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Abstract
Vision Transformer (ViT) has fully exhibited the potential of Transformer in computer vision domain. However, the compu-
tational complexity is proportional to the input dimension which is a constant value for Transformer. Therefore, training a 
vision transformer network is extremely memory expensive, where a large number of intermediate activation functions and 
parameters are involved to compute the gradients during back-propagation. In this paper, we propose Conv-PVT (Convolu-
tion blocks + Pyramid Vision Transformer) to improve the overall performance of vision transformer. Especially, we deploy 
simple convolution blocks in the first layer to reduce the memory footprint by down-sampling the input. Extensive experi-
ments (including image classification, object detection and segmentation) have been carried out on ImageNet-1k, COCO and 
ADE20k datasets to test the accuracy, training time, memory occupation and robustness of our model. The results demon-
strate that Conv-PVT achieves comparable performances with the original PVT and outperforms ResNet and ResNetXt for 
some downstream vision tasks. But it shortens 60% of the training time and reduces 42% GPU (Graphics Processing Unit) 
memory occupation, realizing twice the inference speed of PVT.

Keywords  Attention · Vision transformer · Convolution · Down-stream vision tasks

1  Introduction

Till now, the convolutional neural networks (CNNs) is still 
the predominant scheme in the field of computer vision. 
Recently, the rising trend of transformer in natural language 
processing (NLP) has proved its excellent context model-
ling abilities, which has aroused great interest of scholars 
in migrating it to computer vision domain. However, chal-
lenges arise in adapting transformer from language to vision 
when dealing with high resolution of pixels and large vari-
ations in scales. Under such circumstances, many works 
have attempted to replace CNNs with transformer blocks 
[43, 50] or endeavored to combine CNN-like architectures 
with attention mechanism to solve fundamental computer 
vision tasks (e.g. detection, classification, segmentation and 
tracking etc.). In the meantime, researchers are dedicated to 
improving the performance and adaptability of transformer 
with self-attention modules. Among them, ViT [11] was the 

first successful application of transformer model in image 
classification. It firstly splits an image into non-overlapping 
patches ( 16 × 16 or 14 × 14 ), and provided a sequence of lin-
ear embeddings for these patches as input to the transformer. 
Then those patches were regarded as image representations, 
which were processed in a similar way as tokens in NLP. 
Finally, a multi-head self-attention module was utilized to 
transform the representations into prediction results through 
a small-scale multi-layer perceptron (MLP). Albeit success-
ful, pure transformer architectures (like ViT) often require 
a larger amount of training data (or extra supervision) to 
attain similar performance as CNNs. And they only per-
form well on large scale dataset than small scale counterpart. 
DETR [40] reasoned the relation between the objects and 
global context to yield a set of prediction results given just 
a small set of learned object queries. The computational cost 
of the original attention module in transformer architecture 
is expressed as O(N2d ), which is relatively huge compared 
with CNNs. Later, many revised versions were published 
to improve the prediction accuracy of the traditional trans-
former. However, the improved performance comes at a cost 
of enormous number of parameters. In view of this, Zhang 
et al. [52] and Wang et al. [43] optimized the computation 
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methodology to reduce computation load. But their networks 
were still huge, which need to be trained on high-perfor-
mance platforms. For instance, training a PVT-T [43] with 
a batch size of 128 on ImageNet requires at least 9G GPU 
memory, and spends nearly 1 hour to train 1 epoch, while 
PVT-L cannot fit into a 24GB RTX-3090 GPU with the same 
settings. Furthermore, Swin-T [30] costs 12 mins to train 
an epoch on 16 V100 GPUs. Except for a few commercial 
companies, most institutions cannot afford such advanced 
machines to follow up on this area. It was reported by [34], 
ViT lacks image-specific inductive biases that is inherent in 
CNNs (including translation equivariance and locality), it 
thus does not generalize well when trained on insufficient 
amount of data. Yuan et al. [49] claimed that image segmen-
tation process causes the loss of edge information among 
blocks, which results in performance degradation. Xiao et al. 
[45] merged convolution with vision transformer, and dis-
covered that early convolution boosts the performance of 
vision transformer.

