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Abstract
Images are inevitably degraded when captured due to the effects of noise, and thus denoising is required. Previous methods 
remove real-world noise, while also causing issues with over-smoothing image details and loss of edge information. To solve 
these issues, a multi-scale image denoising network (MSIDNet) is proposed in this paper. We design a residual attention block 
(RAB) to encode and decode the context well, while introducing a selective kernel feature fusion module to fuse multi-scale 
features and obtain rich contextual information from low-resolutions to restore more details. A feature extraction block (FEB) 
is designed to fully extract local and global features then fusion, which obtains rich feature information. Extensive experi-
ments on four real-world image datasets demonstrate that our method has excellent generalization and achieves advanced 
denoising performance on both peak signal-to-noise ratio and structural similarity. MSIDNet preserves more edge details 
and improves the over-smoothing issue to enhance the visual effect of denoised images.

Keywords Image denoising · Real-world · Multi-scale · Feature extraction · Residual learning

1 Introduction

Image denoising is a fundamental task in image processing. 
To acquire clean images, we need to remove noise from the 
degraded images [1]. The increased number of image cap-
ture devices and the use of different sensor sizes can intro-
duce noise to varying degrees. For example, mobile phone 
apertures are small and narrow, which tend to generate noise. 
The effectiveness of denoising influences the image quality, 
also benefits other computer vision works [2, 3] and compu-
tational tasks [4–7]. Image denoising has undergone a long 
development and is mainly divided into traditional denoising 
methods and deep learning-based denoising methods. Tra-
ditional denoising methods in the pre-development period 
needed a priori information about the noise and were opti-
mized by manually adjusting the parameters of the model 
[8–10]. Therefore, the traditional denoising methods had 
to consume a large number of computational resources and 
time, while the denoising performance was general. As the 

research of deep learning in image denoising, the denoising 
performance of images has been improved [11–13]. How-
ever, in these works, the experiments were performed using 
synthetic noisy images, whereas real-world noise is usually 
superimposed by multiple types, and the noise character-
istics and distribution are unknown. For real-world noisy 
images, some research works have achieved good results 
[14–21]. The recent state-of-the-art methods have further 
improved the denoising performance [22, 23]. These meth-
ods enhance the denoising capability, but cause problems of 
over-smoothing image details and loss of edge information.

In this paper, we propose a multi-scale image denoising 
network to solve the aforementioned problems. We design a 
residual attention block to improve context-awareness. The 
triplet attention [24] is further introduced in each residual 
attention block to adjust the feature weights so that the net-
work focuses more on the informative features. To make full 
use of global and local features, we design a feature extrac-
tion block combining the transformer block [25] and the 
residual block [26], and introduce a selective kernel feature 
fusion module [27] to effectively fuse features. Compared 
with other denoising methods, our method achieves superior 
denoising performance. In conclusion, our main contribu-
tions in this work include:
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• We propose a multi-scale image denoising network to 
remove noise effectively. The network is able to restore 
details from complex real-world noisy images by utiliz-
ing rich feature information.

• We propose the residual attention block to encode and 
decode the context, and we also employ triplet atten-
tion to obtain a more refined flow. In addition, a feature 
extraction block is further designed to obtain global and 
local features that complement each other.

• We conduct experiments qualitatively and quantitatively 
on four real-world noisy datasets. Experimental results 
demonstrate that our model achieves excellent denoising 
performance and generalization on all four datasets.

The rest of this paper is structured as follows. Section 2 
reviews common denoising methods. Section 3 presents our 
proposed denoising network in detail. In Sect. 4, we conduct 
quantitative and qualitative experiments on multiple data-
sets. Finally, we conclude this work.

2  Related work

2.1  Traditional denoising methods

Traditional denoising methods played an important role in 
the early stage. Representative methods such as NLM [8] 
utilized non-local self-similarity to iterate over all pixel 
points of an image for denoising. Combined with the above 
non-local methods, further research by Dabov et al. pro-
posed BM3D [9], which integrated several similar patches 
into a three-dimensional matrix by matching adjacent 
image patches and then conducted denoising. TWSC [10] 
was coded by three weight matrices for noise removal. 
The data used in these methods were synthetic noisy 
images. Although these traditional denoising methods were 
enhanced, the manual adjustment of the parameters and the 
complexity of the optimization algorithms consumed a large 
amount of time and computational resources.

