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Abstract
Imbalance classification has always been a popular research point in the application of machine learning, data mining and 
pattern recognition. At present, there are also many techniques to reduce the negative impact of imbalance on classification 
performance, and oversampling is the most commonly used one. In this paper, we illustrate the relationship between imbal-
ance rate and classification performance in the oversampling process from a novel perspective that oversampling may cause 
the loss of the distribution while minority class is enhanced. In addition, this paper proposes a novel cross-validation frame-
work called “icross-validation” that can be used in sampling to find a better state than the balanced state. This framework is 
general and can be applied into various oversampling methods. In comparison with some state-of-the-art and widely used 
oversampling methods, the experimental results on some real data sets demonstrate the effectiveness of the icross-validation. 
All code has been released in the open source icross-validation library at https://​github.​com/​syxiaa/​icross-​valia​tion.
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1  Introduction

An imbalance probably deteriorate the performance of clas-
sifiers in imbalanced classification, which is an important 
and widespread task in machine learning. Therefore, solving 
the problem of imbalanced learning has far-reaching sig-
nificance. Many techniques are generally used to solve this 
problem. They can be roughly divided into two categories: 
algorithm-level methods and data-level methods [1–3]. One 
method at the algorithm level is to modify or design a new 
classification algorithm to improve the performance of the 
learning algorithm. One method is to design a new classi-
fier performance evaluation index. There is a specific type 

of algorithm level method called cost-sensitive learning 
[4, 5].Among them, cost-sensitive learning is a scheme of 
algorithm-level modification [6]. This scheme does not use 
a standard loss function, but introduces the concept of mis-
classification cost to minimize conditional risk. By severely 
penalizing certain categories of classification errors, the 
importance of these categories is increased in the process 
of classification training. For example, Datta et al. proposed 
a dictionary-based linear programming framework to mini-
mize the maximum deviation of the minimum loss value of 
a specific category [7]. They also proposed a multi-objective 
optimization framework called radial boundary intersection 
by training support vector machines on two and multiple 
data sets. It overcomes the disadvantage of high cost of 
adjusting parameters [8]. The data-level method generally 
balances the majority class and the minority class by resa-
mpling the original data. Resampling the original data by 
oversampling the minority or undersampling the majority is 
the most popular method of addressing the imbalance prob-
lem [9–12], and oversampling is more effective and popular 
than undersampling [13–17].

For the development of oversampling technology, the 
synthetic minority oversampling technique (SMOTE) is 
one of the most well-known data preprocessing methods 
for balancing different numbers of samples in each class; it 
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proceeds by randomly interpolating between the minority 
points, extending the minority classes, bringing the data to 
a balanced state, and thereby improving the classification 
accuracy [18, 19]. There has been a succession of many 
improved versions of SMOTE, which are roughly divided 
into two categories. The first category filters out some noise 
or dangerous points that are not suitable for expansion and 
then performs SMOTE. For example, Rivera et al. intro-
duced a new oversampling technique that focuses on noise 
reduction and selective sampling of the minority group, 
which results in an improvement in the prediction of minor-
ity group membership [20]. Saez et al. proposed an iterative 
ensemble-based noise filter that can overcome the problems 
produced by noisy and borderline examples in imbalanced 
data sets [21]. Another category is to improve the sampling 
strategy to make it general for more data sets with various 
distributions. In this category, Han et al. proposed two new 
minority oversampling methods, borderline-SMOTE1 and 
borderline-SMOTE2, in which only the minority examples 
near the borderline are oversampled [22]. Das et al. intro-
duced two probabilistic oversampling approaches for syn-
thetically generating and strategically selecting new minority 
class samples [23]. Abdi et al. suggested an elegant blend 
of boosting and oversampling paradigms by introducing the 
Mahalanobis distance-based oversampling technique (MDO) 
[24]. In addition, some of the latest algorithms combine 
the above two methods. For example, Xie et al. proposed 
a minority oversampling technique based on local densi-
ties in low-dimensional space [25]. Zhou et al. proposed an 
oversampling algorithm based on weights to calculate the 
synthesis position of new samples [26]. He et al. proposed 
an adaptive synthesis (ADASYN) sampling method, which 
uses a weighted distribution for different minority examples 
according to their learning difficulty [27].

