al. [30] investigated evidence conflict and belief
convergence based on the analysis of the degree of
coherence between two sources of evidence and illustrated
the stochastic interpretation for the basic probability
assignment; Yu et al. [37] proposed the supporting proba-
bility distance to characterize the differences among bodies
of evidence, and defined a new combination rule for the
combination of conflicting-evidence; by combining game
theory with conflict analysis, Zia et al. [1] constructed a
new conflict analysis model based on game-theoretic rough
sets; Zhi et al. [42] proposed a model of multilevel conflict
analysis based on fuzzy concept lattices, which incorpo-
rated two types of uncertainties into a unified framework.

In recent years, the theory of three-way decision has also
received more and more attention [5, 11, 14, 27-29,
33, 34, 36, 39, 40]. It was originally proposed by Yao
[31, 32] for thinking, problem solving and information
processing in three levels. Generally speaking, there are
mainly two types of models of three-way decision: one is
based on inclusion relations and the other is based on one
or two evaluations. With the in-depth research, we can find
that three-way decision and conflict analysis are closely
related to each other. Therefore, a growing number of
scholars have applied the idea of three-way decision to
conflict analysis, and established many different types of
three-way conflict analysis models [3, 4, 6-8, 15, 38]. For
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example, Lang et al. [9] combined decision-theoretic rough
sets with three-way decision to design probabilistic con-
flict, neutral and coalition sets on dynamic information
systems; by reformulating and generalizing Pawlak’s con-
flict model, Yao [35] introduced three levels of conflict:
strong conflict, weak conflict and non-conflict; Sun et al.
[26] established an improved Pawlak conflict model by
combining three-way decision with probabilistic rough sets
on dual universes; Zhi et al. [41] considered alliance,
conflict, and neutrality attributes of cliques under a one-
vote veto based on approximate three-way concept lattice.
In addition, some conflict models based on fuzzy infor-
mation systems, such as [10, 12, 13], were also constructed
from different points of view.

The threshold-selection problem has always been a
fundamental issue in three-way conflict analysis. However,
many existing three-way conflict analysis models have not
yet solved the threshold-selection problem. This is one of
the motivations of the present paper. Another motivation of
this paper is from the fifth open problem proposed by Xu
et al. in [29]. In [29], Xu et al. introduced a new method of
three-way decision on hybrid information tables, and sug-
gested in the fifth open problem that: “Study conflict

problems by using @, or (I)gz ‘ﬁ’)’2> One may introduce

importance ratio into conflict tables and define the model of
conflict analysis induced by the trisections of @,z or

(DEZ ‘/}’)’2>. We claim that this work will extend the conflict

analysis model of Yao [35].“ So, motivated by this sug-
gestion and following Yao’s work in [35], the present paper
proposes a new method of three-way conflict analysis with
similarity degree so as to extend the work of Yao in [35].
However, we did not use the trisection model ®, ) or

(Dég ' ﬁl)) 2) proposed in [29] but a newly defined one to induce

the conflict model. Below we summarize the main contri-
bution of this article.

e We propose the evaluation of similarity degree, in a
three-valued situation table, to quantitatively evaluate
the attitude similarity between any two agents, and
propose the evaluation of difference degree to quanti-
tatively evaluate the attitude difference between any
two agents. The proposed difference degree has a
different formulation from the aggregated conflict
function proposed by Yao in [35] on multiple issues,
but it is proved to be equivalent to the latter. Moreover,
it also resolves the inconsistency of Pawlak’s treatment
of any two agents who have the same attitude “neutral”
on a single issue.

e Based on the above evaluations, we introduce a
trisection of all pairs of agents on an issue set, and
introduce a three-level conflict model induced by such a
trisection. More importantly, we successfully solve the
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threshold-selection problems for both the trisections of
all pairs of agents and the three-level conflicts on
multiple issues, which are achieved by defining unique
measure functions for the trisections and the three-level
conflicts, respectively.

e We prove that the trisection model (resp. the three-level
conflict model) proposed in this paper is a conservative
extension of the corresponding trisection model (resp.
three-level conflict model) proposed by Yao [35].
Therefore, we solve the threshold-selection problem
for Yao’s three-level conflict analysis on multiple
issues.

The rest of this paper is organized as follows. In Sect. 2, we
give a brief review of two models of conflict analysis to
which the later parts of the paper will relate. In Sect. 3, we
introduce the basic concepts of this paper, define the tri-
section of all pairs of agents and the three-level conflict
induced by such a trisection, and discuss the properties of
these trisections and three-level conflicts; at the same time,
we propose two ways of finding the optimal three-level
conflict in finite steps, and therefore solve the threshold-
selection problem for three-level conflict analysis on mul-
tiple issues. Finally, in Sect. 4 we summarize the results of
this paper and look forward to the future work.

2 Preliminaries

In this section, we briefly review two models of conflict
analysis to which the later parts of this paper will relate,
i.e., the model proposed by Pawlak [20] and the model
proposed by Yao [35].

Definition 2.1 [20] A ternary conflict information system
is defined as a triple S=(U,V,f), where U=
{ur,uz,--,uy,} is a finite non-empty set of agents, V =
{vi,va,---,v,} is a finite non-empty set of issues, f :
UxV—{-1,0,+1} is a three-valued evaluation that
maps a pair of an agent and an issue to a value in
{-=1,0,+1}. The meaning of the mapping is interpreted as
follows:

—1, agent u is negative about issue v,

flu,v) =14 0,

+1, agent u is positive about issue v.

(1)

agent u is neutral about issue v,

In [20], Pawlak first proposed the above definition of
conflict information system which is now also called three-
valued situation table. In the rest of this paper, when we
mention a three-valued situation table, we always mean
S = (U,V,f) defined above. For simplicity, in a three-
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valued situation table we will use {—,0,+} instead of
{—1,0,+1} to represent the agent’s attitude on the issue.
Based on Definition 2.1, Pawlak defined a distance func-
tion to measure the distance between any two agents in a
three-valued situation table, as shown below.

Definition 2.2 [20] In a ternary conflict information sys-
tem S = (U, V,f), a distance function d(u;, u;), for any two
objects u;,u; € U, is defined as follows

ZvEV (/): (“i’ uj)

d(u;, uj) = Vi , (2)
where
0} 1) = Pre14) <pv2(ui, )
0, if flui,v) - fluj,v) =1Vu; =u
=< 0.5, if f(ui,v)-fu;,v) =0Au; # u;
1, if f(ui,v) - f(uj,v) = —1
(3)
and
L, if fu,v) - flu;,v) =1Vu =u
o, (uiui) = 0, if fui,v) f(wj,v) =0 Aw; # .
-1, if f(ui,v) - f(uj,v) = —1
(4)

By using the above distance function d, Pawlak further
defined three relation sets, namely alliance, conflict and
neutrality, as follows:

A = {(ui, ;) d(ui, u;) <0.5},
C= {(uia Mj)|d(uivuj) > 0'5}7 (5)
N = {(ui,uj)\d(ui,uj) = 05}

According to the above Pawlak’s definitions, agents u; and
u; are in an alliance relation on a single issue v when
f(ui,v) = f(u;,v) = 0 and u; = u;; while agents u; and u;
are in a neutrality relation when f(u;,v) = f(u;,v) = 0 and
u; 7 uj. Therefore, Pawlak’s definitions have inconsistency
in the treatment of f(u;,v) = f(u;,v) = 0 on a single issue
v. In addition, the three relation sets are defined by the
value of 0.5, which may be further improved by intro-
ducing appropriate thresholds. In 2019, Yao [35] refor-
mulated and extended the above Pawlak’s model to a more
general level, and resolved the inconsistency of Pawlak’s
treatment of f(u;,v) =f(u;,v) =0 on a single issue
v. Below we specifically review and explain the results of
Yao [35].

In [35], Yao proposed two types of trisections, namely
the trisection of all agents and the trisection of all pairs of
agents, on a single issue (resp. on multiple issues); at the

same time, Yao proposed two types of three-level conflicts,
namely the one induced by a trisection of all agents and the
one induced by a trisection of all pairs of agents on a single
issue (resp. on multiple issues). It can be verified that the
two types of trisections on a single issue induce the same
three-level conflicts, but the two types of trisections on
multiple issues do not seem to have such result. We firstly
reproduce the two types of trisections on a single issue
defined in [35].

Definition 23 [35] In a three-valued situation
table S = (U, V,f), the trisection of all agents on a single
issue v € V, denoted by < A;,A% A" > is defined by

A, ={u e Ulf(u,v) = -1},
A(»? ={u € Ulf(u,v) = 0}, (6)
Al ={u e Ulf(u,v) =+1}.

Definition 2.4 [35] In a three-valued situation
table S = (U, V,f), the trisection of all pairs of agents on a
single issue v € V, denoted by < R, R, R;" >>, is defined
by
Ry = {(uj,u;) € U x U | [f(u;,v) — f(u;,v)|/2 = 0}
= {(ui,w;) € U x Ulf(u;,v) = f(u;,v)},
RY = {(ui,u;) € U U | |[f(u;,v) — f(u;,v)|/2 = 0.5}
= {(ui,w;) € U x Ulf(us,v) # f(u;,v) Af(ui,v) - f (w;,v) = 0},
R = {(ui,u;) € U x U | |f(u,v) = f(u;,v)|/2 =1}
= {(u;, ;) € U x U|f(u;,v) - f(uj,v) = —1}.

(7)

Based on the above two types of trisections, Yao pro-
posed two types of three-level conflicts on a single issue as
follows.

