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Abstract
Image clustering plays an important role in computer vision and machine learning. However, most of the existing clustering 
algorithms flatten the image into one-dimensional vector as an image representation for subsequent learning without fully 
considering the spatial relationship between pixels, which may lose some useful intrinsic structural information of the matrix 
data samples and result in high computational complexity. In this paper, we propose a novel two-dimensional k-subspace 
clustering (2DkSC). By projecting data samples into a discriminant low-dimensional space, 2DkSC maximizes the between-
cluster difference and meanwhile minimizes within-cluster distance of matrix data samples in the projected space, thus 
dimensionality reduction and clustering can be realized simultaneously. The weight between the between-cluster and within-
cluster terms is derived from a Bhattacharyya upper bound, which is determined by the involved input data samples. This 
weighting constant makes the proposed 2DkSC adaptive without setting any parameters, which improves the computational 
efficiency. Moreover, 2DkSC can be effectively solved by a standard eigenvalue decomposition problem. Experimental 
results on three different types of image datasets show that 2DkSC achieves the best clustering results in terms of average 
clustering accuracy and average normalized mutual information, which demonstrates the superiority of the proposed method.

Keywords  Clustering · Subspace · Two-dimensional · Discriminant clustering

1  Introduction

Clustering is one of the most important unsupervised learn-
ing topics in machine learning, where data samples are clas-
sified into different clusters based on their similarity. It has 
been studied and applied in many research areas such as text 
mining [1–5], gene expression [6–9], and image recognition 
[10–12]. In particular, researchers have used many clustering 
algorithms for image segmentation [13–16].

Among the various clustering methods, assigning data 
samples to clusters based on the prototype center of a 
cluster is one of the most effective and well-studied meth-
ods. k-means [17] is the most representative and classical 

clustering method that clusters around center data sam-
ples, which clusters all data samples by minimizing the 
sum of distances from data samples to their nearest cluster 
prototype. k-means works with data samples as the clus-
ter prototype, which often fails when the distributions of 
data samples are not around several central data samples. In 
contrast to k-means, k-plane clustering (kPC) [18] and q-flat 
[19] (0 ≤ q ≤ m − 1) use hyperplanes or affine subspaces 
as the entity of the centers and assign each data sample to 
the nearest hyperplane or (m − q)-dimensional affine sub-
space, where m is the original feature dimension. When the 
value of q is 0 or m − 1 , q-flat is degraded to k-means or 
kPC, respectively. From the above descriptions, k-means, 
kPC and q-flat only use the structure within-clusters by 
minimizing some distances within-clusters. However, mini-
mizing the distances within-clusters does not consider the 
discriminative information between different clusters. The 
k-proximal plane clustering (kPPC) [20] introduces the dis-
similarity between clusters, which is a great improvement 
over kPC. Twin support vector clustering (TWSVC) [21] 
and least squares TWSVC (LSTWSVC) [22] also consider 
between-cluster separability, inspired by the twin support 
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vector machine (TWSVM) [23] and least squares twin sup-
port vector machine (LSTWSVM) [24] on classification. To 
improve robustness, l1-norm-based clustering methods were 
also investigated, such as robust TWSVC (RTWSVC) [25], 
fast RTWSVC (FRTWSVC) [25], and k-subspace discrimi-
nant clustering (kSDC) [26].

However, all of the above methods are vector-based 
ones. If the problem has the matrix data input, a matrix 
must be converted to a vector before the vector-based 
methods can be applied. This leads to high-dimensional 
data and a high computational cost. In addition, some of 
the underlying structural information is lost. To overcome 
these shortcomings, a two-dimensional embedded image 
clustering (A2DEIC) [27] can directly work with matrices 
instead of flat vectors was recently proposed. However, the 
objective function of A2DEIC is not smooth and difficult 
to solve. Moreover, the A2DEIC algorithm is affected by 
weighting parameters, and finding the optimal parameter 
is time-consuming. We also notice that though much 
progress has been made in the field of two-dimensional 
dimensionality reduction [28–33], little attention has been 
paid to two-dimensional clustering.

Recently, Li et  al. [34] proposed a matrix-based 
dimensionality reduction method two-dimensional 
Bhattacharyya bound linear discriminant analysis 
(2DBLDA). In 2DBLDA, the between-class distance and the 
within-class distance are weighted by a constant calculated 
from the input data. This constant helps the objective of 
2DBLDA to achieve the minimum Bhattacharyya error 
bound. Moreover, the design of 2DBLDA avoids the small 
sample size problem and can be solved by a simple standard 
eigenvalue decomposition problem. Inspired by the spirit 
of 2DBLDA, in this paper, we extend 2DBLDA to the 
clustering problem and propose a novel two-dimensional 
k-subspace clustering method (2DkSC) that considers both 
discriminative and underlying structural information. In 
particular, 2DkSC succeeds in minimizing the similarity 
within clusters and maximizing the dissimilarity between 
clusters. Moreover, taking the advantage of 2DBLDA, 
the cluster data samples are clustered into k-subspaces. In 
summary, 2DkSC has the following characteristics:

∙ 2DkSC maximizes the matrix-based between-cluster 
distance which is measured by the weighted pairwise 
distances of cluster centers and meanwhile minimizes the 
matrix-based within-cluster distance, and clusters data 
samples into these k-subspaces directly. In this way, on the 
premise of preserving the original matrix data structure, 
2DkSC considers both local and discriminative information 
during clustering by finding the most appropriate reduced 
dimension for lower dimensional spaces.

∙ The weighting constant between the between-cluster and 
within-cluster terms is determined by the involved data that 
makes the proposed 2DkSC adaptive and without setting 
any parameters. Inherited from 2DBLDA, the constant is 
meaningful in the sense that it achieves minimizing the 
upper bound of Bhattacharyya error.