Although these oversampling methods have achieved sat-
isfactory results on some imbalanced data sets, almost all 
of them default the balance to the final state of sampling. 
Nevertheless, balance is not necessarily the optimal state for 
classification. For example, Prati et al. conducted a detailed 
study on the class imbalance, and evaluated the performance 
of the class imbalance treatment method through a large-
scale experimental design, proving that the higher the class 
imbalance degree, the greater the loss, and the class imbal-
ance treatment method can only restore part of the perfor-
mance loss [28]. Barella et al. determined the convex rela-
tionship between the class imbalance rate and the accuracy 
rate by learning the imbalance of the data in the classifica-
tion [29]. Thabtah et al. believe that when the complexity 
of the data in the sampling process is high, imbalanced data 
will bring greater difficulties to classification. Therefore, the 
data complexity measurement is used to estimate the optimal 
sample size of the data imbalance pre-processing technique 
[30]. However, the measurement for data complexity degree 

is a difficult problem in itself, so this method is limited to 
some data sets with specific distributions and not general. 
This paper shows a fact that in the process of data gradually 
becoming balanced, the difference between the distribution 
of the current data and that of the original data may become 
increasingly large. When the sampling method is not suitable 
for data with a certain distribution, this negative effect will 
be considerable. There are two contributions of this paper, 
as follows:

•	 We analyze the relationship between balanced rate and 
classification performance in the sampling process from 
a novel perspective that oversampling may cause the loss 
of the distribution while minority class is enhanced.

•	 This paper proposes a novel cross-validation framework 
called “k-fold icross-validation” that can be used in sam-
pling to find a better state than the balanced state. This 
framework is general and can be applied into various 
oversampling methods.

2 � Relationship between prediction 
performance and imbalance rate

As pointed out by Chawla [19], an imbalance has a nega-
tive effect on a classifier because the majority class of data 
points always has a greater impact on the classifier than the 
minority points. Therefore, in imbalanced classification, 
current oversampling methods always aim at reaching an 
absolutely balanced state in the data set. However, in the 
process of sampling, the data distribution is likely to differ 
increasingly from the distribution of the original data set, 
and the difference in the distribution between the original 
data set and the sampled data set will obviously deteriorate 
the generalizability of the classifier. If the negative effect of 
the distribution difference is larger than the positive effect 
of balance, the classification performance can deteriorate. 
This phenomenon is particularly noticeable in some cases 
in which the distribution of a data set is very easy for a sam-
pling method to change, such as when the data set contains 
noise [21].

Figure 1 shows the change in the decision boundary 
when borderline-SMOTE is used for oversampling on 
fourclass(the benchmark data set). In Fig. 1b, the minor-
ity class of data points in the original imbalanced data set 
is very sparse, and many data points in the minority class 
are incorrectly classified when the support vector machine 
(SVM) classifier is directly implemented on the original 
imbalanced data set. Therefore, the decision boundary is 
very unreasonable. As shown in Fig. 1c, when borderline-
SMOTE runs to the 20th iteration, the decision boundary is 
very close to that in the original data set shown in Fig. 1a. 
Therefore, it performs well and can correctly classify much 
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more of the minority class of data points than in Fig. 1b. 
Furthermore, the decision boundary in Fig. 1c is also closer 
to that in Fig. 1a than that in Fig. 1d, in which the data set is 
balanced when borderline-SMOTE is run to the 60th itera-
tion. The reason is that although the balanced state can make 
the number of points of the minority class almost equal to 
that of the majority class, excessive sampling exists in the 
balanced state, and the data distribution and decision bound-
ary are very different from those of the original data set.

