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Abstract
Multi-label image classification is a fundamental and practical task, which aims to assign multiple possible labels to an image. 
In recent years, many deep convolutional neural network (CNN) based approaches have been proposed which model label 
correlations to discover semantics of labels and learn semantic representations of images. This paper advances this research 
direction by improving both the modeling of label correlations and the learning of semantic representations. On the one 
hand, besides the local semantics of each label, we propose to further explore global semantics shared by multiple labels. On 
the other hand, existing approaches mainly learn the semantic representations at the last convolutional layer of a CNN. But 
it has been noted that the image representations of different layers of CNN capture different levels or scales of features and 
have different discriminative abilities. We thus propose to learn semantic representations at multiple convolutional layers. 
To this end, this paper designs a Multi-layered Semantic Representation Network (MSRN) which discovers both local and 
global semantics of labels through modeling label correlations and utilizes the label semantics to guide the semantic repre-
sentations learning at multiple layers through an attention mechanism. Extensive experiments on five benchmark datasets 
including VOC2007, VOC2012, MS-COCO, NUS-WIDE, and Apparel show a competitive performance of the proposed 
MSRN against state-of-the-art models.

Keywords  Multi-label image classification · Convolutional neural network · Label embeddings · Multi-layered attention

1  Introduction

Multi-label image classification (MLIC) deals with assign-
ing multiple labels to each image, and it has been applied in 
many fields, including multi-object recognition [17], medi-
cal diagnosis recognition [11] and Person re-identification 
[26]. The recent progress is mainly made by exploiting label 

correlations and learning semantic representations with deep 
learning models.

Modeling label correlations has been long studied in 
multi-label classification and has been demonstrated very 
effective because correlated labels are highly likely to co-
occur [4]. For an image recognition task, convolutional neu-
ral networks (CNNs) [10, 12, 24] and unsupervised feature 
extraction methods [14, 15, 39] have been widely applied to 
extract image features. Recently, many approaches to MLIC 
are proposed based on combining CNNs and exploiting label 
correlations, e.g., [3, 4, 23]. In these approaches, an exist-
ing deep learning model is usually employed as a tool to 
transform an image into a high-level abstract representation. 
But objects of interest may only be in certain regions of an 
image. Some recent studies [2, 5, 28, 35, 41] mentioned that 
semantic label embeddings can make the model generating 
more likely label combinations in prediction stage. There-
fore, these works utilize the correlation between labels and 
generate semantics to guide the learning of semantic repre-
sentations of images.
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This paper advances this research direction by improv-
ing both the modeling of label correlations and the learn-
ing of semantic representations. On the one hand, in [38], 
the authors mentioned that higher-order label correlations 
have stronger modeling ability for multi-label classifica-
tion. Therefore, unlike existing approaches only learn local 
semantics of each label, we propose to explore global seman-
tics shared by multiple labels. On the other hand, existing 
approaches mainly learn the semantic representations at the 
last convolutional layer of a CNN. But it has been noted that 
the image representations at different layers of CNN cap-
ture different levels or scales of features and have different 
discriminative abilities [1, 10, 16, 32]. In addition, apply-
ing spatial attention can flexibly and adaptively aggregate 
semantic information and focus on the regions of interest 
[40]. Therefore, better performance might be achieved by 
simultaneously exploiting features at multiple layers of a 
CNN and position-wisely combining the image representa-
tions learning with label embeddings.

To realize the proposals mentioned above, we design 
a novel Multi-layered Semantic Representation Network 
(MSRN). MSRN generates both label-specific and group 
embeddings which capture local semantics and global 
semantics respectively, and then combines them with multi-
ple layers of a CNN by an attention mechanism to learn label 
and group shared semantic representations of images. To 
be specific, first, we introduce LGE (Label-Group Embed-
ding) module to capture both local semantics of each label 
and semantics of a group of labels in embeddings based on 
the label co-occurrence graph. Second, we propose SGA 
(Semantic Guided Attention) module to position-wisely 
guide the CNN to focus on the regions of interest. Third, we 
design a framework to combine the LGE module with the 
multiple layers of a CNN through the attention mechanism 
built in the SGA module. We conduct experiments on five 
benchmark multi-label image datasets including VOC2007, 
VOC2012, NUS-WIDE, MC-COCO, and Apparel. The 
experimental results show that our method outperforms 
state-of-the-art approaches.

