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Abstract
Image dehazing is of great importance and has been widely studied, as haze severely affects many high-level computer 
vision tasks. In this paper, by considering the gradual dissipation process of haze, a progressive dehazing network (PDN) 
is proposed. The proposed approach realizes haze removal step by step by constructing two main modules: the preliminary 
and fine dehazing modules. In the preliminary dehazing module, a combined residual block is first constructed to extract 
and enhance features of different levels. Then, an adaptive feature fusion strategy is designed to integrate these features and 
output the initial dehazing result. Aiming at the residual haze in the initial results, a fine dehazing module is constructed 
by simulating the last period of the haze dissipation process to further extract a fine haze layer. The final dehazing result is 
obtained by removing the fine haze layer from the initial dehazing result. Experimental results indicate that the proposed 
method is superior to some state-of-the-art dehazing methods in terms of visual comparison and objective evaluation.

Keywords Progressive image dehazing · Combined residual block · Adaptive feature fusion strategy · Fine haze layer

1 Introduction

Reflected light is absorbed and scattered by haze in the pro-
cess of light propagation, leading to weakened object vis-
ibility, thus resulting in the degradation of the quality of the 
captured images [1]. High-quality images are required for 
high-level computer vision tasks, such as object detection 
[2], scene understanding [3], and pedestrian reidentification 
[4]. An effective image dehazing technology can improve 
the quality of hazy images, as shown in Fig. 1. Numerous 
image dehazing methods have been developed in the past 
few decades, which are mainly divided into two categories: 
traditional and deep learning-based methods.

Traditional dehazing algorithms focus on improving the 
contrast and color saturation of hazy images to improve 
their quality. The earlier methods mainly included histo-
gram equalization-based [5], Retinex theory-based [6], and 
frequency domain-based [7] methods. Mathematically, the 
imaging theory of haze in traditional dehazing methods can 
be formulated using the following atmospheric scattering 
model [8]:

where x is the pixel position, I(x) is the hazy image, J(x) is 
the clear image, A is the atmospheric light value, and t(x) is 
the transmittance map.

In traditional methods, the evaluation of the transmit-
tance map plays a key role. Therefore, to obtain a haze-free 
image by solving Eq. (1), the transmittance map of the image 
must be estimated accurately. This estimation is usually 
performed by establishing various assumptions [9]. Fattal 
et al. [10] estimated the transmittance map by calculating 
the distance between the pixel and color line. He et al. [11] 
proposed the dark channel prior theory, which is used in the 
atmospheric scattering model to obtain a rough estimation 
of the transmittance map. Based on the dark channel the-
ory, Zahid et al. [12] estimated the transmittance map from 
RGB channels and the intensity channel of the hazy image. 

(1)I(x) = J(x)t(x) + A(1 − t(x))
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Traditional image dehazing methods rely on the evaluation 
accuracy of the transmittance map to obtain a better dehaz-
ing result; otherwise, they encounter inaccurate dehazing 
problems such as excessive dehazing, incomplete dehazing, 
and color distortion [13]. In addition, these methods usually 
consume a significant amount of computing time, which can-
not meet the requirements of real-time haze removal.

In recent years, owing to the strong feature representa-
tion and nonlinear mapping capacities of deep learning, an 
increasing number of deep learning-based image dehaz-
ing methods have been proposed to solve the limitations of 
the traditional methods. Chen et al. [14] designed a gated 
context aggregation network to achieve image dehazing by 
directly learning the residual between clear and hazy images. 
Qu et al. [15] proposed an end-to-end generative adversarial 
network for image dehazing that contains a multi-resolu-
tion generator, multi-scale discriminator, and enhancer. 
Pang et al. [16] proposed a novel binocular image dehaz-
ing framework called BidNet, which explores and encodes 
the correlation between the left and right binocular images 
by introducing a stereo transformation module. Shao et al. 
[17] proposed an image dehazing method based on a domain 
adaptation paradigm, which solved the problem of domain 
shift between real and synthetic hazy images by constructing 
a bidirectional translation network. Although these end-to-
end dehazing networks can directly restore haze-free images, 
they do not accurately simulate the image formation of the 
haze process, and thus may result in artifacts and haze resid-
uals in some special scenes [18].