Inspired by the above works, we develop Conv-PVT in 
this paper to improve the general performance of the origi-
nal Transformer in implementing vision related tasks. We 
aim to reduce the memory footprint and training time while 
increase the inference accuracy and robustness of the net-
work. To realize the goal, we integrate convolution into the 
original transformer structure, which down-samples the 
input image into 1/8 of its original size, and feeds it to trans-
former encoder. Our model captures the fine-grained features 
and produces feature maps with rich semantic meanings and 
content descriptions, which is capable of many dense pre-
diction vision related tasks. We test the accuracy of Conv-
PVT on ImageNet-1k. Experiment results validate that the 
new model only consumes 5G GPU memory and requires 
24 mins to train 1 epoch on a RTX 3090 with negligible loss 
of accuracy.

In a nutshell, the main contributions of our work can be 
summarized as follows: 

(1)	 We propose Conv-PVT in this paper, which combines 
the convolution blocks with transformer architecture. 
Especially, the convolution blocks introduce induc-
tive bias into transformer, which is naturally absent in 
original transformer architecture. It turns out that our 
proposed network has far less parameters than existing 
ones.

(2)	 We propose to implant Conv-stem to reduce the mem-
ory footprint and training time of transformer. It turns 
out that the Conv-stem not only doubles the validation 
speed but also achieves higher accuracy through more 
extensive training in some downstream vision tasks.

(3)	 We also find that convolution blocks weaken the robust-
ness of transformer, which becomes more notable as 
the model size grows.

The rest of the paper is organized as follows: related works 
are discussed in Sect. 2. The architecture of our network 
is described in Sect. 3 in detail. The experimental results 
with ablation studies and analysis are shown in Sect. 4. A 
final conclusion is drawn in Sect. 5 with the corresponding 
application perspectives (Fig. 1).

2 � Related works

Background: Convolution and self-attention are both pow-
erful approaches for representation learning, which follow 
different design paradigms. CNNs have been widely applied 
in vision related tasks and achieve state-of-the-art perfor-
mances. It reaps the benefit of aggregation function over 
receptive field based on shared weights. The intrinsic prop-
erties impose critical inductive bias for image and vision 
operations. By contrast, self-attention was firstly developed 
to accomplish natural language processing tasks, which later 
ignited the great interest of computer vision specialists. It 
employs weighted average operations to process context of 
input images so as to capture informative features.

Convolutional neural networks (CNNs): CNNs capture 
and well-fit the fine-grained features with the properties 
of weight sharing, rotational and translational invariance. 
Since the great success of AlexNet [25] in classification on 
ImageNet, CNNs are the de-facto standard in vision related 
fields. With the recent development of high-performance 
GPU, significant improvement has been made by stack-
ing deeper convolutional layers [17, 36]. In addition, many 
lightweight models [8, 21, 53] were also announced with 
much less computations to cater for the ever-growing needs 
of mobile applications. At the same time, different training 

Fig. 1   The X-axis is the GPU Memory usage during training, the 
Y-axis is the validation speed in CPU or GPU
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paradigms [4, 15] and data processing schemes [38, 39] have 
been put forward to further enhance the behavior of CNNs.

Transformers: Unlike CNNs, transformer builds global 
relation of context based on self-attention mechanism. It 
was firstly developed by [41] for NLP topics. BERT elabo-
rated self-supervised pre-training method, while GPT [33] 
outlined discriminative fine-tuning scheme for specific task 
with minimal changes to the model architecture. A typical 
transformer consists of an encoder and a decoder, both of 
which utilize multi-head attention and feature pyramid net-
work (FPN). The decoder receives the output of the encoder 
and the original input to predict next sequence. Transformer 
learns long-distance dependencies quite well and is thus tai-
lored for NLP problems.