The contributions of this paper are summarized as 
follows:

•	 A Multi-layered Semantic Representation Network 
(MSRN) is designed for multi-label image classification.

•	 Second-order and high-order label correlations are con-
sidered simultaneously to improve the performance of 
multi-label image classification.

•	 Semantic representations are learned at multiple lay-
ers through the position-wisely attention mechanism by 
modeling label correlations.

The rest of the paper is organized as follows. Section 2 
introduces related work. Section 3 presents the proposed 

method. Section 4 presents empirical evaluation. Section 5 
concludes this paper and introduces future work.

2 � Related work

In MLIC, images are annotated with multiple labels simul-
taneously where labels usually have correlations. It has 
been demonstrated that exploiting label correlations can 
significantly improve the performance [38]. Recent pro-
gress has been made by employing deep learning mod-
els, especially convolutional neural networks. Wang et al. 
[27] extract label semantics and associate it to Recurrent 
Neural Network (RNN). In addition, Lee et al. [19] apply 
knowledge graphs to exploit the label dependencies based 
on the label co-occurrence graph. ML-GCN [4] learns the 
semantic label embeddings through Graph Convolution 
Network (GCN), and applies it as inter-dependent object 
classifiers at the prediction stage. In [29], a label graph 
superimposing framework is proposed to exploit label cor-
relations. The label graph is constructed by superimposing 
statistical label graph into knowledge prior oriented graph, 
which, however, is usually unavailable in real applications.

Some studies further locate regions of interest because 
each class label might be determined by some specific 
regions of an image. Examples include [33, 42] which 
apply bounding box to focus on the regions of proposal. 
To learn regions with arbitrary boundaries, more studies 
propose attention based methods where attention is a spa-
tial weight map representing relative importance among 
pixels [16]. SRN [41] is an end-to-end CNN model which 
trains learnable convolutions on the attention maps of 
labels. In [3], Chen et al. propose an order-free RNN based 
model for multi-label image classification, which uniquely 
integrates the learning of visual attention and Long Short 
Term Memory (LSTM) layers to jointly learn the labels of 
interest and their co-occurrences.

Recently, some methods [4, 5, 35] apply Graph Neu-
ral Network (GNN) techniques to generate semantic label 
embeddings which can be utilized as visual attention for 
multi-label image classification. You et al. [35] propose 
a method of computing cosine similarity between label 
embeddings to exploit label dependencies. Chen et al. 
[5] apply a GNN with graph propagation mechanism to 
exploit the interaction between DNN and label dependen-
cies. Despite having achieved high performance on multi-
label image classification, these methods do not explicitly 
consider high-order label dependencies which may result 
in semantics shared by a group of labels [38]. Moreover, to 
the best of our knowledge, no existing approaches utilize 
image representations extracted from multiple layers of 
a CNN.
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3 � Method

3.1 � Architecture

The architecture of the proposed MSRN is shown in Fig. 1. 
We design an LGE module to generate label and group 
embeddings with the input of a graph G = {V ,A} . V = {vi}

n
i=1

 
is the feature matrix of labels where vi is a vector of features 
and n is the number of labels, and A = {aij}

n
i,j=1

 is the adja-
cency matrix about label co-occurrence. The outputs of LGE 
module are label embeddings El = {ei

l
}n
i=1

∈ ℝ
n×d and group 

embeddings Eg = {ei
g
}m
i=1

∈ ℝ
m×d , where m is the number 

of groups, and d is the dimension of the embeddings.
The backbone in our framework can be any kind of 

CNNs, such as VGG [24], ResNet [12] and DenseNet [10]. 
In this paper, Resnet-101 is chosen for experiment. Given 
an input image, F = {f b}