To fit the scene information more accurately, deep learn-
ing methods combining the atmospheric scattering model 
and scene depth information have been proposed. By learn-
ing the mapping between hazy images and the corresponding 
transmission maps, a multi-scale depth neural network [19] 
for single-image dehazing was proposed, which includes 
coarse- and fine-scale networks to predict the overall trans-
mission maps and optimize the results locally. Cai et al. [20] 
proposed a trainable end-to-end system called DehazeNet, 
the layers of which were specially designed to embody the 
established principles of image dehazing. Based on a refor-
mulated atmospheric scattering model, for image dehaz-
ing, an all-in-one dehazing network (AOD-Net) [21] was 

proposed to generate a haze-free image directly through a 
lightweight convolutional neural network (CNN). Inspired 
by the idea of dense connection, Zhang et al. [22] proposed 
a densely connected pyramid dehazing network by directly 
embedding the atmospheric scattering model into the net-
work. The network can simultaneously learn the transmis-
sion map, atmospheric light, and dehazing result. Guo et al. 
[23] proposed a depth-aware dehazing network using a rein-
forcement learning system; their technique gradually realizes 
the removal of haze in a near-to-far manner by utilizing the 
depth information from the scene. Lee et al. [24] proposed 
a CNN-based image dehazing network for both dehazing 
and depth estimation, and this method estimates a dehaz-
ing image and a full-scale depth map from a single hazy 
image. Wang et al. [25] proposed an end-to-end CNN-based 
color-shift-restraining dehazing network, which is termed 
as front white balance network (FWB-Net), to address the 
color shift problem in image dehazing. Ullah et al. [26] pro-
posed an efficient lightweight convolutional neural network 
called Light-DehazeNet (LD-Net), which uses a transformed 
atmospheric scattering model and a color visibility restora-
tion method for image dehazing. These deep learning-based 
dehazing methods can effectively combine the atmospheric 
scattering model and depth information and remove haze 
according to the haze concentration at different depths of 
the scene. However, owing to the change in scene depth, 
the haze concentration in the image will be different. This 
will lead to inaccurate evaluation of depth information and 
incomplete dehazing in the prospective area. Recently, ViT 
[27] has performed particularly well in high-level vision 
tasks, which has led researchers to try to apply it in the field 
of dehazing. Song et al. [28] introduced some improvements 
for Swin Transformer [29] and proposed DehazeFormer for 
image dehazing, which achieves superior performance on 
several datasets. However, the Transformer-based methods 
depend on extensive training data and require relatively high 
computational cost [30, 31].

In view of the above-mentioned problems, we propose 
a novel progressive dehazing network (PDN) for haze 
removal based on dual feature-extraction modules. By 
simulating the process of haze dissipation, two main mod-
ules in the network are constructed: preliminary and fine 

Hazy image                           DehazeNet EPDN Ours

Fig. 1  Image dehazing examples. Our result has rich details and normal color information
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dehazing modules. In the preliminary dehazing module, 
different levels of features are extracted and enhanced by 
constructing a combined residual block. These features are 
then integrated using an adaptive feature fusion strategy to 
output the initial dehazed image. For the initial dehazing 
result, a fine dehazing module is constructed to extract the 
depth information, that is, the residual haze in the initial 
result, which is then used to further refine the dehazing 
result. Compared to state-of-the-art methods, the proposed 
PDN can achieve better image dehazing results with more 
accurate details and color information. Mathematically, 
our PDN, as shown in Fig. 2, can be expressed as follows:

where I(x) denotes a hazy image; Enc(‧) and dec(‧) denote 
the encoder and decoder layers, respectively; and P(‧) and 
F(‧) denote the preliminary and fine dehazing modules, 
respectively.

The main contributions of this study are summarized 
as follows:

(1) A progressive image dehazing network composed of a 
preliminary and a fine dehazing module is proposed to 
gradually realize haze removal by simulating the pro-
gressive dissipation process of haze.

(2) The preliminary dehazing module is designed to obtain 
the initial dehazing results. In this module, a combined 
residual block is constructed to extract and enhance the 
features at different levels. Simultaneously, an adap-

(2)J(x) = dec(P(Enc(I(x)))) − F(dec(P(Enc(I(x)))))

tive feature fusion strategy is designed to integrate the 
features of different levels.