Vision Transformers: Enlightened by the success of 
transformer in NLP, scientists attempted to migrate it to 
image and vision field. But the early applications were hin-
dered by its huge parameters of network and the quadratic 
computational complexity. With the advent of high speed 
hardware, Dosovitskiy et al. [11]presented ViT, where the 
transformer encoder partitioned input images into non-over-
lapping patches and projected them into specific dimension 
to generate the token. Then, they utilized multi-head self-
attention module and feed-forward module to model these 
tokens. The main disadvantage of ViT [11] is its heavy-
weight, which only performs well on large scale benchmarks 
(e.g. JFT-300M, ImageNet-22k), but less satisfactory on 
small scale dataset (e.g. ImageNet-1k). Additionally, since 
it is utilized by fixed length coding scheme, it cannot process 
high-resolution input. Many works tried to train transformer 
on small scale benchmarks (e.g. CIFAR or ImageNet). DEiT 
[40] leveraged the merits of distillation and explored data-
efficient training scheme. T2T-ViT [50] created token using 
overlapped sliding window. Swin-Transformer [30] advo-
cated a shifted windowing method, which improved the 
efficiency by restricting self-attention computation to non-
overlapping local windows while realizing cross-window 
connection at the same time. Zhang et al. [54] aggregated 
spatio-temporal information through stacked attentions. Guo 
et al. [16] enhanced input embedding via farthest point sam-
pling and nearest neighbor search. Chen et al. [6] applied 
multi-head architecture with 3 convolutional layers to deal 
with each task separately. Then the missing information 
in the input data was recovered with the encoder-decoder 
structure. TrSeg [22] developed a novel semantic segmen-
tation network by incorporating a transformer to capture 
multi-scale information with dependencies in an adaptive 
way. TransAnomaly [48] combined U-Net and transformer 
to capture richer temporal information and context to detect 
anomaly event in videos.

Conv-stem Vision Transformer: The latest research 
reveals that transformer achieves state-of-the-art results 

in multiple vision tasks. Meanwhile, the major drawback 
of transformer is also discovered and reported. For exam-
ple, ViT is only applicable to images of fixed size owing 
to position embedding, while patch embedding strategy 
would cause the loss of local details. Although attention 
mechanism models long-distance dependencies quite 
well, it lacks the intrinsic inductive bias of CNNs. Some 
recent works are committed to fuse convolution blocks 
into classical vision transformer. Among them, CeiT [49]
optimized patch embedding by adopting image-to-token 
(I2T) to accommodate more low-level features; ConViT 
[9] defined gated position self-attention and introduced 
inductive bias. CvT [44] attempted to use overlapped con-
volution to implement token embedding, so as to model 
the local structure (e.g. edges and lines). ConTNet [47] 
combined spatial convolution into transformer to create 
large receptive field. Xiao et al. [45] proved that early con-
volution could improve the robustness of ViT. Wang et al. 
[42] verified the conclusions of [45]from both experimen-
tal and theoretical perspectives.

Till now, most fusion architectures firstly train input 
images through multi-layer CNNs, and then feed them to 
transformer block. However, multi-layer CNNs not only 
increase computation cost, but also cause the loss of posi-
tion information, which is critical for position information 
encoding in transformer.

3 � Overview of our network

The overall architecture of Conv-PVT is shown in Fig. 2 
above. Follow the generic CNN architecture [4], we deploy 
4 layers to generate feature maps of different scales. To be 
more specific, the first stage is called Conv-stem, in which 
we attach simple lightweight convolution and ReLU func-
tion to down-sample the input image by a factor of 8. Other 
stages consist of patch embedding and multiple encoders. 
The resolution of a feature map will be reduced by 2 after 
propagated through patch embedding, then the feature map 
will be fed into the encoder to yield the token (Fig. 3).

In the first stage (Conv-stem), we use simple convolution 
blocks to down-sample the input image by 8, which is then 
fed into transformer block. In the second stage, the input is 
flattened into a one-dimensional vector (in other transformer 
stages, we use patch embedding to flatten the input) to match 
the dimensions of the Conv-stem. Suppose the size of the 
input feature map is (Hi−1,Wi−1,Ci−1) , then we divide it into 
Hi−1×Wi−1

22
 patches through patch embedding, while the size of 

each patch is 2 × 2 × Ci . Then the flattened patches is firstly 
projected into a specific dimension via a linear projection, 
followed by learnable position embedding. Then it is sent 
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to the transformer encoder. The final output is reshaped into 
Hi−1

2
×

Wi−1

2
× Ci.

