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Abstract
To reduce the noisy pseudo-labels generated by clustering for unsupervised domain adaptation (UDA) person re-identification 
(re-ID), the method of collaborative training between dual networks has been proposed and proved to be effective. However, 
most of these methods ignore the coupling problem between dual networks with the same architecture, which makes them 
inevitably share a high similarity and lack heterogeneity and complementarity. In this paper, we propose a heterogeneous 
dual network (HDNet) framework with two asymmetric networks, one of which applies convolution with limited receptive 
fields to obtain local information and the other uses Transformer to capture long-range dependency. Additionally, we propose 
feature consistency loss (FCL) that does not rely on pseudo-labels. FCL focuses more on the consistency of the sample in 
the feature space rather than the class prediction space, driving the feature learning of UDA re-ID from the task level to the 
feature level. Furthermore, we propose an adaptive channel mutual-aware (ACMA) module which contains two branches to 
focus on the global and local information between channels. We evaluate our proposed method on three popular datasets: 
DukeMTMC-reID, Market-1501 and MSMT17. Extensive experimental results demonstrate that our method achieves a 
competitive performance.

Keywords Person re-identification · Unsupervised domain adaptation · Heterogeneous dual network · Feature consistency · 
Attention

1 Introduction

Person re-identification (re-ID) [1–4] is regarded as a sub-
problem of image retrieval, which is widely applied in many 
fields [5]. Given a monitored pedestrian image, retrieve the 
pedestrian image under cross-devices. At present, there are 
proud achievements in supervising person re-identification. 
However, obtaining a large amount of labeled data is costly 
and time-consuming. To overcome the insufficiency of 

labeled training data, many works directly apply the model 
trained on the large-scale labeled source domain to another 
unlabeled target domain. Unfortunately, due to domain shift 
or dataset bias, direct migration across domains usually does 
not work well. Therefore, unsupervised domain adaptation 
(UDA) [6–8] is introduced, aiming to adapt the knowledge 
or patterns learned from the labeled source domain dataset 
to the unlabeled target domain.

At present, the work of UDA on re-ID is mainly divided 
into domain shift method [9–11], domain alignment method 
[12–15] and clustering-based pseudo-label method [16–20]. 
For example, Fu et al. propose the SSG [15], which reduces 
the image style difference between two datasets through 
image segmentation, so as to obtain more robust features. 
However, the relationship between target samples is often 
ignored by reducing the difference between domains. In view 
of this, Zhong et al. propose that ECN-GPP [11] mainly 
studies the intra-domain variation of the target domain and 
performs three invariance constraints on the dataset. For the 
method of clustering-based pseudo-label, Wu et al. propose 
a group-aware label transfer (GLT) [19] algorithm that can 
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correct pseudo-label containing noise online. Subsequently, 
the multi-label method is derived [21], which mainly turns 
the re-ID task without label into a multi-classification prob-
lem, so as to find the true label of the image. Among them, 
the clustering-based pseudo-label method has been proved to 
be more effective and remains the most advanced. Although 
it achieves state-of-the-art performance in various UDA 
tasks, its abilities are hindered by noisy pseudo-labels, which 
are caused by the limited transferability of source-domain 
features, the unknown number of target-domain identities, 
and the imperfect results of the clustering algorithm. To 
address this problem, a dual network framework, Mutual 
Mean-Teaching (MMT) [22] is proposed, which proposes 
to use the “synchronized average teaching” framework to 
optimize pseudo-labels. The core idea is to use more robust 
“soft” labels to optimize pseudo-labels online. To a certain 
extent, the problem of pseudo-label noise is solved. How-
ever, since the two networks have the identical structure, 
there will be a coupling problem. That is, they will become 
more and more similar, which may make them tend to the 
same kind of noise and lack complementarity. This limits 
further improvement in performance.

More seriously, as the identities in the testing set are dif-
ferent from the training set, and in the inference process, the 
re-ID task is to match the pedestrians by extracting the fea-
tures of the pedestrians. So how to optimize the model in the 
feature space is crucial. However, the traditional UDA re-ID 
task ignores the consistency of the samples in the feature 
space. Specifically, the classification loss is mainly used in 
the class prediction space, which pays more attention to the 
similarity relationship between the samples and the labels. 
It ignores the relationship between the samples in the feature 
space. In addition, the triplet loss relies on pseudo-labels 
to select positive and negative samples, so it is sensitive 
to noisy pseudo-labels, which will lead to confusion in the 
selection of positive and negative samples, and ultimately 
lead to the degradation of feature learning.

To overcome the mentioned problems above, we propose 
a novel framework, namely the heterogeneous dual network 
(HDNet). The core of the HDNet is to improve the hetero-
geneity and complementarity of dual networks to solve 
the problem of network coupling. The overall framework 
consists of two asymmetric network structures. Both net-
works use ResNet50 [23] as the basic structure. One of the 
networks focuses more on global perception by introducing 
the Transformer Encoder block, while the original network 
based on convolutional neural network (CNN) focuses on 
local perception. The heterogeneity of the network allows 
each other to focus on different characteristics. Moreover, 
in order to focus on the similarity between samples in the 
feature space, we propose feature consistency loss (FCL), 
which replaces task-level similarity learning with feature-
level similarity learning. FCL does not depend on any label 

information and effectively avoids the influence of noise 
pseudo-labels in the optimization process. Additionally, to 
enhance the semantic information of the network, we pro-
pose an adaptive channel mutual-aware (ACMA) module 
containing two branches, which are used to focus on the 
long-range dependency and local perception between chan-
nels, respectively. In addition, we introduce the channel shuf-
fle [24] operation to further improve the interaction between 
cross-channel information.