B
i=1

 indicates the output image fea-
tures of different branches, where B is the total number of 
branches, and f b ∈ ℝ

Wb×Hb×Cb is image feature for the b-th 
branch with spatial resolution Wb × Hb and channel Cb . The 
branches marked as blue lines in Fig. 1 are used to receive 
the image feature map f b from corresponding layers in the 
CNN. We provide three branches in our work to receive the 
output image features from the last layer of the last three 
blocks of Resnet-101. Since the channel Cb of image fea-
tures from different layers of CNN are distinct, we use a 
convolutional layer with 1 × 1 kernel to project image features 
from f b to fb = conv1×1(f b) ∈ ℝ

Wb×Hb×d which has the same 
dimension d as the label embeddings El and group embed-
dings Eg.

Then we propose an SGA module to position-wisely com-
bine the image feature maps F = {fb}

B
i=1

 with label embed-
dings El and group embeddings Eg . The outputs of SGA 

module are label semantic representations O = {ob}
B
b=1

 and 
group shared semantic representations Q = {qb}

B
b=1

 , where 
ob ∈ ℝ

n×d and qb ∈ ℝ
m×d . Some of the existing approaches 

utilize the label-specific representation for each label. But 
since in real applications the labeling results of a dataset 
usually have noisy or missing labels, the label-specific 
semantic representation might not be sufficient enough to 
predict correct labels. Therefore, in the final stage of our 
framework, we concatenate the generated label and group 
shared semantic representations into M = [O||Q] , and apply 
fully connected layers to perform the prediction where the 
cross entropy loss function is adopted as follows:

where yi is equal to 1 or 0 for image i in terms of a certain 
label, ŷi is the output of fully connected layer, and �(⋅) is the 
sigmoid function.

3.2 � Label‑group embedding module

Since label correlation is important information in multi-
label image classification as we mentioned in Sect. 1, we 
build a Label-Group Embedding (LGE) module to generate 
semantic label embeddings El and group embeddings Eg.

3.2.1 � Semantic label embeddings

Graph attention Networks (GAT) [25] is a self-attention 
based model which is most frequently used for learning 
embeddings of graph-structured data. With GAT algorithm, 
we can obtain the semantic label embeddings El from the 

(1)L1 =

n∑

i=1

yi log(𝜎(ŷi)) + (1 − yi) log(1 − 𝜎(ŷi)),

Fig. 1   Overall architecture of 
our MSRN model. Given an 
image, a CNN network outputs 
the image features from differ-
ent layers to different branches. 
At the same time, LGE Module 
generates the the label and 
the group embeddings. Then, 
the SGA module produces 
label-level semantic representa-
tions and group-level semantic 
representations of the image by 
combining each image feature 
map from each branch. At last, 
we concatenate the generated 
semantic representations and 
perform the classification
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label graph G . In our model, GAT first produces the atten-
tion coefficient �ij between the i-th and j-th label as follows:

where P ∈ ℝ
1×2w and U ∈ ℝ

w×v are two learnable weight 
matrices, v and w equal to the input and output of feature 
dimension of the GAT layer respectively, Ni is the set of 
neighborhoods of label i in the graph, and || represents 
the concatenation operation. The negative input slope in 
LeakyReLU is set to be 0.2 in our work. Then, we can obtain 
label embeddings E1

l
= {ei

l
}n
i=1

 from the first GAT layer by 
linearly combining attention coefficients � with the trans-
formed label features:

where the �(⋅) is non-linear activation function which is ELU 
in our method. For simplicity, GATt(⋅) is used to represent 
the t-th GAT layer that consists of Eqs. (2) and (3), and the 
semantic label embeddings Et

l
 can be generated by the fol-

lowing equation:

where E0
l
= V  is the original feature matrix of labels.