∙ From the experimental results of image recognition, 
2DkSC has the highest ACC and NMI in five of the six 
datasets. For example, 2DkSC achieves 77.4% NMI in the 
Coil100 dataset, which is 3.89% better than the vector-based 
q-flat algorithm and 6.50% better than the matrix-based 
A2DEIC algorithm. This phenomenon proves the superiority 
of our proposed algorithm for image clustering.

The rest of the paper is organized as follows. In section 2, 
kPC, kPPC, q-flat and A2DEIC are briefly introduced. In 
section 3, our method is presented. The experiments and 
conclusions can be found in section 4 and 5, respectively. 
Details of the weighting constant is provided in the 
appendix 6.

2 � Related works

Given the dataset T = {X1, X2,… , XN} , where Xl ∈ ℝ
m×n 

for l = 1, 2, … ,N . In particular, if a data sample is vector 
form, n equals 1. The goal of clustering is to partition T into 
k disjoint clusters Ci for i = 1, 2,… , k  satisfying 
Ci� ∩i�≠i Ci = ∅ and T = ∪k

i=1
Ci  .  Cor respondingly, 

yl ∈ {1, 2,⋯ , k} can be used to indicate the cluster label of 
the data sample Xl . Assume that the i-th cluster contains Ni 
data samples. Then 

∑k

i=1
Ni = N . Let Xi =

1

Ni

∑Ni

s=1
Xi

s
 be the 

mean of the data samples of the i-th cluster, i = 1, 2,… , k , 
where Xi

s
 is the s-th data sample of the i-th cluster. For a 

matrix Q = (q1, q2,… , qn) ∈ ℝ
m×n , its Frobenius norm 

(F-norm) ‖Q‖F is defined as ‖Q‖F =

�∑n

i=1
‖qi‖22 . The 

F-norm is a natural generalization of the vector l2-norm on 
matrices.

2.1 � kPC

kPC [18] divides the data samples into k clusters, so that the 
data samples gather around their own clustering hyperplane. 
For the i-th cluster, the hyperplane of kPC is determined 
by minimizing the sum of the distances between the data 
samples of the i-th cluster and the hyperplane of the i-th 
cluster, solving the following programming problem
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where wi ∈ ℝ
m , bi ∈ ℝ , Ai ∈ ℝ

m×Ni is the matrix consist-
ing of the data samples labeled i and ei is a vector of ones 
of an appropriate dimension, i = 1, 2,… , k . The constraint 
normalizes the normal vector of the hyperplane of the cluster 
center.

The solution of the problem (1) can be obtained by solv-
ing k eigenvalue problems. Once k hyperplanes of the cluster 
center are obtained, a data sample x ∈ ℝ

m is assigned to the 
i-th cluster by

The kPC clustering starts with a random initial assignment 
of data samples. Each data sample is assigned a label by (2). 
Then k cluster center hyperplanes are updated by solving (1). 
The final k cluster center hyperplanes are obtained when the 
overall objective function does not decrease or the overall 
assignment of all data samples to cluster center hyperplanes 
is repeated.

2.2 � kPPC

In contrast to kPC, kPPC [20] is proposed by introducing 
between-cluster information into each cluster to construct 
the cluster hyperplane. kPPC not only requires that the data 
samples in each cluster be as close as possible to their own 
center hyperplane, but also pushes the data samples in the 
other clusters far away from this center hyperplane, solving 
the following optimization problem

where Ai ∈ ℝ
m×Ni is the matrix consisting of the data sam-

ples of label i, and Âi ∈ ℝ
m×(N−Ni) is the matrix consisting of 

the data samples of the other labels. c is a positive parameter, 
êi is the vector of ones of an appropriate dimension as ei.

Different from random initialization in kPC, an initialization 
based on a Laplacian graph-based is constructed in kPPC, 
which makes kPPC more stable than kPC [20]. kPPC is also 
solved by an eigenvalue problem.

2.3 � q‑flat

q-flat [19] aims to partition the data samples into k clusters, 
each of which is well approximated by minimizing the sum of 
the squared distances of each data sample to the nearest flat. 

(1)
min
wi,bi

‖wT
i
Ai + biei‖22

s.t. ‖wi‖22 = 1,

(2)Cluster(x) = argmin
i=1,2,…,k

‖wT
i
x + bi‖22,

(3)
min
wi,bi

‖wT
i
Ai + biei‖22 − c‖wT

i
Âi + biêi‖22

s.t. ‖wi‖22 = 1,

For the i-th cluster, q-flat minimizes the following problem to 
find its best fit (m − q)-dimensional subspace.

where Wi ∈ ℝ
m×q , q ≤ m , I is the identity matrix of an 

appropriate dimension, and �i ∈ ℝ
q , i = 1, 2,… , k , ei is a 

vector of ones of an appropriate dimension.
In practice, q-f lat also assumes a random initial 

assignment of the data samples and reassigns the data 
samples with

after obtaining all Wi and �i.
Similar to kPC and kPPC, q-flats alternates between 

updating clusters and assigning clusters to determine k 
cluster flats and find k clusters.

2.4 � A2DEIC

Different from kPC, kPPC, and q-flat, A2DEIC [27] proposes 
an image clustering algorithm that deals directly with matrix 
representation. It uses two projection matrices to map the 
original data samples into a low-dimensional subspace and 
achieve clustering. Given the image data set T, A2DEIC 
minimizes the following objective function

where U ∈ ℝ
m×q1 and V ∈ ℝ

n×q2 are projection matrices 
mapping the original data samples into a low-dimensional 
subspace ℝq1×q2 . yij ∈ {0, 1} denotes the cluster indicator 
value of data samples Xi . The value is 1 if the data samples 
Xi is partitioned into the i-th cluster, and 0 otherwise. X is 
the mean of all data sample matrices and Xj is the mean of 
the data samples in the j-th cluster. � is a positive parameter. 
A2DEIC is solved through an iterative algorithm.

