
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2023) 14:1445–1464 
https://doi.org/10.1007/s13042-022-01708-2

ORIGINAL ARTICLE

Semi‑supervised attribute reduction via attribute indiscernibility

Jianhua Dai1,2 · Weisi Wang1,2 · Chucai Zhang1,2 · Shaojun Qu1,2

Received: 23 March 2022 / Accepted: 31 October 2022 / Published online: 29 November 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Attribute reduction based on rough sets plays an important role in data preprocessing. Discernibility pair, as an effective 
information measurement, has received extensive attention in attribute reduction. Unfortunately, the existing attribute impor-
tance measurement strategies based on discernibility pairs do not apply well to partially labeled data. Meanwhile, most of 
the existing attribute reduction algorithms focus on the relationships between objects and neglect the relationships between 
attributes, which may bring highly redundant attributes. Under the background of rough set theory, this paper studies the issue 
of semi-supervised attribute reduction, i.e. attribute reduction for partially labeled data. Firstly, we introduce the concept 
of discernibility pair based on object indiscernibility and propose a semi-supervised attribute reduction algorithm via the 
maximum discernibility pair by combining supervised and unsupervised discernibility pair strategies. Secondly, considering 
the relationships between attributes, we put forward new methods to define the similarity and distinction between attributes 
by discernibility pairs. Thirdly, we propose a semi-supervised attribute reduction algorithm by indiscernible attribute classes. 
Finally, comparative experiments indicate that the proposed algorithms are effective.

Keywords  Rough sets · Semi-supervised attribute reduction · Discernibility pair · Indiscernible attribute class

1  Introduction

Rough set theory, proposed by Pawlak [1, 2], is a new math-
ematical tool to deal with fuzzy and uncertain information. 
One of the core contents of rough set theory is attribute 
reduction, also called feature selection, which is a very 
important data preprocessing procedure. Attribute reduc-
tion removes irrelevant attributes to reduce the difficulty of 
learning tasks [3, 4].

The most of rough set methods partition the universe 
based on the indiscernibility relation between objects. Chen 
et al. [5] proposed a selection method of sample pairs in 
rough sets. Dai et al. [6] defined the discernibility relation-
ship between objects in the framework of fuzzy rough sets, 
namely the maximal discernibility pair. Dai and Xu [7] pro-
posed an attribute reduction method based on information 

gain ratio. Wang et al. [8] presented a new information term 
denoted as independent classification information. Susmaga 
[9] applied both indiscernibility relation and discernibility 
relation to attribute reduction. Based on the relative indis-
cernibility relation and relative discernibility relation of 
decision systems, Qin and Jing [10] proposed the concepts of 
� reduction and � reduction. Dai et al. [11] constructed two 
feature selection methods through label symmetric uncer-
tainty correlation learning and feature redundancy evalua-
tion. Qian et al. [12] proposed a mixed attribute reduction 
algorithm based on indiscernibility relation and differential 
relation.

It is worth noting that relationships exist not only between 
objects, but also between attributes. When studying attrib-
ute reduction algorithms, most researchers only consider 
the indiscernibility relation between objects and neglect 
the relationships between attributes. Actually, relationships 
between attributes are also very important for attribute 
reduction. Based on the relationships between attributes, 
attribute redundancy can be reduced by removing needless 
attributes and attribute independence can be improved by 
selecting high-quality attributes. Relationships between 
attributes have attracted the attention of some scholars 
in the machine learning community [13, 14]. Mitra et al. 
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[13] proposed the definition of attribute similarity based 
on the maximum information compression index to carry 
out attribute clustering. Restrepo and Cornelis [15] adopted 
functional dependency relations to get the reducts. Jia et al. 
[16] defined an attribute reduction method based on similar-
ity from the perspective of clustering. Kudo and Murai [17] 
proposed a binary relationship between different attribute 
values of the same object.

Attribute reduction methods for complete data have been 
extensively studied in the field of rough sets. Unfortunately, 
because it is not easy to obtain the labels of objects, par-
tially labeled data are more common in the real world. Some 
scholars have studied semi-supervised attribute reduction 
[18]. Dai et al. [19] proposed a semi-supervised attribute 
reduction method based on dual-dependency. In [20], Saha 
et al. used the simulated annealing method to deal with the 
multi-objective optimization problem consisting of fea-
ture selection and semi-supervised clustering. Chang and 
Yang [21] improved the performance of feature selection 
by mining the correlation among multiple tasks. Mi et al. 
[22] achieved dynamic classification learning over the semi-
supervised data through concept-cognitive computing sys-
tem. Xu et al. [23] studied a semi-supervised feature selec-
tion algorithm based on Pearson’s correlation coefficient. 
Mi et al. [24] proposed a semi-supervised concept learning 
method from the perspective of concept space. Dai et al. [25] 
proposed two semi-supervised attribute reduction algorithms 
by applying discernibility pairs to partially labeled data sets.

Based on the above analysis, the motivations of this paper 
are as follows: 

1.	 When studying semi-supervised attribute reduction algo-
rithms, some researchers [25, 26] regarded the impor-
tance of attribute subsets as the sum of the importance 
on labeled data and unlabeled data. However, these 
methods have a certain shortcoming, that is, they cannot 
well represent the change of the importance of attribute 
subsets at different missing rates of datasets. In view 
of this, in order to measure the discernibility ability 
of attributes in partially labeled decision information 
systems, we introduce the concept of discernibility pair 
based on object indiscernibility. Inspired by the super-
vised and unsupervised discernibility pair strategies 
proposed by Dai et al. [25], we combine discernibility 
pairs from labeled data with discernibility pairs from 
unlabeled data, and propose a semi-supervised attribute 
reduction algorithm based on the maximum discernibil-
ity pair. Therefore, the combined discernibility pairs can 
better explain the discernibility ability of attributes and 
adapt to the change of missing rate.

2.	 In the field of rough sets, most studies regard a single 
attribute as a granularity, and many attribute reduc-
tion algorithms are proposed. In this process, however, 

attributes that contain similar discernibility information 
may be selected into the attribute subset. In other words, 
redundant attributes are selected into the attribute subset. 
To handle this issue, this paper proposes a new attrib-
ute reduction method. Firstly, we introduce the concept 
of discernibility pair as a criterion for quantifying the 
discernibility ability of attributes. Considering the rela-
tionship between attributes, we define new fuzzy simi-
larity relation and fuzzy discernibility relation between 
attributes based on discernibility pairs. Further, inspired 
by the attribute granulation, we regard the fuzzy dis-
cernibility relationship as a distance function and divide 
the attribute set into indiscernible attribute classes. For 
the attributes in an indiscernible attribute class, a repre-
sentative attribute is selected. Therefore, we can delete 
redundant attributes by selecting representative attrib-
utes and propose a semi-supervised attribute reduction 
algorithm based on attribute indiscernibility.

The rest of this paper is organized as follows. Section 2 
reviews some basic notations of rough set theory. In Sec-
tion 3, new methods to measure the similarity and distinction 
between attributes are advanced and attribute reduction algo-
rithms based on the maximum discernibility pair and attrib-
ute indiscernibility are proposed. Experiments are carried 
out to verify the performance of the proposed algorithms in 
Section 4. Conclusion is presented in Section 5.

2 � Preliminary knowledge

2.1 � Some basic concepts of rough sets

Rough set theory is an effective mathematical tool for pro-
cessing uncertain information. This section reviews some 
basic symbols of rough set theory [1, 2].

Definition 1  An information system and a decision 
information system are respectively represented as 
IS =< U,C,V , f > and DS =< U,C ∪ {d},V , f > , where 
U = {x1, x2,… , xn} is a nonempty finite set of objects; 
C = {a1, a2,… , am} is a nonempty finite set of conditional 
attributes, and d is a label of an object; V = ∪a∈C∪{d}Va and 
Va is the domain of attribute a; f is a mapping function, which 
maps an object in U to exactly one value from domains of 
an attribute such as ∀a ∈ C ∪ {d}, x ∈ U, f (a, x) ∈ Va and 
f(a, x) is the value of the object x on attribute a. If ∃x ∈ U 
such that f(d, x) is equal to a missing value denoted as ∗ , then 
we call it a partially labeled decision information system 
PLDS =< U,C ∪ {d},V∗, f >.

For simplicity, we use a(x) to denote f(a, x) and d(x) to 
denote f(d, x) in this paper.
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Definition 2  Let IS =< U,C,V , f > be an information sys-
tem. S ⊆ C is a subset of the conditional attribute set C. The 
indiscernibility relation on S is defined as follows:

The indiscernibility relation IND(S) means that x and y 
are indistinguishable by the attribute subset S. Thus, the 
partition on U induced from IND(S) is expressed as either 
U/IND(S) or U/S.