3.2.2 � Semantic group embeddings

Differentiable graph pooling (Diffpool) [34] is a graph clus-
tering algorithm that soft map graph nodes to a set of clus-
ters. Once we capture the semantic label embeddings El , we 
can apply Diffpool to generate semantic group embeddings 
Eg as

Moreover, in order to learn more compact group embed-
dings, we try to minimize the distance between the group 
embeddings Eg and the labels embeddings El as follow

where Ck indicates the k-th cluster of labels which are highly 
correlated labels.

3.3 � Semantic guided attention module

The aim of SGA module is to utilize the semantic embed-
dings El and Eg to guide the learning of semantic repre-
sentations of images at different branches. As the feature 

(2)�ij =
exp(LeakyReLU(P[Uvi��Uvj]))∑

k∈Ni
exp(LeakyReLU(P[Uvi��Uvk]))

,

(3)ei
l
= �

(
∑

j∈Ni

�ijUvj + Uvi

)
,

(4)Et
l
= GATt(E

t−1
l

,A),

(5)Eg = Diffpool(El,A).

(6)L2 =

m�

k=1

�

Ei
l
∈Ck

‖Ek
g
− Ei

l
‖2
2
,

contained in each position (w, h) of an image feature map 
could be correlated to the semantics of the label embed-
dings, we propose a position-wise attention mechanism to 
fully combine the image feature space and the semantic 
embedding space. Similar to existing studies [5, 18], we 
adopt the Hadamard product between each position (w, h) 
of an image feature map from the b-th branch and the label, 
group embeddings to calculate the attention weights as

where the ⊙ is Hadamard product, slbw,h ∈ ℝ
1×1×n×d and 

sgbw,h ∈ ℝ
1×1×m×d . Then we apply normalization to the 

computed compatibility scores alb ∈ ℝ
Wb×Hb×n×d and 

agb ∈ ℝ
Wb×Hb×m×d

Once obtained the normalized compatibility scores, we 
apply the second Hadamard product to generate position-
wise attention maps.

Finally, the total training loss is L1 + �L2 , where � is a regu-
larization parameter.

3.4 � Model prediction

In the test stage, we concatenate the local semantic repre-
sentations O = {ob}

B
b=1

∈ ℝ
n×(Bd) and group shared semantic 

representations Q = {qb}
B
b=1

∈ ℝ
m×(Bd) and predict the labels 

by ŷi = fc2(LeakeyReLU(fc1(tanh(M)))) , where M = [O||Q] , 
fc1 and fc2 are fully connected layers. It should be noted 
that the label co-occurrence information used in training 
and testing stage also the same adjacency matrix that com-
puted based on label co-occurrence information of training 
data set.

4 � Empirical evaluation

In this section, we will describe the implementation details 
of our proposed model MSRN and the experimental results.

4.1 � Implementation details and evaluation metrics

The input label features V are 300-dimensional Glove 
features pretrained on Wikipedia dataset. The backbone 
ResNet-101 is pretrained on ImageNet for accelerating 
training process. We remove the last average pooling layer 
and classifier of Resnet-101 and apply the MaxPooling with 

(7)slb
i
w,h

= f
w,h

b
⊙ ei

l
, sgb

j

w,h
= f

w,h

b
⊙ ej

g
,

(8)al
w,h

b
=

exp(slbw,h)∑
x,y exp(slbx,y)

, ag
w,h

b
=

exp(sgbw,h)∑
x,y exp(sgbx,y)

.

(9)ob =
∑

w,h

al
w,h

b
⊙ f

w,h

b
, qb =

∑

w,h

ag
w,h

b
⊙ f

w,h

b
.
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kernel size 2 × 2 and stride 2 to obtain image features, F , 
from last three building blocks of ResNet-101. The output 
dimension of fc1 is 2048, and the output dimension of fc2 
is the same as the number of labels. In addition, to reduce 
the impact of branches corresponding to lower layers of the 
backbone on gradients, we add a buffer convolutional layer 
[1] with kernel size 1 × 1 and stride 1 before we obtain image 
features from the last two branches. Both the output feature 
dimension of first GAT layer and input feature dimension 
of second layer are 300 and the output feature dimension of 
second GAT layer is 512. The number of groups of labels 
m is set as 4. The regularization parameter � is set to 0.001. 
The input image is resized to 448 × 448 for both training and 
testing. We train our model on one Tesla V100-16GB GPU 
and set the batch size to 8. For optimization, we apply SGD 
as optimizer with momentum 0.9 and weight decay 10−4 . 
The initial learning rate is set to 0.01 and it is decreased by 
∗ 0.1 on each 30 epochs in total 90 epochs.1