(3) For the residual haze, following the initial dehazing 
process, a fine dehazing module is constructed to fur-
ther extract a fine haze layer, which is then removed 
from the initial dehazing result to obtain the final 
dehazing result.

2  The proposed method

Based on the fact that the dissipation of haze is a gradual 
process, this paper proposes a PDN with two modules to 
simulate the dissipation of haze and realize the gradual 
removal of haze. These two modules are named the prelimi-
nary dehazing module and fine dehazing module, respec-
tively, as shown in Fig. 2. The detailed construction of the 
network is as follows.

First, an encoder structure with two convolution layers 
is added to extract the initial shallow features and reduce 
the spatial dimension of the feature maps. Then, the fea-
ture maps are fed into the preliminary dehazing module to 
remove haze and enhance the image features. Next, after the 
preliminary dehazing module, a decoder structure similar to 
the encoder structure is added to recover the spatial dimen-
sion of the feature maps and output the initial dehazing 
result. Finally, because residual haze will still be present in 
the deeper scene of the initial result, a fine dehazing module 
is designed to remove the residual haze in the deeper scene 
and obtain the final dehazed image. In the network, the size 
of the convolution kernels used in all convolution layers is 

X

ZW1*X+W2
*Y+W3*Z

Fine
Dehazing Module

Convolution layer X Y

Z

Shallow feature Medium feature

Deep featureAdd by pixels

C Concatenate

Y

CCC

CC

Subtract by pixels

Encoder Decoder

Multi-scale depth feature

Input Output

Convolution layer

Preliminary
Dehazing Module

Preliminary
Output

Fig. 2  The overall framework of the proposed PDN
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3 × 3, with a step size of 1 or 2, and each convolution layer 
contains 32 convolution channels. The structure of each 
module is described in detail below.

2.1  Preliminary dehazing module

In the preliminary dehazing module, a combined residual 
block is first constructed to extract and enhance the features 
of the input image. The output features of the encoder struc-
ture are the shallow features, and the features extracted by 
the two combined residual blocks can be regarded as the 
middle and deep features. Then, according to the character-
istic, i.e., the human eyes pay different attention to each kind 
of features, so the contribution of different features to the 
output result of the network is also different. Therefore, this 
paper proposes an adaptive feature fusion strategy to evalu-
ate the contribution and realize the fusion of three types 
of different-level features. The specific descriptions of each 
structure in the preliminary dehazing module are as follows.

(1) Combined residual block
  The combined residual block is composed of two 

convolution layers: local residuals and an external 
residual. The convolution layers and local residuals 
are constructed for feature extraction, and an external 
residual is designed for feature reuse and enhancement. 
The combined residual block, as illustrated in Fig. 3, 
can be represented as

where F0 and F3 are the input and output of the resid-
ual block, respectively. F1 and F2 are the intermediate 
results. conv(‧) represents convolution operations. To 
obtain more abundant feature information, in the con-
volution operations, we use dilation convolution with 
dilation coefficients of 1, 2, and 4 to expand the recep-
tive field. Moreover, a convolution layer with a dilation 

(3)

⎧⎪⎨⎪⎩

F1 = conv(F0) + F0

F2 = conv(F1) + F1

F3 = conv(F2) + F1 + F2

coefficient of 1 is adopted to avoid the associated grid-
ding effects.

(2) Adaptive feature fusion strategy
  To better integrate the features from different levels, 

we propose an adaptive feature fusion strategy, which 
is defined as the weighted sum of the previous three 
types of feature maps. Assume that the shallow fea-
tures obtained by the encoder structure are X, and the 
medium and deep features obtained from the two com-
bined residual blocks are expressed as Y and Z, respec-
tively. The fusion strategy of the shallow, medium, and 
deep features can be represented as

where F denotes the fusion feature maps. W1, W2, and 
W3 are the weighted coefficients, which are learned 
adaptively during network training. In our work, these 
weighted coefficients are first initialized randomly, and 
then updated iteratively by gradient descent method 
with the loss function.

2.2  Fine dehazing module

The previous preliminary dehazing module can achieve the 
initial dehazing result by fusing and enhancing the image 
features from the hazy image. However, because the dis-
tance between the deeper scene and camera is significant, 
the distant areas in the image will show a thicker haze than 
the areas that are closer. Therefore, the initial dehazing 
results display the problem of incomplete dehazing in distant 
areas. To remove the residual haze in the distant areas, a fine 
dehazing module is designed, as shown in Fig. 2.