Our contributions can be summarized in the following 
four points:

• We present an HDNet framework with two asymmet-
ric network structures by introducing the Transformer 
Encoder block, which solves the coupling problem of 
dual networks.

• We propose a feature consistency loss that does not rely 
on pseudo-labels. It aims to focus on the similar relation-
ship between samples in the feature space.

• An adaptive channel mutual-aware module is proposed, 
containing two branches to simultaneously focus on the 
global and local relationships between channels.

• Extensive experiments and ablation studies are conducted 
to validate the effectiveness of each proposed component 
and the whole framework.

The rest of this paper is organized as follows. Firstly, we 
review the related works in section “Related work”. Then, 
a detailed description of the proposed HDNet is given in 
section “Our approach”. Later, we evaluate the proposed 
method through extensive experiments on the three widely 
used datasets in section “Experiments”. Finally, the conclu-
sions of this work are outlined in section “Conclusion”.

2  Related work

Unsupervised Domain Adaptation for Person re-ID. 
The current mainstream methods for UDA can be divided 
into three categories. The first is the domain shift method. 
They [25–28] use generative adversarial networks (GAN) 
to narrow the gap between the source domain and the target 
domain. For example, PTGAN [29] is proposed to handle 
the domain gap problem by transferring the knowledge from 
source dataset to target dataset. However, due to the poor 
migration effect and slower convergence speed, researchers 
begin to turn to new solutions. The second category is the 
domain alignment method. The objective of domain align-
ment is to learn domain invariant features. Several attempts 
leverage semantic attributes to align the feature distribution 
in the latent space, such as transferable joint attribute-iden-
tity deep learning [12], and invariant feature learning [7]. 
However, these approaches strongly rely on extra attribute 
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annotations, which require extra labor. The last category is 
the cluster-based pseudo-label method. They [16–18, 30] 
first use a pre-trained model on the source domain to gener-
ate pseudo-labels for the target domain, and then use the 
generated pseudo-labels to optimize the network. Finally, 
the above two steps are trained iteratively until the network 
converges. Unfortunately, all these methods suffer from large 
amounts of noise in the pseudo-labels generated by clus-
tering, which hinders the further improvement of network 
performance.

To solve the above problem, a dual-network frame-
work MMT [22] was proposed to generate more reliable 
soft pseudo-labels by using dual networks with the same 
structure. However, due to the coupling problem between 
symmetric network structures, it is inevitable that the two 
networks will be inclined to make the same mistake. There-
fore, how to improve the difference and reduce homogeneity 
between dual networks is the starting point for us to propose 
heterogeneous dual networks.

Transformer for Vision Tasks. Recently, Transformer 
has shown its advantages over traditional methods in many 
visual tasks [31–33]. It mainly includes two model archi-
tectures. One is a hybrid structure combining CNN and 
Transformer, such as DETR [34], which opened the curtain 
for the application of Transformer in vision. The other is a 
pure Transformer structure. For example, ViT [35] adopted a 
complete self-attention Transformer structure without CNN, 
which still achieved the effect of competing with CNN. 
However, ViT relies on large datasets for pre-training. To 
overcome this shortcoming, DeiT [36] was proposed which 
used a teacher-student strategy specific for Transformers to 
speed up ViT training. Unfortunately, these methods all need 
to divide the images into multiple non-overlapping patches, 
which makes the spatial correspondence weaker between 
the input and intermediate features. However, in re-ID, the 
spatial alignment is critical for feature learning [37, 38]. To 
overcome these problems, TransReID [39] was proposed, 
which was the first Transformer architecture used for re-ID 
tasks.

Immediately afterwards, a lot of works [33, 40–43] also 
carried out more in-depth research on Vision Transformer, 
which reduced the dependence on the dataset and improved 
the convergence speed of the model. In this paper, we com-
bine Transformer and CNN to achieve the two-way fusion 
of the global modeling capabilities of Transformer and the 
local capture capabilities of CNN. As far as we know, this is 
the first time to explore the global expression capabilities of 
Transformer in the UDA re-ID.

Attention Mechanism. The attention mechanism [44–46] 
has received widespread concern due to its ability to select 
the focus area and produces a more discriminative feature 
representation. For example, Hu et al. proposed SENet [47], 
which captured the global relationship between channels 

by squeeze-and-excitation operations. Subsequently, some 
studies improved the SE block by capturing more complex 
channel dependence [48–50] or combining additional spa-
tial attention [51–53]. GSoP [49] introduced a second-order 
pooling for more effective feature aggregation, while CBAM 
[53] and scSE [51] improved the SE block by combining 
additional spatial attention. In order to reduce the computa-
tional burden, ECA-Net [54] was proposed to learn effective 
channels with lower model complexity by considering each 
channel and its k neighbors to capture local cross-channel 
interactions. However, all these methods have a common 
problem that they rarely consider the global and local infor-
mation between channels simultaneously. To tackle the 
above-mentioned issue, we propose an adaptive channel 
mutual-aware (ACMA) module, which pays attention to 
the long-range dependency and local perception between 
channels. In addition, in order to strengthen the interaction 
between cross-channel information, we also introduce the 
channel shuffle [24] operation, which allows the data of dif-
ferent channels to establish connection without increasing 
the amount of calculation.

3  Our approach

Overview. In the re-ID task, UDA aims to adapt a source 
pretrained model to the target dataset with unlabeled tar-
get data. The labeled source domain dataset is denoted as 
S =

{
Xs, Ys

}
 , where Xs and Ys denote the sample images 

and the person identities, and the unlabeled target domain 
dataset is denoted as T =

{
Xt

}
 . The source dataset contains 

Ns sample images with Ms different identities. The Nt sam-
ple images in the target-domain T have no identity label 
available.