Definition 2.5 [35] In a three-valued situation
table S = (U, V,f), for a single issue v € V, the three-level
conflict with respect to the trisection < A, ,A% A > is
defined by

strong conflict: SC(A;,A}),
WC(A; D), WC(AD, A7), (8)
non-conflict: NC(A;,A;), NC(A%A%), NC(A! Al).

weak conflict:

Definition 2.6 [35] In a three-valued situation
table S = (U, V,f), for a single issue v € V, the three-level
conflict with respect to the trisection < R, R}, R > is
defined by
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strong conflict: SC = R},
weak conflict: WC =R7, 9)
non-conflict: NC = R7.

One can verify that the above two three-level conflict
models are equivalent to each other when they are induced
by <A, ,A% A" > and < R;,RY,R; >, respectively,
on the same issue v € V. Furthermore, suppose that in a
three-valued situation table f(u;,v) = 0,f(uz,v) =0 and
u; # uy. Then by the above method of Yao, (u,uy) € R,
and hence they are in non-conflict, i.e., in alliance, while
they are in neutrality relation by the method of Pawlak.
Therefore, the above method of Yao resolved the incon-
sistency of Pawlak’s treatment of f(u;,v) = f(u;,v) = 0 on
a single issue v. Yao [35] further extended the above tri-
sections and three-level conflict models to the level of
multiple issues, and we reproduce them as follows.

Definition 2.7 [35] In a three-valued situation
table S = (U, V,f), let f(u,J) € [—1, 1] be a function with
flu,J) = ﬁzvejf(u,v), called the aggregated rating

function of agent u € U on multiple issues of J/ C V. Given
a pair of thresholds (f,o) with —1<f<0<a<]1, the
trisection of all agents on multiple issues J, denoted by

< AL AP A1 s i defined by
A7 = {ue U fe) < B,
AP ={ue U | f(u.d)>a}.

Definition 2.8 [35] In a three-valued situation
table S = (U, V,f), let ¢;(u;,u;) € [0,1] be a function with
¢y (i, 1) = 515750 ey I (i, v) — f (uj,v)], called the aggre-
gated conflict function of agents u;,u; € U on multiple

issues of J C V. Given a pair of thresholds (&,#) with
0<¢E<0.5<n <1, the trisection of all pairs of agents on

multiple issues J, denoted by < Cﬁo’i],cﬂé’”],c}"’” >, is
defined by

Cg‘)«i] = {(ui,u;)) € U x U | cj(us,u;) <&},
Cgé«nl — {(Mi,uj) cUxU \ f<CJ(Mi,uj)<’7}a
M = () € Ux U | eyl ) =)
(1)

Based on the above two types of trisections, the two
types of three-level conflicts on multiple issues are defined
as follows.

@ Springer

Definition 2.9 [35] In a three-valued situation
table S = (U, V,f), for multiple issues of J C V, the three-

level with
AV AIB 401 s, i defined by

conflict respect to the trisection <«

strong conflict: - SC(AL Al
ot =18 4l [Ba] 4l1]
weak conflict: WC(A; "™, A;™), WCA;™, A7),
non-conflict:  NC(AL " AV - Ne@alf AP ne@l! Al

(12)

Definition 2.10 [35] In a three-valued situation
table S = (U, V,f), for multiple issues of J C V, the three-

with respect to the
P M > s defined by

level conflict trisection <

strong conflict: SC = CB"J]7

weak conflict: WC = CI*", (13)

[0,¢]

non-conflict: NC = C;"*.

As we see, Yao [35] proposed a framework of three-
level conflict analysis on multiple issues, and there are still
some problems needing to be further resolved, such as the
threshold-selection problems for both the two types of
trisections and the two types of three-level conflicts on
multiple issues. Following the work of Yao [35], the pre-
sent paper proposes new evaluations and a whole set of
methods to successfully resolve the threshold-selection
problems for both the trisections of all pairs of agents and
the three-level conflicts on multiple issues. Note that the
forthcoming similarity degree, difference degree, proba-
bility functions and measure of trisections or three-level
conflicts are specially defined on three-valued situation
tables, though the related notations and symbol-manipula-
tion techniques are similar to those of [27-29].

3 Three-way conflict analysis on an issue set

In this section, we introduce the main work of this paper,
including the basic concepts, notations and conclusions of
this paper.

3.1 Similarity degree and difference degree

In this paper, we have two basic concepts, i.e., the evalu-
ation of similarity degree and the evaluation of difference
degree between any two agents. Below we introduce them
in turn.
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Definition 3.1 Let S = (U,V,f) be a three-valued situa-
tion table, and ¥ C V be a non-empty subset of V. For any
two agents u;, u; € U, the similarity degree of u; and u; on
the issue set Y is defined by an evaluation function:

ZVGY pv(uia Mj)

eY(uivuj) = |Y| ) (]4)
where
pv(ui’uj)
17 f(lzl,‘,\/) :f(u],V)
= 057 f(uh ) #f(ujﬁ )/\f(u,-,v)-f(uj,v) =0 .

0, (um ) #f(ujv )/\f(u,-,v) 'f(uj’v) =-1
(15)

Obviously, ey(u;, u;) € [0, 1], and the value of ey (u;, u;)
describes the similarity degree between u; and u; con-
cerning the attitudes to the issues of Y. Specifically, in a
three-valued situation table ey (u;, ;) = 1 means that u; and
u; have the same attitude on every issue of ¥ and hence
have the highest similarity degree on Y; ey(u;,u;) =0
means that u; and u; have clear opposite attitude on every
issue of Y and hence have the lowest similarity degree on Y;
the other cases of 0 <ey(u;, #;) <1 mean that u; and u; may
have the same attitudes on some issues of Y and have
different attitudes on the other issues of Y. For instance, if
the attitudes of u; on the issue set ¥ = {vy,...,vs} are
+,+, —, 0, + respectively, and the attitudes of u, on Y are
+,—,—,0,0 respectively, then
ey(ur,up) = = 0.7. Therefore, the concept of
similarity degree captures the attitude similarity of any two
agents on multiple issues from a relative quantitative point
of view.

Note that, although Definition 3.1 of similarity degree
has a similar form to that of “matching degree* in [29],
they are technically different in the following aspects: (1)
matching degree is defined based on general binary rela-
tions in an information table with the numerator
¢ (ui,v;) € {0, 1}, while similarity degree is defined based
on the equality relation in a three-valued situation
table with the numerator p,(u;,u;) € {0,0.5,1}; (2)
matching degree is used to evaluate the matching degree of
any object u and the given reference tuple 7 in each rank,
while similarity degree is used to evaluate the attitude
similarity of any two agents on multiple issues.

1+0+1+1+40.5
5

Definition 3.2 Let S = (U,V,f) be a three-valued situa-
tion table, and Y C V be a non-empty subset of V. For any
two agents u;, u; € U, the difference degree of »; and u; on
the issue set Y is defined by

dy(ui, uj) = 1 — ey(u;,u;), (16)
where ey (u;, u;) is the similarity degree of u; and u; on Y.

Obviously, dy(u;,u;) € [0,1], and the value of dy (u;, u;)
describes the difference degree between u; and u; con-
cerning the attitudes to the issues of Y. For instance, if the
attitudes of u; on the issue set Y = {vy,...,vs} are
+,+, —, 0, + respectively, and the attitudes of u, on Y are

,—,0,0 respectively, then
dy(ur,up) = 1 — ey(uy,up) = 0.3. Therefore, the concept
of difference degree captures the attitude difference of any
two agents on multiple issues from a relative quantitative
point of view. In addition, this definition of dy(u;, u;) is
different from the distance function defined by Pawlak [20]
or Yao [35]. Specifically, when two agents u; and u; have
the same attitude “0” on a single issue v, Pawlak’s distance
function treats them as d(u;, u;) = 0.5 while our difference
degree treats them as d,(u;,u;) =0'; our definition of
difference degree is defined on multiple issues while Yao’s
distance function is defined on a single issue.

3.2 Trisection of all pairs of agents on an issue
set

In this part, we introduce the trisection of all pairs of agents
on an issue set, and discuss the properties of such
trisections.

Definition 3.3 Let S = (U, V,f) be a three-valued situa-
tion table, Y C V be a non-empty subset of V, and (o, f§) be
a pair of thresholds with 0 < <« < 1. The trisection of all
pairs of agents on the issue set Y, denoted by
Q) (Y) = (P (Y),P5 (Y), PT. 5 (Y)), is defined by

(2,8)
;(Y) = {(ulvuj) eUxU | €y(l/li,uj) Za}a
/?(Y) = {(ui,u;) € U x U | ey(uj,uj) < B},

p¥) ={(u,w;) € Ux U | p<ey(ui,u;) <o}
(17)

An equivalent representation of the above trisection is
by using the difference degree as follows:

P;(Y) = {(uj,u;) € U x U | dy(uj,u;) <1 —a},

PE(Y) = {(ui,u;) € Ux U | dy(uj uj) 21 = B},
Paﬂ)(Y) = {(uhuj) ceUxU ‘ 1— O(<dy(u,'7uj)<l — ﬁ}

(18)
Remark 3.4
' When Y = {v}, the difference degree (resp. similarity degree) of u;
and u; on Y should be technically denoted by dy,y(u;,u;) (resp.

eqvy (ui, ;). However, we will simply use d,(u;, u;) (resp. e, (u;, u;)),
when such expression does not cause ambiguity.
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(i) Obviously, the three sets P, (Y),P;(Y), Py, 5 )
are pair-wise disjoint and their union is the entire
product space U x U. In particular, when o =1,
f=0and Y = {v} for some v € V, the trisection of
Definition 3.3 is the trisection of all pairs of agents
on the single issue v.

