
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2023) 14:2127–2136
https://doi.org/10.1007/s13042-022-01750-0

ORIGINAL ARTICLE

Conv‑PVT: a fusion architecture of convolution and pyramid vision
transformer

Xin Zhang1 · Yi Zhang1

Received: 17 June 2022 / Accepted: 10 December 2022 / Published online: 22 December 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Vision Transformer (ViT) has fully exhibited the potential of Transformer in computer vision domain. However, the compu-
tational complexity is proportional to the input dimension which is a constant value for Transformer. Therefore, training a
vision transformer network is extremely memory expensive, where a large number of intermediate activation functions and
parameters are involved to compute the gradients during back-propagation. In this paper, we propose Conv-PVT (Convolu-
tion blocks + Pyramid Vision Transformer) to improve the overall performance of vision transformer. Especially, we deploy
simple convolution blocks in the first layer to reduce the memory footprint by down-sampling the input. Extensive experi-
ments (including image classification, object detection and segmentation) have been carried out on ImageNet-1k, COCO and
ADE20k datasets to test the accuracy, training time, memory occupation and robustness of our model. The results demon-
strate that Conv-PVT achieves comparable performances with the original PVT and outperforms ResNet and ResNetXt for
some downstream vision tasks. But it shortens 60% of the training time and reduces 42% GPU (Graphics Processing Unit)
memory occupation, realizing twice the inference speed of PVT.

Keywords  Attention · Vision transformer · Convolution · Down-stream vision tasks

1  Introduction

Till now, the convolutional neural networks (CNNs) is still
the predominant scheme in the field of computer vision.
Recently, the rising trend of transformer in natural language
processing (NLP) has proved its excellent context model-
ling abilities, which has aroused great interest of scholars
in migrating it to computer vision domain. However, chal-
lenges arise in adapting transformer from language to vision
when dealing with high resolution of pixels and large vari-
ations in scales. Under such circumstances, many works
have attempted to replace CNNs with transformer blocks
[43, 50] or endeavored to combine CNN-like architectures
with attention mechanism to solve fundamental computer
vision tasks (e.g. detection, classification, segmentation and
tracking etc.). In the meantime, researchers are dedicated to
improving the performance and adaptability of transformer
with self-attention modules. Among them, ViT [11] was the

first successful application of transformer model in image
classification. It firstly splits an image into non-overlapping
patches ( 16 × 16 or 14 × 14 ), and provided a sequence of lin-
ear embeddings for these patches as input to the transformer.
Then those patches were regarded as image representations,
which were processed in a similar way as tokens in NLP.
Finally, a multi-head self-attention module was utilized to
transform the representations into prediction results through
a small-scale multi-layer perceptron (MLP). Albeit success-
ful, pure transformer architectures (like ViT) often require
a larger amount of training data (or extra supervision) to
attain similar performance as CNNs. And they only per-
form well on large scale dataset than small scale counterpart.
DETR [40] reasoned the relation between the objects and
global context to yield a set of prediction results given just
a small set of learned object queries. The computational cost
of the original attention module in transformer architecture
is expressed as O(N2d ), which is relatively huge compared
with CNNs. Later, many revised versions were published
to improve the prediction accuracy of the traditional trans-
former. However, the improved performance comes at a cost
of enormous number of parameters. In view of this, Zhang
et al. [52] and Wang et al. [43] optimized the computation

 *	 Yi Zhang
	 yi.zhang@scu.edu.cn

1	 Department of Computer Science, Sichuan University,
Chengdu, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-022-01750-0&domain=pdf

2128	 International Journal of Machine Learning and Cybernetics (2023) 14:2127–2136

1 3

methodology to reduce computation load. But their networks
were still huge, which need to be trained on high-perfor-
mance platforms. For instance, training a PVT-T [43] with
a batch size of 128 on ImageNet requires at least 9G GPU
memory, and spends nearly 1 hour to train 1 epoch, while
PVT-L cannot fit into a 24GB RTX-3090 GPU with the same
settings. Furthermore, Swin-T [30] costs 12 mins to train
an epoch on 16 V100 GPUs. Except for a few commercial
companies, most institutions cannot afford such advanced
machines to follow up on this area. It was reported by [34],
ViT lacks image-specific inductive biases that is inherent in
CNNs (including translation equivariance and locality), it
thus does not generalize well when trained on insufficient
amount of data. Yuan et al. [49] claimed that image segmen-
tation process causes the loss of edge information among
blocks, which results in performance degradation. Xiao et al.
[45] merged convolution with vision transformer, and dis-
covered that early convolution boosts the performance of
vision transformer.

Inspired by the above works, we develop Conv-PVT in
this paper to improve the general performance of the origi-
nal Transformer in implementing vision related tasks. We
aim to reduce the memory footprint and training time while
increase the inference accuracy and robustness of the net-
work. To realize the goal, we integrate convolution into the
original transformer structure, which down-samples the
input image into 1/8 of its original size, and feeds it to trans-
former encoder. Our model captures the fine-grained features
and produces feature maps with rich semantic meanings and
content descriptions, which is capable of many dense pre-
diction vision related tasks. We test the accuracy of Conv-
PVT on ImageNet-1k. Experiment results validate that the
new model only consumes 5G GPU memory and requires
24 mins to train 1 epoch on a RTX 3090 with negligible loss
of accuracy.

In a nutshell, the main contributions of our work can be
summarized as follows:

(1)	 We propose Conv-PVT in this paper, which combines
the convolution blocks with transformer architecture.
Especially, the convolution blocks introduce induc-
tive bias into transformer, which is naturally absent in
original transformer architecture. It turns out that our
proposed network has far less parameters than existing
ones.

(2)	 We propose to implant Conv-stem to reduce the mem-
ory footprint and training time of transformer. It turns
out that the Conv-stem not only doubles the validation
speed but also achieves higher accuracy through more
extensive training in some downstream vision tasks.

(3)	 We also find that convolution blocks weaken the robust-
ness of transformer, which becomes more notable as
the model size grows.

The rest of the paper is organized as follows: related works
are discussed in Sect. 2. The architecture of our network
is described in Sect. 3 in detail. The experimental results
with ablation studies and analysis are shown in Sect. 4. A
final conclusion is drawn in Sect. 5 with the corresponding
application perspectives (Fig. 1).