3.1 � Conv‑stem

A Conv-stem is created by stacking 3 × 3 and 7 × 7 convolu-
tions. Then we append the Conv-stem into Batch-Norm + 
ReLU structure, which restricts the data in a small range 
[42]. The Conv-stem consists of 4 Conv + 3BN + 3ReLU 
+ 1 Projection, and the kernel sizes and strides are (7,3,3,3) 
and (2,2,2,1), respectively. The Conv-stem quickly down-
samples the input image ( 224 × 224 ) by a factor of 2 in each 
stage into a final size of 28×28. In the first convolution layer, 
we adopt the kernel size 7 × 7 with stride 2 and padding 3 
to gain a larger receptive field. The rest of the layers use 
the kernel sizes (3, 3, 3) and strides (2, 2, 1). As a result, 
the inductive bias is implanted into transformer structure 
by stacking overlapped convolutions in order to capture 
more fine-grained local features. In vision transformer, the 
computational cost for multi-attention module is O(N2d ), 
The larger the input image, the large the value of N will be. 
Therefore, down-sampling the input reduces the resolution 
of feature map (fed into transformer) while generating rich 
semantic information and content description.

3.2 � Transformer encoder

In the last 3 stages of Conv-PVT, we use Li encoder lay-
ers in the ith stage, and each encoder layer comprises an 
attention block and one feed-forward block. Follow Multi-
Head Attention (MHA) [41], we adopt spatial reduction 
attention (SRA) [43] to further reduce network scales, (the 
spatial scale of K (key) and V (value)). Formally,

Here, Ri denotes the reduction ratio of attention layers in 
the ith stage. The input (x ∈ ℝ

H,W,C) is reshaped to the size 
of HW

R2
× (RC) . WS ∈ ℝ(R

2C)×C is a linear projection that 
reduces the dimension of input to Ci. Finally we obtain 
SR(X) ∈ ℝ

H

R
×

W

R
×C.

Compared with the original transformer:

where Attention (.) is expressed as:

Contrasted with MHA, SRA reduces the computational cost 
by R2

i
 , which endows our model with reduced memory foot-

print. The meaning of each variable is explained as follows:

•	 Ri the reduction ratio of the SRA in stage i
•	 K the kernel size of convolution
•	 S the stride of the convolution
•	 P the padding of the convolution
•	 Li the number of encoder layers in stage i

(1)SR (X) = Norm (Reshape (X,Ri )W
S )

(2)headj =Attention (QW
Q

j
, SR(K )WK

j
, SR (V )WV

j
)

(3)headj = Attention (QW
Q

j
,KWK

j
,VWV

j
)

(4)SRA (Q,K,V , ) = Concat (head0,… headNi
)WO

(5)Attention (Q,K,V ) = Softmax (
QKT

√

dhead

)V

Fig. 2   The overall architecture of Conv-PVT

Fig. 3   The transformer encoder
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•	 Ci the channel of encoder layers of stage i
•	 Ni the number of heads in stage i
•	 Ei the expansion ratio of the feed-forward layer in stage 

i
•	 di the ith output channel of convolution

Following the design of PVT and ViTs, we also create a 
series of models with different scales, namely -Tiny, -Small, 
-Medium and -Large. The parameter settings are listed in 
Table 1 above.

4 � Experiments

In this section, we test the effectiveness of our model by 
completing 3 vision tasks, including classification, detec-
tion and segmentation. Firstly, we pre-train all the proposed 
models on the training set and test the performance on the 
validation set of ImageNet-1k [10], which contains a train-
ing set of 1.28M images and a validation set of 50K images 
with 1k categories. Then we utilize RetinaNet [29] and Mask 
R-CNN [18] for objection detection and semantic FPN [26] 
for instance segmentation, respectively. We also compare 
the robustness between Conv-PVT and PVT on 3 datasets: 
ImageNet-A [20], ImageNet-C [20], and Stylized-ImageNet 
[13]. The parameters for experimental setting are explained 
below:

•	 Weight decay: An attenuation factor to accelerate con-
vergence and prevent over-fitting.

•	 Momentum: A common parameter used in gradient 
descent process.

•	 Epochs: number of iterations during training.
•	 Gflops: Giga Floating-point Operations per Second (the 

lower the better)
•	 #Param: Number of parameters (the lower the better)
•	 Top-1%: An index to indicate the accuracy of prediction 

(the higher the better)

Image Classification: For fair comparisons, we follow the 
configuration of PVT [43], including random-size cropping 
to 224 × 224 , random horizontal flipping [38] and mix-up 
[51] for data augmentation. We also employ Label-smooth-
ing regularization [39] during training. AdamW optimizer 
is used with a weight decay of 5 × 10−2 and a momentum of 
0.9. The initial learning rate is set to 10−3 and decreases fol-
lowing the cosine schedule [31]. All models are trained 300 
epochs on 2 RTX 3090 GPUs. In the meantime, we adopt 
center-crop on the validation set, in which 224 × 224 pixels 
are cropped for evaluation of the recognition accuracy.