Based on the indiscernibility relation, for X ⊆ U , the 
lower approximation and the upper approximation are 
defined as follows.

Definition 3  Let IS =< U,C,V , f > be an information sys-
tem, X ⊆ U and S ⊆ C . The lower approximation and the 
upper approximation of X with respect to S can be defined 
as follows:

The lower approximation of a set X with respect to 
IND(S) is the set of the objects which certainly belongs 
to X. The upper approximation of a set X with respect to 
IND(S) is the set of the objects which possibly belongs 
to X.

Definition 4  Let IS =< U,C,V , f > be an information sys-
tem. The discernibility matrix IM is a |U| × |U| matrix. For 
S ⊆ C , each item IM(x, y) represents the attribute set that can 
distinguish object x from object y.

Definition 5  Let IS =< U,C,V , f > be an information sys-
tem. S ⊆ C is a reduct of IS if and only if: 

(1)	 ∀x, y ∈ U, if IM(x, y) ≠ ∅, then S ∩ IM(x, y) ≠ ∅;
(2)	 ∀S� ⊂ S,∃IM(x, y) ≠ ∅, S� ∩ IM(x, y) = ∅.

Definition 6  Let DS =< U,C ∪ {d},V , f > be a decision 
information system. The discernibility matrix DM is a 
|U| × |U| matrix. For S ⊆ C , each item DM(x, y) represents 
the attribute set that can distinguish object x from object y.

Obviously, the discernibility matrix is anti-reflexive and 
symmetric, namely DM(x, x) = ∅ and DM(x, y) = DM(y, x) . 
Therefore, in order to reduce the computational complex-
ity, we only need to calculate the upper or lower trigono-
metric part of the discernibility matrix.

(1)IND(S) = {(x, y) ∈ U × U | ∀a ∈ S, a(x) = a(y)}.

(2)
S(X) = {x ∈ U | [x]

S
⊆ X};

S(X) = {x ∈ U | [x]
S
∩ X ≠ ∅}.

(3)IM(x, y) = {a ∈ S | a(x) ≠ a(y)}.

(4)DM(x, y) = {a ∈ S | a(x) ≠ a(y) ∧ d(x) ≠ d(y)}.

Definition 7  Let DS =< U,C ∪ {d},V , f > be a decision 
information system. S ⊆ C is a reduct of DS with respect to 
d if and only if: 

(1)	 ∀x, y ∈ U, if DM(x, y) ≠ ∅, then S ∩ DM(x, y) ≠ ∅;
(2)	 ∀S� ⊂ S,∃DM(x, y) ≠ ∅, S� ∩ DM(x, y) = ∅.

Definition 8  Let IS =< U,C,V , f > and DS =< U,C
∪ {d},V , f > be an information system and a decision infor-
mation system, respectively. The core of attribute reduction 
can be defined as:

The intersection of all the reducts is called the core. 
Therefore, we can first find the core to reduce the complex-
ity of subsequent calculations.

2.2 � Discernibility pair

In this section, we introduce the concept of discernibility 
pair which will be used as a criterion for quantifying the dis-
cernibility ability of attributes. The number of discernibility 
pairs produced by an attribute set reflects the discernibility 
ability of this attribute set.

Definition 9  [25] Let IS =< U,C,V , f > be an information 
system. S ⊆ C is a subset of the conditional attribute set C. 
The discernibility pair set with respect to attribute subset S 
is defined as follows:

Proposition 1  Let IS =< U,C,V , f > be an information sys-
tem. Given S′ ⊆ S , then 

(1)	 DisPI(S
�) ⊆ DisPI(S);

(2)	 DisPI(S) − DisPI(S
�) ⊆ DisPI(S − S�).

Proof 

(1)	 For any (x, y) ∈ DisPI(S
�),∃a ∈ S�, s.t. a(x) ≠ a(y) . Since 

S′ ⊆ S , ∃a ∈ S, a(x) ≠ a(y) . Hence, ⊆ DisP
I
(S)

(x, y) ∈ DisP
I
(S),DisP

I
(S�)⊆ DisP

I
(S).

(2)	 According to (1), we know DisPI(S
�) ⊆ DisPI(S) . For any 

(x, y) ∈ [DisPI(S) − DisPI(S
�)] , DisPI(S

�) ⊆ DisPI(S) , 

(5)

CoreI(C) = {a ∈ C | a ∈ IM(x, y) ∧ |IM(x, y)| = 1};

CoreD(C ∪ {d}) = {a ∈ C | a ∈ DM(x, y)∧

|DM(x, y)| = 1}.

(6)DisPI(S) = {(x, y) | ∃a ∈ S, a(x) ≠ a(y)}.
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 t hus  (x, y) ∈ DisPI(S)  bu t  (x, y) ∉ DisPI(S
�)  . 

That is, for any a ∈ S�, a(x) = a(y) . Since S′ ⊆ S , 
∃b ∈ S − S�, b(x) ≠ b(y) . Hence, (x, y) ∈ DisPI(S − S�).

	�  ◻

Definition 10  [25] Let IS =< U,C,V , f > be an information 
system. S ⊆ C is a reduct of IS if and only if: 

(1)	 |DisPI(S)| = |DisPI(C)|;
(2)	 ∀S� ⊂ S, |DisPI(S

�)| < |DisPI(S)|.

In Definition 10, condition (1) indicates that the attribute 
subset S can generate the same discernibility pairs as the 
attribute set C. That is, the attribute subset S has the same 
discernibility ability as the attribute set C. Condition (2) is 
used to ensure that the attribute subset S is the minimum, 
that is, the number of attributes is the least.

Definition 11  [25] Let DS =< U,C ∪ {d},V , f > be a deci-
sion information system. S ⊆ C is a subset of the conditional 
attribute set C. The discernibility pair set with respect to 
attribute subset S relative to decision attribute d is defined 
as follows:

Proposition 2  Let DS =< U,C ∪ {d},V , f > be a decision 
information system. Given S′ ⊆ S , then 

(1)	 DisPD(S
�, d) ⊆ DisPD(S, d);

(2)	 DisPD(S, d) − DisPD(S
�, d) ⊆ DisPD(S − S�, d).

Proof 

(1)	 For any (x, y) ∈ DisPD(S′, d),∃a ∈ S′, s.t. a(x) ≠ a(y), d(x) ≠ d(y) . 
Since S′ ⊆ S , ∃a ∈ S, a(x) ≠ a(y), d(x) ≠ d(y) . Hence, 
(x, y) ∈ DisPD(S, d),DisPD(S

�, d) ⊆ DisPD(S, d).
(2)	 According to (1), we know DisPD(S

�, d) ⊆ DisPD(S, d) . 
F o r  a n y  (x, y) ∈ [DisPD(S, d) − DisPD(S

�, d)]  , 
DisPD(S

�, d) ⊆ DisPD(S, d) , thus (x, y) ∈ DisPD(S, d) 
bu t  (x, y) ∉ DisPD(S

�, d) .  Tha t  i s ,  fo r  any 
a ∈ S�, a(x) = a(y) ∧ d(x) ≠ d(y)  .  S i n c e  S′ ⊆ S  , 
∃b ∈ S − S�, b(x) ≠ b(y) ∧ d(x) ≠ d(y)  .  H e n c e , 
(x, y) ∈ DisPD(S − S�, d).

	�  ◻

Based on Propositions 1 and 2, we can find that discern-
ibility pairs satisfy monotonicity with respect to attribute 
subset S. Moreover, as the same as information entropy and 
positive domain, the number of discernibility pairs produced 

(7)
DisPD(S, d) = {(x, y) | ∃a ∈ S, a(x) ≠ a(y) ∧

d(x) ≠ d(y)}.

by an attribute can also be considered as the amount of infor-
mation carried by the attribute. The more discernibility pairs 
an attribute generates, the more information that attribute 
carries, and vice versa.

Definition 12  [25] Let DS =< U,C ∪ {d},V , f > be a 
decision information system. S ⊆ C is a reduct of DS with 
respect to d if and only if: 

(1)	 |DisPD(S, d)| = |DisPD(C, d)|;
(2)	 ∀S� ⊂ S, |DisPD(S

�, d)| < |DisPD(S, d)|.