(i)  Since the value of ey (u;, u;) is equal to the value of
ey(uj,u;) for any (u;,u;), the pairs (u;,u;) and
(uj,u;) are certain to be in the same set of
P, (Y),P;(Y) or P /3)( ). Therefore, in this paper
we will not differentiate (u;, ;) and (u;, u;). In other
words, suppose that |U| = m, we only consider m -
(m+ 1)/2 different pairs of agents.

Next, we discuss the properties of the trisections defined
in Definition 3.3, which will lay the theoretical foundations
for later discussion.

Theorem 3.5 Let S = (U, V,f) be a three-valued situation
table, Y C V be a non-empty subset of V with |Y| = n, and
(o, B) be a pair of thresholds with 0 < f<a<1. For any
pair of thresholds (x, B), there exist two intervals (51, 4]

2n 7 2n
and [2n L) withi,j € {1,2,...,2n}, such that o € (51, 4]
and f € [2n ,2-’;[) respectlvely, and the following conclu-
sions hold:
P (Y) = P.(Y),
2n
PH(Y) = PL,(Y), (19)

Prp () = P% L (Y).

Proof By Definition 3.1, it is easy to obtain that
ey(ug, ) € {0,5, ..., 21 1} for any (u,u;) € U x U.
Then, for any pair of thresholds (o, f) with 0 < f<a <1,
we have that 0<o <1 and 0 < < 1. So it is obvious that
1,55 such that o« € (5! ,2;1} and
there exists an interval []2,11 ,4) such that fe [ ,2’;1),
where i,j € {1,2,...,2n} and i >j. Below we only prove
the conclusion P, (Y) = P;(Y ), with the other two being

there exists an interval (51

similar.
For any (uy, u;) € P;(Y), we have that ey (uy, u;) > o by
Definition 3.3. The conditions

@Y(Mk,ul) € {072,,7" o 2,1 al}

ey(ug,uj)>a and o€
(5L,54] imply that ey(ug,u;) > 5. Therefore, (uy,u;) €

P7(Y) and hence P, (Y) C P7(Y). Conversely, for any

2n 2n

(i, wr) € PZ(Y), we have that ey (ug, up) > 5.

a € (i ,zin] we obtain that ey(ug,u;) >o and hence

(u,u;) € P7(Y). This means that P7(Y) C P, (Y). There-
2n

fore, we have that P;(Y) = PZ(Y). O
2n

Since
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Theorem 3.6 Let S = (U, V,f) be a three-valued situation
table, Y C V be a non-empty subset of V with |Y| = n, and
(o, B) be a pair of thresholds with 0 < f<a<1. For any
given Y, there are at most n(2n + 1) different trisections of
all pairs of agents, namely the trisections Q L )(Y) with
i=1t 2nandj=0toi—1, on the issue set Y.

Proof This is an immediate result by using Theorem 3.5.

For any o € (0 the fact 8 <o implies that 8 is certain to
2], B is certain to be in [0, 1)

3
be in [0,5-); for any o € (5., %
21_n722n ), and so on. Combining the conclusions of The-
orem 3.5, we immediately have that there are at most 1 +
2+ ---4+2n = n(l + 2n) different trisections of all pairs
of agents on the issue set Y. In other words, the finite

trisections Q; ,(¥) involve all possible trisections of all

2n°2n

or [

pairs of agents on Y, where i = 1to2nand j=0toi— 1.
0

Remark 3.7 Theorems 3.5 and 3.6 describe the properties
of the trisections of all pairs of agents in Definition 3.3, and
they lay the theoretical foundations for later discussion.
They tell us that, although there are infinite pairs of
thresholds (o, ), we only need to consider a finite number

of pairs (zl—n,zj—n) and their corresponding trisections of all

pairs of agents. Moreover, these pairs (3-,4) are imme-

diately obtained by the number of issues of Y.

Example 3.8 Here we take the Middle East conflict [20] as
an example which is shown in the following Table 1. As
Pawlak said in [20], the data in Table 1 may not neces-
sarily reflect the current problems in the Middle East, we
are just using these data for an illustration.

Suppose that the issue set ¥ = {vi,v2,v3}, then |Y]| =3
and we need to consider the attitude similarity between any
two agents on the issue set Y. Since there are 6 agents in U
of Table 1, we only need to consider 6 x (6 +1)/2 =21
pairs of agents. Table 2 shows the similarity degrees of all
these pairs of agents. By Theorem 3.6, there are at most
3 x (2 x 34 1) =21 different trisections of all pairs of
agents, and Table 3 shows all these trisections of all pairs
of agents on Y. The next problem is how to evaluate these
trisections so as to find the optimal one. We will solve this
problem in the Sect. 3.4.

3.3 Three-level conflict model on an issue set

In this part, we introduce the three-level conflict model
induced by a trisection of all pairs of agents on an issue set.
Intuitively, any pair of agents (u;,u;) € P; (Y) roughly (but
reasonably) has the same attitudes towards the multiple
issues of Y; any pair of agents (u;, u;) € P/?(Y) roughly (but
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Table 1 Middle East conflict U\V v v vy v vs

situation
u -+ + + +
Uy + 0 - - -
u3 + - - -0
Uy o - - 0 -
us + - = = =
Ug o + - 0 +

reasonably) has opposite attitudes towards the multiple
issues of Y; any pair of agents (u;,u;) € P, 5 (Y) has other
cases of attitudes towards the multiple issues of Y. There-
fore, we have the following definition of three-level con-
flict induced by a trisection of all pairs of agents.

Definition 3.9 Let S= (U,V,f) be a three-valued situa-
tion table, ¥ CV be a non-empty subset of V, and

Qo) (Y) = (P, (Y), P5(Y), P(; 4 (Y)) be a trisection of all

pairs of agents on the issue set Y. The three-level conflict
induced by Qup(Y), denoted by

P = (sch wel? Nez), is defined by
strong conflict : SCJ = {(u;,u;) € U x U|(us, u;) € PF(Y)},
weak conflict : WCy"ﬂ) = {(ui,uj) € U x U|(uj; u;) € P(, 5 (Y)},
non-conflict : NC} = {(u;,u;) € U x U|(u;,u;) € P, (Y)}.
(20)
Conversely, the three-level alliance induced by O, 5 (Y),
denoted by AP = (sA%, WA*P) NAB), is defined by
strong alliance : SA} = {(u;,u;) € U x U|(u;,u;) € P, (Y)},
weak alliance : WA = {(u;,u;) € U x U|(us, ) € P (M)}
non-alliance : NAg = {(ui,wj) € U x Ul|(w;, w;) € P5(Y)}.

(21)
Table 2 Similarity degrees of all pairs of agents
ey (ui, uj) u up u3 Uy us ug
up 1
u 1/6 1
u3 0 5/6 1
" 1/6 2/3 5/6 1
us 0 5/6 1 5/6 1
Ug 172 2/3 172 2/3 172 1

Remark 3.10 By this definition, we in fact have that

NC§ = P;(Y), SC} = P5(¥) and WCyP = P, () for
any given (o, ) and Y. Therefore, the properties of three-
level conflicts are similar to those of trisections of all pairs

of agents, and we omit them for readers to fill.

Example 3.11 Consider Example 3.8 again. In Table 3, we
have obtained 21 trisections of all pairs of agents on the
issue set Y = {vy, vz, v3}. By Definition 3.9, we can obtain
21 three-level conflicts induced by these trisections. We
present all these three-level conflicts in the following
Table 4 which is the result of replacing in Table 3 all

P;(Y), P5(Y) and P7 (Y) by NC}, SC} and WCyP,
respectively. The next problem is how to find the optimal
three-level conflict, which will be immediately solved in

the following part.

3.4 Threshold-selection problem

In this part, we solve the threshold-selection problem for
three-level conflict analysis on multiple issues. In other
words, we provide strategies to find the final optimal three-
level conflict.” Intuitively, there are two ways of obtaining
the final optimal three-level conflicts on multiple issues, as
shown in Fig. 1. The first way is firstly finding the optimal
trisection of all pairs of agents and secondly obtaining the
three-level conflict induced by the optimal trisection; the
second way is firstly obtaining all three-level conflicts
induced by all trisections of all pairs of agents and secondly
finding the optimal three-level conflict. Since

SC{ = P5(¥), NC} = P;(¥) and WCJ™" = P, (¥) by
Definition 3.9, the two ways of obtaining the final optimal
three-level conflict are in fact equivalent to each other in
this paper. Below we respectively present the two ways and
show their equivalence relationship.

(1) The first way of finding the final optimal three-
level conflict

As Fig. 1 shows, the first way is firstly finding the
optimal trisection of all pairs of agents and secondly
obtaining the three-level conflict induced by the optimal
trisection by Definition 3.9. So the core of this way is
defining the measure of trisections of all pairs of agents,
namely the forthcoming measure H, and defining the
optimal one among all trisections.

% Since A(yl‘m is the result of replacing in Cg,“'ﬂ) all SC¥, WC;“‘M and
NC@ by NAY, WAg,“’/} ) and SA/;, respectively, in this part we only
provide the ways of obtaining the final optimal three-level conflict,
with the ways of obtaining the final optimal three-level alliance being
similar.