The HDNet is designed to solve the coupling problem 
in the dual-network training process. At the same time, in 
order to be more suitable for re-ID tasks, we explore the con-
sistency of samples in the feature space. Finally, to further 
enhance the semantic information of the network, we have 
proposed an ACMA module. Next, we will describe each of 
the proposed modules in detail.

3.1  Heterogeneous dual network (HDNet)

Our proposed HDNet framework adopts a two-stage training 
scheme including supervised learning in source domains and 
unsupervised adaptation to target domains.

3.1.1  Supervised learning in source domains

In this stage, double deep neural network with different net-
work architectures are first pre-trained in the fully super-
vised way on the source domain. Giving the source data, 



1954 International Journal of Machine Learning and Cybernetics (2023) 14:1951–1965

1 3

which contains each sample xs
i
 and its ground truth identity 

y′
i
 , these two networks (with weight � ) transform xs

i
 into 

average features fa(xsi |�
a) and max features fm(xsi |�

m) , and 
outputs predicted probability pa(xsi |�

a) and pm(xsi |�
m) . The 

network parameters w are then optimized with respect to an 
identity classification loss and a triplet loss. The identity 
classification loss is defined as:

where z is represented as a or m, and formula (2) (3) are the 
same. The triplet loss [55] is also defined as:

The whole network is trained with a combination of both 
losses:

With a dual network architecture, the supervised learning 
thus produces two pre-trained re-ID models.

3.1.2  Unsupervised adaptation in target domain

The adaptation procedure contains two components: Cluster-
ing-based hard label fine-tuning and Heterogeneous-network 
soft label training. Specifically, we study the collaborative 
training of two heterogeneous networks.

Clustering-based hard label fine-tuning: In each learn-
ing iteration, DBSCAN and K-means clustering are employed 
in the target domain for pseudo-label prediction. The clus-
tering procedure includes three steps: (1) For each sample 
in the target domain, the average of the features extracted 
by the two heterogeneous models is used as the clustering 
feature. (2) A mini-batch clustering is performed to assign 
samples into different groups. (3) The produced cluster IDs 
are used as pseudo-labels Ỹt for the training samples Xt . 
Then the generated pseudo-labels are used to fine-tune the 
network through identity classification loss and triplet loss.

However, the pseudo-labels generated by clustering 
contain a lot of noises, hindering the optimization of the 
model. To mitigate the pseudo label noise, we propose a 
Heterogeneous-network framework to generate more reliable 
pseudo-labels to train the network.

Heterogeneous-network soft label training: The dual 
network structure is proposed to solve the noise pseudo-label 
problem, but there is a coupling problem between dual net-
works with the same architecture. Some early methods [56, 
57]try to solve this problem by selecting different training 
samples, using different initializations or different data aug-
mentation methods. However, because the network structure 

(1)L
z

id
=

1

Ns

Ns∑

i=1

Lce(pz(x
s
i
|�z), y�

i
),

(2)L
z

tri
=

1

Ns

Ns∑

i=1

Ltri(fz(x
s
i
|�z), y�

i
).

(3)Lscr = L
z

id
+ L

z

tri
.

remains unchanged, as the training progresses, there will 
inevitably be more and more similar between the dual net-
works. Later, some methods [58, 59] try to improve the prob-
lem by changing the network structure, but they are all at 
the convolutional level. Limited by the size of the receptive 
field, the ability of convolution to capture global perception 
is still insufficient.

To address this problem, we propose a heterogeneous 
network framework to improve the difference and com-
plementarity between networks. The overall framework is 
illustrated in Fig. 1. The framework consists of two het-
erogeneous networks. Both networks use ResNet50 as the 
backbone network. Among them, network 1 (Net1) directly 
utilizes the backbone network to obtain local perception, 
while network 2 (Net2) obtains global perception by intro-
ducing a Transformer Encoder block. For the Transformer 
Encoder, as shown in the lower right corner of Fig. 1, the 
feature f ∈ ℝ

B×C×H×W extracted by the backbone network is 
first flattened into N patches according to the spatial dimen-
sion, and the embedded position encoding for each patch is 
sent to the Transformer Encoder. Each encoder layer con-
sists of an effective multi-head self-attention (EMSA) mod-
ule [33] and a feed-forward network (FFN), which finally 
obtain enhanced features with global information. In order 
to further enhance the semantic information of the network, 
the local features extracted by Net1 and the global features 
extracted by Net2 are sent to the ACMA module (datails 
are mentioned in section “Adaptive Channel Mutual-Aware 
(ACMA) Module”). Finally, global max pooling (GMP) and 
global average pooling (GAP) are performed respectively 
to obtain the final feature map, where the GAP perceives 
the whole features, while the GMP focuses on the sali-
ent features, both of which can be fused to obtain a bet-
ter description vector. At the same time, in order to allevi-
ate the large amount of noise caused by the pseudo-labels 
generated by clustering, the Mean Teacher Model [60] is 
adopted in our framework, where the teacher (with teacher 
weight �′ ) is composed of the exponential moving average 
(EMA) weights of the student (with student weight � ), and 
the student is supervised by the teacher. Specifically, the 
parameters of the teacher models of the two networks at 
current iteration T are denoted as ��

1
(T) and ��

2
(T) , which 

are updated as:

where � is a smoothing coefficient that controls the self-
ensembling speed of the Mean Teacher.