Because the features of haze contain very few high-fre-
quency components, the fine dehazing module is designed as 
an encoding and decoding network, which can better extract 
high-level semantic information by reducing the spatial 
dimension of the feature maps. In addition, to supplement 
the loss of information caused by dimension reduction, the 
concatenation operations between the same spatial dimen-
sion layers are added. At the end of the decoding part, to 
better extract the depth features, two scale depth-feature lay-
ers are designed by expanding the size of the feature maps 
and reducing the channel dimension. The depth features of 
the two scales are fused to extract the depth information, as 
shown in the green block in Fig. 2. The depth features are 
named multiscale depth features and are transferred to the 
subsequent convolution layers to obtain fine depth informa-
tion. The output of the fine dehazing module is regarded as 
the fine haze layer and subtracted from the initial dehazing 
result to obtain the final dehazed image.

(4)F = W1 × X +W2 × Y +W3 × Z

F0 F1 F2 F3

Fig. 3  Illustration of the combined residual block
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2.3  Loss functions

To restore good structural information and realistic color 
for the resulting dehazed image, we design a joint loss func-
tion that combines the L1, structural similarity (SSIM), and 
color-difference losses to train the proposed network.

(1) L1 loss
  This loss provides a quantitative method for measur-

ing the pixel-level difference between the dehazed and 
ground-truth images. Therefore, we use the following 
L1 normal formula as part of the total loss function:

 where L1 denotes the value of L1 loss, y represents the 
ground-truth, y denotes the output of the network, and 
|| ⋅ ||1 represents the L1-norm.

(2) Structural similarity loss
  The SSIM index is a measure of the structural simi-

larity between two images [32]. To better evaluate the 
structural similarity between the dehazed and ground-
truth images at different scales, a multiscale SSIM 
(MS_SSIM) quality evaluation index [33] is utilized 
as one term of the joint loss function, and it is defined 
as follows:

where l is the luminance, c is the contrast, s is the struc-
tural similarity, is the index of the pixel, m is the total 
number of pixels, and α, β, and γ are the parameters 
that adjust the importance of l, c, and m, respectively. 
The larger the value of MS_SSIM, the more complete 
is the structural information. For the convergence of 
the network training, the SSIM loss function is defined 
as follows:

where Ls denotes the value of SSIM loss.
(3) Color difference loss
  In hazy images, the color information of objects is 

usually hidden or distorted owing to insufficient illumi-
nation or light refraction. Therefore, the loss of color 
information leads to color deviation of the dehazing 
results. The CIEDE2000 index [34] is commonly 
used to calculate the color difference between two 
images. To ensure that the color of the dehazed result 
is more realistic, we introduce the CIEDE2000 index 
to construct the color difference loss, which is used to 
measure the color similarity between the dehazed and 

(5)L1 =
∑||y − y||1

(6)MS_SSIM(y, y) = l(y, y)�m
m

m∏
i

c(y, y)
�i

i
s(y, y)

�i

i

(7)LS = 1 −MS_SSIM(y, y)

ground-truth images. The calculation processes are as 
follows: (i) the dehazed and ground-truth images are 
converted from the RGB to the Lab color space; (ii) the 
color difference ΔE between each pixel of the ground-
truth, y, and dehazing image, y , is calculated accord-
ing to the CIEDE2000 index. The color difference loss 
between the two images is defined as follows:

 where measures the color difference of each pixel 
between two images in the Lab space, and N is the total 
number of pixels.

(4) Joint loss
  Based on the aforementioned definitions, the joint 

loss function is defined as follows:

where ρ, σ and δ are the weights of the loss terms, 
which are set to 1, 1, and 0.5, respectively, by trial and 
error.

3  Experiments and analysis

In this section, the experimental settings and quantitative 
metrics used to evaluate the reconstruction results are intro-
duced. Then, in both subjective and objective aspects, this 
study compares the proposed method with nine mainstream 
dehazing methods, including DCP [11], DehazeNet [20], 
MSCNN [19], AOD [21], DCPDN [22], EPDN [15], Grid-
Dehaze [35], KNND [36], and GMAN [37]. The source 
codes of all the compared methods were provided by the 
authors of the related literature. All experiments were per-
formed on the same machine to ensure consistency of the test 
environment. Finally, three ablation studies were designed 
to demonstrate the effectiveness of the key components in 
the proposed network.