Results: We compare the performance of our model with 
typical CNN-based models and transformer-based models 
on ImageNet-1k. A comparison is made in Table 2. Here, 
we find an interesting pattern: Compared with PVT-Tiny, 
Conv-PVT-Tiny improves Top-1% accuracy by 1.4% and 
Conv-PVT-Small achieves the same Top-1% accuracy as 
PVT-Small. With the increase of network scales, Conv-PVT-
Medium lags behind PVT-Medium in accuracy and Conv-
PVT-Large is 1% lower than PVT-Large. The reason is that 
by replacing the encoder with convolution blocks in the first 
layer, Conv-PVT has a much faster speed of convergence in 
the early stage of training (in the first 100 epochs) than PVT, 
owing to the inductive bias introduced by Conv-stem. How-
ever, the fast down-sampling operations also bring about 

Table 1   Detailed settings of Conv-PVT series

Output Size Layer-Name Conv-PVT -Tiny Conv-PVT-Small Conv-PVT -Medium Conv-PVT -Large

Stage1 H/2, W/2 Conv1 Kernel size = 7, Stride  = 2, padding = 3, output channel = 64
H/4, W/4 Conv2 Kernel size = 3, Stride  = 2, padding = 1, output channel = 128
H/8, W/8 Conv3 Kernel size = 3, Stride  = 2, padding = 1, output channel = 256
H/8, W/8 Conv4 Kernel size = 3, stride = 1, padding = 1, output channel = 128

Stage2 Rearrange C2 = 128

H/8, W/8 Encoder
⎡

⎢

⎢

⎣

R2 = 4

N2 = 2

E2 = 8

⎤

⎥

⎥

⎦

× 2

⎡

⎢

⎢

⎣

R2 = 4

N2 = 2

E2 = 8

⎤

⎥

⎥

⎦

× 3

⎡

⎢

⎢

⎣

R2 = 4

N2 = 2

E2 = 8

⎤

⎥

⎥

⎦

× 3

⎡

⎢

⎢

⎣

R2 = 4

N2 = 2

E2 = 8

⎤

⎥

⎥

⎦

× 8

Stage3 Embedding P3 = 2 ; C3 = 320

H/16, W/16 Encoder
⎡

⎢

⎢

⎣

R3 = 2

N3 = 5

E3 = 4

⎤

⎥

⎥

⎦

× 2

⎡

⎢

⎢

⎣

R3 = 2

N3 = 5

E3 = 4

⎤

⎥

⎥

⎦

× 6

⎡

⎢

⎢

⎣

R3 = 2

N3 = 5

E3 = 4

⎤

⎥

⎥

⎦

× 18

⎡

⎢

⎢

⎣

R3 = 2

N3 = 5

E3 = 4

⎤

⎥

⎥

⎦

× 27

Stage4 Embedding P4 = 2 ; C3 = 512

H/32, W/32 Encoder
⎡

⎢

⎢

⎣

R4 = 2

N4 = 8

E4 = 4

⎤

⎥

⎥

⎦

× 2

⎡

⎢

⎢

⎣

R4 = 2

N4 = 8

E4 = 4

⎤

⎥

⎥

⎦

× 3

⎡

⎢

⎢

⎣

R4 = 2

N4 = 8

E4 = 4

⎤

⎥

⎥

⎦

× 3

⎡

⎢

⎢

⎣

R4 = 2

N4 = 8

E4 = 4

⎤

⎥

⎥

⎦

× 3



2132	 International Journal of Machine Learning and Cybernetics (2023) 14:2127–2136

1 3

side effect, which is the loss of the fine-grained features. 
While the network layer goes deeper, this effect becomes 
more obvious. A comparison of loss vs epochs between PVT 
and Conv-PVT is drawn in Fig. 4 below. The loss values of 
Conv-PVT decrease faster than PVT for the first 50 epochs. 
And the training time for Conv-PVT is obviously shorter 
than PVT with less memory footprint, especially for Tiny. 
Since the main difference among models of different sizes 
is the number of stacked transformer blocks. Therefore, with 
the increase of model size, the training time and memory 
usage increase accordingly, and the previous performance 
gaps become narrow.