Both hard pseudo-labels (100% confidence labels 
generated by clustering) and soft pseudo-labels (confi-
dence <100% predicted by the teacher network) are used 
to optimize the model in the whole training process. To 

(4)
�
�
1
(T) = ��

�
1
(T − 1) + (1 − �)�1(T),

�
�
2
(T) = ��

�
2
(T − 1) + (1 − �)�2(T),
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simultaneously train the dual networks, we provide the 
same batch of images to two different networks. Each 
target-domain image can be denoted by xt

i
 , and the 

pseudo-label confidences can be predicted as p1(xti|�1) and 
p2(x

t
i
|�2) , and the feature transformation function can be 

expressed as f1(xti|�1) and f2(xti|�2).
Therefore, to transfer knowledge from the teacher model 

to the student model, the class predictions of the teacher 
model can serve as soft pseudo-labels for training the stu-
dent model. The probability for each identity i is predicted 
as p1(xti|�

�
1
) and p2(xti|�

�
2
) . So the soft classification loss for 

optimizing �1 and �2 with the soft pseudo-labels generated 
from the teacher network can therefore be formulated as:

To further enhance the discriminating ability of the teacher-
student network, we use the features extracted by the teacher 
model to supervise the features of the student model with a 
soft triplet loss:

(5)

L
t
sid
(�1|�2) = −

1

Nt

Nt∑

i=1

(p2(x
t
i
|��

2
)logp1(x

t
i
|�1)),

L
t
sid
(�2|�1) = −

1

Nt

Nt∑

i=1

(p1(x
t
i
|��

1
)logp2(x

t
i
|�2)).

where Qi(�) denotes the softmax triplet distance of the sam-
ples xt

i
 . The mini-batch softmax triplet distance from the stu-

dent is encouraged to be as close as possible to the distance 
from the teacher by minimizing soft triplet loss. The formula 
of Qi(�) is as follows:

where xt
i,p

 denotes the hardest positive sample, and xt
i,n

 
denotes the hardest negative sample of the anchor xt

i
 accord-

ing to the pseudo-labels, ‖ ⋅ ‖ denotes L2 distance. At the 
same time, in order to strengthen the constraint of the teacher 
model on the student model in the feature space, we propose 
the feature consistency loss denoted as Lt

fcl
 and datails are 

mentioned in section “Feature consistency loss (FCL)”.

(6)

L
t
stri
(�1|�2) = −

1

Nt

Nt∑

i=1

[Qi(�1)logQi(�
�
2
)],

L
t
stri
(�2|�1) = −

1

Nt

Nt∑

i=1

[Qi(�2)logQi(�
�
1
)],

(7)

Qi(�) =
exp(‖f (xt

i
��) − f (xt

i,n
��)‖)

exp(‖f (xt
i
��) − f (xt

i,p
��)‖) + exp(‖f (xt

i
��) − f (xt

i,n
��)‖)

,

Fig. 1  The framework of our method. First, the framework use two 
heterogeneous network models pre-trained on the labeled source 
domain to extract features for the target domain, and then use the hard 
pseudo-labels generated by clustering and the soft pseudo-labels gen-

erated by the opposite teacher model to fine-tune the model with the 
classification loss ( Lid ,Lsid ) and triplet loss ( Ltri,Lstri ), together with 
a feature consistency loss ( Lfcl ). The above two steps are iteratively 
performed until the network converges
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Therefore, the overall loss function L(�1, �2) simultane-
ously optimizes the dual networks, which combines Eq. 1, 
Eq. 5, Eq. 6, Eq. 9 and is formulated as:

where �t
id
, �t

tri
, �t

fcl
 are the weighting parameters.

3.2  Feature consistency loss (FCL)

For the person re-ID task, the identities in testing set are 
usually different with training set and re-ID is performed as 
retrieval by matching the extracted features of pedestrian. 
Therefore, it is meaningful to explore the optimization of 
feature space. However, the traditional UDA re-ID task 
ignores the consistency of the sample in the feature space. 
Specifically, the classification loss only optimizes the net-
work in the class prediction space, and focuses on the rela-
tionship between samples and pseudo-labels. In addition, 
the triplet loss relies on pseudo-labels to select positive and 
negative samples, so the noise in pseudo-labels will mislead 
the selection and optimization of samples.

Therefore, to make up for the shortcomings above and 
further strengthen the constraints, we propose the feature 
consistency loss (FCL), which is performed in feature space 
and focuses on similarity relationship among samples. Espe-
cially, FCL does not require any label information, which 
effectively avoids the influence of noise pseudo-labels. FCL 
is computed to encourage teacher feature to supervise stu-
dent feature which is formulated as:

where f (xt
i
|��) represents the features extracted by the 

teacher model, and f (xt
i
|�) represents the features extracted 

by the student model. Student network is encouraged by FCL 
to output features that have the similar distribution as the 
teacher network. In short, FCL further supplements the clas-
sification loss and overcomes the limitation that the triplet 
loss is affected by noise pseudo-labels.

The feature consistency loss aims to narrow the distance 
of the same sample features extracted by the student model 
and the teacher model in the feature space, as shown in the 
upper right corner of Fig. 1. The triangles represent the fea-
tures extracted by the teacher model, and the squares rep-
resent the features extracted by the student model, and xt

i
 

represents the i-th sample in the target domain.

(8)
L(�1, �2) = (1 − �

t
id
)Lt

id
+ �

t
id
L
t
sid

+ (1 − �
t
tri
)Lt

tri

+ �
t
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L
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t
fcl
L
t
fcl
,

(9)
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(f2(x
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)logf1(x
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(f1(x
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)logf2(x

t
i
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3.3  Adaptive channel mutual‑aware (ACMA) 
module

For the person re-ID task, paying more attention to semantic 
information is very important to improve the performance 
of the model. In recent years, channel attention has made 
remarkable achievements in the field of computer vision. 
However, some existing methods rarely consider the global 
and local information between channels simultaneously.

To overcome the above problems, we propose the ACMA 
module, which can maintain the diversity between chan-
nels, the structure of which is shown in Fig. 2. This module 
consists of two branches, which are used to simultaneously 
focus on the local and global information of the channel. 
Finally, the two are combined to realize the mutual aware-
ness of different information between channels.