3.1  Experimental setting and quantitative metrics

To ensure fairness in the comparison of algorithms, all the 
deep learning methods were retrained on the RESIDE data-
set [38]. In the experiment, 10,500 outdoor images in this 
dataset are used for training, 1050 outdoor images are used 
for verification, and 200 outdoor images of SOTS are used 
for testing.

During the training, the proposed network was opti-
mized using the Adam optimizer, with the learning rate set 
to 0.0005 and the number of training epochs set to 40. All 

(8)Lc =
1

N

∑
ΔE(y, y)

(9)L = �L1 + �Ls + �Lc
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experiments were carried out on an NVIDIA GTX 2080ti 
GPU and Pytorch framework.

To evaluate the performance of the comparison methods, 
two metrics, namely SSIM and peak signal-to-noise ratio 
(PSNR), were used to quantitatively analyze the experi-
mental results from an objective point of view. The higher 
the values of these two metrics, the better are the results of 
image dehazing.

3.2  Subjective results

To demonstrate the effectiveness of the proposed network, 
numerous experiments were performed to compare the 
dehazing results of various methods. Three groups of dehaz-
ing results are shown in Figs. 4, 5, 6. Figures 4 and 5 display 
the dehazing results of the synthetic outdoor hazy images, 
and Fig. 6 shows the dehazing results of a real outdoor hazy 
image.

As shown in Fig. 4, the results of DCP, DCPDN, EPDN, 
and KDDN have serious color deviation problems. For 
example, the color of the sky is deeper or brighter than that 
of the ground truth. The AOD result shows a haze residue 
on the image surface. Although DehazeNet, MSCNN, Grid-
Dehaze, and GMAN can obtain better dehazing results, they 
encounter some problems such as uneven color or low color 
saturation in the sky region. Compared with other methods, 
the proposed method can remove haze more effectively and 

restore realistic colors closer to the ground-truth. In particu-
lar, the result of our method is observed to be more uniform 
in the sky region. Furthermore, to better observe the effect 
of the detailed restoration, we selected a small local area 
to zoom in, as shown in the green boxes in the figures. As 
such, the proposed method can restore clearer edges than 
the other methods.

In Fig. 5, the dehazing result of DCP shows serious color 
distortion and artifacts. The results of DehazeNet, MSCNN, 
and AOD show haze residue and obvious edge information 
loss, which can be observed in the magnified area in the 
green box. DCPDN obtains brighter result than the ground-
truth and experiences the problem of over-enhancement. The 
results of EPDN and KDDN have higher contrast than that of 
the ground-truth, resulting in problems, for example, some 
areas become darker and the color is slightly distorted. Com-
pared with other methods, the results of GridDehaze and 
GMAN are closer to the ground-truth; however, the enlarged 
areas show that the edges are slightly blurred. Compared 
with GMAN and GridDehaze, the result of the proposed 
method is closer to the ground-truth, and the edge texture 
in the enlarged area is more abundant. In addition, the pro-
posed method can avoid the problems of color distortion 
and over-enhancement compared with those observed in the 
other methods.

To further prove the effectiveness of the proposed 
method, experiments were carried out on real scene images, 

Hazy image   DCP DehazeNet MSCNN

AOD DCPDN EPDN GridDehaze

KDDN GMAN Ours Ground-truth 

Fig. 4  The first subjective comparison of the dehazing results on synthesis hazy image by different methods
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and the results are shown in Fig. 6. As observed, the results 
of DCP, DehazeNet, and MSCNN all have haze residue, 
whereas the results of AOD, DCPDN, and EPDN show 

color distortion and a small amount of noise. GridDehaze, 
KDDN, and GMAN produce serious artifacts. In compari-
son, the proposed method can effectively remove haze while 

Hazy image                                 DCP                                  DehazeNet                                 MSCNN 

AOD                                    DCPDN                                 EPDN                                 GridDehaze

KDDN                                   GMAN                                   Ours                                  Ground-truth 

Fig. 5  The second subjective comparison of the dehazing results on synthesis hazy image by different methods

Hazy image   DCP DehazeNet MSCNN

AOD DCPDN EPDN GridDehaze

KDDN GMAN Ours

Fig. 6  The third subjective comparison of the dehazing results on real hazy image by different methods
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maintaining color and image details, which are more suitable 
for human vision.