2 � Related works

Background: Convolution and self-attention are both pow-
erful approaches for representation learning, which follow
different design paradigms. CNNs have been widely applied
in vision related tasks and achieve state-of-the-art perfor-
mances. It reaps the benefit of aggregation function over
receptive field based on shared weights. The intrinsic prop-
erties impose critical inductive bias for image and vision
operations. By contrast, self-attention was firstly developed
to accomplish natural language processing tasks, which later
ignited the great interest of computer vision specialists. It
employs weighted average operations to process context of
input images so as to capture informative features.

Convolutional neural networks (CNNs): CNNs capture
and well-fit the fine-grained features with the properties
of weight sharing, rotational and translational invariance.
Since the great success of AlexNet [25] in classification on
ImageNet, CNNs are the de-facto standard in vision related
fields. With the recent development of high-performance
GPU, significant improvement has been made by stack-
ing deeper convolutional layers [17, 36]. In addition, many
lightweight models [8, 21, 53] were also announced with
much less computations to cater for the ever-growing needs
of mobile applications. At the same time, different training

Fig. 1   The X-axis is the GPU Memory usage during training, the
Y-axis is the validation speed in CPU or GPU

2129International Journal of Machine Learning and Cybernetics (2023) 14:2127–2136	

1 3

paradigms [4, 15] and data processing schemes [38, 39] have
been put forward to further enhance the behavior of CNNs.

Transformers: Unlike CNNs, transformer builds global
relation of context based on self-attention mechanism. It
was firstly developed by [41] for NLP topics. BERT elabo-
rated self-supervised pre-training method, while GPT [33]
outlined discriminative fine-tuning scheme for specific task
with minimal changes to the model architecture. A typical
transformer consists of an encoder and a decoder, both of
which utilize multi-head attention and feature pyramid net-
work (FPN). The decoder receives the output of the encoder
and the original input to predict next sequence. Transformer
learns long-distance dependencies quite well and is thus tai-
lored for NLP problems.

Vision Transformers: Enlightened by the success of
transformer in NLP, scientists attempted to migrate it to
image and vision field. But the early applications were hin-
dered by its huge parameters of network and the quadratic
computational complexity. With the advent of high speed
hardware, Dosovitskiy et al. [11]presented ViT, where the
transformer encoder partitioned input images into non-over-
lapping patches and projected them into specific dimension
to generate the token. Then, they utilized multi-head self-
attention module and feed-forward module to model these
tokens. The main disadvantage of ViT [11] is its heavy-
weight, which only performs well on large scale benchmarks
(e.g. JFT-300M, ImageNet-22k), but less satisfactory on
small scale dataset (e.g. ImageNet-1k). Additionally, since
it is utilized by fixed length coding scheme, it cannot process
high-resolution input. Many works tried to train transformer
on small scale benchmarks (e.g. CIFAR or ImageNet). DEiT
[40] leveraged the merits of distillation and explored data-
efficient training scheme. T2T-ViT [50] created token using
overlapped sliding window. Swin-Transformer [30] advo-
cated a shifted windowing method, which improved the
efficiency by restricting self-attention computation to non-
overlapping local windows while realizing cross-window
connection at the same time. Zhang et al. [54] aggregated
spatio-temporal information through stacked attentions. Guo
et al. [16] enhanced input embedding via farthest point sam-
pling and nearest neighbor search. Chen et al. [6] applied
multi-head architecture with 3 convolutional layers to deal
with each task separately. Then the missing information
in the input data was recovered with the encoder-decoder
structure. TrSeg [22] developed a novel semantic segmen-
tation network by incorporating a transformer to capture
multi-scale information with dependencies in an adaptive
way. TransAnomaly [48] combined U-Net and transformer
to capture richer temporal information and context to detect
anomaly event in videos.

Conv-stem Vision Transformer: The latest research
reveals that transformer achieves state-of-the-art results

in multiple vision tasks. Meanwhile, the major drawback
of transformer is also discovered and reported. For exam-
ple, ViT is only applicable to images of fixed size owing
to position embedding, while patch embedding strategy
would cause the loss of local details. Although attention
mechanism models long-distance dependencies quite
well, it lacks the intrinsic inductive bias of CNNs. Some
recent works are committed to fuse convolution blocks
into classical vision transformer. Among them, CeiT [49]
optimized patch embedding by adopting image-to-token
(I2T) to accommodate more low-level features; ConViT
[9] defined gated position self-attention and introduced
inductive bias. CvT [44] attempted to use overlapped con-
volution to implement token embedding, so as to model
the local structure (e.g. edges and lines). ConTNet [47]
combined spatial convolution into transformer to create
large receptive field. Xiao et al. [45] proved that early con-
volution could improve the robustness of ViT. Wang et al.
[42] verified the conclusions of [45]from both experimen-
tal and theoretical perspectives.

Till now, most fusion architectures firstly train input
images through multi-layer CNNs, and then feed them to
transformer block. However, multi-layer CNNs not only
increase computation cost, but also cause the loss of posi-
tion information, which is critical for position information
encoding in transformer.

3 � Overview of our network

The overall architecture of Conv-PVT is shown in Fig. 2
above. Follow the generic CNN architecture [4], we deploy
4 layers to generate feature maps of different scales. To be
more specific, the first stage is called Conv-stem, in which
we attach simple lightweight convolution and ReLU func-
tion to down-sample the input image by a factor of 8. Other
stages consist of patch embedding and multiple encoders.
The resolution of a feature map will be reduced by 2 after
propagated through patch embedding, then the feature map
will be fed into the encoder to yield the token (Fig. 3).

In the first stage (Conv-stem), we use simple convolution
blocks to down-sample the input image by 8, which is then
fed into transformer block. In the second stage, the input is
flattened into a one-dimensional vector (in other transformer
stages, we use patch embedding to flatten the input) to match
the dimensions of the Conv-stem. Suppose the size of the
input feature map is (Hi−1,Wi−1,Ci−1) , then we divide it into
Hi−1×Wi−1

22
 patches through patch embedding, while the size of

each patch is 2 × 2 × Ci . Then the flattened patches is firstly
projected into a specific dimension via a linear projection,
followed by learnable position embedding. Then it is sent

2130	 International Journal of Machine Learning and Cybernetics (2023) 14:2127–2136

1 3

to the transformer encoder. The final output is reshaped into
Hi−1

2
×

Wi−1

2
× Ci.