In Definition 12, condition (1) indicates that relative to 
decision attribute d, the attribute subset S can generate the 
same discernibility pairs as the attribute set C. That is, the 
attribute subset S has the same discernibility ability as the 
attribute set C relative to decision attribute d. Condition (2) 
is used to ensure that the attribute subset S is the minimum, 
that is, the number of attributes is the least.

3 � Semi‑supervised attribute reduction 
based on relations of objects 
and attributes

3.1 � Semi‑supervised attribute reduction 
by the maximum discernibility pair

From the above discussion, we know that discernibility pairs 
can be used to evaluate the discernibility ability of an attrib-
ute subset S ⊆ C in IS and DS. In this section, we propose a 
semi-supervised attribute reduction algorithm by dividing 
partially labeled data into a labeled part and an unlabeled 
part. In order to deal with partially labeled data, the dis-
cernibility pair set induced by the attribute subset S ⊆ C is 
defined as follows:

Definition 13  Let PLDS =< U,C ∪ {d},V∗, f > be a par-
tially labeled decision information system. S ⊆ C is a subset 
of the conditional attribute set C. The discernibility pair set 
with respect to attribute subset S relative to decision attribute 
d is defined as follows:

Based on Definition 13, the discernibility pair set with 
respect to attribute subset S relative to decision attribute d 
combines discernibility pairs from labeled data with discern-
ibility pairs from unlabeled data. It can better express the 
discernibility ability of attribute subset S than Definitions 
9 and 11 in partially labeled decision information system.

(8)DisPP(S, d) = DisPI(S, d) ∪ DisPD(S).
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Proposition 3  Let PLDS =< U,C ∪ {d},V∗, f > be a par-
tially labeled decision information system. Given S′ ⊆ S , 
then 

(1)	 DisPP(S
�, d) ⊆ DisPP(S, d);

(2)	 DisPP(S, d) − DisPP(S
�, d) ⊆ DisPP(S − S�, d).

Proof 

(1)	 For any (x, y) ∈ DisPP(S
�, d) , 

(a)	 i f  d(x) =∗ ∧d(y) =∗ ,  ∃a ∈ S�, s.t. a(x) ≠ a(y) . 
Since S′ ⊆ S  ,  ∃a ∈ S, a(x) ≠ a(y) .  Hence, 
(x, y) ∈ DisPP(S, d),DisPP(S

�, d) ⊆ DisPP(S, d);
(b)	 if d(x) ≠∗ ∧d(y) ≠∗ , ∃a ∈ S�, s.t. a(x) ≠ a(y), d(x) ≠ d(y) .  

Since S′ ⊆ S , ∃a ∈ S, a(x) ≠ a(y), d(x) ≠ d(y) . Hence, 
(x, y) ∈ DisPP(S, d),DisPP(S

�, d) ⊆ DisPP(S, d);
(c)	 if d(x) ≠∗ ∧d(y) =∗ or d(x) =∗ ∧d(y) ≠∗ , (x, y) ∉ 

DisP
P
(S�, d) . In summary, DisP

P
(S�, d) ⊆ DisP

P
(S, d) . 

(2)	 According to  (1) ,  we know DisP
P
(S�, d) ⊆

DisP
P
(S, d) . For any (x, y) ∈ [DisPP(S, d) − DisPP(S

�, d)] , 
DisPP(S

�, d) ⊆ DisPP(S, d) , thus (x, y) ∈ DisP
P
(S, d) 

but (x, y) ∉ DisPP(S
�, d).

(a)	 If d(x) =∗ ∧d(y) =∗ , for any a ∈ S
�, a(x) = a(y) . 

Since S′ ⊆ S , ∃b ∈ S − S�, b(x) ≠ b(y) . Hence, 
(x, y) ∈ DisPP(S − S�);

(b)	 If d(x) ≠∗ ∧d(y) ≠∗ , for any a ∈ S
�, a(x) =

a(y) ∧ d(x) ≠ d(y) . Since S′ ⊆ S , ∃b ∈ S − S
�, 

b(x) ≠ b(y) ∧ d(x) ≠ d(y)   . 
Hence,(x, y) ∈ DisPP(S − S�, d);

(c)	 If d(x) ≠∗ ∧d(y) =∗ or d(x) =∗ ∧d(y) ≠∗ , 
(x, y) ∉ [DisPP(S, d) − DisPP(S

�, d)] . In sum-
mary, DisPP(S, d) − DisPP(S′, d) ⊆ DisPP(S − S′, d).

	�  ◻

Based on Proposition 3, we can find that discernibil-
ity pairs satisfy monotonicity with respect to the attribute 
subset S in partially labeled decision information systems. 
Therefore, we can use discernibility pairs to study semi-
supervised attribute reduction method.

Theorem 1  DisI(S) ∩ DisPD(S, d) = ∅.

Proof  For any (x, y) ∈ DisD(S, d), d(x) ≠∗ and d(y) ≠∗ . 
However, for any (x, y) ∈ DisI(S), d(x) =∗ and d(y) =∗ . 
Hence, (x, y) ∉ DisI(S) . 	�  ◻

Based on Theorem 1, we can find that discernibility pair 
set from labeled data and discernibility pair set from unla-
beled data have no intersection. Because discernibility pair 
set satisfies monotonicity with respect to attribute subset 
S in both labeled data and unlabeled data, Theorem 1 also 
indicates that the union of discernibility pair sets induced by 
the attribute subset S is monotonically increasing.

Proposition 4  Let S and d be a non-empty attribute sub-
set and a decision attribute, respectively. For any x, y ∈ U , 
DisPP(S, d) meets the following properties: 

(1)	 Irreflexivity. If x = y , then (x, y) ∉ DisPP(S, d);
(2)	 S y m m e t r i c .  I f  (x, y) ∈ DisPP(S, d)  ,  t h e n 

(y, x) ∈ DisPP(S, d).

Proof 

(1)	 Since x = y , for any a ∈ S , a(x) = a(y) . Thus, 
(x, y) ∉ DisI(S) and (x, y) ∉ DisD(S, d) . Hence, (x, y) ∉
Dis

P
(S, d).

(2)	 If (x, y) ∈ DisPP(S, d) , it satisfies that ∃a ∈ S, a(x) ≠ a(y) or 
a(x) ≠ a(y) ∧ d(x) ≠ d(y) . Thus, ∃a ∈ S, a(y) ≠ a(x) or 
a(y) ≠ a(x) ∧ d(y) ≠ d(x) . Hence, (y, x) ∈ DisPP(S, d).

	�  ◻

Based on Proposition 4, we can find that discernibility 
pairs satisfy irreflexivity and symmetry. It can be used to 
reduce the computational complexity of the algorithm by 
only calculating the upper or lower triangle of the matrix.

Definition 14  Let PLDS =< U,C ∪ {d},V∗, f > be a par-
tially labeled decision information system. S ⊆ C is a reduct 
of PLDS with respect to d if and only if: 

(1)	 |DisPP(S)| = |DisPP(C)|;
(2)	 ∀S� ⊂ S, |DisPP(S

�)| < |DisPP(S)|.

In Definition 14, condition (1) indicates that the attrib-
ute subset S can generate the same discernibility pairs as 
the attribute set C relative to decision attribute d. That is, 
the attribute subset S has the same discernibility ability as 
the attribute set C. Condition (2) is used to ensure that the 
attribute subset S is the minimum, that is, the number of 
attributes is the least.

DisPP(S, d) combines discernibility pair set from labeled 
data with discernibility pair set from unlabeled data, and 
reflects the discernibility ability of S in partially labeled 
data. According to Definition 14, a semi-supervised attribute 
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reduction algorithm based on the maximum discernibility 
pair is proposed as Algorithm 1.

Algorithm 1 Semi-supervised attribute reduction al-
gorithm based on the maximum discernibility pair
(Semi-DP)
Input: A partially labeled decision information system

PLDS =< U,C ∪ {d}, V, f >
Output: A reduct R
1: Compute |DisPP (C, d)|, set R = ∅, maxnum = 0,

selAtt = 0.
2: while |DisPP (R, d)| < |DisPP (C, d)| do
3: for a ∈ C −R do
4: if |DisPP (R ∪ {a}, d)| > maxnum then
5: maxnum = |DisPP (R ∪ {a}, d)|;
6: selAtt = a.
7: end if
8: end for
9: R := R ∪ {selAtt}.
10: end while
11: for a ∈ R do
12: if DisPP (R − {a}, d) = DisPP (R, d) then
13: R := R− {a}.
14: end if
15: end for

Classical supervised or unsupervised algorithms consider 
either labeled information or unlabeled information alone, 
which often leads to insufficient use of information. Further-
more, it may influence the evaluation of the discernibility 
ability of attribute and increase the number of core attrib-
utes. Semi-DP uses both labeled information and unlabeled 
information by the metric of discernibility pairs, which fully 
reflects the amount of information carried by the attribute 
subset S.