3.3  Objective results

To objectively evaluate the performance of various meth-
ods, we also tested the average PSNR and SSIM values of 
image dehazing results on the SOTS to further compare the 
dehazing effects of various methods. The average objective 

evaluation indexes of the test data are shown in Table 1, and 
the highest scores of the objective indicators are indicated 
in bold. Table 1 shows that compared to other methods, the 
proposed method obtains the highest values of SSIM and 
PSNR, which illustrates that the proposed image dehazing 
network has better performance.

3.4  Generalization verification

To further prove the effectiveness and generalization abil-
ity of the proposed method, experiments were conducted 
on another dataset, HazeRD [39], which includes 75 test 
images. Taking one image as an example, the dehazing 
results of the proposed method as well as the comparison 
methods are shown in Fig. 7. As can be seen from the figure, 
the results of DCP, Dehaze-Net, and EPDN are obviously 
very dark, the results of MSCNN, DCPDN, and GMAN 
have observable hazy residues, the result of AOD has obvi-
ous color distortion, and the result of GridDehaze has seri-
ous gridding effect and artifacts, especially in the sky area. 
Although the result of KDDN looks close to ours, the former 
is relatively dark as can be seen from the tree area, resulting 
in unclear details. Overall, the result of the proposed method 
is closer to the ground-truth compared to the results of the 

Table 1  Quantitative comparison of dehazing results by different 
methods on SOTS

Method PSNR SSIM

DCP (2011) 21.16 0.853
DehazeNet (2016) 28.83 0.870
MSCNN (2016) 23.92 0.929
AOD (2017) 23.08 0.920
DCPDN (2018) 18.97 0.875
EPDN (2018) 24.63 0.840
GridDehaze (2019) 32.66 0.988
KDDN (2020) 24.03 0.873
GMAN (2020) 29.07 0.969
Ours 34.60 0.988

Hazy image                                 DCP                                   DehazeNet                           MSCNN 

AOD                                       DCPDN                                  EPDN                              GridDehaze

KDDN                                      GMAN                                   Ours                                Ground-truth 

Fig. 7  The subjective comparison of the dehazing results by different methods on HazeRD
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comparison methods. Furthermore, the average quantitative 
evaluation results of all the dehazing methods on HazeRD 
are calculated, as shown in Table 2. From the table, it can be 
seen that our result is the best on SSIM, and the PSNR value 
of our method is not much different from the best result. The 
subjective and objective results presented here can prove that 
our method is effective and has good generalization.

3.5  Ablation experiments

To verify the effectiveness of the fine dehazing module and 
proposed adaptive feature fusion strategy, we conducted 
ablation experiments by testing the dehazing results of the 
proposed network with and without a fine dehazing module 
and with and without an adaptive fusion strategy. In addition, 
we conducted an ablation study to prove the effectiveness of 
the designed joint loss function. All the ablation experiments 

were conducted on the whole test images of SOTS. The 
average quantitative results of PSNR and SSIM are used to 
evaluate the performance of the different methods.

(1) Effectiveness of the fine dehazing module
  Figure 8 shows the objective comparison of the pro-

posed network with and without a fine dehazing mod-
ule. In Fig. 8, PDN represents the proposed dehazing 
network (with both two modules), as indicated by the 
red line. PDN- represents the network without a fine 
dehaze module (with only a preliminary dehazing 
module), as shown by the green line. From Fig. 8, the 
PSNR and SSIM values of PDN- fluctuate significantly 
during the training process, and almost all values are 
lower than those of PDN, especially for SSIM. Com-
pared with the results of PDN-, both PSNR and SSIM 
indexes of PDN are better, and PDN can reach a stable 
state in a short time.