3.1 � Conv‑stem

A Conv-stem is created by stacking 3 × 3 and 7 × 7 convolu-
tions. Then we append the Conv-stem into Batch-Norm +
ReLU structure, which restricts the data in a small range
[42]. The Conv-stem consists of 4 Conv + 3BN + 3ReLU
+ 1 Projection, and the kernel sizes and strides are (7,3,3,3)
and (2,2,2,1), respectively. The Conv-stem quickly down-
samples the input image ( 224 × 224 ) by a factor of 2 in each
stage into a final size of 28×28. In the first convolution layer,
we adopt the kernel size 7 × 7 with stride 2 and padding 3
to gain a larger receptive field. The rest of the layers use
the kernel sizes (3, 3, 3) and strides (2, 2, 1). As a result,
the inductive bias is implanted into transformer structure
by stacking overlapped convolutions in order to capture
more fine-grained local features. In vision transformer, the
computational cost for multi-attention module is O(N2d ),
The larger the input image, the large the value of N will be.
Therefore, down-sampling the input reduces the resolution
of feature map (fed into transformer) while generating rich
semantic information and content description.

3.2 � Transformer encoder

In the last 3 stages of Conv-PVT, we use Li encoder lay-
ers in the ith stage, and each encoder layer comprises an
attention block and one feed-forward block. Follow Multi-
Head Attention (MHA) [41], we adopt spatial reduction
attention (SRA) [43] to further reduce network scales, (the
spatial scale of K (key) and V (value)). Formally,

Here, Ri denotes the reduction ratio of attention layers in
the ith stage. The input (x ∈ ℝ

H,W,C) is reshaped to the size
of HW

R2
× (RC) . WS ∈ ℝ(R

2C)×C is a linear projection that
reduces the dimension of input to Ci. Finally we obtain
SR(X) ∈ ℝ

H

R
×

W

R
×C.

Compared with the original transformer:

where Attention (.) is expressed as:

Contrasted with MHA, SRA reduces the computational cost
by R2

i
 , which endows our model with reduced memory foot-

print. The meaning of each variable is explained as follows:

•	 Ri the reduction ratio of the SRA in stage i
•	 K the kernel size of convolution
•	 S the stride of the convolution
•	 P the padding of the convolution
•	 Li the number of encoder layers in stage i

(1)SR (X) = Norm (Reshape (X,Ri)W
S)

(2)headj =Attention (QW
Q

j
, SR(K)WK

j
, SR (V)WV

j
)

(3)headj = Attention (QW
Q

j
,KWK

j
,VWV

j
)

(4)SRA (Q,K,V ,) = Concat (head0,… headNi
)WO

(5)Attention (Q,K,V) = Softmax (
QKT

√

dhead

)V

Fig. 2   The overall architecture of Conv-PVT

Fig. 3   The transformer encoder

2131International Journal of Machine Learning and Cybernetics (2023) 14:2127–2136	

1 3

•	 Ci the channel of encoder layers of stage i
•	 Ni the number of heads in stage i
•	 Ei the expansion ratio of the feed-forward layer in stage

i
•	 di the ith output channel of convolution

Following the design of PVT and ViTs, we also create a
series of models with different scales, namely -Tiny, -Small,
-Medium and -Large. The parameter settings are listed in
Table 1 above.

4 � Experiments

In this section, we test the effectiveness of our model by
completing 3 vision tasks, including classification, detec-
tion and segmentation. Firstly, we pre-train all the proposed
models on the training set and test the performance on the
validation set of ImageNet-1k [10], which contains a train-
ing set of 1.28M images and a validation set of 50K images
with 1k categories. Then we utilize RetinaNet [29] and Mask
R-CNN [18] for objection detection and semantic FPN [26]
for instance segmentation, respectively. We also compare
the robustness between Conv-PVT and PVT on 3 datasets:
ImageNet-A [20], ImageNet-C [20], and Stylized-ImageNet
[13]. The parameters for experimental setting are explained
below:

•	 Weight decay: An attenuation factor to accelerate con-
vergence and prevent over-fitting.

•	 Momentum: A common parameter used in gradient
descent process.

•	 Epochs: number of iterations during training.
•	 Gflops: Giga Floating-point Operations per Second (the

lower the better)
•	 #Param: Number of parameters (the lower the better)
•	 Top-1%: An index to indicate the accuracy of prediction

(the higher the better)

Image Classification: For fair comparisons, we follow the
configuration of PVT [43], including random-size cropping
to 224 × 224 , random horizontal flipping [38] and mix-up
[51] for data augmentation. We also employ Label-smooth-
ing regularization [39] during training. AdamW optimizer
is used with a weight decay of 5 × 10−2 and a momentum of
0.9. The initial learning rate is set to 10−3 and decreases fol-
lowing the cosine schedule [31]. All models are trained 300
epochs on 2 RTX 3090 GPUs. In the meantime, we adopt
center-crop on the validation set, in which 224 × 224 pixels
are cropped for evaluation of the recognition accuracy.

Results: We compare the performance of our model with
typical CNN-based models and transformer-based models
on ImageNet-1k. A comparison is made in Table 2. Here,
we find an interesting pattern: Compared with PVT-Tiny,
Conv-PVT-Tiny improves Top-1% accuracy by 1.4% and
Conv-PVT-Small achieves the same Top-1% accuracy as
PVT-Small. With the increase of network scales, Conv-PVT-
Medium lags behind PVT-Medium in accuracy and Conv-
PVT-Large is 1% lower than PVT-Large. The reason is that
by replacing the encoder with convolution blocks in the first
layer, Conv-PVT has a much faster speed of convergence in
the early stage of training (in the first 100 epochs) than PVT,
owing to the inductive bias introduced by Conv-stem. How-
ever, the fast down-sampling operations also bring about

Table 1   Detailed settings of Conv-PVT series

Output Size Layer-Name Conv-PVT -Tiny Conv-PVT-Small Conv-PVT -Medium Conv-PVT -Large

Stage1 H/2, W/2 Conv1 Kernel size = 7, Stride = 2, padding = 3, output channel = 64
H/4, W/4 Conv2 Kernel size = 3, Stride = 2, padding = 1, output channel = 128
H/8, W/8 Conv3 Kernel size = 3, Stride = 2, padding = 1, output channel = 256
H/8, W/8 Conv4 Kernel size = 3, stride = 1, padding = 1, output channel = 128