Firstly, to reduce the computational complexity, we divide 
the feature map I ∈ RC×H×W into two groups according to the 
channel dimension, where C, H and W represent its num-
ber of channels, height and width respectively. And then 
send the two feature maps A ∈ RC�×H×W and B ∈ RC�×H×W to 
two branches, where we set C� = C∕2 . In the global branch, 
A go through GAP for global context modeling, and then 
enters 1 × 1 convolution layer to obtain the global relation-
ship weight between channels. Subsequently, multiplying 
the obtained weight matrix wg with the original feature map 
A to obtain the weighted feature map M ∈ RC�×H×W . In the 
local branch, the aggregated features obtained by GAP of 
B are sent to a 1D convolution of kernel size k to compute 
the relationship between the local channels, where kernel 
size k represents the coverage of local cross-channel inter-
action. Similarly, multiplying the obtained weight matrix wl 
with the feature map B, which is represented by the matrix 
N ∈ RC�×H×W . Next, concatenating M and N together, and 
then in order to further improve the cross-channel informa-
tion interaction, a channel shuffle operation is performed. 
Finally, the output matrix O ∈ RC×H×W is obtained. Since the 
input and output dimensions of the module remain the same, 
that is a plug-and-play module, it can be applied to different 
structures. The formula is as follows:

where F(⋅, ⋅) represents element-wise multiplication, 
Concat(⋅, ⋅) represents stacking feature maps along the 
channel dimension, and SC(⋅, ⋅) represents channel shuffle 
operation.

3.4  Explore the coupling between dual networks

To address the problem of noise pseudo-labels, a dual 
network mutual learning architecture is proposed. Taking 

(10)O = SC(Concat(F(wg,A),F(wl,B))),
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MMT as an example, as shown in Fig. 3a, it uses the tem-
porally average model of two networks to generate more 
reliable pseudo-labels for collaborative training between 
two networks. It is a pity that it only uses different seeds 
to pretrain two networks with exactly the same architec-
ture, it will inevitably make the two networks converge to 
each other along with training. Thus, to solve this prob-
lem, some recent works [58, 59] have improved the dual 
network architecture, such as AWB [58]. It creates differ-
ences (similar ideas exist in other fields [61, 62]) between 
the two networks by introducing the WaveBlock, and uses 
the attention mechanism to amplify the differences and 
find more complementary features, as shown in Fig. 3b. 
Although these methods alleviate the coupling problem 
to some extent, they are limited to the convolution level. 

However, limited by the limited receptive field, CNN’s 
ability to capture global information is still insufficient. 
Therefore, we introduce the Transformer module to obtain 
long-range dependency. One network only uses the basic 
CNN, while the other network combines CNN with Trans-
former, as shown in Fig. 3c. HDNet not only improves the 
heterogeneity between dual networks, but also makes up 
for the defect that CNN can only capture local information. 
Comparing with convolutions, EMSA in Transformers can 
capture long-range dependencies and attend diverse infor-
mation from a global view. Meanwhile, Transformers can 
preserve the semantic information in interaction among 
different scale features. Therefore, combining CNN and 
Transformer to achieve the heterogeneity of the network 
allows each other to focus on different characteristics.

Fig. 2  Overview of proposed Adaptive Channel Mutual-Aware (ACMA) module, which consists of two branches, local branch and global branch

Fig. 3  Comparison of different dual network architectures. Our 
method follows the training strategy of MMT. The difference is that 
HDNet uses heterogeneous dual networks for collaborative training 

and introduces a Transformer module to capture long-range depend-
ency. Lloss represents the classification loss and the triplet loss, Lfcl 
represents the feature consistency loss
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In addition, the existing dual-network architecture meth-
ods only use the classification loss and the triplet loss to 
optimize the network. However, the classification loss 
focuses more on the relationship between samples and 
pseudo-labels, ignoring the relationship between samples. 
Besides, the triplet loss needs to rely on pseudo-labels to 
select positive and negative samples. Therefore, in order to 
further supplement the classification loss and optimize the 
triplet loss, we propose the feature consistency loss, which 
pays more attention to the consistency of samples in the fea-
ture space and does not need any label information, making 
it more suitable for UDA re-ID tasks.

4  Experiments

4.1  Datasets and evaluation protocol

We evaluate our method on three datasets that are widely 
used in person re-ID tasks, including DukeMTMC-reID [63, 
64], Market-1501 [65] and MSMT17 [29] . DukeMTMC-
reID dataset contains 36411 images of 1812 identities cap-
tured by 8 cameras, where the training set has 702 identities 
and contains 16522 images and the test set has another 702 
identities. Market-1501 dataset contains 1501 pedestrians 
captured by 6 cameras, where the training set has 12936 
images of 751 identities and the test set has 19732 images of 
750 identities. MSMT17 dataset contains 4101 pedestrians 
with 126441 bounding boxes captured by 15 cameras. The 
training set contains 1041 pedestrians with a total of 32621 
bounding boxes, while the test set includes 3060 pedestri-
ans with a total of 93820 bounding boxes. For the test set, 
11659 bounding boxes were randomly selected as the query, 
and the other 82161 bounding boxes were used as the gal-
lery. Cumulative Matching Characteristics (CMC) [66] and 
mean Average Precision (mAP) [65] are used to evaluate 
the performance. Rank1, Rank5 and Rank10 accuracies in 
CMC are reported.

4.2  Implementation detail

HDNet is trained by two stages: pre-training in source 
domains and the adaptation in target domains. For these two 
stages, all images are resized to 256 × 128, and traditional 
image augmentation is performed via random erasing. In 
addition, we use the Adam [67] optimizer with a weight 
decay of 0.0005 to optimize the parameters.