Object detection: Object detection experiments are 
conducted on the challenging COCO benchmark [28]. All 

models are trained on COCO training set 2017 with 118 
images and evaluated on the validation set 2017 with 5k 
images. We use RetinaNet [27] and Mask R-CNN [18] 
as our detectors. During training, we firstly use the pre-
trained weights on ImageNet to initialize the backbone and 
Xaiver [14] to initialize the newly added layers. Our mod-
els are trained on 2 RTX 3090 GPUs and are optimized 
by AdamW [32] with an initial learning rate of 1 × 10−4.
Following the common setting, we adopt 1x or 3x training 
schedule(i.e.,12 or 36 epochs)to train RetinaNet and use 1x 
training schedule for Mask R-CNN. We resize the training 
image to the shorter side of 800 pixels, while the longer 
size does not exceed 1333 pixels. In the testing phase the 
shorter size of the input image is fixed to 800 pixels.

Result:Through Table 3, we find that Conv-PVT has 
completely different performances on 2 different types of 
detectors: Conv-PVT outshines pure convolution based 
models (ResNet and ResNetXt) on one-stage detector Reti-
naNet, but its accuracies are 2-4% lower than PVT; Conv-
PVT surpasses PVT with less parameters and memory 
footprint (the accuracy of Conv-PVT-Tiny is 1% higher 
than PVT-Tiny) on two-stage detectors Mask R-CNN. Fur-
thermore, when we extend the training time on RetinaNet, 
Conv-PVT achieves comparable performance with PVT. 
We believe the reason behind this phenomenon is that for 
one-stage detectors, it takes longer time to mitigate the 
imbalanced sample problem via fusion of the feature maps 
of early convolution output and transformer output. While, 
two-stage detectors solve such problems in the first stage.

Semantic Segmentation: We use ADE20k [55], a chal-
lenging scene parsing benchmark for semantic segmenta-
tion. ADE29k contains 150 fine-grained semantic catego-
ries, 20210 images for training, 2000 images for validation 
and 3352 images for testing. We evaluate our backbone 
by applying it to semantic FPN [24], which is a general 
method without dilated convolutions [37].

In the training phase, the backbone is initialized with 
the pre-trained weights on ImageNet, while other layers 
are initialized with Xavier [14]. We optimize our models 
with AdamW [32] where the initial learning rate is set as 

Fig. 4   The training loss, training time and GPU memory useage of PVT and conv-PVT

Table 2   Performance of image classification on ImageNet validation 
set. “Param” refers to the number of parameters. “GFLOPs” is calcu-
lated under the input scale of 224 × 224

Method #Param (M) GFLOPs Top-1(%)

R18 [17] 11.7 1.8 68.5
DeiT-Tiny/16 [40] 5.7 1.3 72.2
PVT-Tiny [43] 13.2 1.9 75.1
Conv-PVT-Tiny 13 2.19 76.5
R50 [17] 25.6 4.1 74.1
X50-32x4d [46] 25.0 4.3 79.5
Deit-Small/16 [40] 22.1 4.6 79.7
PVT-Small [43] 24.5 3.8 79.8
Conv-PVT-Small 23.29 3.55 79.8
R101 [17] 44.7 7.9 79.8
X101-32x4d [46] 44.2 8 80.6
ViT-Small/16 [11] 48.8 9.9 80.8
PVT-Medium [43] 44.2 6.7 81.2
Conv-PVT-Medium 43 6.4 80.7
X101-64x4d [46] 83.5 15.6 81.5
ViT-Base/16 [11] 86.6 17.6 81.8
DeiT-Base/16 [40] 86.6 17.6 81.8
PVT-Large [43] 61.4 9.8 81.7
Conv-PVT-Large 60.8 9.8 80.7
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1 × 10−41e-4. Suggested by [3, 23], we train our models 
80K and 160K iterations respectively with the batch size 
of 16 on 2 RTX 3090 GPUs. The learning rate decays 
according to the polynomial decay scheme with a power of 
0.9. We randomly crop the training image to 512 × 512 and 
resize the shorter side of the image to 512 during testing.
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Table 4   Semantic segmentation conducted on ADE20K for 80K iters 
with performances of different backbones. “Param” refers to number 
of parameters

Backbone #Param(M) mIoU(%)