Stage2 Rearrange C2 = 128

H/8, W/8 Encoder
⎡

⎢

⎢

⎣

R2 = 4

N2 = 2

E2 = 8

⎤

⎥

⎥

⎦

× 2

⎡

⎢

⎢

⎣

R2 = 4

N2 = 2

E2 = 8

⎤

⎥

⎥

⎦

× 3

⎡

⎢

⎢

⎣

R2 = 4

N2 = 2

E2 = 8

⎤

⎥

⎥

⎦

× 3

⎡

⎢

⎢

⎣

R2 = 4

N2 = 2

E2 = 8

⎤

⎥

⎥

⎦

× 8

Stage3 Embedding P3 = 2 ; C3 = 320

H/16, W/16 Encoder
⎡

⎢

⎢

⎣

R3 = 2

N3 = 5

E3 = 4

⎤

⎥

⎥

⎦

× 2

⎡

⎢

⎢

⎣

R3 = 2

N3 = 5

E3 = 4

⎤

⎥

⎥

⎦

× 6

⎡

⎢

⎢

⎣

R3 = 2

N3 = 5

E3 = 4

⎤

⎥

⎥

⎦

× 18

⎡

⎢

⎢

⎣

R3 = 2

N3 = 5

E3 = 4

⎤

⎥

⎥

⎦

× 27

Stage4 Embedding P4 = 2 ; C3 = 512

H/32, W/32 Encoder
⎡

⎢

⎢

⎣

R4 = 2

N4 = 8

E4 = 4

⎤

⎥

⎥

⎦

× 2

⎡

⎢

⎢

⎣

R4 = 2

N4 = 8

E4 = 4

⎤

⎥

⎥

⎦

× 3

⎡

⎢

⎢

⎣

R4 = 2

N4 = 8

E4 = 4

⎤

⎥

⎥

⎦

× 3

⎡

⎢

⎢

⎣

R4 = 2

N4 = 8

E4 = 4

⎤

⎥

⎥

⎦

× 3

2132	 International Journal of Machine Learning and Cybernetics (2023) 14:2127–2136

1 3

side effect, which is the loss of the fine-grained features.
While the network layer goes deeper, this effect becomes
more obvious. A comparison of loss vs epochs between PVT
and Conv-PVT is drawn in Fig. 4 below. The loss values of
Conv-PVT decrease faster than PVT for the first 50 epochs.
And the training time for Conv-PVT is obviously shorter
than PVT with less memory footprint, especially for Tiny.
Since the main difference among models of different sizes
is the number of stacked transformer blocks. Therefore, with
the increase of model size, the training time and memory
usage increase accordingly, and the previous performance
gaps become narrow.

Object detection: Object detection experiments are
conducted on the challenging COCO benchmark [28]. All

models are trained on COCO training set 2017 with 118
images and evaluated on the validation set 2017 with 5k
images. We use RetinaNet [27] and Mask R-CNN [18]
as our detectors. During training, we firstly use the pre-
trained weights on ImageNet to initialize the backbone and
Xaiver [14] to initialize the newly added layers. Our mod-
els are trained on 2 RTX 3090 GPUs and are optimized
by AdamW [32] with an initial learning rate of 1 × 10−4.
Following the common setting, we adopt 1x or 3x training
schedule(i.e.,12 or 36 epochs)to train RetinaNet and use 1x
training schedule for Mask R-CNN. We resize the training
image to the shorter side of 800 pixels, while the longer
size does not exceed 1333 pixels. In the testing phase the
shorter size of the input image is fixed to 800 pixels.

Result:Through Table 3, we find that Conv-PVT has
completely different performances on 2 different types of
detectors: Conv-PVT outshines pure convolution based
models (ResNet and ResNetXt) on one-stage detector Reti-
naNet, but its accuracies are 2-4% lower than PVT; Conv-
PVT surpasses PVT with less parameters and memory
footprint (the accuracy of Conv-PVT-Tiny is 1% higher
than PVT-Tiny) on two-stage detectors Mask R-CNN. Fur-
thermore, when we extend the training time on RetinaNet,
Conv-PVT achieves comparable performance with PVT.
We believe the reason behind this phenomenon is that for
one-stage detectors, it takes longer time to mitigate the
imbalanced sample problem via fusion of the feature maps
of early convolution output and transformer output. While,
two-stage detectors solve such problems in the first stage.

Semantic Segmentation: We use ADE20k [55], a chal-
lenging scene parsing benchmark for semantic segmenta-
tion. ADE29k contains 150 fine-grained semantic catego-
ries, 20210 images for training, 2000 images for validation
and 3352 images for testing. We evaluate our backbone
by applying it to semantic FPN [24], which is a general
method without dilated convolutions [37].

In the training phase, the backbone is initialized with
the pre-trained weights on ImageNet, while other layers
are initialized with Xavier [14]. We optimize our models
with AdamW [32] where the initial learning rate is set as

Fig. 4   The training loss, training time and GPU memory useage of PVT and conv-PVT

Table 2   Performance of image classification on ImageNet validation
set. “Param” refers to the number of parameters. “GFLOPs” is calcu-
lated under the input scale of 224 × 224

Method #Param (M) GFLOPs Top-1(%)

R18 [17] 11.7 1.8 68.5
DeiT-Tiny/16 [40] 5.7 1.3 72.2
PVT-Tiny [43] 13.2 1.9 75.1
Conv-PVT-Tiny 13 2.19 76.5
R50 [17] 25.6 4.1 74.1
X50-32x4d [46] 25.0 4.3 79.5
Deit-Small/16 [40] 22.1 4.6 79.7
PVT-Small [43] 24.5 3.8 79.8
Conv-PVT-Small 23.29 3.55 79.8
R101 [17] 44.7 7.9 79.8
X101-32x4d [46] 44.2 8 80.6
ViT-Small/16 [11] 48.8 9.9 80.8
PVT-Medium [43] 44.2 6.7 81.2
Conv-PVT-Medium 43 6.4 80.7
X101-64x4d [46] 83.5 15.6 81.5
ViT-Base/16 [11] 86.6 17.6 81.8
DeiT-Base/16 [40] 86.6 17.6 81.8
PVT-Large [43] 61.4 9.8 81.7
Conv-PVT-Large 60.8 9.8 80.7

2133International Journal of Machine Learning and Cybernetics (2023) 14:2127–2136	

1 3

1 × 10−41e-4. Suggested by [3, 23], we train our models
80K and 160K iterations respectively with the batch size
of 16 on 2 RTX 3090 GPUs. The learning rate decays
according to the polynomial decay scheme with a power of
0.9. We randomly crop the training image to 512 × 512 and
resize the shorter side of the image to 512 during testing.