3 � Two‑dimensional k‑subspace clustering

3.1 � Problem formulation

When the input data is in matrix (or two-dimensional) 
form, such as images, vector-based algorithms must convert 
matrices to vectors, which limits consideration of the spatial 

(4)
min
Wi,�i

‖WT
i
Xi − �ie

T
i
‖2
F

s.t. WT
i
Wi = I,

(5)Cluster(x) = argmin
i=1,2,…,k

‖WT
i
x − �i‖22

(6)

min
U,V

N�

i=1

k�

j=1

yij‖UT (Xi − Xj)V‖2F − �

N�

i=1

‖UT (Xi − X)V‖2
F

s.t. UTU = I,VTV = I,
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relationship between pixels and increases computational 
complexity. As seen above, A2DEIC is proposed to process 
data input from the matrix. However, the behavior of 
A2DEIC is greatly affected by its tuning parameters, and its 
optimization problem is complicated to solve. Inspired by 
the spirit of 2DBLDA, we propose a new two-dimensional 
k-subspace clustering algorithm (2DkSC) for image 
matrices. Inheriting from 2DBLDA, 2DkSC automatically 
adapts to the given dataset and no parameters need to 
be adjusted, which can solve the optimization problem 
efficiently. Moreover, it realizes simultaneously learning 
the clustering results in a most discriminant subspace of an 
appropriate dimension by preserving the original structure 
information of the image matrix.

Specifically, 2DkSC first initializes the cluster assign-
ment and computes the k subspaces. Then, a new round 
assignment is performed according to the obtained k sub-
spaces and the whole procedure is repeated. For the i-th 
cluster, i = 1, ..., k , we solve the following optimization 
problem

where Wi ∈ ℝ
m×d is the projection matrices for the i-th sub-

space, d ≤ m , Δi =
1

4

∑
j≠i

√
NiNj

N
‖Xi − Xj‖2F is a weighting 

constant.
We now give the geometric meaning of the model (7). 

Minimizing the first term in (7) forces the data samples 
of the i-th cluster around its own cluster center in its sub-
space. Minimizing the second term in (7) keeps the cent-
ers of two different clusters apart in the projected space, 
which guarantees the between-cluster separativeness. 
The weighting constant Δi in front of the first term bal-
ances the importance between clusters and the importance 
within clusters, which is derived by minimizing an upper 
bound of theoretical framework of the Bhattacharyya 

(7)
min
Wi

Δi

Ni�

s=1

‖WT

i
(Xi

s
− Xi)‖2F −

1

N

�

j≠i

�
NiNj‖WT

i
(Xi − Xj)‖2F

s.t. W
T

i
Wi = I,

error bound optimality. The details can be found in the 
appendix 6. We can observe that 2DkSC can be adapted 
to different data samples since the weighting constant 
Δi is determined by the given data set. The constraint 
WT

i
Wi = I ensures that the obtained discrimination direc-

tions of the i-th cluster are orthonormal to each other, 
which ensures minimal redundancy in the projected space.

3.2 � Solving algorithm and computational 
complexity analysis

2DkSC can be solved by the following standard eigenvalue 
decomposition problem

where

With the initial cluster labels of all data samples, 2DkSC 
updates the data sample labels and k clustering subspaces 
alternately. After finding the optimal solution of model (8) 
for each cluster, a data sample Xl is relabeled as follows

and k clusters are updated accordingly. These updated clus-
ters are used to determine new projection directions by 
model (7). The entire process continues until a repeated 
assignment of cluster marks is made for all data sam-
ples. The clustering process of 2DkSC can be realized by 
Algorithm 1.

(8)
min
Wi

tr(WT
i
MiWi)

s.t. WT
i
Wi = I,

(9)
Mi =Δi

Ni∑

s=1

(
X

i

s
− Xi

)(
X

i

s
− Xi

)T

−
1

N

∑

j≠i

√
NiNj

(
Xi − Xj

)(
Xi − Xj

)T

.

(10)

Cluster(Xl) = argmin
i=1,2,…,k

‖WT
i
(Xl − Xi)‖2F, l = 1, 2, … ,N
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Algorithm 1 2DkSC Algorithm.
Input: Data set T = {X1, X2, . . . , XN}; cluster number k; maximum
iteration number Itnmax.
Output: The final cluster labels of all data samples in T .
Process:
1. Set the iteration number r = 0 and random initial cluster labels
of all data samples Xl(l = 1, 2, . . . , N).
2. Repeat:
(a) Subspace update:

Calculate the projection matrix Wi of the i-th cluster by
solving the following problem

min
WT

i Wi=I
tr(WT

i MiWi)

where Mi(i = 1, 2, . . . , k) can be solved by Eq.(9);
(b) Assignment update:

After obtaining Wi for each cluster, each data sample Xl

can be assigned a cluster label based on
argmin
i=1,2,...,k

WT
i (Xl −Xi) 2

F

where Xi is the mean of data samples in the i-th cluster;
Until a repeated overall assignment of the cluster labels for all data
samples or reaching maximum iteration number Itnmax.

For 2DkSC, the main computational cost is to solve the 
optimization problems (8). From Algorithm 1, we can see 
that the main computational cost of 2DkSC is to compute the 
matrix Mi and perform its standard eigenvalue decomposition. 
Its computational complexity is O(m3) . Therefore, the 
computational complexity for Step (a) in Algorithm 1 is 
O(rkm3) , where r is the number of iterations and k is the 
cluster number. The computational complexity for Step (b) is 
O(rkmnN). Therefore, considering that for high-dimensional 
data rknN is much smaller than m2 , the computational 
complexity for 2DkSC is O(rkm3).

To further illustrate the contribution of our method, we 
discuss the differences between the proposed 2DkSC and 
the four closely related methods, kPPC, TWSVC, q-flat and 
A2DEIC.