In order to better understand the algorithm Semi-DP, we 
give an example as shown in Table 1. We only need to calcu-
late the upper or lower triangle of the matrix because of the 
irreflexivity and symmetry of discernibility pairs.

Example 1  Considering a partially labeled decision informa-
tion system PLDS =< U,C ∪ {d},V∗, f > shown in Table 1, 
U = {x1, x2,… x7} is the object set, C = {a1, a2, a3, a4} is the 
attribute set , and d is the decision attribute. 

(1)	 We calculate the discernibility pair set defined in Defi-
nition 13

. 
DisPP(C, d) = {(x1, x2), (x1, x3), (x4, x5), (x4, x6),

(x4, x7), (x5, x6), (x5, x7)} .
(2)	 In the first round, we set R = ∅ . For any ak ∈ C − R 

and calculate the number of discernibility pairs 
|DisPP(ak, d)| a s  fo l l ows :  |DisPP(a1, d)| = 3 , 
|DisPP(a2, d)| = 2   ,  |DisPP(a3, d)| = 4  a n d 
|DisPP(a4, d)| = 4 . We can conclude that attrib-
ute a3 should be selected, R = R ∪ {a3} , and 
|DisPP(R, d)| < |DisPP(C, d)|.

(3)	 I n  t h e  s e c o n d  r o u n d ,  w e  c a n  g e t 
|DisPP(R ∪ {a1}, d)| = 6, |DisPP(R ∪ {a2}, d)| = 5 
and |DisPP(R ∪ {a4}, d)| = 4 . We can conclude that 
attribute a1 should be selected, R = R ∪ {a1} , and 
|DisPP(R, d)| < |DisPP(C, d)|.

(4)	 In the third round, we can get |DisPP(R ∪ {a2}, d)| = 7 
and |DisPP(R ∪ {a4}, d)| = 6 . We can conclude that 
attribute a2 should be selected, R = R ∪ {a2} , and 
|DisPP(R, d)| = |DisPP(C, d)|.

(5)	 Finally, because |DisPP(R − a3, d)| < |DisPP(R, d)| , 
|DisPP(R − a1, d)| < |DisPP(R, d)|  a n d 
|DisPP(R − a2, d)| < |DisPP(R, d)| ,  there  are  no 
redundant attributes in R. We get the attribute subset 
R = {a3, a1, a2}.

3.2 � Semi‑supervised attribute reduction 
by attribute indiscernibility

Considering the importance of the relationships between 
attributes such as the implication relation and the indiscern-
ibility relation in the attribute reduction, we define the con-
cept of similarity for measuring the relationships between 
attributes as follows:

Definition 15  Let PLDS =< U,C ∪ {d},V∗, f > be a par-
tially labeled decision information system. For any a, b ∈ C , 
the similarity between attribute a and attribute b with respect 
to decision attribute d is defined as follows:

If DisPP(a, d) = ∅ and DisPP(b, d) = ∅ , which means we 
cannot distinguish between any two objects through attribute 
a and attribute b, then we default Simatt(a, b, d) = 1.

Definition 15 is different from the definition of the clas-
sical distance-based similarity. The reason is that the simi-
larity between attribute a and attribute b is determined by 
the number of discernibility pairs induced by attribute a 
and attribute b. As shown in Fig. 1, the shadowed part indi-
cates the redundant information induced by attribute a and 
attribute b with respect to decision attribute d (formulate 

(9)Simatt(a, b, d) =
|DisPP(a, d) ∩ DisPP(b, d)|
|DisPP(a, d) ∪ DisPP(b, d)|

.

Table 1   The first partially 
labeled decision information 
system

U a1 a2 a3 a4 d

x1 1 1 2 1 d1

x2 1 2 1 2 d2

x3 1 2 2 1 d2

x4 2 2 2 1 ∗

x5 1 2 1 2 ∗

x6 2 2 1 2 ∗

x7 2 2 1 2 ∗
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|DisPP(a, d) ∩ DisPP(b, d)| ). From another perspective, this 
part of redundant information is also a reflection of the sim-
ilarity between attribute a and attribute b with respect to 
attribute d. After getting the definition of similarity, we can 
easily get the definition of the distinction between attribute 
a and attribute b with respect to attribute d.

Proposition 5  Let S and d be a non-empty attribute sub-
set and a decision attribute, respectively. For any a, b ∈ S , 
Simatt(a, b, d) meets the following properties: 

(1)	 Non-negativity. Simatt(a, b, d) ⩾ 0;
(2)	 Reflexivity. Simatt(a, a, d) = 1;
(3)	 Symmetric. Simatt(a, b, d) = Simatt(b, a, d).

Proof 

(1)	 Since |DisPP(a, d) ∩ DisPP(b, d)| ⩾ 0 , |DisP
P
(a, d)∪

DisP
P
(b, d)| ⩾ 0 . Thus, Simatt(a, b, d) ⩾ 0.

(2)	

(3)	
	�  ◻

Based on Proposition 5, we can find that Simatt(a, b, d) 
satisfies reflexivity and symmetry. It can be used to reduce 
the computational complexity of the algorithm by only cal-
culating the upper or lower triangle of the matrix. At the 
same time, it also indicates that Simatt(a, b, d) satisfies the 
properties of fuzzy similarity relation which can be used 
to measure the similarity between attributes.

Definition 16  Let PLDS =< U,C ∪ {d},V∗, f > be a par-
tially labeled decision information system. For any a, b ∈ C , 
the distinction between attribute a and attribute b with 
respect to decision attribute d is defined as follows:

▵  m e a n s  s y m m e t r i c a l  d i f f e r e n c e . 
DisPP(a, d) ▵ DisPP(b, d) = (DisPP(a, d)
− DisPP(b, d)) ∪ (DisPP(b, d) − DisPP(a, d))   .  I f 
DisPP(a, d) = ∅ and DisPP(b, d) = ∅ , which means we 
cannot distinguish between any two objects through attrib-
ute a and attribute b, then we default Disatt(a, b, d) = 0.

Definition 16 is different from the definition of the clas-
sical distance-based distinction. The reason is that the dis-
tinction between attribute a and attribute b is determined 
by the number of discernibility pairs induced by attribute 
a and attribute b. As shown in Fig. 2, the shadowed parts 
indicate the unique classification information induced by 
attribute a and attribute b with respect to decision attrib-
ute d (formulate |DisPP(a, d) ▵ DisPP(b, d)| ). From another 
perspective, the amount of differentiated information in 

(10)
Simatt(a, a, d) =

|DisPP(a, d) ∩ DisPP(a, d)|
|DisPP(a, d) ∪ DisPP(a, d)|

=
|DisPP(a, d)|
|DisPP(a, d)|

= 1.

(11)

Simatt(a, b, d) =
|DisPP(a, d) ∩ DisPP(b, d)|
|DisPP(a, d) ∪ DisPP(b, d)|

=
|DisPP(b, d) ∩ DisPP(a, d)|
|DisPP(b, d) ∪ DisPP(a, d)|

= Simatt(b, a, d).

(12)Disatt(a, b, d) =
|DisPP(a, d) ▵ DisPP(b, d)|
|DisPP(a, d) ∪ DisPP(b, d)|

.

Fig. 1   The amount of common information between attribute a and 
attribute b with respect to d 

Fig. 2   The amount of differentiated information between attribute a 
and attribute b with respect to d 
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this part is also the reflection of the distinction between 
attribute a and attribute b with respect to attribute d.

Proposition 6  Let S and d be a non-empty attribute sub-
set and a decision attribute, respectively. For any a, b ∈ S , 
Disatt(a, b, d) meets the following properties: 

(1)	 Non-negativity. Disatt(a, b, d) ⩾ 0;
(2)	 Irreflexivity. Disatt(a, a, d) = 0;
(3)	 Symmetric. Disatt(a, b, d) = Disatt(b, a, d);
(4)	 Triangle inequality. Disatt(a, b, d) + Disatt(b, c, d) ⩾ Disatt(a, c, d).

Proof 

(1)	 Since |DisPP(a, d) ▵ DisPP(b, d)| ⩾ 0 , |DisP
P
(a, d)∪

DisP
P
(b, d)| ⩾ 0 . Thus, Disatt(a, b, d) ⩾ 0.