ResNet18 [17] 15.5 32.9
PVT-Tiny [43] 17.0 35.7
Conv-PVT-Tiny 16.45 34.0
ResNet50 [17] 17.0 36.7
PVT-Small [43] 28.2 39.8
Conv-PVT-Small 26.8 37.6
ResNet-101 [17] 47.5 38.8
ResNetXt101-32x4d [46] 47.1 39.7
PVT-Medium [43] 48.0 41.6
Conv-PVT-Medium 46.49 40.2
ResNetXt101-64x4d [46] 86.4 40.2
PVT-Large [43] 86.4 42.1
Conv-PVT-Large 70.51 40.0

Table 5   The comparisions among different design of Conv-stem

Conv-stem Kernel size Dim Acc

4conv+1proj (7,3,3,3,3) (32, 64,128, 256, 128) 67.0
4conv+1proj (3,3,3,3,3,) (32,64,128,256,128) 66.8
3conv+1Proj (7,3,3,3) (64, 128, 256,128) 65.7
3conv+1proj (3,3,3,3) (64, 128, 256, 128) 65.2
2conv+1proj (7,3,3) (64, 128,128) 63.1
2conv+1proj (3,3,3) (64, 128, 128) 63.0

Table 6   Semantic segmentation conducted on ADE20K for 160K 
iters with performances of different backbones. “Param” refers to 
number of parameters

Backbone #Param (M) mIoU(%)

PVT-Tiny [43] 17.0 36.3
Conv-PVT-Tiny 16.45 37.2
PVT-Small [43] 28.2 40.8
Conv-PVT-Small 26.8 40.8
PVT-Medium [43] 48.0 42.3
Conv-PVT-Medium 46.49 42.9
PVT-Large [43] 86.4 42.9
Conv-PVT-Large 70.51 43.0
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Results:Through Tables 4, 5, we find that Conv-PVT 
makes better results than ResNet and ResNetXt through 80k 
iterations of training on FPN, but it is still 1-2% worse than 
PVT. When we extend the training time to 160k, as demon-
strated in Table 6, Conv-PVT outperforms PVT. This is akin 
to the situation of object detection using RetinaNet that it 
takes longer training time to fuse the outputs of convolution 
and transformer blocks, so that an equally long training time 
is needed for down-stream assignments with multi-scale fea-
ture maps.

Evaluations of Robustness: We tested the robustness 
of our pre-trained model on 3 datasets using 2 RTX3090 
GPU: (1) ImageNet-A [20] includes 200-class subjects 
of ImageNet-1K, which is a dataset of adversarial filtered 
images of real-world; (2) ImageNet-C [19] consists of 15 
types of algorithmically generated corruptions from noise, 
weather, and digital categories. Each type of corruption has 
5 levels of severity, resulting in 75 distinct corruptions; (3) 
Stylized-ImageNet [13] is created by applying AdaIN style 
transfer to ImageNet images. After applying AdaIN style 
transfer, local texture cues are no longer highly predictive of 
the target class, while the global shape tends to be retained.

Results: As reported by [2] and shown in the Table 7, the 
traditional transformer has a stronger robustness on out-of-
distribute samples than CNN based networks. We further 
validate this conclusions in this section. Especially, when 
we introduce CNNs into transformer, the robustness of out-
of-samples reduces. The deeper the network, the greater the 
performance gap (for the networks of the same size).

5 � Ablation study

Position Embedding: As shown in Fig. 2, the Stage 2 to 
Stage 4 are constructed the same way with transformer 
encoder. In this section, we verify the effectiveness of the 

position embedding by removing the it from Transformer 
Encoder in different layers of Conv-PVT-Tiny. Then we 
train it 100 epochs on ImageNet (show in Table 8). Results 
prove that by removing position embedding, we suffer dif-
ferent degrees of loss. Especially, when we remove position 
embedding from the 2nd layer, the accuracy decreased by 
0.9%; if we remove it from both the 2nd and the 3rd layers, 
the accuracy decreased by 0.8%. Finally, it decreased by 
1.0% without any position embedding. The function of posi-
tion embedding could be described as follows: The feature 
map of each layer is reshaped into a two-dimensional vector, 
which is then flattened to form the spatial information via 
position embedding. Without it, the spatial information is 
disrupted.