The classification performance can be represented by 
the evaluation index in imbalanced classification, such as 
the G-mean. The existing KL divergence metric can calcu-
late the distribution difference between two data sets, but 
unfortunately it is only applicable when the size of the two 
data sets is equal. So, referring to the characteristics of KL 

divergence, we propose a novel measurement for measuring 
the difference between two distributions containing different 
numbers of points. The first characteristics is that, the distri-
bution difference between two data sets containing the same 
data points is equal to zero; the second is that, for a data set 
D and its oversampled result D′ , the distribution difference 
is larger if the data points in D′ are farther from those in D. 
Based on above characteristics, we design the distribution 
difference for oversampling as follows:

Definition 1 (Division): Given two data sets 
D =

{

xi, i = 1...n
}

 and D′ , the number of data points in D is 
denoted as ∣ D ∣ . Assuming that ∣ D� ∣>∣ D ∣ , a division of D 
on D′ implements an initial operation of n-means clustering 
on D′ with xi(i = 1...n) as centers.

(a) The original dataset (b) Imbalanced dataset

(c) 20th: The optimal state (d) 60th: The balanced state

Fig. 1   The decision boundaries of a data set and its sampled results 
based on the SVM classifier. The blue dots denote the majority vote 
category, and the red dots denote the minority vote category. The 

dark areas represent the decision range of the minority vote category, 
and the remaining light areas represent the decision range of the 
majority vote category
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Definition 2 (Distribution dif ference): Given a 
data set D =

{

xi, i = 1...n
}

 and its oversampled result 
D� =

{

x�
i
, i = 1...m

}

 , where n and m denote the num-
ber of data points in D and D′ , respectively, n clusters 
{

Ci, i = 1...n
}

 are generated by generating a division of 
D on D′ . The number of data points in D is denoted as 
∣ D ∣ . For two points A and B, their distance is denoted as 
dist(A, B). The distribution difference of Ci relative to xi 
is defined as:

where C̄i represents the center of Ci . The distribution differ-
ence of D′ relative to D is defined as:

(1)DD
[

xi ∣ Ci

]

=
1

∣ Ci ∣

∑

xi∈Ci

dist(xi, C̄i),

The visualization results of changing G-means (i.e., clas-
sification performances) and distribution differences using 
various sampling methods on some real-world data sets are 
shown in Figs. 2 and 3. Some rules can be extracted and 
represented, as shown in Fig. 4. The balance rate used in this 
paper is defined in Definition 2, and the imbalance rate used 
in this paper is equal to the the reciprocal of balance rate.

Definition 3 (Balance rate): Given a data set D consisting 
of a majority class D− and a minority class D+ and given that 
the number of data points in a data set P is denoted as ∣ P ∣ , 
the balance rate of D is defined as:

(2)DD
[

D ∣ D�
]

=
1

n

n
∑

i=1

DD[xi ∣ Ci].
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Fig. 2   Visualization results of the changing G-mean (i.e., classifica-
tion performance) using various sampling methods on two real-world 
data sets. (a) Average G-mean on the data set vowel using various 

sampling methods. (b) Average G-mean on the ThoraricSurgery data 
set using various sampling methods. The square represents the opti-
mal state, and the dots represent the balanced state
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Fig. 3   Visualization results of changing the distribution difference using various sampling methods on two real-world data sets. (a) Average dis-
tribution difference on the vowel data set; (b) Average distribution difference on the ThoraricSurgery data set
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Supposing that the other factors of classification perfor-
mance are equal, classification performance is better when 
the balance rate is closer to 1. The characteristics in Fig. 4 
can be summarized as follows:

•	 The orange curve will increase when new sampled points 
are added to the original data because the distribution 
difference will increase. When an increasing number of 
points are generated, as shown in Fig. 1d, those points are 
limited to a local area, resulting in a stable distribution 
difference at the end of the orange curve.

•	 The blue curve changes along a parabola, where A is 
the point with the best classification performance. At the 
front of the parabola (that is, between the origin and A), 
due to the high proportion of original data points, the 
sampling result is reliable, resulting in a low distribution 
difference and a small negative impact on classification 
performance. Meanwhile, the balance rate continues to 
increase from a small value to almost 1. Its benefits to 
classification outweigh the negative effects of the initial 
balance rate. Therefore, the classification performance is 
improved.

•	 In the second half of the blue curve (that is, after A), 
due to the small proportion of original data points, the 
reliability of the sampling results is low, resulting in a 

(3)BR(D) =
∣ D+ ∣

∣ D− ∣
.

high distribution difference and a large negative impact 
on classification performance. The resulting negative 
impact on classification is larger than the benefits of the 
increasing balance rate. Therefore, the classification per-
formance is decreased.