Stage 1: Pre-training in source domains: We adopt 
ResNet50 [23] as the backbone network, and initialize two 
heterogeneous networks by using parameters pre-trained 
on the ImageNet [68]. Each mini-batch contains 64 source-
domain images of 16 ground-truth identities (4 for each 
identity). The initial learning rate is set to 0.00035 and is 

decreased to 1/10 of its previous value on the 40th and 70th 
epoch in the total 80 epochs.

Stage 2: Adaptation in target domains. The smoothing 
coefficient � in Eq. 4 is set to 0.999, which is used to initial-
ize and update the Mean Teacher network. The two hetero-
geneous networks are collaboratively updated by optimizing 
Eq. 8 with the loss weights �t

id
= 0.5 , �t

tri
= 0.8 and �t

fcl
= 0.8 . 

The k in the ACMA module is set to 5. The target domain 
adaptive training iterates for 40 epochs and the learning rate 
is fixed to 0.00035. Each mini-batch contains 64 target-
domain images of 4 pseudo identities. We use DBSCAN and 
K-means clustering methods to assign hard label for our 
model. The number of pseudo-label classes for four domain 
adaptive tasks when using K-means is 500, 700, 1000 and 
1500, respectively. Each epoch consists of 800 training itera-
tions. During testing, we only use one of the best teacher 
networks on the target domain dataset for feature 
representations.

4.3  Parameter analysis

In this subsection, we analyze the influence of the hyper-
parameter �t

fcl
 in Eq. 8 and the k in the ACMA module on the 

performance of the model.
The  �t

fcl
  of the  Lt

fcl
 . In our experiments, we change one 

parameter while keeping the others fixed. For Eq. 8, keep 
�t
id
= 0.5 and �t

tri
= 0.8 unchanged, and only change the size 

of �t
fcl

 . To this end, we conduct experiments on the Duke → 
Market task and set �t

fcl
 from 0 to 1. The results are shown in 

Fig. 4. Coefficient �t
fcl

 is used to control the proportion of Lt
fcl

 
in the total loss. We can know from section “Feature consist-
ency loss (FCL)” that the FCL aims to focus on the consist-
ency of samples in feature space. When �t

fcl
 is too small, the 

loss function will tend to pay more attention to the relation-
ship between samples and labels, ignoring the relationship 
between samples, which will affect the performance of the 
model. Specially, when �t

fcl
= 0 , that is, when FCL is not 

used, the model has the worst effect. When �t
fcl

 is too large, 
the loss function will pay too much attention to the relation-
ship between samples, which will lead to the decline of 
model performance. Therefore, it is necessary to find a suit-
able �t

fcl
 . As can be seen from the Fig. 4, our method is 

insensitive to parameter �t
fcl

 . Finally, We take the best result 
and set �t

fcl
= 0.8.

The  k  in the ACMA module. In this section, we evalu-
ate the impact of k value on the ACMA module. Accord-
ing to section “Adaptive Channel Mutual-Aware (ACMA) 
Module”, k represents the coverage of local cross-channel 
interaction. In the experiment, we set k values from 1 to 9. 
The results are shown in Fig. 5. It can be seen from the figure 
that when k value is set to 5, the experimental results reach 
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the best, and the results gradually decrease with the continu-
ous increase of k value. When the value of k is less than 5, 
the results also show a downward trend, which we blame it 
to the insufficient interaction between channel information 
to provide more effective information when k is too small. 
The above results show that the k value has a significant 
impact on the performance of ACMA module, so it is very 
important to select an appropriate k value.

4.4  Ablation studies

In this section, we evaluate the effectiveness of the different 
components of our method and take MMT as the baseline. 
Results are shown in Table 1. In order to keep consistent 
with the Baseline, IBN-ResNet50 [69] is also used as the 
backbone network.

Effectiveness of the Heterogeneous-network frame-
work. We first evaluate the Heterogeneous-network 
(HN) framework as described in section “Unsupervised 
adaptation in target domain”. For this experiment, we 

designed a network Baseline + HN that just incorporates 
the HN into the Baseline. Results are shown in Table 1. 
We can observe that our proposed HN bring the most 
significant performance improvement during the adapta-
tion. For Duke → Market, the Baseline + HN achieves a 
rank-1 accuracy of 92.9% and an mAP of 82.0% which are 
higher than the Baseline by 2.0% and 5.5% , respectively. 
The improvement of model performance is explainable, 

Fig. 4  Evaluation with diferent values of �t
fcl

 in Eq. 8

Fig. 5  Evaluation with diferent values of k in the ACMA module

Table 1  Ablation studies of our proposed HDNet on Duke-to-Market 
and Market-to-Duke tasks

Methods Duke→Market(%) Market→Duke(%)

mAP R1 mAP R1

Baseline 76.5 90.9 68.7 81.8
Baseline+HN 82.0 92.9 69.9 82.3
Baseline+Lt

fcl
81.2 92.5 69.8 82.8

Baseline+ACMA 80.8 91.8 69.6 81.7
Our HDNet(full) 82.4 93.3 70.8 83.4
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because the asymmetric network structure can improve 
the complementarity between models, thereby prevent-
ing them from biasing towards the same kind of noise 
and reducing the influence of noise labels on the model, 
so as to achieve the effect of improving the performance 
of the model.