The evaluation metrics we used in our experiments 
include mean average precision (mAP) over all categories, 
precision (CP, OP), recall (CR, OR), and F1 score (CF1, 
OF1).

4.2 � Experimental results

VOC2007 [8] We compare our method with ResNet-101 
[12], CNN-RNN [27], AR [2], ML-GCN [4], FGCN [30], 
SSGRL [5], SIGCN [6]. Following [5], we also pretrain 
our model on the MS-COCO dataset. The results of all the 
methods are shown in Table 1. We can see that the result of 
MSRN(pre) is 2%, 1.9%, and 1% better than ML-GCN [4], 
FGCN [30], SSGRL [5], SIGCN [6] on mAP respectively. It 
should be noted that the input image size of SSGRL(pre) is 
576×576 which is larger than ours. Our model also achieves 
the best AP score on 17 categories. The results definitely 
demonstrate the effectiveness of modeling multi-layered 
semantic representations.

VOC2012 [9] We also perform the experiments on 
VOC2012 dataset and Compare with the RMIC [13], 
VGG+SVM [24], FeV+LV [33], HCP+AGS [31], SSGRL 
[5] and SIGCN [6]. The experimental results are shown in 
Table 2, our method achieves the best AP score on 11 cat-
egories. Our method also outperform 0.1%, 0.2% mAP than 
SSGRL(576 image size) and SIGCN respectively. When 
applying with the COCO pretrained model, our method is 
also better than SSGRL(pre) 0.2% on mAP. The results show 
that our method achieves a competitive performance com-
paring with other works.

Table 1   Comparison of mAP and AP (in %) of our method and state-of-the-art methods on Pascal VOC2007 dataset where numbers in bold 
indicate the best performance and numbers underlined indicate the second performance

voc2007 CNN-RNN ResNet-101 AR ML-GCN A-GCN F-GCN SSGRL SSGRL (pre) SIGCN MSRN MSRN (pre)

Areo 96.7 99.5 98.6 99.5 99.4 99.5 99.5 99.7 99.8 100.0 99.7
Bike 83.1 97.7 97.1 98.5 98.5 98.5 97.1 98.4 98.1 98.8 98.9
Bird 94.2 97.8 97.1 98.6 98.6 98.7 97.6 98.0 97.8 98.9 98.7
Boat 92.8 96.4 95.5 98.1 98.0 98.2 97.8 97.6 98.2 99.1 99.1
Bottle 61.2 75.7 75.6 80.8 80.8 80.9 82.6 85.7 82.7 81.6 86.6
Bus 82.1 91.8 92.8 94.6 94.7 94.8 94.8 96.2 95.3 95.5 97.9
Car 89.1 96.1 96.8 97.2 97.2 97.3 96.7 98.2 97.5 98.0 98.5
Cat 94.2 97.6 97.3 98.2 98.2 98.3 98.1 98.8 97.7 98.2 98.9
Chair 64.2 74.2 78.3 82.3 82.4 82.5 78.0 82.0 84.9 84.4 86.0
Cow 83.6 80.9 92.2 95.7 95.5 95.7 97.0 98.1 96.8 96.6 98.7
Table 70.0 85.0 87.6 86.4 86.4 86.6 85.6 89.7 85.8 87.5 89.1
Dog 92.4 98.4 96.9 98.2 98.2 98.2 97.8 98.8 98.1 98.6 99.0
Horse 91.7 96.5 96.5 98.4 98.4 98.4 98.3 98.7 97.9 98.6 99.1
Motor 84.2 95.9 93.6 96.7 96.7 96.7 96.4 97.0 96.6 97.2 97.3
Person 93.7 98.4 98.5 99.0 98.9 99.0 98.8 99.0 99.6 99.1 99.2
Plant 59.8 70.1 81.6 84.7 84.8 84.8 84.9 86.9 85.9 87.0 90.2
Sleep 93.2 88.3 93.1 96.7 96.6 96.7 96.5 98.1 96.5 97.6 99.2
Sofa 75.3 80.2 83.2 84.3 84.4 84.4 79.8 85.8 86.4 86.5 89.7
Train 99.7 98.9 98.5 98.9 98.9 99.0 98.4 99.0 98.6 99.4 99.8
Tv 78.6 89.2 89.3 93.7 93.7 93.7 92.8 93.7 94.4 94.4 95.3
mAP 84.0 89.9 92.0 94.0 94.0 94.1 93.4 95.0 94.4 94.9 96.0