2.2  Deep learning‑based denoising methods

In recent years, research on denoising algorithms based on 
deep learning techniques has developed rapidly. Some works 
[11–13] had tried to apply deep learning to the field of image 
denoising. These methods were still researched for specific 
types of synthetic noise, such as Gaussian noise. While these 
methods are able to fit most noise distributions, they do not 
effectively remove complex noise.

With further research in deep learning, several works 
[14–19] made progress in real-world noise. By capturing 
real-world noisy scene images to establish several noisy 
datasets [28–31], this facilitated the research of real-world 

image denoising. Path-Restore [20] used multiple path strat-
egies to dynamically restore different areas of the image. 
COLA-Net [21] worked with multiple attention mechanisms 
to restore the complex texture of an image. The recent state-
of-the-art methods, VDIR [22] and LIGN [23], divide the 
feature regions and then process for different regions to 
restore images. However, these methods do not deal well 
with problems that the image edge information is lost and 
details are too smooth.

3  Proposed method

In this section, we first present the overall architecture of 
the proposed MSIDNet. Then, the residual attention block 
and feature extraction block in the proposed network are 
described in detail. Finally, we state the loss function.

3.1  Architecture of the proposed MSIDNet

To achieve denoising of real-world images, we propose a 
multi-scale image denoising network (MSIDNet), the archi-
tecture is shown in Fig. 1. The noisy image first passes to 
a convolutional layer and then enters the designed feature 
extraction block (FEB) to obtain global and local features, 
while introducing selective kernel feature fusion (SKFF) 
[27] to effectively fuse those features. SKFF is based on a 
self-attention mechanism to aggregate weighting features. 
Then, we design the residual attention block (RAB) for cod-
ing and decoding to remove the noise and reconstruct the 
image texture. After three down-sampling operations, the 
feature information at different scales is then fused progres-
sively. Finally, the denoised image is obtained after a con-
volutional layer.

We implement down-sampling operations by using con-
volutions with kernel size two and step size two, and the 
number of channels is expanded with each down-sampling 
operation. The up-sampling operation is achieved by using 
PixelShuffle [32] and point-wise convolution. Using Trans-
posed convolution for up-sampling operation will lead to 
checkerboard artifacts [33]. We solve this problem by using 
PixelShuffle to better restore the information.

3.2  Residual attention block

Figure 2 shows the structure of our proposed residual atten-
tion block. In RAB, the input feature map fi ∈ ℝ

C×H×W is 
first convolved by two 3 × 3 convolutions to obtain shallow 
features, and the GELU activation function is used for non-
linear projection, where W, H, C represent width, height, 
number of channels, respectively. The GELU activation 
function combines a stochastic regularity method that makes 
the network enhance generalization and solves the gradient 
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disappearance problem [34]. Inspired by [35], we use a 5 × 5 
depth-wise convolution to blend the information in fi spa-
tial dimensions while expanding the receptive field without 
excessively increasing the computational effort, and then 
conduct Layer Normalization. Layer Normalization allevi-
ates the internal covariate shift problem and is not influenced 
by batch size [36]. Next, the information in each channel 
is blended by two point-wise convolutions and projected 
nonlinearly by the GELU activation function. Finally, we 
introduce triplet attention [24] to filter the more informative 
features to pass. Triplet attention consists of three branches, 
where the first two branches make the connection between 
the spatial dimension and the channel dimension by rotation 

operations, and the third branch is responsible for calcu-
lating the spatial attention weights. We further exploit the 
structure of local residual learning as a way to bypass less 
useful information such as low-frequency regions. Finally, 
the result fo ∈ ℝ

C×H×W of the RAB processing is obtained. 
The whole process can be described as follows:

where fi and fo denote input and output feature maps respec-
tively, and Conv3 denotes two 3 × 3 convolutions, and D 
denotes the 5 × 5 depth-wise convolution, and LN denotes 
the Layer Normalization, and Conv1 denotes two point-wise 

(1)fo = T(Conv1(LN(D(Conv3(fi))))⊕ fi)⊕ fi,

Fig. 1  Architecture of the proposed MSIDNet

Fig. 2  The detailed structure of RAB
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convolutions, and T denotes the triplet attention, and ⊕ 
denotes the element-wise addition.