@ Springer
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Table 3 (continued)

(o, ) P;(Y) P;(Y) PG p(Y)
(us,uq) (us, u2)
(1/2, 0) (ur,ur) (uayua) (uz,u3) (g, us) (ur,u3) (ur,us) (uy,u2) (41, uq)
(us, us) (ug,us) (uz,us) (uz,us)
(us,ur) (ug,uz) (ug,us) (us,us)
(ug,us) (ua,u3) (ug,uz) (us,us)
(us, us)
(172, 1/6) (ur,ur) (uz,uz) (uz,u3) (ug,us) (ur,uz) (ur,u3) (ur,us) (ur,us) 0
(us, us) (us,ue) (uz, us) (u2,u3)
(ug,ur) (us,u2) (us,u3) (us, ua)
(us,us) (ug,u3) (ug,ua) (us,uz)
(us,uq)
(172, 1/3) (ur,ur) (uayua) (uz,u3) (g, us) (uy uz) (ur,yus) (ur,ug) (ur,us) 0
(us,us) (ug, us) (us, us) (uz,us)
(us,ur) (ug,uz) (us,us) (us,ua)
(us,us) (ug,u3) (ug,ua) (us,uz)
(us, us)
(1/3, 0) (w1, u1) (w2, u2) (uz,u3) (us,us) (ur,u3) (ur,us) (1, u2) (1, us)
(us, us) (ug,us) (u3,us) (uz,us)
(“67141) (”%7”2) (Ms,btx) (1467“4)
(us, us) (ua,u3) (ug,uz) (us,uz)
(us, us)
(1/3, 1/6) (ur,ur) (ua,ua) (uz,u3) (ug,us) (ur,u2) (ur,yus) (ur,ug) (ur,us) 0
(us, us) (ug,ue) (uz,us) (uz,us)
(us,ur) (ug,uz) (ug,u3) (us,us)
(us,us) (ua,u3) (ug,ur) (us,uz)
(us, us)
(1/6, 0) (ur,u1) (w2, uz) (uz,u3) (ug,us) (ur,u3) (ur,us) 0
(us, us) (us,ue) (uz, us) (u2,u3)
(ug,ur) (us,u2) (us,u3) (us, ua)
(u6>145) (M47M3) (M4,M2) (MS7M2)
(us,uq) (uy,uz) (ur,ug)
Definition 3.12 Let S = (U, V,f) be a three-valued situ- an - ey (ui, up) - (1 — ey (us,uy))
ation table, Y CV be a non-empty subset of V with 83 (ui, u) = 1
|Y| =n. For any (u;,u;) € U x U, the following three (24)
functions
ey (1) - (2n ey (i, uy) + 1) a:)e.l.ctalle(fi PA —Probabllltty, Il3 -probability and P~-prob-
g1 (ui u;) = 1 , ability of (u;,u;), respectively.
(22) Remark 3.13 For any given issue set Y, the functions
g1 (ui, uj), g2(ui, u;) and g3(u;, u;) describe the probabilities
g2, 1)) = (1 —ev(ui,u)) - [2n- (1 — ey(ui, ;) +1] : of (u;,u;)’s being in the sets P, (Y), P;(Y) and Pf, g (Y),

n+1 respectively. For example, the probability of (uy,u,)’s

(23) being in the set P; (Y) is 5; in Table 3 of Example 3.8; one

can verify that the value of g (u;,u;) in Definition 3.12 is
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Table 4 All three-level conflicts on Y
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Table 4 (continued)
(e, B) scy wcy
(172, 0) (ur,u3) (u1,us) (ur,u2) (uy,us)
(]/2, 1/6) (Ml,uz) (ul,ug) (u17u4) (ul,u5) @
(172, 1/3) (ur,u2) (uryuz) (ur,us) (ur,us) 0
(173, 0) (ur,us) (w1, us) (ur,u2) (w1, us)
(173, 1/6) (ur,up) (yyuz) (ur,ug) (ur,us) 0
(1/6, 0) (w1, u3) (1, us) 0
exactly 21—1 where n = 3 and ey (uy,uy) = %. In addition, one Z(u )eP(
i . . q1 = 9)
can verify that 0<g(u;,u) <1 : and Z(u, W)eUT 81
g1 (M,', Ltj) + gz(l/li, u]) + g3(u,~, Mj) = 1 for any pair (M,', uj). Z
(ui,uj) EPA
Definition 3.14 Let S = (U, V,f) be a three-valued situ- (26)

ation table, ¥ C V be a non-empty subset of V, («, f§) be a
pair of thresholds with 0<f<a <1, and Q. p(Y) =

(P, (Y), Py (Y),P(, 5 (Y)) be a trisection of all pairs of

Z(u, uj)eP

(ﬁ>()

q2 = ’
Z(ui,u,)eUxU gz(u,-, ;)
gs(“u Mj)

q3 =

agents on the issue set Y. The measure H of Q) (Y) is

defined by:

H(Qup(Y)) =1 a4

where

(25)

Definition 3.15 Let S =

Z(Lt;A,u/)eUxU g3 (ui, uj) '

(U,V,f) be a three-valued situ-
ation table, ¥ C V be a non-empty subset of V, Q(a_l;)(Y) be

any trisection of all pairs of agents on the issue set Y. A

@ Springer
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Fig. 1 Two ways of finding the R R R R
final optimal three-level conflict All trisections of all All trisections of all
pairs of agents pairs of agents
> Qa5 (Y) Qa5 (Y) §‘
E Measure H Definition 3.9 | E
wn Y Y
& S
Q
q:) The optimal trisection All three-level conflicts %
< . o
B Qlp,0)(Y) induced by Q. g (Y) ﬁ
Y Y
Definition 3.9 Measure M
Y Y
Three-level conflict C’é,e’ﬁ) The optimal three-level
induced by QZ‘e’ﬁ)(Y) conflict C‘S?’ﬂ)
maximal. Note that this does not ensure any one
Table 5 P=-probabilities of all pairs set of the trisection is separately optimal.
g1, 1)) " I s s s e (iii) By the previous Theorems 3.5 and 3.6, here we
. : only need to compare a finite number of
u 1 H(Q,p(Y)) to find the maximal one.
u 1721 1
U3 B 31 1 Example 3.17 Continue with Example 3.8. By Defini-
s 1721 10721 51 1 tion 3.12, we can compute the P~-probabilities, P=-prob-
Us 0 51 ! 51 1 abilities and P~-probabilities, respectively, for all pairs of
Us 21 10721 21 10721 21 1 agents as shown in Tables 5, 6 and 7.

trisection Q(, ﬂ)(Y ) of all pairs of agents on the issue set ¥

is optimal when it satisfies the condition that

H(Q.9)(Y)) = Janax, H(Q(p)(Y)). (27)

Remark 3.16

(i) It is obvious that 0<¢; <1 (i=1,2,3) and
therefore 0 < H(Q,5(Y)) <3 for any trisection
Q(s,p(Y) in Definition 3.14.

(ii)) We think that the whole trisection of all pairs of
agents gets an optimal state when its measure is

By Definitions 3.14 and 3.15, we can further compute
the measures of all trisections that have been listed in
Table 3 so as to find the optimal one. Table 8 shows such
results, from which we find that the optimal trisections of
all pairs of agents are Q(/6)(Y) and Q( /3 (Y) with
H(Qq.1/6)(Y)) = H(Q(1.1/3)(Y)) = 2.1475.

Example 3.18 1In the above example, we have obtained the
optimal trisection Q1 1/6)(Y) or Qq/3(Y) with
H(Q1,1/6)(Y)) = H(Q1,1/3)(Y)) = 2.1475 on the issue set
Y = {vy,vp,v3}. According to the first way of obtaining the
final optimal three-level conflict, the three-level conflict
induced by Q;,1/6)(Y) or Q(y,1/3)(Y) is what we find. So, by
Definition 3.9 and Table 3, we obtain the final optimal
three-level conflict induced by Q(;,1/6)(Y) as follows.

strong conflict: SC;/6 = {(ur,u3), (ur,us), (ur,uz), (uy,us)},

1,1/6)

weak conflict: WCE,

= {(”27”‘3)’ (u47 u2)7 (Lt4, I/t3), (u5,u2), (”5’u4)7 (”67 Ml)? (Lt6,l/t2), (”671"3)’ (”‘67 u4)7 (u67 ”5)}7

non-conflict: NC} = {(ur,u1), (2, u2), (u3,u3), (us, us), (us, us), (us, us), (u3, us)}.

@ Springer
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Table 6 P=-probabilities of all pairs

g2 (i, uy) u up u Uy us Us
up 0

U 517 0

U3 1 1/21 0

Uy 517 1/7 1721 0

Us 1 1721 0 1721 0

U 2/7 177 2/7 /7 2/7 0
Table 7 P~-probabilities of all pairs

g3 (i, uy) u up u Uy us Us
Uup 0

u 5/21 0

u3 0 5/21 0

Uy 5/21 8/21 5/21 0

Us 0 5/21 0 5/21 0

U 3/7 8/21 377 8/21 3/7 0

Table 8 The measures of all trisections of all pairs of agents on Y

Conversely, the final optimal three-level alliance induced
by Q(1.1/6)(Y) is the following three sets:

strong alliance: SA} = {(u1,u1), (u2, u2), (u3, u3), (ua, us),
(us, us), (us, ug), (u3, us)},
weak alliance: WAQ']/G) = {(uz,u3), (us, u2), (us,us),

(us, u2), (us, us), (s, ur), (s, u2), (u, us), (us, us), (s, us)},

non-alliance: NA;,/6 = {(ur,u3), (ur,us), (ur,uz), (ur,uq)}.

To sum up the first way of finding the optimal three-
level conflict, we give Algorithm 1 which contains the
following three main steps.