(i) Difference From kPPC, TWSVC and q-flat: Compared 
to the vector-based clustering algorithms kPPC, TWSVC and 
q-flat, the proposed 2DkSC is a matrix-based method. The 
similarity between kPPC, TWSVC and 2DkSC is that their 
objective functions both maximize the distance between 
clusters while minimizing the distance within clusters. 
However, q-flat minimizes only the distance within clusters. 
The weighting constant of 2DkSC is derived from the Bhat-
tacharyya error bound and can be adaptively adjusted, while 
the weighting parameters of kPPC and TWSVC require grid 
search parameters. In addition, 2DkSC and q-flat can achieve 

clustering and dimensionality reduction simultaneously, 
while kPPC and TWSVC do not provide dimensionality 
reduction, only clustering. 2DkSC and kPPC obtain their 
solutions by solving eigenvalue problems, while q-flat is 
solved by the singular value decomposition and TWSVC by 
two quadratic problems.

(ii) Difference From A2DEIC: Although A2DEIC can 
also directly deal with the matrix subspace, A2DEIC is 
strongly influenced by its tuning parameters and the search 
for the optimal parameter is difficult and time-consuming, 
while 2DkSC does not need to tune any parameters, which 
can solve the optimization problem efficiently. 2DkSC can 
solve its optimization problem simply by a standard eigen-
value problem, while A2DEIC solves its optimization prob-
lem by an iteration technique.

4 � Experiments

We compare the proposed approach with seven related cluster-
ing algorithms, including k-means [17], q-flat [19], kPPC [20], 
TWSVC [21], FRTWSVC [25], kSDC [26], and A2DEIC [27]. 
All our experiments are performed on a PC computer with an 
Intel 3.30 GHz CPU and 4 GB RAM memory under Matlab 
2017b platform. kPPC and A2DEIC obtain their solutions by 
solving eigenvalue problems. q-flat is solved by singular value 
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decomposition. TWSVC is solved by two quadratic problems. 
FRTWSVC solves a series of linear systems of equations. 
kSDC is solved by an alternating direction method of multi-
pliers. As for the parameter selection, the tuning parameters c 
in kPPC, TWSVC, FRTWSVC and A2DEIC are selected from 
the set {2−8, 2−7,… , 27} . The optimal parameter is selected 
for all the investigated methods using the grid search tech-
nique. k is set to be equal to the ground truth cluster number for 

each dataset by default. For unknown k, one way is to use the 
non-parametric Bayesian method [35] to estimate it. Another 
approach is to run the clustering method on dataset with dif-
ferent number of clusters as input to find its optimum, whose 
quality can be measured by clustering accuracy or normalized 
mutual information. Once the optimal parameter is selected, 
it is used to learn the final clusters. For methods with random 
initialization, the average clustering result over ten runs are 
adopted.

4.1 � Evaluation metrics

Following most work on clustering, we use clustering accuracy 
(ACC) and normalized mutual information (NMI) [36–38] as 
evaluation measures, which are in the range [0, 1]. A larger 
value indicates more accurate clustering results. Suppose, pi 
represents the label predicted by a clustering algorithm and ti 
represents the corresponding true label of a data sample Xl . 
The ACC is defined as follows:

Table 1   The summary of data statistics

Data set Sample number Cluster number Image Size

Coil100 900 100 32 × 32
USPS 11000 10 16 × 16
Yale 165 15 32 × 32
Indian 242 22 32 × 32
ORL 400 40 32 × 32
FERET 1400 200 32 × 32

Fig. 1   Six image datasets

(a) Coil100 (b) USPS

FERET

ORL

Indian

Yale

(c) Face images
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where �(y1, y2) = 1 if y1 = y2 and �(y1, y2) = 0 otherwise. 
map(pi) is the best mapping function that converts clustering 
labels to match true labels, using the Kuhn-Munkres 
algorithm [38].

Let us denote by C the set of clusters resulting from the 
ground truth, and by C′ the set resulting from our algorithm. 
There is a mutual information metric MI(C,C�) , which is 
defined as follows:

where p(ci) and p(c�
j
) are the probabilities that a document 

arbitrarily selected from the corpus belongs to clusters ci and 
c′
j
 , respectively, and p(ci, c�j) is the joint probability that the 

arbitrarily selected document belongs to both clusters ci and 
c′
j
 simultaneously. In our experiments, we use the normalized 

mutual information (NMI) as follows:

(11)ACC =

∑N

i=1
�(ti,map(pi))

N
,

(12)MI(C,C�) =
∑

ci∈C,c
�
j
∈C�

p(ci, c
�
j
)log2

p(ci, c
�
j
)

p(ci)p(c
�
j
)
,

(13)NMI(C,C�) =
MI(C,C�)

max(H(C),H(C�))
,

where H(C) and H(C�) are the entropies of C and C′ respec-
tively. It is easy to verify that NMI(C,C�) ranges from 0 to 
1. NMI(C,C�) = 1 if the two groups of clusters are identical, 
and NMI(C,C�) = 0 if the two groups are independent.

4.2 � Datasets

The experiments are performed on six image datasets, 
including one object image, one handwritten image, and 
four face images.

 Object recognition: We use the Coil100 dataset [39]. 
Coil100 contains 900 images with 100 different objects.

Handwritten digit recognition: We use the USPS1 dataset 
to evaluate the performance of handwritten digit recognition 
performance. The dataset contains 11000 samples with 10 
classes, where each sample corresponds to one digit.