3.3  Feature extraction block

The rich feature information facilitates real-world image noise 
removal. Transformer is excellent at global processing and has 
shown powerful advantages in tasks such as image classifica-
tion [37] and image segmentation [38]. Convolutional neural 
networks employ convolutional operations for effective local 
processing.

To utilize local and global feature information effectively, 
we introduce the transformer block [25] and the residual block 
[26] to design a feature extraction block. The transformer block 
is used to obtain global features, the residual block for getting 
local features, and finally the feature information is fused by 
SKFF. The structure is shown in Fig. 1.

3.4  Loss function

We use Charbonnier loss [39] to optimize our MSIDNet. Char-
bonnier loss contains a regularization term β, which can serve 
to speed up network convergence and improve performance. 
The formula is as follows [39]:

where I* denotes the ground-truth image, and I denotes the 
denoised image. β is a constant representing the regulariza-
tion term, which is empirically set to  10−3 for the experi-
ments in this paper.

4  Experiments

In this section, the denoising performance of our proposed 
model is evaluated both quantitatively and qualitatively, and 
ablation study is used to verify the effectiveness of modules.

4.1  Evaluation metrics

We use two metrics, structural similarity (SSIM) and peak 
signal-to-noise ratio (PSNR) [40], to quantitatively analyze 
the model denoising performance. The higher the PSNR is, 
the closer the SSIM is to 1, indicating that the denoised image 
is more similar to the ground-truth image and the model per-
forms better in denoising. The SSIM and PSNR formulas are 
as follows [40]:

(2)L(I, I∗) =

�
‖I − I∗‖2 + �2,

(3)

PSNR = 20 × log10

�
MAX[K(i, j)]

1

HW

∑H

i=1

∑W

j=1
[K(i, j) − P(i, j)]2

�
,

where W denotes the width, and H denotes the height, and 
P(i, j) denotes the pixel values at the location of the denoised 
image (i, j), and K(i, j) denotes the pixel values at the loca-
tion of the ground-truth image (i, j), and u1, u2 denote the 
mean values of K(i, j), P(i, j), and σ1, σ2 denote the variance 
of K(i, j), P(i, j), and σ1,2 denotes the covariance of K(i, j), 
P(i, j), and n1 = 0.01 and n2 = 0.02 are constants.

4.2  Experimental platform and datasets

Four real-world noisy image datasets SIDD [28], DND [29], 
PolyU [30], and RNI15 [31] are used to measure the network 
denoising performance. The SIDD dataset was captured by 
five different smartphones, which generate a lot of noise 
during image acquisition due to their small sensor size. The 
dataset has 320 noisy and noise-free image pairs for training 
the model, and 40 image pairs are cropped by the authors 
into 1280 pairs of 256 × 256 patches for testing the model’s 
performance. The DND dataset was acquired by four dif-
ferent consumer-grade cameras and consists of fifty pairs 
of noisy and noise-free image pairs. This author crops large 
size images into 1000 patches of size 512 × 512 for test-
ing and does not disclose the noise-free images, only by 
submitting denoising results to the official system to obtain 
SSIM and PSNR. The PolyU dataset was captured by five 
different cameras, and this author crops 40 pairs of noisy and 
noise-free image pairs into 100 pairs of 512 × 512 patches. 
RNI15 consists of 15 real-world noisy images with no cor-
responding noise-free images, so qualitative comparison 
experiments are performed on this dataset. We crop 96,000 
pairs in size 256 × 256 patches from the SIDD training set 
for training our model.

The model denoising performance is tested using sRGB 
images from four real-world noisy datasets and the PSNR is 
calculated on the RGB channel. We use the Pytorch frame-
work to build the network structure, and the main device 
used is the NVIDIA RTX 3080Ti. During training, we 
use the cosine annealing strategy to stabilize the learning 
rate reduction and optimize the network parameters with 
Charbonnier Loss and AdamW optimizer (β1 = 0.9, and 
β2 = 0.999), and our model is trained for a total of 80 epochs 
with the batch size of 12. The loss curve is shown in Fig. 3, 
where we can see that the loss value gradually decreases and 
stabilizes with increasing epoch number.