  In addition, Fig. 9 shows the dehazing results of 
PDN- and PDN, and gives the PSNR and SSIM val-
ues of the two cases. As observed, the PDN- cannot 
achieve complete dehazing results, and residual haze 
can still be observed in the results, as shown in the red 
boxes. After adding the fine dehazing module, the PDN 
obtains clearer dehazing results, which are closer to the 
ground-truths. Therefore, the experiments presented 
here verify that the fine dehazing module is effective 
in our network.

(2) Effectiveness of adaptive weight-feature fusion
  To demonstrate the performance of the adaptive 

feature fusion strategy in the preliminary dehazing 
module, another ablation experiment was conducted, 
as shown in Fig. 10. In the figure, PDN-W and PDN 
denote the proposed network without and with the 

Table 2  Quantitative comparison of dehazing results by different 
methods on HazeRD

Method PSNR SSIM

DCP (2011) 11.94 0.539
DehazeNet (2016) 15.81 0.761
MSCNN (2016) 15.30 0.786
AOD (2017) 16.23 0.779
DCPDN (2018) 13.35 0.624
EPDN (2018) 14.98 0.774
GridDehaze (2019) 13.77 0.781
KDDN (2020) 15.16 0.774
GMAN (2020) 15.62 0.809
Ours 15.63 0.819
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Fig. 8  Ablation study on the effectiveness of fine dehazing module from objective comparison
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adaptive feature fusion strategy, as indicated by the 
blue and red lines, respectively. Figure 10 shows that 
the PSNR and SSIM values of PDN-W are generally 
lower than those of PDN. Thus, the effectiveness of the 
adaptive fusion strategy is verified.

(3) Effectiveness of the loss function

  In order to prove the effectiveness of the joint loss 
function, ablation experiments were conducted to 
compare the performance of the proposed network 
with only L1 loss, L1 loss and color difference loss, L1 
loss and MS_SSIM loss, and L1 loss, MS_SSIM loss 
and color difference loss. The experimental results are 
shown in Table 3. As can be seen from the table, com-
pared with the performance of the network with only 
L1 loss, the performance of adding color difference loss 
or MS_SSIM loss is much better, which means that 
each loss is helpful for the method. The performance 
of the network with three losses is the best, which dem-
onstrates the effectiveness of our designed joint loss 
function.

Hazy image                                 PDN-                                      PDN                               Ground-truth 

                                PSNR/SSIM 22.65/0.93        PSNR/SSIM 27.78/0.97 

Hazy image                                 PDN-                                      PDN                                Ground-truth 

                                PSNR/SSIM 29.61/0.97         PSNR/SSIM 33.43/0.99

Fig. 9  Ablation study on the effectiveness of fine dehazing module from subjective comparison
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Fig. 10  Ablation study on the effectiveness of adaptive feature fusion from objective comparison

Table 3  Ablation study on the effectiveness of different loss functions

L1 MS_SSIM Color differ-
ence

PSNR SSIM

√  ×  × 29.78 0.963
√  × √ 30.84 0.968
√ √  × 31.30 0.979
√ √ √ 34.60 0.988
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3.6  Object detection application

To demonstrate that image haze might affect the perfor-
mance of high-level computer vision systems, we did exten-
sive experiments to compare the effects of hazy image and 
dehazing results in object detection. In the experiments, 
YOLOv5 [40] trained on COCO dataset [41] was used for 
object detection. Figure 11 shows a set of experiments as an 
example. As can be seen from the figure, all the dehazing 
results detect more objects than the hazy image, and our 
method detects the objects more correctly. Therefore, the 
results presented here can verify that image dehazing can 
improve the performance of high-level computer vision tasks 
such as object detection, and the proposed method outper-
forms state-of-the-art dehazing methods.

4  Conclusion

In this paper, according to the principle that the haze gradu-
ally dissipates, we proposed a progressive image dehazing 
network, which includes preliminary and fine dehazing 
modules. In the preliminary dehazing module, a combined 
residual block is constructed to extract and enhance differ-
ent level features, and an adaptive feature fusion strategy is 
designed to merge the different levels of features and avoid 

excessive dehazing. In the fine dehazing module, a network 
with encoder–decoder structure are constructed to extract 
multiscale depth features to further obtain the residual haze 
layer. The final haze-free image can be obtained by subtract-
ing the residual haze layer from the preliminary dehazed 
result. The experimental results show that the proposed 
method exhibits outstanding dehazing performance com-
pared to some mainstream dehazing methods.
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