1  Source codes and pre-trained models of our method are publicly 
available at https://​jiunh​wang.​github.​io/

https://jiunhwang.github.io/
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MS-COCO [21] The comparison results on MS-COCO 
dataset are shown in Table 3. We compare our method with 
ResNet-101 [12], ML-GCN [4], FGCN [30], CMA [35] 
and SIGCN [6]. Our method can achieve 83.4% mAP score 
which is in the first rank. Our model achieves comparable 
performance with the state-of-the-art methods. Although 
SSGRL and MS-CMA is 0.4% better than our method with 
448 input image size in most of metrics, these two methods 
have a more advantageous experimental setup, such as larger 
image size and multi-scale training. Therefore, we also test 
our method by setting inputting image as 576 size. Specifi-
cally, MSRN wins the first place in terms of mAP, CR, CF1, 
OR, and OF1.For the results on top-3 labels, MSRN obtains 
the best performance in terms of OR and OF1.

NUS-WIDE [7] contains 269,648 images and 81 con-
cepts. The dataset is split by following [35]. We compare 
MSRN with CNN-RNN [27], ML-GCN [4], GATN [36], 
AT [37], S-CLs [22] and CMA [35]. As shown in Table 4, 
our model achieves 0.1% better than MS-CMA on mAP. In 
addition, MSRN achieves the best performance in terms of 
CF1, OF1 and CF1-3. Both our model and MS-CMA [35] 
extract image features from lower layers of CNNs, but our 

model outperforms it by 0.1%, 0.2%, 0.2% and 0.4% in terms 
of mAP, CF1, OF1 and CF1-3, respectively.

Apparel2 is a clothing dataset for multi-label image clas-
sification. We test our model on it and make comparisons 
with ResNet-101 [12], SSGRL [5] and ML-GCN [4]. In our 
experiment, we randomly select 50% images from the data-
set for training, and other 50% images for testing. The result 
in Table 5 shows that our model achieves 99.65 mAP score. 
Our model is 0.18% better than ResNet-101 and 0.06% bet-
ter than the current best model on mAP. Our model also 
achieves the best score on all metrics that we employ.

4.3 � Ablation studies

In this section, we perform ablation studies to evaluate the 
effectiveness of different components of our framework.

Label and group embeddings To verify the effectiveness 
of label and group embeddings, we conduct experiments 
with three simplified versions of our proposed method 
MSRN, i.e., label-E (only using label embedding), group-E 
(only using group embedding), and no LGE module. The 
results shown in Table 6 clearly indicate the effectiveness 
of label and group embeddings.