•	 For the blue curve, similar to the phenomenon in Fig. 2, 
point B, where the balance rate is equal to 1, is located in 
the second half of the parabola (that is, after A). In other 
words, the classification performance cannot increase 
after the point where the balance rate is equal to 1. The 
reason is that not only has the balance rate moved far 
from 1 but also the distribution difference has expanded. 
Both of these effects are negative. When this process has 
continued sufficiently far, the classification performance 
will be lower than that of the original data set and may 
even fall to 0.

To the best of our knowledge, there are no methods of find-
ing the optimal state of a sampling method in imbalanced 
classification. We will present a method of finding the opti-
mal state in the sampling process in the next section.

3 � Validation framework to optimize 
the balance rate

3.1 � Motivation

To find a better state than balance, the most direct method is 
to use conventional cross-validation. However, conventional 
cross-validation may result in an unstable and unreliable 
sampled data set because minority samples are likely to be 
unevenly distributed in different validation sets. Addition-
ally, minority samples are very important for the validation 
index in imbalanced classification, and conventional evalua-
tion indexes, such as test accuracy, are seldom used in imbal-
anced classification. For example, consider a data set D that 
consists of two kinds of points, the numbers of which are 
1000 and 10. If 5-fold cross-validation is used, one possible 
case is that the number of minority samples in the five sets 
are 0, 0, 0, 0, and 10. In this case, the validation indexes of 
the imbalanced data in the first four sets are nonsensical and 
harmful for the average validation.

3.2 � A cross‑validation method for imbalance 
classification

To address the above problem, we design a validation 
framework for imbalanced classification by applying the 

A
B

BR=1 Balance Rate

Distribution 
difference

Classification 
evaluation

distribution difference curve
classification evaluation curve

Fig. 4   Distribution difference curve and classification evaluation 
curve. The orange line represents the curve of the distribution differ-
ence as the balance rate changes, and the blue curve represents the 
curve of the classification evaluation as the balance rate changes. The 
blue points represent the different results of classification evaluation 
on different balance rates
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leave-one-out strategy for the minority class samples. In 
addition, to protect the majority samples and keep the over-
all distribution consistent, the majority samples are divided 
into sets whose number is equal to the number of minor-
ity samples. As shown in Fig. 5, m denotes the number of 
majority samples, and n denotes the number of minority 
samples. xi(i = 1, 2...n) denotes each minority sample point, 
and the majority samples are divided into n equal parts 
{

Xi ∣ i = 1...n
}

 . So, the number of samples in each major-
ity set Xi is equal to m

n
 . After the division is completed, we 

merge a majority class data set Xi and a minority class sam-
ple point xi into a set, and use this set as one fold of the 
leave-one-out cross-validation. However, we consider that 
if the minority sample size is large, the implementation cost 
of the framework will be quite high. Therefore, as shown in 
Fig. 6, we proposed a k-fold cross-validation framework for 
imbalance classification. In this method, the majority and 

minority samples are divided into k parts respectively and 
then cross-validated is used.

In Fig. 6, one majority set Xi(i = 1...k) and one minority set 
X�
i
(i = 1...k) are combined as a cross-validation set, and the 

remaining points make up the cross training set. In particular, 
when k = n , X′

i
 represents a minority sample, and the frame-

work is converted to be leave-one-out framework. In this way, 
the minority samples are evenly distributed in each validation 
set, and the majority samples are also considered according to 
the balance rate. We can calculate G-meani(i = 1...k) for each 
validation set using the proposed k-fold cross-validation, and 
average the k G-mean metrics to get the final CG-mean. CG-
mean represents the average value of G-meani . We can calculate 
CG-mean for each sampling iteration, and the balance rate cor-
responding to the highest CG-mean value is the optimal balance 
rate. We named the proposed framework for imbalance classifi-
cation as k-fold icross-validation.