Ta
bl

e 
3  

C
om

pa
ris

on
 o

f s
em

an
tic

 se
gm

en
ta

tio
n

re
su

lts
 c

on
du

ct
ed

 o
n

CO
CO

 v
al

 2
01

7
w

ith
 d

iff
er

en
t b

ac
kb

on
es

B
ac

kb
on

e
Re

tin
aN

et
 1

x/
3x

+
M

S
M

as
k

R-
C

N
N

 1
x

#P
ar

am
 (M

)
A

P
A

P5
0

A
P7

5
A

PS
A

PM
A

PL
#P

ar
am

 (M
)

A
Pb

A
Pb

 5
0

A
Pb

 7
5

A
Pm

A
Pm

 5
0

A
Pm

 7
5

Re
sN

et
18

 [1
7]

21
.3

31
.8

/3
5.

4
49

.6
/5

3.
9

33
.6

/3
7.

6
16

.3
/1

9.
5

34
.3

/3
8.

2
43

.2
/4

6.
8

31
.2

34
.0

54
36

.7
31

.2
51

.0
32

.7
PV

T-
Ti

ny
 [4

3]
23

.0
36

.7
/3

9.
4

56
.9

/5
9.

8
38

.9
/4

2.
0

22
.6

/2
5.

5
38

.8
/4

2.
0

50
.0

/5
2.

1
32

.9
36

.7
59

.2
39

.3
35

.1
56

.7
37

.3
C

on
v-

PV
T-

Ti
ny

22
.7

33
.1

/4
0.

0
51

.8
/6

0.
1

34
.7

/4
2.

3
18

.8
/2

6.
0

35
.1

/4
2.

5
44

.1
/5

2.
5

32
.6

37
.4

60
.0

49
.2

35
.4

56
.8

37
.4

Re
sN

et
50

 [1
7]

37
.7

36
.3

/3
9.

0
55

.3
/5

8.
4

38
.6

/4
1.

8
19

.3
/2

2.
4

40
.0

/4
2.

8
48

.8
/5

1.
6

44
.2

38
.0

58
.6

41
.4

34
.4

55
.1

36
.7

PV
T-

Sm
al

l [
43

]
34

.2
40

.4
/4

2.
2

61
.3

/6
2.

7
43

.0
/4

5.
0

25
/2

6.
2

42
.9

/4
5.

2
55

.7
/5

7.
2

44
.1

40
.4

62
.9

43
.8

37
.8

60
.1

40
.3

C
on

v-
PV

T-
Sm

al
l

33
.0

3
36

.1
/4

2.
5

55
.3

/6
3.

0
38

.0
/4

2.
3

21
.1

/2
6.

4
38

.7
/4

5.
5

47
.5

/5
7.

5
42

.9
40

.3
62

.4
43

.9
37

.7
59

.7
40

.5
Re

sN
et

10
1

[1
7]

56
.7

38
.5

/4
0.

9
57

.8
/6

0.
1

41
.2

/4
4.

0
21

.4
/2

3.
7

42
.6

/4
5.

0
51

.1
/5

3.
8

63
.2

40
.4

61
.1

44
.2

36
.4

57
.7

38
.8

Re
sN

et
X

t1
01

-3
2x

4d
 [4

6]
56

.4
39

.9
/4

1.
4

59
.6

/6
1.

0
42

.7
/4

4.
3

22
.3

/2
3.

9
44

.2
/4

5.
5

52
.5

/5
3.

7
62

.8
41

.9
62

.5
45

.9
37

.5
59

.4
40

.2
PV

T-
M

ed
iu

m
 [4

3]
53

.9
41

.9
/4

3.
2

63
.1

/6
3.

8
44

.3
/4

6.
1

25
.0

/2
7.

3
44

.9
/4

6.
3

57
.6

/5
8.

9
53

.9
42

.0
64

.4
45

.6
39

.0
61

.6
42

.1
C

on
v-

PV
T-

M
ed

iu
m

52
.7

38
.4

/4
3.

0
57

.5
/6

3.
5

40
.8

/4
5.

8
22

.3
/2

7.
0

41
.5

/4
5.

9
51

.3
/5

8.
5

62
.7

42
.3

64
.3

46
.2

39
.3

61
.7

42
.3

Re
sN

et
X

t1
01

-6
4x

4d
 [4

6]
95

.5
41

.0
/4

1.
8

56
.9

/6
1.

5
44

.0
/4

4.
4

23
.9

/2
5.

2
45

.2
/4

5.
4

54
.0

/5
4.

6
10

1.
9

42
.8

63
.8

47
.3

38
.4

60
.6

41
.3

PV
T-

La
rg

e
[4

3]
71

.1
42

.6
/4

3.
4

63
.7

/6
3.

6
45

.4
/4

6.
1

25
.8

/2
6.

1
46

.0
/4

6.
0

58
.4

/5
9.