(2)	

(3)	
(4)	 As can be seen from the Venn diagram in 

Fig.  3,Disatt(a, b, d) + Disatt(b, c, d) ⩾ Disatt(a, c, d) 
which can be written as 

(13)
Disatt(a, a, d) =

|DisPP(a, d) ▵ DisPP(a, d)|
|DisPP(a, d) ∪ DisPP(a, d)|

=
0

|DisPP(a, d)|
= 0.

(14)

Disatt(a, b, d) =
|DisPP(a, d) ▵ DisPP(b, d)|
|DisPP(a, d) ∪ DisPP(b, d)|

=
|DisPP(b, d) ▵ DisPP(a, d)|
|DisPP(b, d) ∪ DisPP(a, d)|

= Disatt(b, a, d).

 By reduct ion of  f ract ions  to  a  common  
d e n o m i n a t o r ,  w e  h a v e 
 

(x2y + xy2 + x2z + 2xyz + y2z + xz2 + yz2 + x2h
+ 2xyh + y2h + 2xzh + 2yzh + xh2 + yh2 + 2xye
+ y2e + 2xze + 2yze + z2e + xhe + 2yhe + zhe
+ ye2 + ze2 + x2f + 4xyf + 2y2f + 4xzf + 4yzf
+ z2f + 4xhf + 5yhf + 3zhf + 2h2f + 3xef
+ 5yef + 4zef + 4hef + 2e2f + 3xf 2 + 4yf 2

+ 3zf 2 + 4hf 2 + 4ef 2 + 2f 3 + 2xyg + 2y2g
+ 2xzg + 2yzg + xhg + 3yhg + 3yeg + zeg
+ 3xfg + 6yfg + 3zfg + 4hfg + 4efg + 4f 2g
+ 2yg2 + 2fg2)∕[(x + y + h + e + f + g)
(x + z + h + e + f + g)(y + z + h + e + f + g)] ⩾ 0.

 

Since x, y, z, h, e, f , g ⩾ 0 , the above inequality is always 
true.

	�  ◻

Based on Proposition 6, we can find that Disatt(a, b, d) 
satisfies non-negativity, irreflexivity, symmetry and trian-
gle inequality. It can be used to reduce the computational 
complexity of the algorithm by only calculating the upper 
or lower triangle of the matrix. At the same time, it also 
indicates that Disatt(a, b, d) satisfies the properties of the 
distance function which can be used to measure the dis-
tinction degree between attributes .

Theorem 2  Simatt(a, b, d) + Disatt(a, b, d) = 1.

Proof  It can be easily proved by Definitions 15 and 16. 	
� ◻

Theorem 2 shows that the sum of Simatt(a, b, d) and 
Disatt(a, b, d) is equal to 1, just like other fuzzy similarity 
relations and fuzzy distinction relations. Thus, similarity 
(distinction) can be obtained by 1- distinction (similarity).

At this point, we have a definition of distinction (also 
known as distance) between any two attributes. Next, we 
propose an attribute reduction algorithm based on attribute 
indiscernibility. This will be divided into two steps. In the 
first step, we divide the attribute set C into p ( p ⩽ |C| ) dif-
ferent classes. In the second step, we select an attribute from 
each class that can generate the most discernibility pairs as 
the representative attribute of the corresponding class.

(15)

x + y + e + f
x + y + h + e + f + g

+
y + z + h + f

y + z + h + e + f + g

⩾ x + z + h + e
x + z + h + e + f + g

.

Fig. 3   The Venn diagram of triangle inequality
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Before clustering, core attributes need to be preprocessed. 
When calculating the discernibility matrix, an entry in the 
discernibility matrix contains a core attribute if it has only 
one attribute. In order to prevent multiple core attributes 
from being divided into the same class, we incorporate the 
attributes into the reduct in the first place. For the remaining 
attributes, the attribute clustering algorithm [13] is used.

Through the attribute clustering algorithm, we can 
divide the attribute set into indiscernible attribute classes 
IndF(IndF1, IndF2,… IndFm,m ⩽ |C|) , which are similar to 
the division of the equivalence classes in rough set theory.

Proposition 7  Let PLDS =< U,C ∪ {d},V∗, f > be a 
partially labeled decision information system. Given 
C� = C − [CoreI(C) ∪ CoreD(C ∪ {d})] , then 

(1)	 ∪Fi∈F
IndFi = C�;

(2)	 IndFi ∩ IndFj = ∅.

Proof 

(1)	 For any a ∈ ∪Fi∈F
IndFi , since a ∈ C� , ∪Fi∈F

IndFi ⊆ C� . 

For any a ∈ C� , ∃IndFi ⊆ ∪Fi∈F
IndFi , s.t. a ∈ IndFi . 

Thus, C� ⊆ ∪Fi∈F
IndFi . In conclusion, ∪Fi∈F

IndFi = C�.

(2)	 Assuming that ∃a ∈ IndFi ∩ IndFj , then a ∈ IndFi and 

a ∈ IndFj . Since the clustering process only puts each 

attribute into a certain class, the assumption is wrong. 

Thus, IndFi ∩ IndFj = ∅.

	�  ◻

Based on Proposition 7, we can find that indiscernible attrib-
ute classes have the same properties as equivalence class, that 
is, the intersection is empty and the union is the universal set. 
When we choose representative attributes, it ensures that we will 
consider all attributes and will not choose duplicate attributes.

The indiscernible attribute classes are obtained by 
the attribute clustering algorithm. Then, we propose a 

semi-supervised attribute reduction algorithm based on 
attribute indiscernibility as shown in Algorithm 2. It mainly 
contains the following parts. Firstly, for each indiscernible 
attribute class IndFi , we get the attribute that generates the 
most discernibility pairs. Secondly, we get a new attribute 
subset FS (each element in FS is from different indiscernible 
attribute classes, that is |FS| = |IndF| ). Finally, we select the 
attributes with the most discernibility information in the FS.

Algorithm 2 Semi-supervised attribute reduction al-
gorithm based on attribute indiscernibility(Semi-AI)
Input: A partially labeled decision information system

PLDS =< U,C ∪ {d}, V ∗, f >
Output: A reduct R
1: for ∀ai ∈ C do
2: Compute DisPP (ai, d).
3: end for
4: Compute DisPP (C, d), CoreI(C) and CoreD(C ∪ {d}).
5: Set R = ∅, R := R ∪CoreI (C) ∪CoreD(C ∪ {d}), C :=

C − [CoreI (C) ∪ CoreD(C ∪ {d})].
6: for ∀a, b ∈ C do
7: Compute Disatt(a, b, d).
8: end for
9: Get the indiscernible attribute class

IndF (IndF1, IndF2, . . . IndFm,m < D).
10: Set FS = ∅, count = 1, maxnum = 0, selAtt = 0.
11: while count m do
12: for ai ∈ IndFcount do
13: if |DisPP (ai, d)| > maxnum then
14: maxnum = |DisPP (ai, d)|;
15: selAtt = ai.
16: end if
17: end for
18: FS := FS ∪ {selAtt}, count = count + 1.
19: end while
20: Set maxnum = 0, selAtt = 0.
21: while |DisPP (R, d)| < |DisPP (C, d)| and FS = ∅ do
22: for aj ∈ FS −R do
23: if |DisPP (R ∪ {aj}, d)| > maxnum then
24: maxnum = |DisPP (R ∪ {aj}, d)|;
25: selAtt = aj .
26: end if
27: end for
28: R := R ∪ {selAtt}.
29: end while
30: Set maxnum = 0, selAtt = 0.
31: while |DisPP (R, d)| < |DisPP (C, d)| do
32: for ak ∈ C −R do
33: if |DisPP (R ∪ {ak}, d)| > maxnum then
34: maxnum = |DisPP (R ∪ {ak}, d)|;
35: selAtt = ak.
36: end if
37: end for
38: R := R ∪ {selAtt}.
39: end while
40: for ∀a ∈ R do
41: if DisPP (R − {a}, d) = DisPP (R, d) then
42: R := R− {a}.
43: end if
44: end for
45: Return R.

 

Table 2   The second partially 
labeled decision information 
system

U a1 a2 a3 a4 a5 a6 d

x1 1 1 2 1 1 2 d1

x2 2 1 1 2 1 2 d2

x3 1 1 2 1 1 2 d1

x4 2 2 2 1 2 1 d3

x5 2 2 2 1 2 2 ∗

x6 2 1 1 2 1 1 ∗

x7 1 1 1 2 2 1 ∗
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Semi-AI considers not only the indiscernibility relation-
ship between objects, but also the indiscernibility rela-
tionship between attributes. In order to better understand 
the algorithm Semi-AI, we give an example as shown in 
Table 2. We only need to calculate the upper or lower 
triangle of the matrix because of the irreflexivity and sym-
metry of discernibility pairs.