Face recognition: Four face image datasets (Yale [40], 
Indian [41], ORL2 and FERET [42]) are used. The Yale data-
set contains 165 images of 15 individuals. The Indian dataset 
contains 242 human face images of 22 females. The ORL 

Table 2   ACC(%), CPU time (second) and p value for different algorithms

The bold figure in each row represents the highest ACC​

Data set k-means q-flat kPPC TWSVC FRTWSVC kSDC A2DEIC 2DkSC
ACC​ ACC​ ACC​ ACC​ ACC​ ACC​ ACC​ ACC​

Time Time Time Time Time Time Time Time

p value p value p value p value p value p value p value p value

Coil100 42.33±1.03 45.00±0.71 14.89±0.63 17.22±0.31 15.11±0.06 39.77±2.17 43.55±0.15 49.78±0.08
6.0122 175.8384 4247.0440 4027.3285 382.5106 372.5817 18.9154 2.5872
0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 –

USPS 40.33±2.51 50.97±4.50 21.97±0.01 22.00±0.17 20.51±0.28 40.39±0.69 57.19±0.02 59.80±0.16
27.5537 299.1357 113.7399 5994.2277 2363.3316 1655.8016 40.7559 10.1032
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 –

Yale 50.90±4.27 54.54±9.92 24.24±0.85 23.63±0.86 23.63±1.05 60.00±1.94 70.30±2.14 66.28±2.45
0.7448 26.3238 1724.4260 323.0293 198.9261 1593.941 2.0419 0.3685
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 –

Indian 57.85±3.52 56.19±2.87 18.18±1.17 19.42±0.29 18.60±0.24 57.02±0.73 66.94±1.17 68.59±1.33
0.6209 23.6598 2792.6242 516.1707 280.0512 1776.0424 1.8301 0.4696
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 –

ORL 60.25±3.16 51.58±0.63 16.00±0.88 16.75±0.88 18.16±1.01 57.25±1.21 65.75±0.88 66.00±2.65
1.0773 47.9476 4099.9704 1147.0584 553.7761 1304.7472 4.9167 0.9535
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 –

FERET 26.42±0.37 23.59±0.04 11.64±0.01 16.00±0.05 16.04±0.38 25.78±0.48 28.53±0.05 31.93±0.32
14.4776 303.1753 1152.8055 5865.2384 2531.8333 1803.2666 29.1946 8.5993
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 –

Average ACC​ 46.3466 46.9783 17.8200 19.1700 18.6750 46.7017 55.3766 57.0633

1  https://​www.​csie.​ntu.​edu.​tw/​~cjlin/​libsv​mtools/​datas​ets/​multi​class.​
html.
2  https://​www.​face-​rec.​org/​datab​ases/.

https://www.csie.ntu.edu.tw/%7ecjlin/libsvmtools/datasets/multiclass.html
https://www.csie.ntu.edu.tw/%7ecjlin/libsvmtools/datasets/multiclass.html
https://www.face-rec.org/databases/
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dataset contains 400 images of 40 individuals. The FERET 
dataset contains 14126 images comprising 1199 individu-
als and 365 duplicate image sets. Here, we use a subset that 
contains 1400 images of 200 individuals.

The number of samples and categories as well as the 
image size are listed in Table 1. Some of the gray images 
are shown in Fig. 1.

4.3 � Experimental results

4.3.1 � Performance analysis

The results of comparing the performance of different algo-
rithms are shown in Tables 2 and 3, and the best results are 
indicated in bold figures. The p-value from paired t-test in 
5% significance level are adopted. From the experimental 
results, the following observations can be obtained:

(1) 2DkSC achieves the best clustering results in terms 
of both average clustering ACC and average NMI. Moreo-
ver, 2DkSC has the highest ACC and NMI in five of the six 
datasets, respectively. For example, 2DkSC achieves 77.45% 

NMI in the Coil100 dataset, which is 3.89% better than the 
vector q-flat-based method algorithm and 6.50% better than 
the matrix A2DEIC-based method algorithm. This phenom-
enon proves the superiority of our proposed algorithm for 
image clustering.

(2) As a two-dimensional embedding for image clus-
tering, A2DEIC achieves the second best performance in 
terms of both average clustering ACC and average NMI. 
The reason is that A2DEIC can directly handle matrix 
representations. In this way, the spatial information can 
be preserved in the original data. For example, A2DEIC 
has the highest ACC of 70.30% on the Yale dataset, 4.02% 
higher than 2DkSC and 10.30% higher than the vector-
based kSDC algorithm.

(3) We also find out that q-flat performs better than 
other vector-based algorithms, ranking third in both aver-
age accuracy and average NMI. For example, q-flat has 
the highest NMI of 54.09% on the USPS dataset, 4.66% 
higher than 2DkSC and 13.13% higher than the k-means 
algorithm. Similar to q-flat, kSDC is also a vector-based 
clustering algorithm, and its average accuracy and average 

Table 3   NMI(%), CPU time (second) and p value for different algorithms

The bold figure in each row represents the highest NMI

Data set k-means q-flat kPPC TWSVC FRTWSVC kSDC A2DEIC 2DkSC
NMI NMI NMI NMI NMI NMI NMI NMI

Time Time Time Time Time Time Time Time

p value p value p value p value p value p value p value p value

Coil100 65.97±0.52 73.56±0.27 45.43±0.72 54.79±0.15 42.01±1.60 67.27±0.63 70.95±1.18 77.45±0.56
4.6490 300.8458 7931.6413 4007.4016 390.8559 407.6085 10.2174 4.2451
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 –

USPS 40.96±1.69 54.09±2.67 18.37±0.02 31.72±0.04 18.86±0.25 36.84±1.41 49.68±0.56 49.43±0.49
25.1862 239.6224 127.8501 5798.5845 2345.62387 1675.8318 35.4348 10.0422
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3858 –

Yale 61.52±1.90 60.74±4.55 29.51±2.28 27.58±0.49 26.63±0.53 63.42±0.61 65.39±1.38 68.31±0.22
0.6978 20.6587 1726.6077 341.7758 193.9132 1496.0625 1.9495 0.4231
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 –