5
81

.0
42

.9
65

.0
46

.6
39

.5
61

.9
42

.5
C

on
v-

PV
T-

La
rg

e
70

.5
O

ut
 o

f m
em

or
y

80
.4

O
ut

 o
f m

em
or

y

Table 4   Semantic segmentation conducted on ADE20K for 80K iters
with performances of different backbones. “Param” refers to number
of parameters

Backbone #Param(M) mIoU(%)

ResNet18 [17] 15.5 32.9
PVT-Tiny [43] 17.0 35.7
Conv-PVT-Tiny 16.45 34.0
ResNet50 [17] 17.0 36.7
PVT-Small [43] 28.2 39.8
Conv-PVT-Small 26.8 37.6
ResNet-101 [17] 47.5 38.8
ResNetXt101-32x4d [46] 47.1 39.7
PVT-Medium [43] 48.0 41.6
Conv-PVT-Medium 46.49 40.2
ResNetXt101-64x4d [46] 86.4 40.2
PVT-Large [43] 86.4 42.1
Conv-PVT-Large 70.51 40.0

Table 5   The comparisions among different design of Conv-stem

Conv-stem Kernel size Dim Acc

4conv+1proj (7,3,3,3,3) (32, 64,128, 256, 128) 67.0
4conv+1proj (3,3,3,3,3,) (32,64,128,256,128) 66.8
3conv+1Proj (7,3,3,3) (64, 128, 256,128) 65.7
3conv+1proj (3,3,3,3) (64, 128, 256, 128) 65.2
2conv+1proj (7,3,3) (64, 128,128) 63.1
2conv+1proj (3,3,3) (64, 128, 128) 63.0

Table 6   Semantic segmentation conducted on ADE20K for 160K
iters with performances of different backbones. “Param” refers to
number of parameters

Backbone #Param (M) mIoU(%)

PVT-Tiny [43] 17.0 36.3
Conv-PVT-Tiny 16.45 37.2
PVT-Small [43] 28.2 40.8
Conv-PVT-Small 26.8 40.8
PVT-Medium [43] 48.0 42.3
Conv-PVT-Medium 46.49 42.9
PVT-Large [43] 86.4 42.9
Conv-PVT-Large 70.51 43.0

2134	 International Journal of Machine Learning and Cybernetics (2023) 14:2127–2136

1 3

Results:Through Tables 4, 5, we find that Conv-PVT
makes better results than ResNet and ResNetXt through 80k
iterations of training on FPN, but it is still 1-2% worse than
PVT. When we extend the training time to 160k, as demon-
strated in Table 6, Conv-PVT outperforms PVT. This is akin
to the situation of object detection using RetinaNet that it
takes longer training time to fuse the outputs of convolution
and transformer blocks, so that an equally long training time
is needed for down-stream assignments with multi-scale fea-
ture maps.

Evaluations of Robustness: We tested the robustness
of our pre-trained model on 3 datasets using 2 RTX3090
GPU: (1) ImageNet-A [20] includes 200-class subjects
of ImageNet-1K, which is a dataset of adversarial filtered
images of real-world; (2) ImageNet-C [19] consists of 15
types of algorithmically generated corruptions from noise,
weather, and digital categories. Each type of corruption has
5 levels of severity, resulting in 75 distinct corruptions; (3)
Stylized-ImageNet [13] is created by applying AdaIN style
transfer to ImageNet images. After applying AdaIN style
transfer, local texture cues are no longer highly predictive of
the target class, while the global shape tends to be retained.

Results: As reported by [2] and shown in the Table 7, the
traditional transformer has a stronger robustness on out-of-
distribute samples than CNN based networks. We further
validate this conclusions in this section. Especially, when
we introduce CNNs into transformer, the robustness of out-
of-samples reduces. The deeper the network, the greater the
performance gap (for the networks of the same size).

5 � Ablation study

Position Embedding: As shown in Fig. 2, the Stage 2 to
Stage 4 are constructed the same way with transformer
encoder. In this section, we verify the effectiveness of the

position embedding by removing the it from Transformer
Encoder in different layers of Conv-PVT-Tiny. Then we
train it 100 epochs on ImageNet (show in Table 8). Results
prove that by removing position embedding, we suffer dif-
ferent degrees of loss. Especially, when we remove position
embedding from the 2nd layer, the accuracy decreased by
0.9%; if we remove it from both the 2nd and the 3rd layers,
the accuracy decreased by 0.8%. Finally, it decreased by
1.0% without any position embedding. The function of posi-
tion embedding could be described as follows: The feature
map of each layer is reshaped into a two-dimensional vector,
which is then flattened to form the spatial information via
position embedding. Without it, the spatial information is
disrupted.

Different Conv-stem: In this section, we try to test dif-
ferent settings of Conv-PVT-Tiny to find the optimal Conv-
stem. As shown in Table 5, generally, the setting in the 3rd
row makes the optimal configuration. When we reduce the
number of convolution block, the accuracy drops quickly.
However, we do not enjoy an increase of accuracy by adding
more convolution blocks. Therefore, we regard 4conv+1proj
with kernel size (7,3,3,3,3) as the optimal setting for
Conv-PVT-Tiny.

6 � Analysis

Through the above experiments, we find that replacing
the Transformer encoder with CNN has indeed shortened
the training time and reduced the memory footprint, but it
also sacrifices a bit accuracy for medium and large mod-
els. Because the implanted CNNs down-samples the feature
maps, and outputs to the transformer block, which results in
the loss of fine-grained features. Stacking more transformer
and CNN blocks could not improve the overall performance,
but only increases the computation load. And it is against
our design intention. Meanwhile, we also find that the one-
stage and two-stage detectors exhibit different performances
in carrying out down-stream vision tasks. The reason is one-
stage detector needs longer time to mitigate the imbalanced
sample problems.

Table 7   Tests of robustness on three different datasets

Model #Param (M) ImageNet -A ImageNet -C Stylized
-Ima-
geNet

PVT-Tiny 13.2 7.6 59.79 22.2
Conv-PVT-

Tiny
13.0 9.2 51.3 24.7

PVT-Small 24.5 17.7 50.1 27.0
Conv-PVT-

Small
23.3 17.6 45.2 27.4

PVT-Medium 44.2 24.91 46.8 27.9
Conv-PVT-

Medium
43.0 20.4 42.3 28.0

PVT-Large 61.4 26.7 44.9 28.5
Conv-PVT-

Large
60.8 21.4 42.9 28.8

Table 8   Experimental results
for different position embedding

Position encoding Accuracy

Pos1+Pos2+Pos3 66.90%
Pos2+Pos3 66.00%
Pos3 66.10%
None 65.90%

2135International Journal of Machine Learning and Cybernetics (2023) 14:2127–2136	

1 3

7 � Engineering applications

In addition to computer vision, deep learning techniques
have also been widely used in other engineering aspects. For
instance, Shamshirband et al. [35] summarized the applica-
tion of deep learning technology in wind and solar energy
resources. Chen et al. [7] predicted discharge coefficient of
streamlined weirs using coupled linear regression and gated
recurrent unit. A spatiotemporal model called KL-MLP-
LSTM was constructed to estimate temperature distributions
[12]. Chen et al. [5] and Afan et al. [1] forecast the rainfall
and model fluctuations of groundwater level respectively
using LSTM. Despite novel, the above methods all depend
on traditional network architectures (e.g. linear regression,
LSTM). Transformer is a new architecture, which excels in
global context information modelling. And the improved
Transformers will certainly bring significant performance
gain in computational efficiency and accuracy in various
engineering fields in near future.