Example 2  Considering a partially labeled decision informa-
tion system PLDS =< U,C ∪ {d},V∗, f > shown in Table 2, 
U = {x1, x2,… x7} is the object set, C = {a1, a2,… a6} is the 
attribute set and d is the decision attribute. 

(1)	 We calculate the discernibility pair sets defined in Defi-
nition 13. 

(2)	 We calculate the distinction between attributes accord-
ing to Definition 16 and obtain the distinction matrix 
DtM. 

(3)	 We set k = 3 . By using the attribute clustering algorithm 
to the cluster attribute set C = {a1, a2, a3, a4, a5, a6} , 
we obtain the indiscernible attribute classes 
{a2, a6, a5}, {a3, a4} and {a1}.

(4)	 We set FS = ∅ and select attribute ak from each 
indiscernible attr ibute class by calculating 
DisPP(ak, d) to represent the indiscernible attribute 
class. For {a2, a6, a5} , we can get |DisPP(a2, d)| = 5 , 
|DisPP(a6, d)| = 5 and |DisPP(a5, d)| = 5 . We choose 
attr ibute a2 as the representative attr ibute of 
{a2, a6, a5} , and set FS = FS ∪ {a2} . For {a3, a4} , we 

DisP
P
(C, d) = {(x1, x2), (x1, x4), (x2, x3), (x2, x4),

(x3, x4), (x5, x6), (x5, x7), (x6, x7)};

DisP
P
(a1, d) = {(x1, x2), (x1, x4), (x2, x3), (x3, x4),

(x5, x7), (x6, x7)};

DisP
P
(a2, d) = {(x1, x4), (x2, x4), (x3, x4), (x5, x6),

(x5, x7)};

DisP
P
(a3, d) = {(x1, x2), (x2, x3), (x2, x4), (x5, x6), (x5, x7)};

DisP
P
(a4, d) = {(x1, x2), (x2, x3), (x2, x4), (x5, x6), (x5, x7)};

DisP
P
(a5, d) = {(x1, x4), (x2, x4), (x3, x4), (x5, x6), (x6, x7)};

DisP
P
(a6, d) = {(x1, x4), (x2, x4), (x3, x4), (x5, x6), (x5, x7)};

Core
I
(C) = ∅,Core

D
(C ∪ {d}) = ∅.

(16)DtM =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.0000 0.6250 0.6250 0.6250 0.6250 0.6250
0.6250 0.0000 0.5714 0.5714 0.3333 0.0000
0.6250 0.5714 0.0000 0.0000 0.7500 0.5714
0.6250 0.5714 0.0000 0.0000 0.7500 0.5714
0.6250 0.3333 0.7500 0.7500 0.0000 0.3333
0.6250 0.0000 0.5714 0.5714 0.3333 0.0000

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

can get |DisPP(a3, d)| = 5 and |DisPP(a4, d)| = 5 . We 
choose attribute a3 as the representative attribute of 
{a3, a4} , and set FS = FS ∪ {a3} . For {a1} , we can get 
|DisPP(a1, d)| = 6 . We choose attribute a1 as the rep-
resentative attribute of {a1} , and set FS = FS ∪ {a1} . 
Finally, a new attribute subset FS = {a2, a3, a1} is 
obtained.

(5)	 In the first round, we set R = ∅ . For any aj ∈ FS − R 
and calculate the number of discernibility pairs 
|DisPP(aj, d)| a s  fo l l ows :  |DisPP(a2, d)| = 5  , 
|DisPP(a3, d)| = 5 , |DisPP(a1, d)| = 6 . We can conclude 
that attribute a1 should be selected, R = R ∪ {a1} , and 
|DisPP(R, d)| < |DisPP(C, d)|.

(6)	 In the second round, we can get |DisPP(R ∪ {a2}, d)| = 8 
and |DisPP(R ∪ {a3}, d)| = 8 . We can conclude that 
attribute a2 should be selected, R = R ∪ {a2} , and 
|DisPP(R, d)| = |DisPP(C, d)|.

(7)	 Finally, because |DisPP(R − a1, d)| < |DisPP(R, d)| 
and |DisPP(R − a2, d)| < |DisPP(R, d)| , there are no 
redundant attributes in R. We get the attribute subset 
R = {a1, a2}.

4 � Experiments

In this section, several experiments are performed to verify 
the performance of the proposed algorithms. The data sets 
used in the experiments are from the UCI Machine Learn-
ing Database [27]. The types of attribute values used in the 
experiments are nominal and numeric, and we adopt the 
equal width operation to discretize the attribute value into 
four values for numeric data. The characteristics of the data 
sets are summarized in Table 3.

In order to get partially labeled decision information 
systems, decision attribute values of original complete data 
sets have been randomly selected to delete. Then every pro-
cessed data set is divided into a labeled part and an unla-
beled part, and decision attribute values in the unlabeled 
part are denoted as ∗.

In order to verify the effectiveness of proposed algorithms 
in processing symbolic data, we compare our algorithms 
with some classical supervised attribute reduction algo-
rithms, unsupervised attribute reduction algorithm and semi-
supervised attribute reduction algorithms, listed as follows: 

1.	 Positive region POS. An attribute reduction algorithm 
based on attribute dependence [28].

2.	 Conditional entropy H(D|A). An attribute reduction 
algorithm based on conditional entropy [29].
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3.	 LDP. An attribute reduction algorithm for labeled data 
based on the maximum discernibility pair [25].

4.	 UDP. An attribute reduction algorithm for unlabeled 
data based on the maximum discernibility pair [25].

5.	 DualPOS. A semi-supervised attribute reduction algo-
rithm using dual positive regions [19].

6.	 Semi-mRMR. A semi-supervised attribute reduction 
algorithm based on maximum relevance and minimum 
redundancy [30].

7.	 Semi-rough-P. A semi-supervised attribute reduction 
algorithm that processes labeled data with dependence 
and unlabeled data with discernibility pair [25].

8.	 Semi-rough-D. A semi-supervised attribute reduction 
algorithm that processes labeled data with discernibility 
pair and unlabeled data with discernibility pair [25].

The nearest neighbor classifier (KNN, K = 5) and decision 
tree classifier (CART) are used to evaluate the attribute 
reduction results. By using ten-fold cross-validation, the 
higher the accuracies under KNN classifier and CART clas-
sifier are, the more reasonable the selected attribute subset 
is.

4.1 � Compared with supervised and unsupervised 
algorithms

In this section, the proposed algorithms are compared with 
classical supervised and unsupervised algorithms mentioned 
above. For the data sets used in the experiment, the missing 
rate is 20%.

The specific experimental results are shown in Tables 4 
and 5. The optimal classification accuracy of each data set 

under different algorithms is shown in bold. In most cases, 
Semi-AI achieves the best accuracy compared with both 
supervised and unsupervised algorithms. The average accu-
racy of Semi-DP on all data sets is 0.49% higher than the 
average accuracy of the other algorithms by KNN classifier 
through ten-fold cross-validation. The average accuracy of 
Semi-AI on all data sets is 3.69% higher than the algorithm 
with the highest average accuracy on given data sets and 
15.67% higher than the lowest average accuracy on given 
data sets by KNN classifier through ten-fold cross-valida-
tion. The average accuracy of Semi-AI on all data sets is 
2.00% higher than the algorithm with the highest average 
accuracy on given data sets and 12.17% higher than the low-
est average accuracy on given data sets by CART classifier 
through ten-fold cross-validation. Unsupervised algorithms 
can only process 20% of the data and ignore the remain-
ing 80% of the data. Supervised algorithms can only pro-
cess 80% of the data and ignore the remaining 20% of the 
data. The proposed algorithms take both labeled data and 
unlabeled data into consideration and the reducts can better 
describe the information contained in partially labeled data. 
From Tables 4 and 5, it can be seen that Semi-DP and Semi-
AI can deal with the problem caused by missing labels well.

4.2 � Compared with semi‑supervised algorithms

In this section, the proposed algorithms are compared with 
classical semi-supervised algorithms mentioned above. For 
the data sets used in the experiment, the missing rate is 20%. 