Indian 71.53±2.04 68.73±1.72 29.93±3.53 32.73±0.59 31.04±0.56 70.48±1.26 75.27±1.09 76.54±0.58
0.5577 21.1221 2582.8441 523.4336 276.5799 1687.8096 3.4018 0.3782
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0072 –

ORL 72.83±1.72 74.52±0.74 35.09±0.66 41.03±0.59 42.52±0.76 78.11±0.22 82.20±0.03 83.43±0.42
1.0623 34.9908 3947.2543 1104.0668 559.0095 1442.8505 5.1351 0.7715
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0491 –

FERET 60.69±0.52 64.77±0.40 36.22±0.03 63.55±0.03 63.48±0.11 59.75±0.68 58.27±1.52 69.64±0.22
12.3350 534.7257 1134.6353 5170.1034 2563.6861 1841.0086 23.3599 8.3462
0.0000 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 –

Average NMI 62.2500 66.0683 32.4250 41.9000 35.5100 62.6450 66.9600 70.8000
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Fig. 2   Clustering results of A2DEIC and 2DkSC along different dimensions
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NMI are ranked fourth. The result supports the fact that 
q-flat and kSDC are able to capture the intrinsic structure 
in the low-dimensional subspace.

(4) k-means has better performance than the plane-based 
clustering algorithms kPPC, TWSVC, and FRTWSVC in 
terms of both average accuracy and average NMI. The 
performance of TWSVC is better than that of kPPC and 
FRTWSVC. kPPC has the worst performance.

(5) In terms of CPU time, kPPC, TWSVC and kSDC are 
slower than other methods. In contrast, 2DkSC costs the 
least CPU time compared to the seven similar clustering 
algorithms. This is because 2DkSC does not require any 
adjusting parameters and the solution can be achieved 
quickly, which shows the efficiency of our proposed 
method.

(6) p values bettween 2DkSC and other methods show that 
on most of the datasets, 2DkSC is statistically different from 
other methods.

4.3.2 � The influence of the dimension

To observe the discriminative ability, the clustering results 
of 2DkSC along different dimensions are shown in Fig. 2. In 
Fig. 2, the clustering results of A2DEIC and our 2DkSC are 
shown when the reduced dimension is set to d = 1, 2, ...,m . 
The results show the following: (i) Although the curve of 
A2DEIC algorithm is below the optimal parameters, its high-
est ACC and NMI are not as good as our method. (ii) With 
the increase of the number of reduced dimensions, ACC and 
NMI of our 2DkSC vary relatively. (iii) The 2DkSC has the 
highest results under the optimal reduced dimension on all 
datasets. (iv) The A2DEIC and 2DkSC are strongly affected 

by the reduced dimension, and it is necessary to choose an 
optimal reduced dimension.

5 � Conclusion

In this paper, a novel two-dimensional k-subspace 
clustering method named 2DkSC is investigated. Both 
discriminative and underlying structural information 
are embedded in 2DkSC. Therefore, 2DkSC realizes 
dimensionality and clustering simultaneously. The 2DkSC 
algorithm has no parameters, its weighting constant can 
be adaptively adjusted according to the involved data, 
and the optimization problem has a closed form solution. 
Experimental results on image recognition have shown 
the superiority of the proposed method. However, a 
drawback of 2DkSC is that it may not be very robust to 
noise since it is based on the squared F-norm. Therefore, 
we will investigate the robust two-dimensional subspace 
clustering algorithm in the future. Our MATLAB code can 
be downloaded from http://​www.​optim​algro​up.​org/​Resou​
rces/​Code/​2DkSC.​html.

Appendix

In the appendix, we present the proof procedure of the 
relevant Bhattacharyya error bound. It is further explained 
that the weighting constant Δi balances the importance 
between clusters and the importance within clusters, which 
is derived by minimizing an upper bound of theoretical 
framework of the Bhattacharyya error bound optimality.
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Fig. 2   (continued)
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The Bhattacharyya error [43] is a close upper bound to 
the Bayes error, which is given by

where X is a data sample, Pi is the prior probability, and 
pi(X) is the probability density function of the i-th class of 
the data.

Proposition 1  Assume Pi and pi(X) are the prior probability 
and the probability density function of the i-th class for the 
training data set T, respectively, and the data samples in 
each class are independent and identically normally dis-
tributed. Let p1(X), p2(X),… , pk(X) be the Gaussian func-
tions given by pi(X) = N(X ∣ Xi,�i) , where Xi and �i are the 
class mean and the class covariance matrix, respectively. 
We further suppose �i = � , i = 1, 2,… , k , where � is the 
covariance matrix of the data set T, and Xi and � can be 
estimated accurately from T. Then for arbitrary projection 
vector w ∈ ℝ

m , the Bhattacharyya error bound �B defined 
by (1) on the data set T̃ = {X̃i ∣ X̃i = wTXi ∈ ℝ

1×n} satisfies 
the following [34]:

where Δ =
1

4

∑k

i<j

√
NiNj

N
‖Xi − Xj‖2F , Pi =

Ni

N
 , Pj =

Nj

N
 , and 

a > 0 is some constant.

Proof  We first note that pi(X̃) = N(X̃ ∣
̃
Xi, �̃) , where 

X̃i = wTXi , 
̃
Xi = wTXi ∈ ℝ

1×n is the i-class mean, and �̃ is 
the covariance matrix in the 1 × n projected space. Denote

Then �̃ = (D −
̃
XI)(D −

̃
XI)

T.
According to [44], we have

The upper bound of the error �B can be estimated as

(1)𝜖B =

k∑

i<j

√
PiPj ∫

√
pi(X)pj(X)dX,

(2)

𝜖B ≤ −
a

8

k�

i<j

�
PiPj‖wT (Xi − Xj)‖22 +

a

8
Δ

k�

i=1

Ni�

s=1

‖wT (Xis − Xi)‖22

+

k�

i<j

�
PiPj,

(3)D =

⎛
⎜
⎜
⎝

wTX1

⋮

wTXN

⎞
⎟
⎟
⎠

T

∈ ℝ
n×N and

̃
XI =

⎛
⎜
⎜
⎜
⎝

wTXt1

⋮

wTXtN

⎞
⎟
⎟
⎟
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T

∈ ℝ
n×N .