Effectiveness of the Feature Consistency Loss. Lt
fcl

 
aims to optimize the model in feature space and pay more 
attention to the similar relationship between samples. 
Results are shown in Table 2. First of all, it can be seen 
from the first row of the Table 2 that the model achieves 
the worst effect without adding the Lt

fcl
 . When the model 

is constrained by three losses at the same time, the experi-
mental effect is the best. This also verifies the effective-
ness of Lt

fcl
 . To verify the complementary relationship 

of the Lt
fcl

 and the Lt
sid

 , compare the first row, the third 
row and the fourth row in the Table 2, We can see that 
whether the Lt

fcl
 or the Lt

sid
 is used alone, the effect is not 

as good as the combination of the two, which effectively 
validate the necessity of the combination of the two. It 
also shows that the previous methods pay more atten-
tion to the similarity of the class prediction space and 
ignore the similarity relationship between the samples in 
the feature space, leading to the low performance of the 
model. Furthermore, in order to illustrate the improve-
ment of Lt

stri
 by our proposed loss from the experimental 

results, we add ablation experiments, as shown in the first 
and second rows of the Table 2. The experimental results 
reflect the restriction of pseudo-labels on the performance 
improvement of the model to a certain extent.

Effectiveness of the Adaptive Channel Mutual-
Aware module. Our ACMA is a plug-and-play module 
that can be plugged into any network architecture. We 
evaluate the the ACMA as described in Sect. 3.3. For this 
experiment, we design a new network Baseline + ACMA 
which incorporates ACMA into the network. As shown in 
Table 1, the incorporation of ACMA improves the person 
re-ID performance by enhancing the semantic informa-
tion of the network. For Duke → Market, the Baseline + 
ACMA achieves a rank-1 accuracy of 91.8% and an mAP 
of 80.8% which are higher than the Baseline by 0.9% and 
4.3% , respectively. The experimental results show that 
the attention module is effective for enhancing the model 
generalization and adaptation.

4.5  Comparison with the state‑of‑the‑art methods

We compare our proposed framework with the state-of-the-
art methods on the four domain adaptation tasks, Market-to-
Duke, Duke-to-Market, Market-to-MSMT17 and Duke-to-
MSMT17. In order to better verify the effectiveness of our 
method, we compare with various methods in unsupervised 
domain adaptation. The results are shown in Table 3.

First of all, the methods of fine-tuning the network using 
the pseudo-labels generated by clustering, such as PCB-
PAST [14], SSG [15], AD-Cluster [18], Dual-Refinement 
[76] and GLT [19], our model greatly improves the perfor-
mance of UDA re-ID. Secondly, compared with the dual-
network methods including MMT [22] and NRMT [72], our 
model also has greater advantages, increasing the mAP by 
4.6% and 9.4% respectively in the Duke-to-Market domain 
adaptive task, 1.1% and 7.6% respectively in the Market-
to-Duke domain adaptive task. Furthermore, our HDNet 
adopts two models to significantly surpass the three-model 
methods MEB-Net [73] that uses the same backbone, show-
ing a noticeable 5.1% improvement in terms of mAP in the 
Duke-to-Market domain adaptive task and 3.7% improve-
ments in the Market-to-Duke domain adaptive task. Simi-
larly, we have also surpassed other methods that also use 
Mean-Teacher, such as UNRN [75] with a 3.0% higher mAP 
index in the Duke-to-Market domain adaptive task. Moreo-
ver, even if the source domain data is also used in the tar-
get domain fine-tuning model stage, such as SpCL [74], we 
still have significant advantages. Finally, compared with the 
same method of exploring the dual-network coupling prob-
lem, in which ACT [56] inputs different training samples to 
the two networks, and ABMT [59] introduces a bottleneck 
layer to construct heterogeneous branches, our method still 
has great advantages. This is explainable because the previ-
ous methods are only at the convolution level. Limited by 
the limited receptive field, CNN cannot capture the global 
information of pedestrians well, so we use Transformer to 
capture the long-range dependency to improve the perfor-
mance of the model.

For the more challenging large-scale dataset MSMT17, 
our model still performs well. The results are shown in 
Table 4. It can be seen from the table that the recognition 
accuracy of our method is significantly higher than that of 
other methods in recent years. For example, compared with 

Table 2  Ablation studies among 
the three losses on Duke-to-
Market and Market-to-Duke 
tasks

Setting Methods Duke→Market(%) Market→Duke(%)

L
t
sid

L
t
stri

L
t
fcl

mAP R1 mAP R1

1 ✓ ✓ 76.5 90.9 68.7 81.8
2 ✓ ✓ 78.2 91.0 69.1 81.7
3 ✓ ✓ 80.2 91.8 69.4 81.6
4 ✓ ✓ ✓ 81.2 92.5 69.8 82.8
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Table 3  Comparison with 
state-of-the-art methods: For 
the adaptation on Market-1501 
(Market), DukeMTMC-reID 
(Duke)

The best performance is shown in bold

Methods Duke → Market(%) Market → Duke(%)