Algorithm 1 k-fold icross-validation
Input: Training set D = P ∪Q, P represents the minority samples, Q represents the majority
samples;
Output: the sampled result D′.
1: s = int(num(P )/num(Q)), and D′

0 = D;
2: for 1 ≤ j ≤ s do
3: Dj is generated from D using an oversamper and num(Dj) = num(Q);
4: D′

j = Dj∪D′
j−1;

5: Compute CG-meanj on D′
j ;

6: end for
7: CG-mean∗ = max (CG − meanj(1 ≤ j ≤ s)), and D′ is the sampled result corresponding to

CG-mean∗;
8: return D′.

 

Fig. 5   Schematic diagram of 
the proposed leave-one-out 
cross-validation for imbalance 
classification
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Figure 7 shows the process of finding the optimal state 
on a specific oversampling method using the k-fold icross-
validation. In the jth(1 ≤ j ≤ s) sampling iteration pro-
cess, Dj is generated from the original date set D, and each 
Dj(1 ≤ j ≤ s) contains a same number of samples, which is 
equal to the number of the minority samples in D. In the 
k-fold icross-validation, CG-meanj is generated on the data 
sets including D and those Di(i ≤ j) . The optimal value CG-
mean∗ is corresponding to the CG-meanj who has the highest 
value. The pseudo codes of k-fold icross-validation is pro-
vided in Algorithm 1. The proposed framework can not only 
give sufficient attention to the minority samples but can also 
consider the majority samples by ensuring that the balance 
rate in the validation set is equal to that in the training set, 
i.e., that the data distributions of the validation set and the 
training set are as consistent as possible.

4 � Experiment

In this section, five widely used or state-of-the-art sampling 
methods, SMOTE, ADASYN, Borderline-SMOTE, MDO, 
and SVMSMOTE, are used to validate the effectiveness of 
the proposed framework on eight real-world data sets. Five 

classifiers are selected based on “scikit-learn” package: 
GBDT, SVM, LR, DT and LGB. The parameter k is set to the 
default value of 5 in these sampling methods, and the other 
parameters are set to the default values. The parameter k is 
set to 5 in k-fold icross-validation framework. The informa-
tion on the imbalances of these data sets is shown in Table 1, 
and the balance rate is between 1/6 and 1/27. Each data set is 
divided into a training set and a test set in a 3:1 ratio. During 
this process, the majority class and minority class are divided 
separately to make the balance rates equal.

In the case of imbalanced learning conditions, since the 
classification accuracy of traditional classification is biased 
towards majority, the classification accuracy can not fully 
evaluate the observed learning algorithm. In our experiment, 
a set of ROC-based evaluation metrics are used as follows: 
accuracy, precision, recall, F1-measure, G-mean. These met-
rics are listed in the Eqs. (4)–(8). The minority class is set as 
the positive class, and the majority class is set as the negative 
class. Among them, accuracy represents the correct ratio of 
positive and negative predictions among all prediction results. 
Precision is the ratio of correct predictions among all predicted 
positive samples. It reflects how many of the predicted posi-
tive samples are true positive samples. Recall is the ratio of 
correctly predicted instances in all real positive classes, that 
is, how many positive class instances are correctly classified. 
F1-measure is the harmonic average of precision and recall. 
It is closer to the smaller one, which means that F1-measure 

Fig. 6   Schematic diagram of the 
proposed k-fold cross-validation 
for imbalance classification

Fig. 7   Schematic diagram of searching for the optimal state on a cer-
tain sampling algorithm

Table 1   The information on the imbalances of the data sets

Datasets #Sample #Majority #Minority #Attribute

breastcancer 699 630 69 10
ecoli 336 316 20 8
htru2 17,898 12,189 1234 8
fourclass 575 416 15 2
userknowledge 403 353 50 6
vowel 528 480 48 11
BreastTissue 106 69 10 9
letter 20,000 14,459 541 16
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Table 2   Comparison results 
of the optimal state and the 
balanced state under the five 
classifiers

In every two rows, the upper row represents the state obtained using i-cross validation, and the lower row 
represents the balanced state

Clf Methods Accuracy Precision Recall F1 Gmean AUC​ CG-mean

SVM Smote 0.9177 0.6035 0.8920 0.6988 0.8994 0.9039 0.9100
0.9099 0.5857 0.8930 0.6868 0.8948 0.8998 0.8894