8 � Conclusions

The rising trend of Transformer has been witnessed in both
NLP and vision domain. However, Transformer occupies
a large volume of memory footprint. For example, 24G is
the maximum capacity of an ordinary consumer graphics
card, but PVT-Large needs 4 ×V100 (32G for each) graph-
ics cards for training, where only well-equipped labs could
afford it. Motivated by recent works on combining the CNNs
and transformer for vision tasks, we propose Conv-PVT by
introducing CNNs into transformer structure. Our advised
network reduces the memory footprint by 40%, and shortens
the training time by 60% respectively. In addition, Conv-
PVT needs only 2 ×3090 (24G for each) for training, which
makes it more affordable to normal research institutions.
We particularly highlight Conv-PVT-Tiny, which is not
only lightweight than PVT-Tiny, but also achieves higher
accuracy in multiple downstream vision tasks. Practically,
it could replace PVT-Tiny in real-time applications, includ-
ing intelligent surveillance, autonomous driving and military
etc. We hope our work could open a new path for future
work on the acceleration of transformer based models.

In the meantime, there are still some limitations in our
proposed architecture. We notice that with the increase of
the network scales, our model begins to lag behind PVT in
accuracy (though it is still better than ResNet and ResNeXt),
and the robustness of the model is also weakened by the
convolution blocks. The reason is that Conv-PVT quickly
down-samples the input images through 2 convolution lay-
ers causing information loss. In the future, we will be more

committed to investigating more optimized fusion architec-
ture with higher accuracy and robustness.

Data Availability Statement  All data included in this study are avail-
able upon request by contact with the corresponding author.

Declarations 

Declaration of Interest Statement  I declare I have no financial support
and personal relationships with other people or organizations that can
inappropriately influence our work. There is no professional or other
personal interest of any nature or kind in any products, services, or
company that could be construed as influencing the position presented
in, or the review of, the manuscript entitled.

References

	 1.	 Afan HA, Ibrahem Ahmed Osman A, Essam Y et al (2021) Mod-
eling the fluctuations of groundwater level by employing ensem-
ble deep learning techniques. Eng Appl Comput Fluid Mech
15(1):1420–1439

	 2.	 Bai Y, Mei J, Yuille A et al (2021) Are transformers more robust
than CNNs? Adv Neural Inf Process Syst 34:2

	 3.	 Carion N, Massa F, Synnaeve G, et al (2020) End-to-end object
detection with transformers. In: European Conference on Com-
puter Vision, pp 213–229

	 4.	 Chaudhari P, Agrawal H, Kotecha K (2020) Data augmenta-
tion using MG-GAN for improved cancer classification on gene
expression data. Soft Comput 24(15):11381–11391. https://​doi.​
org/​10.​1007/​s00500-​019-​04602-2

	 5.	 Chen C, Zhang Q, Kashani MH et al (2022) Forecast of rain-
fall distribution based on fixed sliding window long short-term
memory. Eng Appl Comput Fluid Mech 16(1):248–261

	 6.	 Chen H (2021) Pre-trained image processing transformer. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp 12,299–12,310

	 7.	 Chen W, Sharifrazi D, Liang G et al (2022) Accurate discharge
coefficient prediction of streamlined weirs by coupling linear
regression and deep convolutional gated recurrent unit. Eng Appl
Comput Fluid Mech 16(1):965–976

	 8.	 Chollet F (2017) Xception: Deep learning with depthwise sepa-
rable convolutions. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp 1251–1258

	 9.	 d’Ascoli S, Touvron H, Leavitt M, et al (2021) ConViT: Improving
vision transformers with soft convolutional inductive biases. In:
ICML, vol 2, 3

	10.	 Deng J, Dong W, Socher R, et al (2009) Imagenet: A large-scale
hierarchical image database. In: 2009 IEEE conference on com-
puter vision and pattern recognition, pp 248–255

	11.	 Dosovitskiy A, Beyer L, Kolesnikov A, et al (2021) An image is
worth 16x16 words: Transformers for image recognition at scale.
In: ICLR, vol 1, 2, 3, 4, 5, 10. p 13

	12.	 Fan Y, Xu K, Wu H et al (2020) Spatiotemporal modeling for
nonlinear distributed thermal processes based on kl decomposi-
tion, mlp and lstm network. IEEE Access 8:25111–25121

	13.	 Geirhos R, Rubisch P, Michaelis C, et al (2019) ImageNet-trained
CNNs are biased towards texture; increasing shape bias improves
accuracy and robustness. In: International Conference on Learning
Representations

	14.	 Glorot X, Bengio Y (2010) Understanding the difficulty of train-
ing deep feedforward neural networks. In: Proceedings of the

https://doi.org/10.1007/s00500-019-04602-2
https://doi.org/10.1007/s00500-019-04602-2

2136	 International Journal of Machine Learning and Cybernetics (2023) 14:2127–2136

1 3

thirteenth international conference on artificial intelligence and
statistics, pp 249–256

	15.	 Goyal P (2017) Accurate, large minibatch sgd: Training imagenet
in 1 hour. ArXiv Prepr ArXiv170602677

	16.	 Guo MH, Cai JX, Liu ZN et al (2021) PCT: Point cloud trans-
former. Comput Vis Media 7(2):187–199

	17.	 He K, Zhang X, Ren S, et al (2016) Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp 770–778

	18.	 He K, Gkioxari G, Dollár P, et al (2017) Mask r-cnn. In: Proceed-
ings of the IEEE international conference on computer vision, pp
2961–2969

	19.	 Hendrycks D, Dietterich T (2019) Benchmarking Neural Net-
work Robustness to Common Corruptions and Perturbations.
In: Proceedings of the International Conference on Learning
Representations

	20.	 Hendrycks D, Zhao K, Basart S, et al (2021) Natural Adversarial
Examples. CVPR

	21.	 Howard AG, Zhu M, Chen B, et al (1704) Mobilenets: efficient
convolutional neural networks for mobile vision applications.
CoRR 2, 4, 5:6