(4)∫
√

pi(X̃)pj(X̃) = e
−

1

8
(
̃
Xi−

̃
Xj)�̃

−1
(
̃
Xi−

̃
Xj)

T

.

where Δ�
ij
=

1

4
‖Xi − Xj‖2F , a > 0 is some constant.

For the first inequality of (5), note that the real value func-
tion f (z) = e−z is concave when z ∈ [0, b] , b > 0 ; therefore, 
e−z ≤ 1 −

1−e−b

b
z . By taking a =

1−e−b

b
 and noting ̃Xi = wTXi , 

the first inequality is obtained. For the second inequality, we 
first note that for any z ∈ ℝ

1×n and an invertible A ∈ ℝ
n×n , 

‖z‖2 = ‖(zA)A−1‖2 ≤ ‖zA‖2 ⋅ ‖A−1‖F  ,  which implies 
‖zA‖2 ≥ ‖z‖2

‖A−1‖F
 . By taking z = wTXi − wTXj and A = �̃

−
1

2 , 

we get the second inequality. For the last inequality, since 
‖w‖2 = 1 , ‖wT (Xi − Xj)‖22 ≤ ‖w‖2

2
⋅ ‖Xi − Xj‖2F = ‖Xi − Xj‖2F and 

1

‖�̃
1
2 ‖2

F

�
1 −

1
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1
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�
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4
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which implies

By multiplying a
8

√
PiPj to both sides of (7) and summing it 

over all 1 ≤ i < j ≤ k , we obtain the last inequality of (5).

Take Δ =
∑k

i<j

√
PiPjΔ

�
ij
=

1

4

∑k

i<j

√
NiNj

N
‖Xi − Xj‖2F , and 

note that ‖�̃
1

2 ‖2
F
=
∑k

i=1

∑Ni

s=1
‖wT (Xi

s
− Xi)‖22 , we then 

obtain (2). 	�  ◻

Acknowledgements  This work is supported by the National Natural 
Science Foundation of China (No.12171307) and Zhejiang Soft Sci-
ence Research Project (No.2021C35003).

References

	 1.	 Tan PN, Steinbach M, Kumar V (2005) Introduction to Data 
Mining. Addison Wesley, Boston

	 2.	 Zheng CT (2018) C, Liu, H. San Wong, Corpus based topic dif-
fusion for short text clustering, Neurocomputing 275:2444–2458

	 3.	 Abasi AK, Khader AT, Al-Betar MA et al (2020) Link based 
multi verse optimizer for text documents clustering. Appl Soft 
Comput 87:106002

	 4.	 Costa G, Ortale R (2021) Jointly modeling and simultaneously 
discovering topics and clusters in text corpora using word vec-
tors. Inf Sci 563:226–240

	 5.	 Thirumoorthy K, Muneeswaran K (2021) A hybrid approach 
for text document clustering using jaya optimization algorithm. 
Expert Syst Appl 178:115040

	 6.	 Jiang Z, Li T, Min W et al (2017) Fuzzy c-means clustering 
based on weights and gene expression programming. Pattern 
Recogn Lett 90:1–7

	 7.	 Shukla AK, Muhuri PK (2019) Big data clustering with interval 
type 2 fuzzy uncertainty modeling in gene expression datasets. 
Eng Appl Artif Intell 77:268–282

	 8.	 Zeng YP, Xu ZS, He Y et al (2020) Fuzzy entropy clustering by 
searching local border points for the analysis of gene expression 
data. Knowledge Based Systems 190:105309

	 9.	 Rahman MA, Ang LM, Seng KP (2020) Clustering biomedical 
and gene expression datasets with kernel density and unique 
neighborhood set based vein detection. Inf Syst 91:101490

	10.	 Wang M, Deng WH (2020) Deep face recognition with cluster-
ing based domain adaptation. Neurocomputing 393:1–14

	11.	 Liu N, Guo B, Li XJ et al (2021) Gradient clustering algorithm 
based on deep learning aerial image detection. Pattern Recogn 
Lett 141:37–44

	12.	 Fang U, Li JX, Lu XQ et al (2021) Self-supervised cross-itera-
tive clustering for unlabeled plant disease images. Neurocom-
puting 456:36–48

	13.	 Pham TX, Siarry P, Oulhadj H (2018) Integrating fuzzy entropy 
clustering with an improved PSO for MRI brain image segmen-
tation. Appl Soft Comput 65:230–242

	14.	 Mahata N, Kahali S, Adhikari SK et al (2018) Local contextual 
information and Gaussian function induced fuzzy clustering 

(7)−
‖wT (Xi − Xj)‖22

‖�̃
1

2 ‖2
F

≤ −‖wT (Xi − Xj)‖22 + Δ�
ij
⋅ ‖�̃

1

2 ‖2
F
.

algorithm for brain MR image segmentation and intensity inho-
mogeneity estimation. Appl Soft Comput 68:586–596

	15.	 Lei T, Jia X, Zhang Y et al (2019) Superpixel-based fast fuzzy 
C-means clustering for color image segmentation. IEEE Trans 
Fuzzy Syst 27(9):1753–1766

	16.	 Wei D, Wang ZB, Si L et  al (2021) An image segmentation 
method based on a modified local information weighted intui-
tionistic fuzzy C-means clustering and gold panning algorithm. 
Eng Appl Artif Intell 101:104209

	17.	 Wu J, Liu H, Xiong H et al (2015) k-means based consensus clus-
tering: a unified view. IEEE Trans Knowl Data Eng 27(1):155–169