Step 1 (lines 2-5): For the given Y, let n = |Y| and
compute the values of ey (ug,u;), g1(ux, ur), g2(ux, u;) and
g3(uy, uy) for each pair of agents (uy,u;) € U x U,

Step 2 (lines 6-24): Fori=1to2nandj=0toi—1,
compute all possible trisections Q(ﬁ, L of all pairs of

agents, find the first emerging maximal measure H (Q(L i ))
2n72n

among all n(2n + 1) trisections, and regard this trisection
as the final determined optimal one, namely Q?a 9 in

Algorithm 1;

Qp(Y) Q ) a3 H(Qup(Y))
0(1.0) 0.5720 0.4078 1 1.9798
Ou1.1/6) 0.5720 0.6990 0.8765 2.1475
0,13 0.5720 0.6990 0.8765 2.1475
O(1.1/2) 0.5720 0.8738 0.5432 1.9890
Q123 0.5720 0.9612 0.2469 1.7801
Q(15/6) 0.5720 1.0000 0 1.5720
0(5/60) 0.8054 0.4078 0.7531 1.9663
0(s/6.1/6) 0.8054 0.6990 0.6296 2.1340
0(s/6.1/3) 0.8054 0.6990 0.6296 2.1340
0(5/6,12) 0.8054 0.8738 0.2963 1.9755
0(5/6.2/3) 0.8054 0.9612 0 1.7666
00/30) 0.9222 0.4078 0.4568 1.7868
00/3.1/6) 0.9222 0.6990 0.3333 1.9545
00/3.1/3) 0.9222 0.6990 0.3333 1.9545
00/3.1/2) 0.9222 0.8738 0 1.7960
0(1/20) 0.9922 0.4078 0.1235 1.5235
Q1 /2.1/6) 0.9922 0.6990 0 1.6912
Q2173 0.9922 0.6990 0 1.6912
01/30) 0.9922 0.4078 0.1235 1.5235
O /3.1/6) 0.9922 0.6990 0 1.6912
Q(1/60) 1 0.4078 0 1.4078

The numbers in bold are the maximal measures of all trisections of all pairs of agents on Y
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Step 3 (lines 25-26): By Definition 3.9, compute and
output the optimal three-level conflict induced by Qz‘e )’

namely (SC, WC\"") NCU), and its thresholds (6, ).

Remark 3.19 Suppose that |U| = m. The time complexity
of Step 1 is obviously O(m?). As Algorithm 1 shows, Step
2 mainly contains three iterations, where the outermost and
the 2nd iterations terminate in n(2n + 1) steps, and the
innermost iteration terminates in m? steps. So Step 2 ter-
minates in n(2n + 1)m? steps. However, n is the number of
issues of Y and m is the number of agents of U, and we
usually have that n < m. Therefore, the time complexity of
Step 2 is O(m?), and hence the time complexity of Algo-
rithm 1 is O(m?).

(2) The second way of finding the final optimal three-
level conflict

As Fig. 1 shows, the second way is firstly obtaining all
three-level conflicts induced by all trisections of all pairs of
agents by Definition 3.9 and secondly finding the optimal
three-level conflict. So the core of this way is defining the
measure of three-level conflicts, namely the forthcoming
measure M, and defining the optimal one among these
three-level conflicts.

Definition 3.20 Let S = (U,V,f) be a three-valued situ-
ation table, Y CV be a non-empty subset of V with
|Y| =n. For any (u;,u;) € U x U, the following three
functions

Algorithm 1: An algorithm for computing the optimal three-level conflict in the first way

Input: A three-valued situation table S = (U,V, f), an issue set Y C V/
Qutput: The optimal three-level conflict and its thresholds

1 begin

2 let: n=|Y;

3 foreach (ug,u;) € U x U do

4 | compute: ey (up,w;), g1(uk, w), g2(ur,w), gs(up,w);
5 end

6 let: P~ =0, P~ =0, P¥ =0, Maz = 0;

7 for i =1 to 2n do

8 for j=0toi—1do

9 foreach (ug,u;) € U x U do

10 if ey (ug,u;) > ﬁ then

11 | P= =P~ U {(uk,w)};

12 else if ey (ug,u;) < % then

13 | P= = P=U{(ug,up)};

14 else P¥ = P® U {(ug,w)};

15 ;

16 end

17 let: Q, ; , , = (P=,P=, P?),

(55 13%)
18 compute: H(Q(L7L));
2n’2n

19 ifH(Q(ﬁT%))>Ma:pthen

20 Maz = H(Q(ﬁq%))’ 0,9) = (5575 55 ), Py = P=, Py = P~, P(zgﬁﬁ) = P~
21 Qo) = Qi 4y

22 end

23 let: P= =0, P= =0, P® = (;

24 end
25 end
26 | let: SCY = Py, WO = P§ , NCY = Py
27 | return: Scf, wol? NcO., (6,9)

28 end
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(1 — ey(u;, MJ)> . [2]’1 . (] — ey(u;, uj)) + ]] Table 9 Strong-conflict probabilities of all pairs
Ui, i) =
filw, j) 2n+ 1 ’ Si(ui, up) u U u3 Uy us U
28
(28) )
4n - ey(ui,uj) - (1 — ey (ui, u;) u 517 0
fz(u,‘,uj): i J2 ( i 1)7 2
n+1 u3 1 1721 0
(29) 517 17 1/21 0
us 1 1721 0 1721 0
iy ;) _er(us,u) - (2n - ey(ui ) +1) ” 21 217 1/7 210
/ 2n+1
(30)
are called strong-conflict probability, weak-conflict
probability and non-conflict probability of (u;,u;),  Table 10 Weak-conflict probabilities of all pairs
respectively. o) s 1 0 s is e
Remark 3.21 For any given issue set Y, the functions ” 0
fi(ui,uj), fo(ui,u;) and f3(u;, u;) describe the probabilities o 511 0
of (u;,u;)’s being in the sets sch, ch,a’m and NC}, s 0 5/21 0
respectively. For example, the probability of (uj,uz)’s 4, 5/21 8/21 5121 0
being in the set SC& is % = % in Table 4 of Example 3.11;  us 0 5/21 0 521 0
one can verify that the value of f (u;, uy) in Definition 3.20  us 37 8/21 37 821 317 0
is exactly %, where n =3 and ey (u,up) = % It is easy to
verify that 0 <fi(u;,u;) <1 (k=1,2,3) and fi(u;,u;) +
foluiyuj) + f3(ui, uj) = 1 for any pair (u;,u;) € U x U.
Table 11 Non-conflict probabiliti f all pai
Definition 3.22 Let S = (U,V,f) be a three-valued situ- e oriveonTict probabiifies of a7 pamrs
ation table, ¥ C V be a non-empty subset of V, («, f) be a  /3(ui 1)) u up u3 uy us Us
pair of thresholds with 0<f<a<1, and Cg,“’ﬁ) = 1
(sct, wclP NC%) be a three-level conflict on the issue 2 1721 1
set Y. The measure M of C\"" is defined by: 3 0 31 !
Uy 1721 10/21 5/7 1
M(cy ) =0 pi. (B1) 0 5/7 1 57 1
U 2/7 10/21 2/7 10/21 217 1
where
. 2 wapesch i (i ) M) = max m(CPP). (33)
Z(u;A,u/)EUfol (”i’ Mj) ’ VC(YL/})
, Z(tli,uf)ewc(y*-rf> fo(ui, uj) (32)
2 = ’
2 upagyevxvf2 (s 1) Remark 3.24

> (uwa)enca 3 (i 1))
p3 = )
Z(”i-,“/)GUX Uf3(ui7 Mj)

Definition 3.23 Let S = (U,V,f) be a three-valued situ-

ation table, ¥ C V be a non-empty subset of V, and C\*"

be any three-level conflict on the issue set Y. A three-level

conflict C<YO"Z9> on the issue set Y is optimal when it satisfies

the condition that

(i) It is obvious that 0<p;<1 (i=1,2,3) and
therefore 0 <M(C ;‘x’ﬁ)) <3 for any three-level
conflict C*” in Definition 3.22.

(i) We think that the whole three-level conflict C;“‘ﬁ )
gets an optimal state when its measure is maximal.
Note that this does not ensure any one of the three

sets SCl;7 WC;“’[; ),NCﬁ is separately optimal.
Since the properties of three-level conflicts are

(iii)

similar to those of trisections of all pairs of agents,
here we only need to compare a finite number of

M (C;“’ﬁ)) to find the maximal one.
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Table 12 The measures of all three-level conflicts on Y

cih P P2 P3 Mm(cy Py
C;I‘O) 0.4078 1 0.5720 1.9798
C;l‘l/ﬁ) 0.6990 0.8765 0.5720 2.1475
C§1,1/3) 0.6990 0.8765 0.5720 2.1475
C;l’l/z) 0.8738 0.5432 0.5720 1.9890
C§1’2/3> 0.9612 0.2469 0.5720 1.7801
C§/115/6) 1.0000 0 0.5720 1.5720
C§,5/6’0) 0.4078 0.7531 0.8054 1.9663
C§/5/611/6) 0.6990 0.6296 0.8054 2.1340
C$/6’1/3) 0.6990 0.6296 0.8054 2.1340
C§,5/6~1/2) 0.8738 0.2963 0.8054 1.9755
C§,5/6~2/3) 0.9612 0 0.8054 1.7666
C;2/3~0) 0.4078 0.4568 0.9222 1.7868
C;2/3~1/6) 0.6990 0.3333 0.9222 1.9545
C§2/3’1/3) 0.6990 0.3333 0.9222 1.9545
C§2/3’1/2) 0.8738 0 0.9222 1.7960
C;l/l()) 0.4078 0.1235 0.9222 1.5235
C§1/271/6) 0.6990 0 0.9222 1.6912
C;I/Z’I/S) 0.6990 0 0.9222 1.6912
C;l/lo) 0.4078 0.1235 0.9222 1.5235
C;I/ll/ﬁ) 0.6990 0 0.9222 1.6912
C;l /6,0) 0.4078 0 1 1.4078

The numbers in bold are the maximal measures of all three-level conflicts on Y

Example 3.25 We have obtained all three-level conflicts
on the issue set Y in Table 4 of Example 3.11. By Defi-
nition 3.20, we can compute the strong-conflict, weak-
conflict and non-conflict probabilities, respectively, for all
pairs of agents as shown in Tables 9, 10 and 11.