Table 2   Comparison of mAP and AP (in %) of our method and state-of-the-art methods on Pascal VOC2012 dataset where numbers in bold 
indicate the best performance and numbers underlined indicate the second performance

voc2012 RMIC VGG+SVM FeV+LV RCP HCP+AGS SSGRL SSGRL(pre) SIGCN MSRN MSRN (pre)

Areo 98.0 99.0 98.4 99.3 99.8 99.5 99.7 99.6 99.7 99.8
Bike 85.5 88.8 92.8 92.2 94.8 95.1 96.1 95.1 95.2 96.3
Bird 92.6 95.9 93.4 97.5 97.7 97.4 97.7 97.5 98.3 98.4
Boat 88.7 93.8 90.7 94.9 95.4 96.4 96.5 96.2 96.3 96.8
Bottle 64.0 73.1 74.9 82.3 81.3 85.8 86.9 84.5 84.8 85.2
Bus 86.8 92.1 93.2 94.1 96.0 84.5 95.8 95.6 96.5 97.5
Car 82.0 85.1 90.2 92.4 94.5 93.7 95.0 94.2 93.3 95.2
Cat 94.9 97.8 96.1 98.5 98.9 98.9 98.9 98.9 99.6 99.6
Chair 72.7 79.5 78.2 83.8 88.5 86.7 88.3 84.8 87.4 88.0
Cow 83.1 91.1 89.8 93.5 94.0 96.3 97.6 96.1 96.0 96.6
Table 73.4 83.3 80.6 83.1 86.0 84.6 87.4 84.3 86.3 89.8
Dog 95.2 97.2 95.7 98.1 98.1 98.9 99.1 98.6 98.9 99.0
Horse 91.7 96.3 96.1 97.3 98.3 98.6 99.2 98.5 98.3 98.8
Motor 90.8 94.5 95.3 86.0 97.3 96.2 97.3 96.2 96.9 96.8
Person 95.5 96.9 97.5 98.8 97.3 98.7 99.0 98.7 98.8 99.0
Plant 58.3 63.1 73.1 77.7 76.1 82.2 84.8 83.2 80.6 84.5
Sleep 87.6 93.4 91.2 95.1 93.9 98.2 98.3 97.7 97.7 97.1
Sofa 70.6 75.0 75.4 79.4 84.2 84.2 85.8 82.9 80.5 85.8
Train 93.8 97.1 97.0 97.7 98.2 98.1 99.2 98.5 99.4 99.3
Tv 83.0 87.1 88.2 92.4 92.7 93.5 94.1 93.3 94.7 95.9
mAP 84.4 89.0 89.4 92.2 93.2 93.9 94.8 93.7 94.0 95.0

2  http://​www.​kaggle.​com/​kaiska/​appar​el-​datas​et.

http://www.kaggle.com/kaiska/apparel-dataset
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Number of branches As ResNet-101 contains four blocks, 
we conduct experiments to validate whether the multi-branch 
architecture is better than the single-branch architecture and 
whether the model performs better with all branches. The 
experimental results are shown in Table 7. We can find that 
the multi-branch architecture can improve at least 0.12% 
compared to the single-branch architecture, and achieves 
the best performance with the last 3 branches.

Table 3   Comparison of our 
method with state-of-the-art 
methods on MS-COCO dataset 
where numbers in bold indicate 
the best performance and 
numbers underlined indicate the 
second performance