ADASYN 0.8748 0.6021 0.7600 0.6562 0.8153 0.8223 0.9213
0.8735 0.5941 0.7597 0.6510 0.8145 0.8214 0.9117

BorderlineSmote 0.8977 0.5640 0.8248 0.6357 0.8567 0.8627 0.8866
0.8845 0.5156 0.8248 0.6036 0.8490 0.8553 0.8589

MDO 0.9115 0.6010 0.7052 0.6147 0.7971 0.8148 0.9208
0.9069 0.5912 0.7052 0.6061 0.7950 0.8124 0.9180

SVMSMOTE 0.9119 0.5704 0.8748 0.6696 0.8882 0.8932 0.9082
0.8670 0.4340 0.8849 0.5625 0.8668 0.8730 0.8634

GBDT Smote 0.9604 0.7841 0.7911 0.7776 0.8588 0.8826 0.9751
0.9614 0.7668 0.8007 0.7716 0.8630 0.8872 0.9703

ADASYN 0.9698 0.8277 0.7908 0.8018 0.8709 0.8873 0.9795
0.9692 0.8235 0.7917 0.7988 0.8712 0.8875 0.9738

BorderlineSmote 0.9475 0.6574 0.7927 0.7080 0.8573 0.8759 0.9672
0.9475 0.6742 0.8013 0.7163 0.8654 0.8799 0.9587

MDO 0.9604 0.7532 0.6583 0.6931 0.7826 0.8204 0.9737
0.9578 0.7407 0.6583 0.6843 0.7815 0.8190 0.9706

SVMSMOTE 0.9519 0.7504 0.8410 0.7601 0.8937 0.9008 0.9668
0.9440 0.7111 0.8583 0.7380 0.8995 0.9044 0.9622

LR Smote 0.8627 0.4446 0.8518 0.5457 0.8549 0.8580 0.8879
0.8415 0.3823 0.8929 0.5101 0.8598 0.8631 0.8818

ADASYN 0.8831 0.5365 0.8488 0.5974 0.8640 0.8682 0.9186
0.8628 0.4827 0.8744 0.5602 0.8640 0.8685 0.9114

BorderlineSmote 0.8544 0.4624 0.8005 0.5262 0.8241 0.8308 0.8715
0.8226 0.3480 0.8279 0.4593 0.8190 0.8250 0.8554

MDO 0.8476 0.4567 0.8650 0.5370 0.8524 0.8562 0.8574
0.8296 0.3953 0.8665 0.4999 0.8428 0.8467 0.8471

SVMSMOTE 0.8412 0.4474 0.9085 0.5417 0.8681 0.8719 0.8517
0.7848 0.3046 0.9029 0.4278 0.8330 0.8391 0.8182

DT Smote 0.9546 0.7338 0.7826 0.7515 0.8625 0.8753 0.9710
0.9586 0.7680 0.7698 0.7627 0.8572 0.8716 0.9703

ADASYN 0.9584 0.7542 0.7814 0.7560 0.8563 0.8767 0.9702
0.9602 0.7584 0.7738 0.7545 0.8568 0.8740 0.9651

BorderlineSmote 0.9569 0.6959 0.8212 0.7446 0.8847 0.8940 0.9610
0.9531 0.6684 0.7935 0.7160 0.8641 0.8796 0.9600

MDO 0.9398 0.6112 0.7592 0.6708 0.8407 0.8562 0.9710
0.9499 0.6558 0.7681 0.7041 0.8521 0.8658 0.9710

SVMSMOTE 0.9573 0.7860 0.7857 0.7689 0.8695 0.8781 0.9692
0.9506 0.7230 0.7891 0.7377 0.8678 0.8760 0.9612

LGB Smote 0.9684 0.8495 0.7739 0.8028 0.8578 0.8790 0.9797
0.9693 0.8473 0.7680 0.7989 0.8496 0.8768 0.9807

ADASYN 0.9706 0.8610 0.7627 0.8036 0.8478 0.8752 0.9814
0.9606 0.8611 0.6999 0.7618 0.8108 0.8434 0.9775

BorderlineSmote 0.9586 0.7276 0.7912 0.7506 0.8623 0.8817 0.9743
0.9593 0.7169 0.8261 0.7600 0.8795 0.8978 0.9734