Furthermore, by Definitions 3.22 and 3.23, we can com-
pute the measures of all three-level conflicts that have been

listed in Table 4. Table 12 shows such results, from which
we find that the optimal three-level conflict is C;l"l/ % or
i with M(Cl0) = M(cVY) ~ 2.1475. Accord-
ing to the second way of finding the final optimal three-
level conflict, the three-level conflict C<y1'1/ % or C<Y1'1/ 3 s

what we find, and we list it below by Table 4.

strong conflict: SCll/6 = {(ur,u3), (ur,us), (ur,uz), (ur,uq)},

weak conflict: chlhl/ﬁ) = {(MZa M3), (M4, u2)7 (M4, M3), (u57 u2)a (I/ts, u4)7 (u67 Ml), (u67 Mz), (uﬁa u3); (u67 M4), (M6, I/ls)},

non-conflict: NC;’ = {(M] 5 ul)7 (142, u2)7 (u37 u3)a (u47 1,{4), (M5, u5)7 (L{(), u6)7 (u37 MS)}

Similarly, we can obtain the final optimal three-level alliance as follows:

strong alliance: SA;, = {(I/tl, ul), (I/tz, M2)7 (Mg, Lt3), (Lt47 Ll4), (I/t5, I/t5)7 (bt(,, I/t6), (M3, I/t5)},
weak alliance: WAQ’I/()) = {(I/tz, u3)7 (u4; u2)7 (u4; I/t3), (M57 MZ); (u57 M4), (MG; ul)v (M6, Mz), (uﬁv M3), (u67 M4)7 (uﬁa u5)}7

non-alliance: NA},/6 = {(uy,u3), (ur,us), (ur,uz), (u1,us)}.
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To sum up the second way of finding the optimal three-
level conflict, we give the following Algorithm 2. It is
similar to Algorithm 1 to some extent, with the differences
that: (1) here we need to compute the values of fi (ug, u;),
Sfo(ur, w;) and f5(ug, u;); (2) we compute all possible three-
level conflicts right after the innermost iteration, and find

L
the first emerging maximal measure M (C;Z"’Z”)) and regard

this three-level conflict as the final determined optimal one,
namely CY"” = (sc?, wcl™” NCY) in Algorithm 2.
Obviously, the time complexity of Algorithm 2 is also

O(m?*) with m = |U|.

Proof For any given three-valued situation
table S = (U,V,f) and non-empty issue set ¥ C V with
|Y| = n, there are at most n(2n + 1) different trisections of
all pairs of agents on Y by Theorem 3.6, and the finite
trisections are determined by known pairs of thresholds
(o, B). Therefore, the optimal trisection of all pairs of
agents can be found in finite steps by the measure H. This
shows that the first way of finding the final optimal three-
level conflict can be finished in finite steps. For the second
way, we firstly compute all three-level conflicts induced by
all trisections of all pairs of agents on Y. So there are also at
most n(2n + 1) different three-level conflicts on Y. For

Algorithm 2: An algorithm for computing the optimal three-level conflict in the second way

Input: A three-valued situation table S = (U,V, f), an issue set Y C V
Qutput: The optimal three-level conflict and its thresholds

,scp = p=, wel? = px NCY = P,

1 begin
2 let: n=|Y;
3 foreach (ug,u;) € U x U do
4 | compute: ey (ug,u;), f1(ug,w), fo(ur, ), f3(ur, w);
5 end
6 let: P~ =0, P~ =0, P® =0, Maxz = 0;
7 for i =1 to 2n do
8 for j=0toi—1do
9 foreach (ug,u;) € U x U do
10 if ey (ug,u;) > ﬁ then
11 | P= =P U{(uk,u)};
12 else if ey (ug,u;) < % then
13 | P> = P> U {(ug,w)};
14 else P~ = P® U {(ug,w)};
15 ;
16 end
(g727) _ px pr p=y.
17 let: Cy/ = (P=,P~,P=);
(3530,
18 compute: M(Cy/ );
19 if ]\/](C’}(,ﬁ’ﬁ)) > Max then
20 Maz = M(CZ7 %) (0,9) = (5, 4-)
21 C)(,e"ﬂ) = 03(,2%"2%');
22 end
23 let: P~ =0, P= =0, P® =)
24 end
25 end
26 return: SCZ, Wi Nco., (0,9)
27 end

(3) Conclusion of the threshold-selection problem
According to the above discussion, we immediately
have the following conclusion:

Theorem 3.26 For any given three-valued situation
table S = (U, V,f) and non-empty issue set Y C V, the two
ways of finding the final optimal three-level conflict on
Y can be finished in finite steps, and they bring about the
same result in this paper.

these finite three-level conflicts, we use the measure M to
compute their measures and find the maximal one among
these finite measures. Therefore, this procedure can also be
finished in finite steps.

For any given ¥ C V and pair of thresholds (o, 8), we

have that SC} = P5(Y), NC} =P;(Y) and WCy" =

P, ;) (Y) by Definition 3.9. At the same time, we have that

H(Qup)(Y)) = M(Cy"") by Definitions 3.15 and 3.23,
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where Q) (Y) = (P (Y), P5(Y), P(, 5 (Y)) and
C&“‘ﬁ ) :<SC£,WC§,°"B ),NCi). Therefore, the two ways

proposed in this paper bring about the same resulting
three-level conflict on an issue set Y. [

3.5 Comparison and discussion

In this part, we mainly compare our approach with the
approach of Yao [35] from different aspects, and give more
discussions about the three-level conflicts on a single issue.

(1) The three-level conflict induced by Q, 3 (Y) ver-
sus the three-level conflict induced by

<L Cy’ (0.0 ,Cy (&) ,Cy N Firstly, we compare our evalua-
tion of 51m11ar1ty degree (resp. deference degree) with the
aggregated conflict function in Definition 2.8, and compare
the three-level conflict induced by Q, 4 (Y) with the three-

level conflict induced by < Cy (0.0 ,Cy (&) ,Cy N

Proposition 3.27 Ler S = (U, V,f) be a three-valued sit-
uation table, and Y C V be a non-empty issue set. For any
(ui,u;) € U x U, the following conclusion holds:

cY(u[, Mj) =1- ey(u[, Mj) = dy(u,-,uj). (34)

Proof By Deﬁnition 2.8, the aggregated conflict function
cy(ui, uj) = 2\Y\ > ey f(ui,v) — f(uj,v)| for any agents
ui,u; € Uonanissue set Y C V. Forany v €Y, |[f(u;,v) —

f(uj,v)|/2=1 if and only if f(u;,v)#f(u;,v) and
Fui,v) - f(u;,v) = —1. At the same time, f(u;,v) # f(u;,v)
and f(u;,v) - f(u;,v) = —1 if and only if p,(u;,u;) = 0 by
Definition 3.1. Therefore, |f(u;,v) — f(u;,v)|/2 =1 if and
only if p,(u;,u;) = 0. Similarly, |f(u;,v) —f(u;,v)|/2 =
05 if and only if f(u;,v)#f(w,v) and
fui,v) - f(u;,v) =0, which in turn if and only if
p,(ui,u;) =0.5. |f(u;,v) — f(u;,v)|/2 =0 if and only if
f(ui,v) = f(u;,v), which in if and only if
p,(ui,u;) = 1. Therefore, we have that cy(u;,u;)) =1—

turn

ey(u;,u;) = dy(u;,u;) for any (u;,u;) € U x U. O
Proposition 3.28 Given a three-valued situation
table S = (U, V,f) and a non-empty issue set Y C 'V, the

trisection model of all pairs of agents Q) (Y) in this
paper is a conservative extension of the trisection model of

all pairs of agents <K C[ 4 Cgf ) C[" ) > in Yao [35].

Proof For a given three-valued situation
table S = (U, V,f) and a given non-empty issue set ¥, we
have that cy (u;, u;) = dy(u;, u;) for any (u;,u;) € U x U by
Proposition 3.27. Furthermore, the scope of thresholds is
0<&<05<n<1 in the model < C\*9 clel il
while the scope of thresholds is 0 < f <o <1 in the model
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Q(,p)(Y). Therefore, the trisections generated by the model
) (Y) includes the trisections generated by the model

< C[o A clen el s o

Proposition 3.29 Given a three-valued situation
table S = (U, V,f) and a non-empty issue set Y C 'V, the
()

three-level conflict model Cy""" in this paper is a conser-
vative extension of the three-level conflict model induced

by < CY< e s in Yao [35].

Proof Since the three-level conflict model is induced by
< C[ g C[E ] C@’l] > by Definition 2.10, i.e.,
SC = Cﬁ” ”, W = " and NC = 19, we immediately
obtain the above conclusion by Proposition 3.28. [

Conclusion: Proposition 3.28 tells us that we remove
the limitation of 0 <&<0.5<n <1 and extend the trisec-
tion model of Yao [35], namely Definition 2.8, to a more
general level; Proposition 3.29 tells us that we extend the
three-level conflict model of Yao [35], namely Defini-
tion 2.10, to a more general level. In the previous part, we
have solved the threshold-selection problem for three-level
conflict analysis on multiple issues in two ways. So in this
paper we in fact solve the threshold-selection problem for
three-level conflict analysis proposed by Yao [35] on
multiple issues.