Methods mAP CP CR CF1 OP OR OF1

CNN-RNN [27] – – – – – – –
ResNet-101 [12] 80.3 77.8 72.8 75.2 81.5 75.1 78.2
ML-GCN [4] 83.0 84.0 72.8 78.0 84.7 76.2 80.2
A-GCN [20] 83.1 84.7 72.3 78.0 85.6 75.5 80.3
F-GCN [30] 83.2 85.4 72.4 78.3 86.0 75.7 80.5
SSGRL(576) [5] 83.8 89.9 68.5 76.8 91.3 70.8 79.7
CMA [35] 83.4 83.4 72.9 77.8 86.8 76.3 80.9
MS-CMA [35] 83.8 82.9 74.4 78.4 84.4 77.9 81.0
SIGCN [6] 83.5 86.8 71.8 78.6 88.1 74.5 80.7
MSRN 83.4 86.5 71.5 78.3 86.1 75.5 80.4
MSRN (576) 84.7 84.7 74.9 79.5 85.2 79.5 81.8
Methods CP-3 CR-3 CF1-3 OP-3 OR-3 OF1-3
CNN-RNN [27] 59.3 52.5 55.7 59.8 61.4 60.7
ResNet-101 [12] 84.1 59.4 69.7 89.1 62.8 73.6
ML-GCN [4] 89.2 64.1 74.6 90.5 66.5 76.7
A-GCN [20] 89.0 64.2 74.6 90.5 66.3 76.6
F-GCN [30] 89.3 64.3 74.7 90.5 66.6 76.7
SSGRL (576) [5] 91.9 62.5 72.7 93.8 64.1 76.2
CMA [35] 86.7 64.9 74.3 90.9 67.2 77.2
MS-CMA [35] 88.2 65.0 74.9 90.2 67.4 77.1
SIGCN [6] 90.2 64.4 75.1 92.5 66.1 77.1
MSRN 88.3 63.7 74.0 90.2 66.8 76.8
MSRN (576) 88.8 64.5 74.7 91.0 67.5 77.6

Table 4   Comparion with state-of-the-art methods on NUS-WIDE 
dataset where numbers in bold indicate the best performance and 
numbers underlined indicate the second performance

Methods mAP CF1 OF1 CF1-3 OF1-3

ML-GCN [4] 54.9 51.6 68.1 – –
GATN [36] 59.8 56.9 70.7 – –
CNN-RNN [27] 56.1 – – 34.7 55.2
AT [37] 57.6 55.2 70.3 51.7 68.8
S-CLs [22] 60.1 58.7 73.7 53.8 71.1
CMA [35] 60.8 60.4 73.3 55.5 70.0
MS-CMA [35] 61.4 60.5 73.8 55.7 69.5
MSRN 61.5 60.7 74.0 56.1 69.5

Table 5   Comparison with state-of-the-art methods on Apparel data-
set where numbers in bold indicate the best performance and numbers 
underlined indicate the second performance

Methods mAP CF1 OF1 CF1-3 OF1-3

ResNet-101 [12] 99.47 97.51 97.78 97.51 97.78
SSGRL [5] 99.57 97.77 98.01 97.77 98.01
ML-GCN [4] 99.56 97.68 97.88 97.68 97.87
MSRN 99.65 98.21 98.36 98.21 98.36

Table 6   Comparison among different versions of MSRN

Numbers in bold face indicate the best performance

Setting No LGE Label-E Group-E MSRN

mAP 91.75 94.42 94.20 94.85

Table 7   Comparison among different number of branches

Numbers in bold face indicate the best performance and numbers 
underlined indicate the second performance

Number of branches Last 1 Last 2 Last 3 All 4

mAP 94.53 94.66 94.85 94.65
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4.4 � Parameter sensitivity

In this section, we study the sensitivity of MSRN to two 
hyper-parameters, i.e., the number of groups of labels m 
and the regularization parameter � . Due to the limitation of 
space, we only present the analyses on VOC2007 dataset. 
For the number of groups m, we conduct experiments of 
six different cases corresponding to 2, 4, 6, 8, 10 and 20, 
respectively, with � fixed as 10−3 . The experimental results 
in Table 8 show that the performance in terms of mAP is 
not much sensitive to m. For � , we study the values from 
{10−1, 10−2,… , 10−6} . The results with different values of 
� are shown in Table 8, which shows the performance is not 
much sensitive to �.

5 � Conclusion and future work

This paper proposes a novel Multi-layered Semantic Rep-
resentation Network (MSRN) for multi-label image clas-
sification. MSRN for the first time considers both local 
semantics and global semantics of labels through modeling 
label correlations, and learns semantic representations of 
images at multiple layers of a convolutional neural network 
through an attention mechanism. Extensive experiments 
show that MSRN outperforms many state-of-art methods 
on VOC2007, VOC2012, MS-COCO, NUS-WIDE and 
Apparel datasets. In the future, we will improve our method 
to explicitly utilize labels which exist but are unobservable 
due to lack of labeling efforts.
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