MDO 0.9680 0.8054 0.7973 0.7997 0.8704 0.8893 0.9769
0.9651 0.7984 0.7584 0.7754 0.8440 0.8703 0.9737

SVMSMOTE 0.9660 0.8121 0.8276 0.8121 0.8942 0.9023 0.9792
0.9640 0.8258 0.8392 0.8179 0.8992 0.9064 0.9764
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will only become higher when precision and recall reach a 
high value simultaneously. F1-measure is designed to meas-
ure minority class performance, while G-mean measures the 
performance of two classes. When G-mean is high, the over-
all performance of the classifier is robust. Another commonly 
used metric is the area under the receiver operating charac-
teristic curve (ROC), i.e., AUC​. ROC is generated by plotting 
the proportion of true positives and the proportion of false 
positives.

Some comparison results between the optimal state and the 
balanced state are provided in Tables 2 and 3. The average 
results of five classifiers under eight data sets are shown in 
Table 2. For each algorithm, the upper row represents the 
optimal state, and the lower row represents the balanced 
state. In particular, CG-mean is the average validation 
result for imbalanced classification using icross-validation. 
Overall, the bold face appeared on the optimal state found 
using the proposed cross-validation method in most cases. 
It indicates that, the optimal state found using the proposed 
cross-validation method is better than the balanced state in 
most cases. This trend is more obvious in Table 3. Table 3 
shows the average results of those experimental results in 
Table 2 under five classifiers. In the comparison of vari-
ous algorithms, it can be observed that the optimal state 

(4)Accuracy =
TP + TN

TP + FP + TN + FN

(5)Precision =
TP

TP + FP

(6)Recall =
TP

TP + FN

(7)F1−measure =
2 × Recall × Precision

Recall + Precision

(8)G−mean =

√

TP

TP + FN
×

TN

TN + FP

performs better than the balanced state in most cases. In 
some cases, the advantage of the optimal state obtained by 
using the k-fold icross-validation is considerable, such as 
that the average precision under SVMSMOTE exceeds the 
balanced state by 7.36% in the optimal state. Due to space 
limitations, we put other experimental results in the sup-
plementary materials.

5 � Conclusion

This paper analyzes the relationship between balanced rate 
and classification performance in the oversampling process 
from a novel perspective that sampling may cause the loss 
of the distribution while the minority class is enhanced 
using the proposed “distribution difference” measurement. 
We also present an effective cross-validation framework to 
find a better state than the balanced state. The experimental 
results on real-world data sets demonstrate that the proposed 
cross-validation method can achieve better classification per-
formance that that of balanced state in most cases. In the 
future, we aim to improve the proposed framework to more 
efficiently and effectively optimize the balance rate [31].

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s13042-​023-​01804-x.
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Table 3   Compare results on average in optimal and balanced states

Smote ADASYN BorderlineSmote MDO SVMSMOTE

Optimal Balanced Optimal Balanced Optimal Balanced Optimal Balanced Optimal Balanced

Accuracy 0.9328 0.9281 0.9313 0.9253 0.9230 0.9134 0.9254 0.9218 0.9257 0.9020
Precision 0.6831 0.6700 0.7163 0.7040 0.6214 0.5846 0.6455 0.6363 0.6733 0.5997
Recall 0.8183 0.8249 0.7888 0.7799 0.8061 0.8147 0.7570 0.7513 0.8475 0.8549
F1 0.7153 0.7060 0.7230 0.7053 0.6730 0.6511 0.6630 0.6540 0.7105 0.6568
Gmean 0.8667 0.8649 0.8508 0.8435 0.8570 0.8554 0.8286 0.8231 0.8827 0.8733
Auc 0.8797 0.8797 0.8659 0.8590 0.8690 0.8675 0.8474 0.8428 0.8893 0.8798
CG-mean 0.9448 0.9385 0.9542 0.9479 0.9321 0.9213 0.9400 0.9361 0.9350 0.9163

https://doi.org/10.1007/s13042-023-01804-x
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