	18.	 Bradley PS, Mangasarian OL (2000) k-plane clustering. J Global 
Optim 16(1):23–32

	19.	 Tseng P (2000) Nearest q-Flat to m Points. J Optim Theory Appl 
105:249–252

	20.	 Liu LM, Guo YR, Wang Z et al (2017) k-proximal plane cluster-
ing. Int J Mach Learn Cybern 8(5):1537–1554

	21.	 Wang Z, Shao YH, Bai L et  al (2015) Twin support vector 
machine for clustering. IEEE Trans Neural Netw Learn Sys 
26(10):2583–2588

	22.	 Khemchandani R, Pal A, Chandra S (2018) Fuzzy least 
squares twin support vector clustering. Neural Comput Appl 
29(2):553–563

	23.	 Khemchandani R, Chandra S (2007) Twin support vector 
machines for pattern classification. IEEE Trans Pattern Anal Mach 
Intell 29(5):905–910

	24.	 Arun Kumar M, Gopal M (2009) Least squares twin support vec-
tor machines for pattern classification. mExpert Sys With Appl 
36(4):7535–7543

	25.	 Ye Q, Zhao H, Li Z et al (2017) L1-norm distance minimization-
based fast robust twin support vector k-plane clustering. IEEE 
Trans Neural Netw Learn Sys 29(9):4494–4503

	26.	 Li CN, Shao YH, Guo YR et al (2019) Robust k-subspace discri-
minant clustering. Appl Soft Comput 85:105858

	27.	 Li Z, Yao L, Wang S et al (2020) Adaptive two-dimensional 
embedded image clustering, Proceedings of the AAAI confer-
ence on. Artif Intell 34(04):4796–4803

	28.	 Lu Y, Yuan C, Lai Z et al (2019) Horizontal and vertical nuclear 
norm based 2DLDA for image representation. IEEE Trans Cir-
cuits Syst Video Technol 29(4):941–955

	29.	 Li CN, Shao YH, Deng NY (2015) Robust L1-norm two-dimen-
sional linear discriminant analysis. Neural Netw 65:92–104

	30.	 Li CN, Shang MQ, Shao YH et al (2019) Sparse L1-norm two 
dimensional linear discriminant analysis via the generalized elas-
tic net regularization. Neurocomputing 337:80–96

	31.	 Lu Y, Yuan C, Lai Z et al (2018) Horizontal and vertical nuclear 
norm-based 2DLDA for image representation. IEEE Trans Cir-
cuits Syst Video Technol 29(4):941–955

	32.	 Li CN, Shao YH, Chen WJ et al (2021) Generalized two-dimen-
sional linear discriminant analysis with regularization. Neural 
Netw 142:73–91

	33.	 Li CN, Shao YH, Wang Z et al (2019) Robust bilateral Lp-norm 
two-dimensional linear discriminant analysis. Inf Sci 500:274–297

	34.	 Guo YR, Bai YQ, Li CN et al (2021) Two dimensional Bhattacha-
ryya bound linear discriminant analysis with its applications. Appl 
Intell 1-17

	35.	 Ma Z, Lai Y, Kleijn WB et al (2019) Variational bayesian learning 
for dirichlet process mixture of inverted dirichlet distributions in 
non-gaussian image feature modeling. IEEE Trans Neural Netw 
Learn Sys 30(2):449–463

	36.	 Cai D, He X, Han J (2005) Document clustering using locality pre-
serving indexing. IEEE Trans Knowl Data Eng 17(12):1624–1637

	37.	 Yang J, Parikh D, Batra D (2016) Joint unsupervised learning of 
deep representations and image clusters. In: Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition 



2683International Journal of Machine Learning and Cybernetics (2023) 14:2671–2683	

1 3

(CVPR), Las Vegas, pp 5147–5156. https://​doi.​org/​10.​1109/​
CVPR.​2016.​556

	38.	 Xie Y, Lin B, Qu Y et al (2020) Joint deep multi-view learn-
ing for image clustering. IEEE Trans Knowledge Data Eng 
33(11):3594–3606

	39.	 Nene SA, Nayar SK, Murase H (1996) Columbia object image 
library: Coil-100. Technical Report CUCS-006-96, Department 
of Computer Science, Columbia University, New York

	40.	 Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few 
to many: illumination cone models for face recognition under 
variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 
23(6):643–660

	41.	 Jain V (2002) The Indian face database, http://​vis-​www.​cs.​umass.​
edu/​~vidit/​India​nFace​Datab​ase/

	42.	 Phillips PJ, Moon H, Rizvi SA et al (2000) The FERET evaluation 
methodology for face-recognition algorithms. IEEE Trans Pattern 
Anal Mach Intell 22(10):1090–1104

	43.	 Nielsen F (2014) Generalized bhattacharyya and chernoff upper 
bounds on bayes error using quasi-arithmetic means. Pattern Rec-
ogn Lett 42:25–34

	44.	 Fukunaga K (2013) Introduction to statistical pattern recognition. 
Academic Press, New York

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1109/CVPR.2016.556
https://doi.org/10.1109/CVPR.2016.556
http://vis-www.cs.umass.edu/%7evidit/IndianFaceDatabase/
http://vis-www.cs.umass.edu/%7evidit/IndianFaceDatabase/

	Two-dimensional k-subspace clustering and its applications on image recognition
	Abstract
	1 Introduction
	2 Related works
	2.1 kPC
	2.2 kPPC
	2.3 q-flat
	2.4 A2DEIC

	3 Two-dimensional k-subspace clustering
	3.1 Problem formulation
	3.2 Solving algorithm and computational complexity analysis

	4 Experiments
	4.1 Evaluation metrics
	4.2 Datasets
	4.3 Experimental results
	4.3.1 Performance analysis
	4.3.2 The influence of the dimension


	5 Conclusion
	Appendix
	Acknowledgements 
	References