(2) Trisection of all pairs of agents on a single issue.
Now we focus on three-level conflict analysis on a single
issue, through which one can see the relationship between
our approach and Yao’s approach in [35] on a single issue.
Firstly, it is easy to obtain the following equivalent defi-
nition of trisection of all pairs of agents on a single issue
v € V, when we limit the issue set Y to a single-issue set
{v} in Definition 3.3.

Definition 3.30 Let S = (U,V,f) be a three-valued situ-
ation table, v € V be an issue in V. The trisection of all
pairs of agents on the single issue v, denoted by Q, =
(P;, Py, Py) is defined by
Py = {(uj,u;)) € Ux U | e,(uju) =1},
Py = {(ui,w;) € Ux U | ey(uj,uj) = 0},
Py = {(uj,u;) € U x U | e,(u;,u;) = 0.5}.

(35)

An equivalent representation of the above trisection is
by using the difference degree as follows:

Py = {(unw) € U x U | dy(us, ) = 0},
Py ={(u,w;) € U x U | dy(ui,u) = 1},
P = {(w 1) € U x U | dy(ur, 1) = 0.5},

(36)

Remark 3.31 Obviously, the three sets P ,P;,P, are
pair-wise disjoint and their union is the entire product
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space U x U. At the same time, by Definition 3.30, it is
easy to obtain the following facts™:

Py ={(+ 1), (=, —),(0,0)},
PvX = {(+7_)}7
Py ={(+,0),(=0)}.

Example 3.32 Here we give an example to compare Def-
inition 3.30 with Definition 2.4 of Yao [35]. Consider
Table 1 of Example 3.8 again. We take the issue v; to
discuss, with the other issues being similar. Firstly, by
Definition 3.30, we can obtain the trisection of all pairs of
agents on the single issue v; as follows:

P ={(u2,u3), (u2, us), (us, us), (us, ug), (ur, ur),
(uz,uz), (us, u3), (ua, us), (us, us), (us, us) },
val = {(u1,u2), (ur,u3), (ur,us)},

P o= {(ur,ua), (ur,u6), (u2, ua), (u2, us), (3, us),

(u3, u6), (us, ua), (us, ug) }.

Secondly, by Definition 2.4 we can obtain the trisection of
all pairs of agents on the single issue v; in Yao [35] as
follows:

R, = {(u2,u3), (w2, us), (us, us), (us, ug), (1, ur),
(uz,u2), (us,u3), (s, us), (us, us), (us, us) },
Ry, = {(u1,u2), (ur,u3), (ur,us)},

RS = {(u1,uq), (ur, us), (12, us), (uz, us), (us, us),
(uz, uq), (us, ug), (us, uq) }.

Conclusion: We see that Definitions 3.30 and 2.4 generate
the same trisection of all pairs of agents on a single issue.
This conclusion is not accidental, and it is due to the
fundamental fact — ey (ui,u;) =1 iff
(i, v) = Fv)]/2 = (1) = 0 iff
[f (ui,v) — f(uj,v)|/2 = 1 and e, (uj,u;) =05  iff
lf(uiav)_ (u,,v)|/2_05

(3) Trisection of all agents on a single issue. Following
the work of Yao [35], below we aim to propose a trisection
of all agents on a single issue. For this purpose, we will
have to introduce the following definition of “reference
agent*.

Definition 3.33 Let S = (U, V,f) be a three-valued situ-
ation table, and ¥ C V be a non-empty subset of V. For any
given Y, a reference agent on Y is an agent 7 € U satis-
fying the condition that there exists at least one issue v € Y
such that f(z,v) # 0.

? Here we informally express the three sets of pairs of agents, the
meaning of which should be clear.

Intuitively, a reference agent t on an issue set Y is any
agent as long as it does not have the attitudes “0” on all
issues of Y, and it will be used to induce a trisection of all
agents on Y.* When Y = {v} in particular, the reference
agent T on Y can be any agent that has the attitude “+“ or
“—” on the issue v by Definition 3.33; the reason why 7 can
not be the agent that has the attitude “0* on v is that, when
7 is such an agent, we will not be able to differentiate the
attitudes “+” and “—* in the trisection of all agents
induced by 7 on v.

Definition 3.34 Let S = (U,V,f) be a three-valued situ-
ation table, v € V be an issue in V, and 7 be a reference
agent on {v}. The trisection of all agents induced by t on
the single issue v, denoted by
Ty(1) = (Ag, (1),Ag, (1),Ag; (1)), is defined by
Ag> (1) = {u € Uley(u, 1) = 1},
Agy(t) ={u € Ule,(u,1) =0}, (37)
Agy(t) ={u € Ule,(u,7) = 0.5}.

=1

An equivalent representation of the above trisection is
by using the difference degree as follows:

Ag; (1) ={u e Uld,(u,7) =0},
Ag (1) = {u € Uldy(u,7) = 1}, (38)
Agy(t) ={u e Uld,(u,7) = 0.5}.

Note that here different reference agents may induce dif-
ferent trisections of all agents on the single issue v. Hence
this definition generates more trisections than that of Yao
[35]. Below we give an example to further illustrate this
point.

Example 3.35 Consider Table 1 of Example 3.8 again. We
still select the issue vy, i.e., let ¥ = {v;}, with the other
issues being similar. Then, by our approach of Definition
3.34, there are the following two situations. Note that the
reference agent 7 on {v;} can not be u4 or ug, because uy or
ug has the attitude “0” on the single issue v.

(i) If T = up, then we can compute the similarity degree
of each agent and 1 as Table 13 shows. Obviously, the case
of T = uz or T = us is similar to this case.

Then, by Definition 3.34, we have the following tri-
section of all agents induced by T = u, on the single issue
Vi

* As we see, the concept of reference agent, namely Definition 3.33,
is defined on any issue set Y, and Y may contain multiple issues.
However, in this paper we will only use this concept to induce the
trisection of all agents on a single issue. In the future, we will use
Definition 3.33 to induce the trisection of all agents on multiple
issues.
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Table 13 Similarity degree of each agent and T = u, on {v;}

uj U us Uy Us Ue
V1 - + + 0 + 0
ey, (u,-,r) 0 1 1 0.5 1 0.5

Agv:l (uz) = {uz, us, MS};
Agvxl (u2) = {ur},
Agy (u2) = {ug, us}.

(ii) If T = uy, then we can similarly obtain the following
trisection of all agents induced by t = u; on the single
issue v;:

Ag, (ur) ={m},
Agy (uy) = {uz, u3, us},
Agy (ur) = {ug, us}.

So we obtain the above two trisections of all agents by our
approach, and the two trisections are meaningful from
different trisecting points of view. Let us now consider the
approach of Yao [35]. By Definition 2.3, we can obtain the
following trisection of all agents on the single issue v;:

Al ={uc Ulf(u,n) = +} = {uz, u3, us},
A, ={ueUlf(u,v) = =} = {m},
A) = {u e Ulf(u,v1) = 0} = {us, us}.

Conclusion: One can see that Yao’s trisection of all agents
on a single issue is exactly one case of our trisections,
namely the case of 7 = u,. Therefore, our approach of
Definition 3.34 produces more trisections than Yao’s
approach of Definition 2.3 on a single issue. In other
words, the trisection model of all agents on a single issue in
this paper is a conservative extension of the trisection
model of all agents in Yao [35] on the same single issue.
(4) The relationship between the two types of tri-
sections on a single issue. Next, we present a theorem to
show the relationship between trisections of all agents and
trisections of all pairs of agents on a single issue.

Theorem 3.36 Let S = (U,V,f) be a three-valued situa-
tion table, v € V be an issue in V, and t be a reference
agent on {v}. The relationship of the six sets Ag, (1),
Ag;(t), AgY (1), P, Py and P is as follows:

@ Springer

P, = (Ag, (1) x Ag, (1)) U (Ag; () x Ag; (7))

U(Agy (7) x Agl (7)),
PT = Agy (1) x Agl (1),
PT = (Agy (1) x Agl (7)) U (Ag7 (x) x Agy (1))
(39)
Proof Suppose that f(t,v)=+, then we have

Agy (1) = {u € Ulf(u,v) = +},
Ag; (1) = {u € Ulf(u,v) = -},
AgZ (1) ={u € Ulf(u,v) =0}. On the other hand, by
Definition 3.30, we have that
Py ={(+,+),(=-),(0,0)},  P7={(+,-)} and
PY = {(+,0),(—,0)}. Hence the conclusion holds for the
case of f(t,v) = +.

Suppose that f(t,v) = —, then we have Ag (t) = {u €
Ul fv)= -} Agi(r) = {u e Ulf(u,v) = +},
Agy(t) = {u € Ulf(u,v) = 0}. Similar to the case of
f(z,v) =+, it is easy to obtain that the conclusion also
holds for the case of f(t,v) = —. O

Remark 3.37 This theorem also explains why we agree
that f(z,v) = 0 is illegal on a single issue v. Assume that
f(z,v) =0, then we have Ag; (1) = {u € U|f(u,v) =0},
Agr (1) =0, and
AgY(t) ={u e Ulf(u,v) = +} U{u € Ulf(u,v) = —}.
Then, Ag=(z) x Agz(z) = {(0,0)}, Ag=(z) x Ag(c) = 0,
and Agf(‘c) X Agvg(f) = {(+7 +)7 (_7 _)7 (+’ _)a (_7 +)}
So in this case we have that (Ag, (t) x Ag; (7)) U (Ag ()
XA (1) U (AgZ(7) xAgZ () = 1(0,0), (+,+), (= ),
(+,=),(=,+)} and Ag;(r) x Ag;(r) =0. Thus, the
conclusion of Theorem 3.36 does not hold when
f(z,v) = 0. In other words, we are not able to differentiate
the attitudes + and — within the trisection set Ag}(t) or P,
when f(t,v) = 0 on the single issue v.