The specific experimental results are shown in Tables 6 
and 7. The optimal classification accuracy of each data set 
under different algorithms is shown in bold. In most cases, 
Semi-AI achieves the best accuracy compared with semi-
supervised algorithms. The average accuracy of Semi-DP on 
all data sets is 3.32% higher than the average accuracy of the 
other algorithms by KNN classifier through ten-fold cross-
validation. The average accuracy of Semi-DP on all data sets 
is 2.09% higher than the average accuracy of the other algo-
rithms by CART classifier through ten-fold cross-validation. 
The average accuracy of Semi-AI on all data sets is 5.04% 
higher than the algorithm with the highest average accuracy 
on given data sets and 18.94% higher than the algorithm 
with the lowest average accuracy on given data sets by KNN 
classifier through ten-fold cross-validation. The average 
accuracy of Semi-AI on all data sets is 5.32% higher than 
the algorithm with the highest average accuracy on given 
data sets and 14.00% higher than the algorithm with the 
lowest average accuracy on given data sets by CART clas-
sifier through ten-fold cross-validation. The reason why the 
accuracies of the proposed algorithm on given data sets are 
higher than the other algorithms is that the other algorithms 
only consider the relationships between objects, but rarely 
consider the relationships between attributes. From Tables 6 

Table 3   A description of datasets

Index Dataset Objects Attributes Data type

1 Lung-cancer 31 55 Nominal
2 PersonGait 48 321 Numeric
3 SCADI 70 205 Nominal
4 Olitos 120 25 Numeric
5 Yale 165 1024 Numeric
6 Wine 178 13 Numeric
7 Sonar 208 60 Numeric
8 FeatMIAS 322 280 Numeric
9 Completed 390 38 Numeric
10 ORL 400 1024 Numeric
11 Musk2 707 166 Numeric
12 Hillvalley 1212 100 Numeric
13 Handwritten 1593 257 Nominal
14 Kr-vs-kp 3196 36 Nominal
15 Spambase 4601 57 Numeric
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and 7, it can be seen that Semi-DP and Semi-AI are effective 
in dealing with the problem caused by missing labels.

4.3 � Classification performance of the selected 
attribute subset

To further demonstrate the discernibility ability of attribute 
subset selected by Semi-AI, we show the intuitive results 
of the data sets Wine and Sonar through two-dimensional 

feature space in Figs. 4 and 5. Subgraph (a) and Subgraph (b) 
show the data distribution induced by the first two selected 
attributes and the last two selected attributes, respectively. 
Subgraph (c) and Subgraph (d) show the data distribution 
induced by two random attributes. As we can see from the 
figures, the attributes selected by Semi-AI achieve better 
discernibility ability than randomly selected attributes from 
original data.

Table 4   Accuracy results ( mean% ± std ) under KNN classifier with 20% missing labels compared with supervised and unsupervised algorithms

Dataset Size of k Semi-DP Semi-AI POS H(D A) LDP UDP

Lung-cancer 12 48.06 ± 5.37 76.13 ± 1.67 55.81 ± 3.42 62.90 ± 3.48 48.06 ± 4.67 40.00 ± 4.61
PersonGait 149 45.63 ± 1.54 71.04 ± 2.07 41.06 ± 1.44 48.33 ± 1.91 45.63 ± 1.54 16.46 ± 2.29
SCADI 133 79.57 ± 0.69 87.14 ± 0.00 68.29 ± 1.88 85.71 ± 0.00 85.29 ± 0.96 59.86 ± 1.71
Olitos 4 68.67 ± 0.90 72.83 ± 1.89 64.00 ± 1.10 64.83 ± 2.80 72.67 ± 2.25 56.83 ± 2.07
Yale 166 34.79 ± 1.08 42.97 ± 1.01 36.00 ± 1.38 41.64 ± 1.11 35.21 ± 1.65 23.82 ± 1.21
Wine 4 87.13 ± 0.86 93.43 ± 0.96 88.43 ± 1.10 91.91 ± 0.71 90.22 ± 0.39 89.21 ± 0.52
Sonar 47 72.45 ± 1.42 76.06 ± 1.52 74.86 ± 1.04 78.08 ± 0.99 73.22 ± 1.22 61.49 ± 0.95
FeatMIAS 80 63.26 ± 1.27 69.66 ± 1.38 66.06 ± 1.17 66.27 ± 1.15 63.26 ± 1.27 54.32 ± 1.22
Completed 33 82.10 ± 0.51 83.46 ± 0.72 84.56 ± 0.47 82.95 ± 0.39 81.21 ± 0.53 82.26 ± 0.65
ORL 928 35.05 ± 0.81 52.47 ± 0.58 45.00 ± 0.68 50.32 ± 0.46 46.87 ± 0.88 22.22 ± 0.75
Musk2 161 87.51 ± 0.48 90.52 ± 0.63 87.62 ± 0.43 89.92 ± 0.40 88.61 ± 0.52 88.49 ± 0.52
Hillvalley 44 50.72 ± 0.19 51.07 ± 0.32 50.26 ± 0.41 51.08 ± 0.22 50.23 ± 0.34 50.05 ± 0.34
Handwritten 220 69.97 ± 0.42 73.94 ± 0.33 71.43 ± 0.63 73.99 ± 0.32 69.65 ± 0.45 60.66 ± 0.58
Kr-vs-kp 5 94.34 ± 0.15 94.34 ± 0.15 91.66 ± 0.28 91.90 ± 0.30 92.17 ± 0.10 94.40 ± 0.18
Spambase 3 55.06 ± 0.10 55.06 ± 0.10 55.06 ± 0.10 55.06 ± 0.10 55.06 ± 0.10 54.88 ± 0.10
Avg – 64.95 72.68 65.34 68.99 66.49 57.01

Table 5   Accuracy results ( mean% ± std ) under CART classifier with 20% missing labels compared with supervised and unsupervised algo-
rithms

Dataset Size of k Semi-DP Semi-AI POS H(D A) LDP UDP

Lung-cancer 54 40.32 ± 4.37 72.90 ± 4.35 70.00 ± 3.74 65.81 ± 4.35 37.42 ± 6.31 44.52 ± 3.33
PersonGait 242 44.17 ± 2.74 47.29 ± 4.19 38.75 ± 1.10 46.88 ± 2.74 44.17 ± 2.24 15.83 ± 2.45
SCADI 134 79.00 ± 0.69 82.29 ± 1.54 74.57 ± 1.31 78.86 ± 0.90 80.86 ± 1.38 68.14 ± 1.18
Olitos 11 57.25 ± 3.77 66.08 ± 2.55 60.25 ± 3.12 58.08 ± 2.78 63.75 ± 2.76 57.50 ± 2.58
Yale 23 35.94 ± 1.98 40.24 ± 1.72 44.79 ± 2.56 38.67 ± 2.49 37.70 ± 1.78 20.30 ± 2.31
Wine 4 84.33 ± 0.77 91.29 ± 0.89 88.99 ± 1.22 90.51 ± 1.17 85.34 ± 1.90 89.72 ± 1.45
Sonar 6 76.25 ± 1.25 78.22 ± 1.92 73.27 ± 1.44 75.58 ± 1.65 74.47 ± 1.29 59.09 ± 1.99
FeatMIAS 80 57.70 ± 1.39 67.67 ± 1.59 66.02 ± 1.85 65.25 ± 1.42 57.70 ± 1.39 51.21 ± 1.67
Completed 7 79.49 ± 1.59 83.31 ± 1.25 81.72 ± 1.09 82.41 ± 1.61 79.56 ± 1.48 80.79 ± 0.96
ORL 928 37.17 ± 1.50 46.57 ± 0.91 40.80 ± 1.26 40.67 ± 1.20 37.87 ± 0.87 28.10 ± 0.81
Musk2 80 88.76 ± 0.74 89.86 ± 0.64 86.00 ± 0.74 90.41 ± 0.85 87.79 ± 1.02 85.71 ± 1.39
Hillvalley 44 50.44 ± 0.46 51.64 ± 0.55 50.14 ± 0.46 51.70 ± 0.33 51.34 ± 0.66 49.88 ± 0.28
Handwritten 221 63.66 ± 0.66 68.38 ± 0.85 66.25 ± 0.61 70.98 ± 0.67 66.47 ± 0.86 52.54 ± 0.66
Kr-vs-kp 5 99.12 ± 0.13 99.10 ± 0.15 99.04 ± 0.10 99.10 ± 0.10 99.07 ± 0.11 99.03 ± 0.13
Spambase 3 71.69 ± 0.11 71.70 ± 0.10 71.67 ± 0.11 71.70 ± 0.10 71.67 ± 0.11 71.68 ± 0.11
Avg – 64.35 70.44 67.48 68.44 65.01 58.27
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Fig. 4   Intuitive results of the data set Wine