4.3  Quantitative comparison

We compare the denoising performance of our proposed 
model with thirteen excellent methods on four datasets, 

(4)SSIM =
(2u1u2 + n1)(2�1,2 + n2)

(u2
1
+ u2

2
+ n1)(�

2
1
+ �2

2
+ n2)

,
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among which ten blind denoising methods and three non-
blind denoising methods are tested, including COLA-Net 
[21], HI-GAN [19], C2N [17], Path-Restore [20], CBDNet 
[15], FFDNet [14], TWSC [10], DUBD [18], BM3D [9], 
DIDN [16], DnCNN [13], LIGN [23], VDIR [22]. Tables 1, 
2 and 3 list the PSNR and SSIM obtained for all models in 
the SIDD, DND, and PolyU datasets, respectively, where 
higher metrics indicate superior denoising performance of 
the models.

Specifically, the results in Table  1 demonstrate that 
our MSIDNet achieves the highest PSNR and SSIM (i.e., 
39.45 dB and 0.911) with the best denoising performance 
in the SIDD dataset, and that MSIDNet has 0.16 dB higher 
PSNR compared to the second ranking VDIR. In Table 2, 
our proposed MSIDNet achieves the second highest PSNR 
and SSIM values, and in Table 3, the highest PSNR is 
achieved, which shows that our method outperforms several 
other traditional methods and deep learning-based methods. 
Although COLA-Net performs fourth on the SIDD data-
set, it slips to the middle of the rankings on both the DND 
and PolyU datasets. Combining the three table observations 
demonstrates that our MSIDNet achieves significant per-
formance improvement over the three non-blind denois-
ing models of BM3D, TWSC, and FFDNet, moreover, our 
method does not require to pre-set the noise level, which is 
more convenient for practical applications.

CBDNet uses additional data for training, compared to 
MSIDNet, which we only train with the SIDD dataset, our 
model performs better in denoising on entire datasets, spe-
cifically, our MSIDNet is 8.67 dB higher than CBDNet on 
the SIDD dataset, 1.66 dB higher than CBDNet on the DND 
dataset, and 0.94 dB higher than CBDNet on the PolyU 
dataset.

DIDN ranks fourth in performance on the DND dataset, 
but is second to last in performance on the SIDD dataset, 
with a PSNR of only 24.07 dB and a SSIM of only 0.350, 
and is also fourth to last in performance on the PolyU data-
set. These results indicate that DIDN performs well only for 

Fig. 3  Loss changes during training

Table 1  Quantitative results on the SIDD dataset. The best and second-best are bold and underlined respectively

Methods DnCNN [13] DIDN [16] BM3D [9] DUBD [18] TWSC [10] FFDNet [14] CBDNet [15]

PSNR 23.66 24.07 25.65 25.96 26.16 29.20 30.78
SSIM 0.583 0.350 0.685 0.442 0.483 0.594 0.744
Blind/non-blind Blind Blind Non-blind Blind Non-blind Non-blind Blind
Methods Path-Restore [20] C2N [17] HI-GAN [19] COLA-Net [21] LIGN [23] VDIR [22] MSIDNet (Ours)
PSNR 34.69 35.46 38.47 38.62 39.14 39.29 39.45
SSIM 0.869 0.878 0.900 0.900 0.907 0.908 0.911
Blind/non-blind Blind Blind Blind Blind Blind Blind Blind

Table 2  Quantitative results on the DND dataset. The best and second-best are bold and underlined respectively

Methods DnCNN [13] BM3D [9] C2N [17] FFDNet [14] TWSC [10] CBDNet [15] Path-Restore [20]

PSNR 32.43 34.51 37.28 37.61 37.94 38.06 39.00
SSIM 0.790 0.850 0.923 0.941 0.940 0.942 0.953
Blind/non-blind Blind Non-blind Blind Non-blind Non-blind Blind Blind
Methods COLA-Net [21] HI-GAN [19] DUBD [18] DIDN [16] VDIR [22] LIGN [23] MSIDNet (Ours)
PSNR 39.07 39.32 39.37 39.62 39.63 39.90 39.72
SSIM 0.949 0.952 0.952 0.953 0.953 0.959 0.954
Blind/non-blind Blind Blind Blind Blind Blind Blind Blind
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denoising a particular dataset and has poor generalization 
ability. The recent method LIGN is in the high performance 
for both SIDD and DND datasets, but the performance 
drops dramatically to the middle when dealing with PolyU 
dataset, which indicates that although LIGN is effective in 
dealing with most datasets, it performs poorly in denoising 
when dealing with a particular dataset. Such phenomenon is 
also seen in Path-Restore, C2N, VDIR, and FFDNet, which 
have unstable denoising performance, in comparison to our 
MSIDNet is performs well.