	22.	 Jin Y, Han D, Ko H (2021) TrSeg: transformer for semantic seg-
mentation. Pattern Recogn Lett 148:29–35. https://​doi.​org/​10.​
1016/j.​patrec.​2021.​04.​024

	23.	 K. He PDG. Gkioxari, Girshick R (2017) Mask r-cnn. In: Proceed-
ings of the IEEE international conference on computer vision, pp
2961–2969

	24.	 Kirillov A, Girshick R, He K, et al (2019) Panoptic feature pyra-
mid networks. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp 6399–6408

	25.	 Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classifica-
tion with deep convolutional neural networks. Adv Neural Inf
Process Syst 25:1097–1105

	26.	 Lin T, Dollár P, Girshick R, et al (2017) Feature pyramid networks
for object detection. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp 2117–2125

	27.	 Lin T, Goyal P, Girshick R, et al (2017) Focal loss for dense object
detection. In: Proceedings of the IEEE international conference
on computer vision, pp 2980–2988

	28.	 Lin TY (2014) Microsoft coco: common objects in context. In:
European conference on computer vision, pp 740–755

	29.	 Lin TY, Goyal P, Girshick R, et al (2017) Focal loss for dense
object detection. In: Proceedings of the IEEE international confer-
ence on computer vision, pp 2980–2988

	30.	 Liu Z, Lin Y, Cao Y, et al (2021) Swin transformer: hierarchical
vision transformer using shifted windows. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV).
p 10,012–10,022

	31.	 Loshchilov I, Hutter F (2017) SGDR: stochastic gradient descent
with warm restarts. In: Proceedings of the Internal Conference on
Learning Representations 2017

	32.	 Loshchilov I, Hutter F (2019) Decoupled weight decay regulariza-
tion. In: ICLR, vol 1, 3. p 5

	33.	 Radford A, Narasimhan K, Salimans T, et al (2018) Improving
language understanding by generative pre-training

	34.	 Raghu M, Unterthiner T, Kornblith S, et al (2021) Do vision trans-
formers see like convolutional neural networks? In: Thirty-Fifth
Conference on Neural Information Processing Systems

	35.	 Shamshirband S, Rabczuk T, Chau KW (2019) A survey of
deep learning techniques: application in wind and solar energy
resources. IEEE Access 7:164,650–164,666

	36.	 Simonyan K, Zisserman A (2015) Very deep convolutional net-
works for large-scale image recognition. In: ICLR

	37.	 Sun P (2021) Sparse r-cnn: End-to-end object detection with
learnable proposals. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp 14,454–14,463

	38.	 Szegedy C (2015) Going deeper with convolutions. In: Proceed-
ings of the IEEE conference on computer vision and pattern rec-
ognition, pp 1–9

	39.	 Szegedy C, Vanhoucke V, Ioffe S, et al (2016) Rethinking the
inception architecture for computer vision. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp
2818–2826

	40.	 Touvron H, Cord M, Douze M, et al (2021) Training data-
efficient image transformers & distillation through attention.
In: International Conference on Machine Learning. PMLR, pp
10,347–10,357

	41.	 Vaswani A (2017) Attention is all you need. In: Advances in neu-
ral information processing systems. p 5998–6008

	42.	 Wang P (2021) Scaled relu matters for training vision transform-
ers. ArXiv Prepr ArXiv210903810

	43.	 Wang W, Xie E, Li X, et al (2021) Pyramid vision transformer: A
versatile backbone for dense prediction without convolutions. In:
ICCV, vol 3

	44.	 Wu H, Xiao B, Codella N, et al (2021) CvT: Introducing convolu-
tions to vision transformers. In: ICCV, vol 3

	45.	 Xiao T, Dollar P, Singh M et al (2021) Early convolutions help
transformers see better. Adv Neural Inf Process Syst 2:2

	46.	 Xie S, Girshick R, Dollár P, et al (2017) Aggregated residual
transformations for deep neural networks. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp
1492–1500

	47.	 Yan H, Li Z, Li W, et al (2021) ConTNet: Why not use convolution
and transformer at the same time? In: ArXiv210413497 Cs. http://​
arxiv.​org/​abs/​2104.​13497

	48.	 Yuan H, Cai Z, Zhou H, et al (2021) TransAnomaly: Video Anom-
aly Detection Using Video Vision Transformer. IEEE Access
9:123,977–123,986. https://​doi.​org/​10.​1109/​ACCESS.​2021.​31091​
02.

	49.	 Yuan K, Guo S, Liu Z, et al (2021) Incorporating convolution
designs into visual transformers. In: ICCV, vol 3

	50.	 Yuan L, Chen Y, Wang T, et al (2021) Tokens-to-Token ViT:
Training Vision Transformers From Scratch on ImageNet. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV). p 558–567

	51.	 Zhang H, Cissé M, Dauphin YN, et al (2018) Mixup: Beyond
empirical risk minimization. In: ICLR

	52.	 Zhang P (2021) Multi-Scale Vision Longformer: A New Vision
Transformer for High-Resolution Image Encoding. In: Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision (ICCV, pp 2998–3008

	53.	 Zhang X, Zhou X, Lin M, et al (2018) Shufflenet: an extremely
efficient convolutional neural network for mobile devices. In: Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, pp 6848–6856

	54.	 Zhang Y (2021) Vidtr: Video transformer without convolutions.
In: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp 13,577–13,587

	55.	 Zhou B, Zhao H, Puig X, et al (2017) Scene parsing through
ade20k dataset. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp 633–641

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1016/j.patrec.2021.04.024
https://doi.org/10.1016/j.patrec.2021.04.024
http://arxiv.org/abs/2104.13497
http://arxiv.org/abs/2104.13497
https://doi.org/10.1109/ACCESS.2021.3109102.
https://doi.org/10.1109/ACCESS.2021.3109102.

	Conv-PVT: a fusion architecture of convolution and pyramid vision transformer
	Abstract
	1 Introduction
	2 Related works
	3 Overview of our network
	3.1 Conv-stem
	3.2 Transformer encoder

	4 Experiments
	5 Ablation study
	6 Analysis
	7 Engineering applications
	8 Conclusions
	References