Different Conv-stem: In this section, we try to test dif-
ferent settings of Conv-PVT-Tiny to find the optimal Conv-
stem. As shown in Table 5, generally, the setting in the 3rd 
row makes the optimal configuration. When we reduce the 
number of convolution block, the accuracy drops quickly. 
However, we do not enjoy an increase of accuracy by adding 
more convolution blocks. Therefore, we regard 4conv+1proj 
with kernel size (7,3,3,3,3) as the optimal setting for 
Conv-PVT-Tiny.

6 � Analysis

Through the above experiments, we find that replacing 
the Transformer encoder with CNN has indeed shortened 
the training time and reduced the memory footprint, but it 
also sacrifices a bit accuracy for medium and large mod-
els. Because the implanted CNNs down-samples the feature 
maps, and outputs to the transformer block, which results in 
the loss of fine-grained features. Stacking more transformer 
and CNN blocks could not improve the overall performance, 
but only increases the computation load. And it is against 
our design intention. Meanwhile, we also find that the one-
stage and two-stage detectors exhibit different performances 
in carrying out down-stream vision tasks. The reason is one-
stage detector needs longer time to mitigate the imbalanced 
sample problems.

Table 7   Tests of robustness on three different datasets

Model #Param (M) ImageNet -A ImageNet -C Stylized 
-Ima-
geNet

PVT-Tiny 13.2 7.6 59.79 22.2
Conv-PVT-

Tiny
13.0 9.2 51.3 24.7

PVT-Small 24.5 17.7 50.1 27.0
Conv-PVT-

Small
23.3 17.6 45.2 27.4

PVT-Medium 44.2 24.91 46.8 27.9
Conv-PVT-

Medium
43.0 20.4 42.3 28.0

PVT-Large 61.4 26.7 44.9 28.5
Conv-PVT-

Large
60.8 21.4 42.9 28.8

Table 8   Experimental results 
for different position embedding

Position encoding Accuracy

Pos1+Pos2+Pos3 66.90%
Pos2+Pos3 66.00%
Pos3 66.10%
None 65.90%
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7 � Engineering applications

In addition to computer vision, deep learning techniques 
have also been widely used in other engineering aspects. For 
instance, Shamshirband et al. [35] summarized the applica-
tion of deep learning technology in wind and solar energy 
resources. Chen et al. [7] predicted discharge coefficient of 
streamlined weirs using coupled linear regression and gated 
recurrent unit. A spatiotemporal model called KL-MLP-
LSTM was constructed to estimate temperature distributions 
[12]. Chen et al. [5] and Afan et al. [1] forecast the rainfall 
and model fluctuations of groundwater level respectively 
using LSTM. Despite novel, the above methods all depend 
on traditional network architectures (e.g. linear regression, 
LSTM). Transformer is a new architecture, which excels in 
global context information modelling. And the improved 
Transformers will certainly bring significant performance 
gain in computational efficiency and accuracy in various 
engineering fields in near future.

8 � Conclusions

The rising trend of Transformer has been witnessed in both 
NLP and vision domain. However, Transformer occupies 
a large volume of memory footprint. For example, 24G is 
the maximum capacity of an ordinary consumer graphics 
card, but PVT-Large needs 4 ×V100 (32G for each) graph-
ics cards for training, where only well-equipped labs could 
afford it. Motivated by recent works on combining the CNNs 
and transformer for vision tasks, we propose Conv-PVT by 
introducing CNNs into transformer structure. Our advised 
network reduces the memory footprint by 40%, and shortens 
the training time by 60% respectively. In addition, Conv-
PVT needs only 2 ×3090 (24G for each) for training, which 
makes it more affordable to normal research institutions. 
We particularly highlight Conv-PVT-Tiny, which is not 
only lightweight than PVT-Tiny, but also achieves higher 
accuracy in multiple downstream vision tasks. Practically, 
it could replace PVT-Tiny in real-time applications, includ-
ing intelligent surveillance, autonomous driving and military 
etc. We hope our work could open a new path for future 
work on the acceleration of transformer based models.

In the meantime, there are still some limitations in our 
proposed architecture. We notice that with the increase of 
the network scales, our model begins to lag behind PVT in 
accuracy (though it is still better than ResNet and ResNeXt), 
and the robustness of the model is also weakened by the 
convolution blocks. The reason is that Conv-PVT quickly 
down-samples the input images through 2 convolution lay-
ers causing information loss. In the future, we will be more 

committed to investigating more optimized fusion architec-
ture with higher accuracy and robustness.
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