(5) Two types of three-level conflicts on a single issue.
Now, we discuss two types of three-level conflicts on a
single issue: one is induced by a trisection of all agents, and
the other is induced by a trisection of all pairs of agents.
We have defined the trisection of all agents (Ag, (1),
Ag; (1), Agy (1)) for any given 7 and v. The three sets are
pair-wise disjoint, and their union is the set of all agents.
Furthermore, we have obtained that: with f(t,v) = + or
f(z,v) = —, all the agents in any one of the three sets have
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the same attitudes towards the issue v. So, for a single
issue, it is easy to define the three-level conflict induced by
a trisection of all agents.

Definition 3.38 Let S = (U,V,f) be a three-valued situ-
ation table, v € V be an issue in V, t be a reference agent
on {v}, and (Ag; (1),Ag; (1),Ag (1)) be a trisection of all
agents induced by 7 on {v}. The three-level conflict
induced by (Ag; (7),Ag; (1),Ag> (7)) is defined by

strong conflict : SC(Ag; (1),

Ag; (1)),
weak conflict : WC(Ag; (7),Ag7 (1)),
WC(Agy (1), Ag7 (7)),

non-conflict : NC(Ag; (1),Ag, (1)), NC(Ag; (1),

Ag; (1)), NC(Agy (x), Agy (7))

(40)
Conversely, the three-level alliance

(Ag5 (1),Ag; (1),Agy (1)) is defined by
strong alliance : SA(Ag; (1),Ag; (1)),SA(Ag) (1),

Ag; (1)), SA(Agl (1), AgT (7)),
weak alliance : WA (Ag(1),Ag (1)),
WA(Ag; (1), Ag7 (1)),
non-alliance : NA(Ag; (1),Ag. (1)).

induced by

(41)

Remark  3.39 Although  our trisection  model
(Ag; (1),Ag; (1),Agy (1)) is an extension of the trisection
model < A7 ,Ag,A:r > of Yao [35], the three-level con-
flict model defined above is equivalent to Yao’s three-level
conflict model of Definition 2.5 on a single issue. One may
verify this conclusion through the following Example 3.40.

Example 3.40 Consider Table 1 again. In Example 3.35,
we have obtained the trisections (Ag; (u2), Ag; (u2),
Agy(u2)) and (Ag (u1), Ag, (u1), Agy (u1)). Then, by
Definition 3.38, we obtain that the three-level conflict
induced by (Agv:](ug), Ag, (), Agy (up)) is
strong conflict: SC({uz, u3, us},
{w}),
weak conflict: 'WC({uy, u3,us}, {us, us}),
WC({ul}ﬂ {”47 u6})7

non-conflict:  NC({uy, uz,us}, {uz, uz,us}),

NC({Ml}a{“1})7NC({M47M6}3{M47u6})'
Similarly, the three-level conflict induced by (Ag; (u1),
Ag, (u1), Agy (ur)) is

strong conflict:
SC({u1}, {u2, u3,us}),

WC({ur}, {ua, us}),
WC({uz, uz,us}, {us, us}),
non-conflict:  NC({u }, {u}),

NC({uz, u3,us}, {uz, u3,us}), NC({ug, uc}, {ua, g }).

weak conflict:

Conclusion: We can see that the two different trisections
in fact induce the same three-level conflicts. Therefore, our
conclusion is—for any given single issue v € V, the two
different trisections (Ag, (u2), Ag; (u2), Ag) (u2)) and
(Ag, (u1), Ag;, (u1), Agy (u1)) induce the same three-level
conflicts.

We have defined the trisection of all pairs of agents (P,
P, P7) on a single issue v in Definition 3.30. The three
sets are also pair-wise disjoint, and their union is the set of
all pairs of agents. By the previous discussion, we have
obtained that: for any pair of agents (u;,u;) € P, u; and u;
have the same attitudes towards issue v; for any pair of
agents (u;,u;) € P, u; and u; have clearly opposite atti-
tudes towards issue v; for any pair of agents (u;,u;) € P7,
u; and u; have other cases of attitudes towards issue
v. Therefore, we have the following definition of three-
level conflict induced by a trisection of all pairs of agents.

Definition 3.41 Let S = (U,V,f) be a three-valued situ-
ation table, v € V be an issue in V, and (P, P, P5) be a
trisection of all pairs of agents on v. The three-level
conflict induced by (P, P}, PT) is defined by
strong conflict: SC= {(u;,u;) € U x U|(u;,u;) €P},
weak conflict: WC = {(u;,u;) € U x U|(u;,u;) € P},
non-conflict: NC={(u;,u;) € U x U|(u;,u;) € P, }.
(42)

Conversely, the three-level alliance

(P, ,P;,PT) is defined by

induced by

strong alliance : SA = {(u;,u;) € U x U|(u;,u;) € P},
weak alliance : WA = {(u;,u;) € U x U|(u;,u;) € P}’ },
non-alliance : NA = {(u;,u;) € U x U|(u;,u;) € P }.
(43)

Example 3.42 1In Example 3.32, we have obtained the tri-
section of all pairs of agents on vy, namely (P, P, P;).
Now, by Definition 3.41, we obtain the three-level conflict
induced by (P, P, P;) is

vt ovp?
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strong conflict:

SC = P = {(u1,u2), (ur,u3), (ur, us)},
weak conflict: WC = P} = {(us,us), (u1, s),
(u2,uq), (uz, u6), (u3, us), (us, us ), (us, ua), (us, us) },
non-conflict: NC = P}, = {(uz,u3), (u2,us),
(us,us), (us, us), (ur,ur), (u2, u2), (us, u3), (us, us),

(“57 uS)a (u67 u6)}'

Conclusion: By comparing this resulting three-level con-
flict with that of Example 3.40, we can see that they in fact
represent equivalent three-level conflicts in two different
forms. Therefore, our conclusion is—for any given single
issue v € V, the two types of trisections (Ag; (1),Ag (1),
AgZ (1)) and (P, P;, PY) induce the equivalent three-level
conflicts.

(6) Three-way strong alliance on a single issue.
Finally, we give one more discussion about the strong
alliance on a single issue, through which one can see the
role of reference agent in trisecting process. Since P, =
{(+,4),(=,—),(0,0)} according to the above discussion,
we further define the following trisection of P so as to
differentiate the pairs (+,+), (—, —) and (0, 0).

Definition 3.43 Let S = (U, V,f) be a three-valued situ-
ation table, v € V be an issue in V, and 7 be a reference
agent on {v} satisfying the condition that f(t,v) = +. The
trisection of P is defined by

PP, = {(Mi’u.i) € P, | ey(uit) =1},

NPv::{(Miauf) EPV: |ev(u;,r):O}, (44)

BP; = {(u;,u;) € P, | e,(u;,7) = 0.5}.

One can see that we can define a trisection flexibly by
employing different appropriate t on {v}. And this is
exactly what the reference agent plays.

Example 3.44 By Definition 3.43, we can further compute
the trisection of PV:] as follows, where PV:] has been com-

puted in Example 3.32:
PP, = {(u2,u3), (uz, us), (us, us), (uz, us),
(uz, u3), (us,us)},
NP, = {(u1,u1)},
BP, = {(ua, ue), (us,us), (ug, ug) }
One can see that PP, = {(+,+)}, NP, = {(—,—)} and
BP, = {(0,0)}. Therefore, the pairs (+,+),(—,—) and
(0, 0) are effectively differentiated from each other by
Definition 3.43.

@ Springer

By employing Definition 3.43, we can further divide the
strong alliance SA = P} into the following three parts so as
to differentiate the types of alliances in SA.

Definition 3.45 Let S = (U,V,f) be a three-valued situ-
ation table, v € V be an issue in V, (P, ,P;,P)’) be the
trisection of all pairs of agents on v, and (PP, NP,", BP])
be the trisection of P . The three-way strong alliance
induced by (PP, NP, BP;) is defined by
support-strong alliance : SSA
= {(ui,wj) € P7|(uj,uj) € PPT},
opposition-strong alliance :
OSA = {(ui,wj) € P |(ui,u;) € NP},
neutrality-strong alliance :
NSA = {(u;,u;) € P, |(u;,u;) € BP, }.

Example 3.46 In Example 3.44, we have obtained the tri-
section <PPV:|, NP, BP:), and therefore we immediately
obtain the following strong alliance by

Definition 3.45:

three-way

support-strong alliance: SSA

= {(MZ’ I/t3), (u27u5)’ (u3,u5), (u2a MZ)’ (u37u3)a (u57u5)}7
OSA = {(ul,ul)}7

neutrality-strong alliance:
NSA = {(u47 u6)a (u47 u4)7 (M(), MG)}

opposition-strong alliance:

4 Conclusion

A new model of three-way conflict analysis, namely the
three-level conflict induced by a trisection of all pairs of
agents on an issue set, is introduced in this paper. The
threshold-selection problem for the defined three-level
conflicts is successfully solved in two different ways. By
comparing the approach of Yao [35], the present paper
proves that the trisection model (resp. the three-level
conflict model) defined in this paper is a conservative
extension of the corresponding trisection model (resp.
three-level conflict model) in Yao [35]. Therefore, the
present paper extends and improves the results of Yao [35]
on multiple issues.

When we limit three-level conflict model to the one on a
single issue, we find that the three-level conflict induced by
a trisection of all agents is equivalent to the three-level
conflict induced by a trisection of all pairs of agents.
However, we fail to obtain a similar result on multiple
issues. So this problem will be further studied in the future
work. In addition, there are usually importance difference
among multiple issues. So we will introduce importance
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into the multiple issues, and study three-way conflict
analysis with importance on multiple issues in the future.
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