Table 6   Accuracy results ( mean% ± std ) under KNN classifier with 20% missing labels compared with semi-supervised algorithms

Dataset Size of k Semi-DP Semi-AI DaulPOS Semi-mRMR Semi-rough-P Semi-rough-D

Lung-cancer 12 48.03 ± 5.37 76.13 ± 1.67 54.19 ± 3.66 36.77 ± 2.72 48.71 ± 4.67 42.26 ± 1.83
PersonGait 149 45.63 ± 1.54 71.04 ± 2.07 57.50 ± 1.46 31.25 ± 0.00 19.58 ± 1.76 42.92 ± 2.24
SCADI 133 79.57 ± 0.69 87.14 ± 0.00 84.29 ± 0.95 53.71 ± 1.00 67.14 ± 3.09 77.00 ± 1.42
Olitos 4 68.67 ± 0.90 72.83 ± 1.89 66.08 ± 1.52 51.17 ± 2.49 65.17 ± 2.63 68.75 ± 2.81
Yale 166 34.79 ± 1.08 42.97 ± 1.01 47.03 ± 1.46 27.27 ± 0.57 33.88 ± 1.47 24.61 ± 1.15
Wine 4 87.13 ± 0.86 93.43 ± 0.96 91.29 ± 0.85 79.61 ± 1.61 87.87 ± 0.71 87.13 ± 0.86
Sonar 47 72.45 ± 1.42 76.06 ± 1.52 80.43 ± 1.22 66.20 ± 0.96 69.33 ± 1.50 66.83 ± 0.75
FeatMIAS 80 63.26 ± 1.27 69.66 ± 1.38 66.30 ± 0.81 62.55 ± 1.09 63.82 ± 0.78 60.90 ± 0.98
Completed 33 82.10 ± 0.51 83.46 ± 0.72 81.79 ± 0.00 77.21 ± 0.60 83.54 ± 0.67 82.41 ± 0.78
ORL 928 35.05 ± 0.81 52.47 ± 0.58 44.35 ± 0.94 7.75 ± 0.24 40.72 ± 0.58 36.47 ± 0.62
Musk2 161 87.51 ± 0.48 90.52 ± 0.63 80.89 ± 0.61 84.58 ± 0.49 88.78 ± 0.49 87.54 ± 0.44
Hillvalley 44 50.72 ± 0.19 51.07 ± 0.32 50.03 ± 0.25 50.91 ± 0.00 50.36 ± 0.33 50.77 ± 0.37
Handwritten 220 69.97 ± 0.42 73.94 ± 0.33 67.58 ± 0.57 50.49 ± 0.55 70.23 ± 0.52 63.77 ± 0.32
Kr-vs-kp 5 94.34 ± 0.15 94.34 ± 0.15 92.23 ± 0.23 87.11 ± 0.25 93.34 ± 0.18 93.34 ± 0.18
Spambase 3 55.06 ± 0.10 55.06 ± 0.10 50.22 ± 0.02 44.25 ± 0.06 55.06 ± 0.10 55.06 ± 0.10
Avg – 64.95 72.68 67.64 53.74 62.50 62.65
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4.4 � Robustness of the proposed method

In this section, we show the robustness of Semi-AI by setting 
different missing rates (10%, 20%, … , 50%) of datasets. As 

shown in Figs. 6, 7, 8 and 9, the X-axis shows the different 
missing rates and the Y-axis represents the classification 
accuracy under certain classifier. Compared with the rep-
resentative supervised, unsupervised and semi-supervised 

Fig. 5   Intuitive results of the data set Sonar

Table 7   Accuracy results ( mean% ± std ) under CART classifier with 20% missing labels compared with semi-supervised algorithms

Dataset Size of k Semi-DP Semi-AI DaulPOS Semi-mRMR Semi-rough-P Semi-rough-D

Lung-cancer 54 40.32 ± 4.37 72.90 ± 4.35 62.26 ± 4.57 37.74 ± 8.34 50.00 ± 4.09 69.03 ± 3.12
PersonGait 242 44.17 ± 2.74 47.29 ± 4.19 36.67 ± 2.45 26.04 ± 1.10 37.50 ± 2.95 37.05 ± 3.23
SCADI 134 79.00 ± 0.69 82.29 ± 1.54 75.71 ± 1.65 58.86 ± 2.59 75.57 ± 0.81 78.00 ± 2.45
Olitos 11 57.25 ± 3.77 66.08 ± 2.55 62.00 ± 3.73 48.67 ± 2.49 61.58 ± 3.13 58.83 ± 2.16
Yale 23 35.94 ± 1.98 40.24 ± 1.72 42.67 ± 1.70 25.15 ± 1.41 30.61 ± 2.16 25.82 ± 2.22
Wine 4 84.33 ± 0.77 91.29 ± 0.89 89.33 ± 1.32 82.87 ± 0.85 88.31 ± 1.40 84.33 ± 0.77
Sonar 6 76.25 ± 1.25 78.22 ± 1.92 75.48 ± 2.23 61.87 ± 2.04 69.95 ± 1.97 62.93 ± 2.69
FeatMIAS 80 57.70 ± 1.39 67.67 ± 1.59 61.55 ± 1.86 64.88 ± 1.94 61.80 ± 1.79 61.58 ± 1.50
Completed 7 79.49 ± 1.59 83.31 ± 1.25 82.03 ± 0.08 76.44 ± 0.88 81.85 ± 0.86 80.44 ± 1.05
ORL 928 37.17 ± 1.50 46.57 ± 0.91 33.80 ± 1.65 13.82 ± 0.26 30.77 ± 1.56 30.82 ± 1.41
Musk2 80 88.76 ± 0.74 89.86 ± 0.64 82.70 ± 0.63 84.61 ± 0.81 88.23 ± 0.83 87.79 ± 1.02
Hillvalley 44 50.44 ± 0.46 51.64 ± 0.55 51.24 ± 0.25 51.65 ± 0.00 50.73 ± 0.44 50.79 ± 0.46
Handwritten 221 63.66 ± 0.66 68.38 ± 0.85 58.56 ± 0.66 54.78 ± 0.73 61.37 ± 0.78 55.05 ± 0.70
Kr-vs-kp 5 99.12 ± 0.13 99.10 ± 0.15 96.31 ± 0.13 95.26 ± 0.21 99.11 ± 0.13 99.14 ± 0.13
Spambase 3 71.69 ± 0.11 71.70 ± 0.10 66.55 ± 0.02 64.03 ± 0.00 71.69 ± 0.11 71.71 ± 0.11
Avg – 64.35 70.44 65.12 56.44 63.94 63.56
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Fig. 6   Classification accuracy line charts (5NN) compared with supervised and unsupervised algorithms
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Fig. 7   Classification accuracy line charts (CART) compared with supervised and unsupervised algorithms
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Fig. 8   Classification accuracy line charts (5NN) compared with semi-supervised algorithms
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Fig. 9   Classification accuracy line charts (CART) compared with semi-supervised algorithms
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algorithms, Semi-AI has achieved better classification accu-
racy results on most datasets. Moreover, Semi-AI has better 
adaptability to different missing rates, that is, it has better 
stability. Therefore, we can conclude that the proposed algo-
rithm is effective and robust.

5 � Conclusion

The work of this paper mainly has the following two contri-
butions. On the one hand, we define discernibility pair set 
in partially labeled decision information system as a crite-
rion for quantifying the discernibility ability of attributes. 
This provides researchers with a more intuitive perspective 
to evaluate the amount of information contained in attrib-
utes. On the other hand, we propose new fuzzy similarity 
relation and fuzzy discernibility relation between attributes 
by discernibility pairs. Further, we construct the concept of 
indiscernible attribute class which describes an indiscern-
ibility relationship among attributes. This provides a good 
direction for researchers to explore the relationships between 
attributes. Experimental results demonstrate the effective-
ness of the proposed algorithms compared with other repre-
sentative algorithms.

In the future, there are two main directions worth explor-
ing. On the one hand, influenced by the attribute clustering 
algorithm [13], the acquisition of the optimal indiscernible 
attribute class defined in this paper has the problem of high 
time complexity. Inspired by the gap neighborhood relation 
proposed by Zhou et al. [31] and the granular-ball rough set 
model proposed by Xia et al. [32, 33], we hope to explore an 
attribute reduction method in terms of relationships between 
attributes with adaptive neighborhood radius and low time 
complexity. On the other hand, since discernibility pairs can 
be regarded as the criterion for quantifying the discernibility 
ability of attributes, we hope to explore an attribute reduc-
tion method by combining discernibility pair with mutual 
information.
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