The quantitative experimental results demonstrate that 
our proposed MSIDNet performs optimally compared to 
thirteen other image denoising methods.

4.4  Qualitative comparison

As shown in Figs. 4, 5, 6, and 7, the qualitative compari-
son results on the SIDD, DND, PolyU, and RNI15 data-
sets are presented sequentially to demonstrate the superior 
performance of our proposed MSIDNet. As can be seen in 
Fig. 4, the numbers and letters on the wooden blocks become 
blurred and the edge contours are lost due to the noise, 
resulting in a very poor visual effect of the image. Among 
these methods, DIDN, DUBD, TWSC, FFDNet, BM3D, and 
DnCNN do not restore the image effectively, which not only 
leaves a lot of noise in the image but also creates artifacts. 
The remaining methods remove noise from the image but 
also cause loss of image detail and edge information, of 
which CBDNet is the most severe with the figures on the 
wooden blocks being the least sharp. Our MSIDNet results 
are the most similar to the ground-truth images, producing 
the clearest images.

Figure 5 shows the qualitative comparison results for the 
stone pillar images from the DND dataset. The carving on 
the surface of the stone column is uneven, making it very 
difficult to remove the noise from the image. Most of the 
methods do not effectively remove the noise from the images 
and perform poorly. Among them, TWSC loses most of the 
sculpted shapes, leaving many over-smoothing regions in the 
image. C2N and DnCNN not only lose the sculptural texture, 
but also generate artifacts in the image, which makes the 

image more blurred. Compared to other methods, our pro-
posed model can retain more details of stelae carvings while 
removing noise, and thus has the most outstanding visual 
effect. Figure 6 presents the results of the qualitative com-
parison of the leaf images on the PolyU dataset. As can be 
seen from the denoising results, Path-Restore and CBDNet 
cause the color of the wall behind the leaf to change, which 
makes the image content inaccurate. DnCNN and FFDNet 
generate severe over-smoothing phenomena while denois-
ing. Although the PSNR of C2N is close to our MSIDNet, 
C2N causes the texture details and edge information of the 
leaves to be lost, while our MSIDNet closely resembles the 
original leaf image with excellent denoising performance. 
Figure 7 lists the qualitative comparison of three different 
scenarios from the RNI15 dataset. By looking at the eyes of 
the dog, the border of the window, and the pillar of the lamp, 
we can see that BM3D produces artifacts that severely affect 
the image and cause the image quality to degrade. Although 
DIDN and COLA-Net remove most of the noise, there are 
still remaining noise influences and image details are lost. 
Since the RNI15 dataset is without ground-truth images, we 
introduce the natural image quality evaluator (NIQE) [41] to 
evaluate the image quality. A smaller NIQE value indicates a 
better overall naturalness of the image. Our method has the 
smallest NIQE in all scenes. The results demonstrate that 
our method performs optimally in all scenes.

The characteristics of the image noise in the SIDD, DND, 
RNI15, and PolyU datasets are different depending on the 
capturing device and method. We use only the SIDD dataset 
to train the proposed MSIDNet, which performs well on all 
four datasets, demonstrating the excellent generalization of 
our model.