mAP R1 R5 R10 mAP R1 R5 R10

PCB-PAST [14] 54.6 78.4 – – 54.3 72.4 – –
SSG [15] 58.3 80.0 90.0 92.4 53.4 73.0 80.6 83.2
MMCL [21] 60.4 84.4 92.8 95.0 51.4 72.4 82.9 85.0
ACT [56] 60.6 80.5 – – 54.5 72.4 – –
ECN-GPP [11] 63.8 84.1 92.8 95.4 54.4 74.0 82.9 85.0
JVTC+ [70] 67.2 86.8 95.2 97.1 66.5 80.4 89.9 92.2
AD-Cluster [18] 68.3 86.7 94.4 96.5 54.1 72.6 82.5 85.5
CAIL [71] 71.5 88.1 94.4 96.2 65.2 79.5 88.3 91.4
NRMT [72] 71.7 87.8 94.6 96.5 62.2 77.8 86.9 89.5
MEB-Net [73] 76.0 89.9 96.0 97.5 66.1 79.6 88.3 92.2
MMT [22] 76.5 90.9 96.4 97.9 68.7 81.8 91.2 93.4
SpCL [74] 76.7 90.3 96.2 97.7 68.8 82.9 90.1 92.5
UNRN [75] 78.1 91.9 96.1 97.8 69.1 82.0 90.7 93.5
AWB [58] 81.0 93.5 97.4 98.3 70.9 83.8 92.3 94.0
Dual-Refinement [76] 78.0 90.9 96.4 97.7 67.7 82.1 90.1 92.5
ABMT [59] 78.3 92.5 – – 69.1 82.0 – –
GLT [19] 79.5 92.2 96.5 97.8 69.2 82.0 90.2 92.8
Ours ResNet DBSCAN 81.1 93.5 97.5 98.0 69.8 82.6 90.8 93.0
Ours ResNet K-means 79.5 92.0 97.2 98.3 68.7 81.2 90.9 93.3
Ours IBN-ResNet DBSCAN 82.4 93.3 97.7 98.6 70.8 83.4 91.7 93.8
Ours IBN-ResNet K-means 80.1 92.9 96.7 98.2 71.1 82.7 91.8 94.1

Table 4  Comparison with 
state-of-the-art methods: For 
the adaptation on Market-1501 
(Market), DukeMTMC-reID 
(Duke) and that on MSMT17

The best performance is shown in bold

Methods Market → MSMT17(%) Duke → MSMT17(%)

mAP R1 R5 R10 mAP R1 R5 R10

MMCL [21] 15.1 40.8 51.8 56.7 16.2 43.6 54.3 58.9
ECN-GPP [11] 15.2 40.4 53.1 58.7 16.0 42.5 55.9 61.5
NRMT [72] 19.8 43.7 56.5 62.2 20.6 45.2 57.8 63.3
CAIL [71] 20.4 43.7 56.1 61.9 24.3 51.7 64.0 68.9
MMT [22] 22.9 49.2 63.1 68.8 23.3 50.1 63.9 69.8
JVTC+ [70] 25.1 48.6 65.3 68.2 27.5 52.9 70.5 75.9
SpCL [74] 26.8 53.7 65.0 69.8 26.5 53.1 65.8 70.5
UNRN [75] 25.3 52.4 64.7 69.7 26.2 54.9 67.3 70.6
AWB [58] 29.0 57.3 70.7 75.9 28.1 56.8 70.1 75.2
ABMT [59] 23.2 49.2 – – 26.5 54.3 – –
Dual-Refinement [76] 25.1 53.3 66.1 71.5 26.9 55.0 68.4 73.2
GLT [19] 26.5 56.6 67.5 72.0 27.7 59.5 70.1 74.2
Ours ResNet DBSCAN 25.9 53.4 66.4 72.1 26.8 54.6 70.9 73.0
Ours ResNet K-means 26.7 57.6 67.8 72.0 28.7 56.2 70.8 74.3
Ours IBN-ResNet DBSCAN 28.4 58.3 69.7 75.6 29.8 59.4 71.7 74.8
Ours IBN-ResNet K-means 32.6 61.5 73.4 77.8 33.7 61.5 74.0 78.6
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the same dual network method ABMT [59], our method 
achieves 26.7% and 28.7% in mAP accuracy on Market-
to-MSMT17 and Duke-to-MSMT17 tasks, which are bet-
ter than ABMT [59] by 3.5% and 2.2% respectively. All the 
above experimental results can show the effectiveness of our 
proposed method. In addition, taking IBN-ResNet50 [69] 
as the backbone network, the performance of our model is 
further improved on four domain adaptive tasks.

4.6  Visualization

We evaluate our overall framework from qualitative perspec-
tives. In order to verify the heterogeneity of the dual networks 
in the HDNet framework, we make gradient-weighted class 
activation maps. As shown in the Fig. 6, we can see that the 
two networks pay attention to the different characteristics of 
pedestrians. Among them, Net1 uses pure CNN to capture the 
local salient features of pedestrians, and Net2 combines CNN 
and Transformer to obtain overall pedestrian information. By 
extracting different feature information, the coupling between 
the two networks is suppressed. For example, in the first pic-
ture in the upper left corner, Net1 pays more attention to the 
upper body of pedestrian (such as striped jacket), while Net2 
pays more attention to the whole pedestrian.

For intuitive understanding, we visualize the top 1–5 
retrieval results on the Duke-to-Market task. It can be seen 

from the Fig. 7 that the Baseline network can not capture the 
global and local information of pedestrian at the same time. 
Taking the last pedestrian as an example, the Baseline network 
only focuses on the local similarity features, such as green 
clothes and black backpacks, which are wrongly regarded as 
the target pedestrian, while our HDNet also focuses on the 
global dissimilarity features, such as blue and gray pants. It 
effectively avoids similar but mismatched pedestrians, so the 
retrieval accuracy is greatly improved.

5  Conclusion

In this paper, we propose a heterogeneous dual network 
framework, which aims to enhance the robustness to 
pseudo-label noise by improving the heterogeneity of the 
two networks. In addition, we discuss the issue of feature 
space consistency, and propose the feature consistency 
loss, which breaks away from the bondage of pseudo-label. 
Furthermore, adaptive channel mutual-aware module is 
proposed to enhance the semantic information of the net-
work. In real scenarios, re-ID tasks can only achieve good 
performance on the same benchmark. Although UDA 
re-ID can improve the application of the model in differ-
ent scenarios to some extent, but it is still a field that has 
not been fully explored. In the future, how to improve the 

Fig. 6  The gradient-weighted class activation maps of the heterogeneous dual networks. a The original image. b The original network based on 
CNN. c The introduction of the Transformer encoder block. (H: High values; L: Low values)
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reliability of pseudo-label is a key exploration direction, 
which is worthy of further study.
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