4.5  Ablation study

To demonstrate that the proposed RAB and FEB are effec-
tive, ablation studies are conducted for each of these two 
blocks. The SIDD dataset and model parameters for the 
ablation study are the same as in the previous experi-
ments. Table 4 lists the results obtained by replacing the 
RAB with the residual block [26] and the dense block 

Table 3  Quantitative results on the PolyU dataset. The best and second-best are bold and underlined respectively

Methods Path-Restore [20] DnCNN [13] BM3D [9] DIDN [16] TWSC [10] CBDNet [15] COLA-Net [21]

PSNR 31.73 34.29 35.44 36.00 36.09 36.29 36.33
SSIM 0.914 0.912 0.940 0.911 0.917 0.954 0.944
Blind/non-blind Blind Blind Non-blind Blind Non-blind Blind Blind
Methods FFDNet [14] LIGN [23] HI-GAN [19] VDIR [22] C2N [17] DUBD [18] MSIDNet (Ours)
PSNR 36.42 36.60 36.76 36.84 36.95 37.01 37.23
SSIM 0.933 0.924 0.951 0.934 0.950 0.941 0.947
Blind/non-blind Non-blind Blind Blind Blind Blind Blind Blind
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[42], respectively. As can be seen from the results, com-
pared to RAB, the PSNR of the residual block decreases 
by 0.34 dB and the SSIM decreases by 0.005, the PSNR 
of the dense block decreases by 0.4 dB and the SSIM 
decreases by 0.004, demonstrating the optimal perfor-
mance of our block. Table 5 shows that without FEB, the 
PSNR decreases by 0.28 dB and the SSIM decreases by 
0.004, and the experimental results demonstrate that our 
designed blocks are effective.

4.6  Limitations

Real-world noise is often superimposed on multiple types, 
and it is challenging for the network to restore clean images 
in blind denoising. The results of the comparison experi-
ments illustrate that the performance of our proposed 
network needs further improvement. Optimization of the 
network structure is beneficial for improving the feature 
extraction ability and enhancing the discrimination between 

Fig. 4  Qualitative comparison 
of image denoising results from 
the SIDD dataset
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noise and texture information. Using the latest data enhance-
ment and transfer learning techniques to improve robustness 
of the network can make better use of the limited real-world 
dataset.

4.7  Application for object detection

In this section, we apply the denoised images to the object 
detection task and let the different methods be further com-
pared. Since there is no object detection dataset containing 
real-world noise, we use the PolyU dataset for labeling. 
There are three classes: person, lock, and leaf. We use the 

denoised images of different methods to train YOLOv5 
[43] respectively, and the results are shown in Table 6. Dif-
ferent experimental results were obtained using denoised 
images from various methods with the same settings. From 
the results, we can see that the denoised images are more 
beneficial for object detection than the noisy images, and 
the metrics are improved. Our MSIDNet achieves the 
highest in precision, mAP@0.5, and mAP@0.5:0.95 met-
rics. Experimental results demonstrate that our method 
preserves the image information well after denoising and 
performs well when applied to object detection.

Fig. 5  Qualitative comparison 
of image denoising results from 
the DND dataset
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5  Conclusion

We propose a multi-scale image denoising network for 
removing real-world noise, named MSIDNet. Multi-scale 
features between layers are fully exploited by fusion mech-
anisms that enhance network context-awareness. The FEB 
further complements feature information by fusing global 

and local features to exploit their complementary nature. 
Qualitative and quantitative comparison experiments 
demonstrate that MSIDNet performs well. The denoised 
image preserves more edge details and improves the over-
smoothing problem, which enhances the visual effect. In 
the future, we will deepen our research on real-world noise 
and further improve the network denoising effect.

Fig. 6  Qualitative comparison 
of image denoising results from 
the PolyU dataset
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Fig. 7  Qualitative comparison 
of image denoising results from 
the RNI15 dataset

Table 4  RAB vs residual block and dense block

Methods Dense Block Residual Block RAB

PSNR 39.05 39.11 39.45
SSIM 0.907 0.906 0.911

Table 5  Ablation of FEB Methods Without FEB FEB

PSNR 39.17 39.45
SSIM 0.907 0.911

Table 6  Comparison of object detection results. The best and second-
best are bold and underlined respectively

Methods Precision Recall mAP@.5 mAP@.5:.95

Noisy 0.408 0.524 0.524 0.282
BM3D [9] 0.435 0.565 0.590 0.302
DIDN [16] 0.454 0.665 0.557 0.308
C2N [17] 0.545 0.578 0.650 0.338
COLA-Net [21] 0.595 0.618 0.642 0.326
DUBD [18] 0.605 0.667 0.634 0.336
MSIDNet (ours) 0.669 0.543 0.651 0.343
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