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Abstract
In multi-label learning, learning specific features for each label is an effective strategy, and most of the existing multi-label 
classification methods based on label-specific features commonly use the original feature space to learn specific features for 
each label directly. Due to the problem of dimensionality disaster in the feature space, it may not be the optimal strategy to 
directly generate the specific feature of the label in the original feature space. Therefore, this paper proposes a multi-label 
learning framework that joins neural networks and label-specific features. First, the neural network projects the original 
feature space to a low-dimensional mapping space to learn potential low-dimensional feature space representations, and this 
nonlinear feature mapping can mine the potential feature information inside the complex feature space. Then, in the low-
dimensional mapping space, specific features of the labels are learned using empirical minimization loss. Finally, a unified 
multi-label classification model is constructed by considering label correlation and instance similarity issues. Extensive 
experiments are conducted on 12 different multi-label data sets and demonstrate the better generalizability of our proposed 
approaches.
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1  Introduction

In traditional supervised learning, there is a one-to-one cor-
respondence between data samples and category labels, that 
is, a single data sample is only associated with one category 
label. However, in the reality, objects tend to have multiple 
semantics. For example, a picture can be annotated as “blue 
sky”, “white clouds” and “lake” simultaneously, and there 
may be a strong correlation among labels. Nowadays, multi-
label learning has become one of the important research 
hotspots in data mining and machine learning, and its main 
task is to assign the corresponding category labels to the 
objects to be classified. Researchers have enthusiastically 
proposed many mature multi-label classification algorithms, 
which have been widely applied in various research areas. 

For example, text classification [1], image annotation [2, 3], 
bioinformatics [4, 5] etc.

Multi-label classification algorithms are often classified 
into the following two categories [6]: problem transforma-
tion methods and algorithm adaptive methods. Specifically, 
the problem transformation approach transforms a multi-
label learning problem into one or more traditional single-
label learning problems. Its representative algorithm, such 
as BR [7], the core idea is to decompose the multi-label 
learning problem into several unrelated single-label learn-
ing problems, and then use mature and advanced methods 
to take effective solutions to these learning subtasks. Algo-
rithm adaptive methods improve the traditional supervised 
learning algorithms to be applicable to the prediction of 
multi-label data. The representative algorithm is ML-KNN 
[8], which classifies the predicted samples based on the 
Maximum A Posteriori Probability rule using the label 
information of the sample’s neighboring locations. How-
ever, all of them ignore the correlation between labels, which 
reduces the learning effect of multi-label classification mod-
els. Therefore a large number of correlation-based methods 
have been proposed one after another. Based on the differ-
ent label correlation strategies, the multi-label classification 

 *	 Dong Sun 
	 sundong@ahu.edu.cn

	 Ling Jia 
	 lingjiash@163.com

1	 School of Electrical Engineering and Automation, Anhui 
University, Hefei, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-022-01692-7&domain=pdf


1162	 International Journal of Machine Learning and Cybernetics (2023) 14:1161–1177

1 3

algorithms can be classified into first-order strategy [7, 8], 
second-order strategy [9, 10], and higher-order strategy [11, 
12] respectively.

Similar to single-label classification, the feature space 
of multi-label classification is usually high-dimensional, 
which easily causes the problem of dimensional catastrophe. 
Recently, many dimensionality reduction methods have been 
applied to multi-label classification tasks [13, 14]. These 
methods are mostly based on the fact that each label has the 
same feature space. In real life, however, each label may 
be determined by its unique subset of features. For exam-
ple, in image classification, color-based features are most 
beneficial to distinguishing between blue sky and white 
clouds in images. While texture-based features are most 
helpful to distinguish between desert and hills. To solve the 
above problems, many new algorithms have been proposed 
to select a set of feature subsets with good distinguishing 
characteristics, and effectively eliminate the redundant fea-
tures in the correlation features [15–17], so as to achieve the 
reduction of feature dimensionality and improve the accu-
racy of the classification model, while the specific feature 
subsets extracted are more beneficial to the classification 
effect of the model.

With the rapid development of deep learning, neural net-
work-based modeling methods have greatly promoted the 
progress of multi-label classification research. The neural 
network is formed by connecting many neurons with adjust-
able connection weights and has good self-organization 
and self-learning capabilities. Zhang et al. [18] developed 
a backpropagation algorithm for multi-label learning(BP-
MLL), which is an adaptation of traditional multilayer feed-
forward neural networks for multi-label data. The core idea 
is to capture the features of multi-label learning by minimiz-
ing the global error function. Marilyn et al. [19] proposed a 
bidirectional neural network structure to learn the correla-
tion among labels. Other CNN and RNN-based neural net-
work algorithms are adapted to solve multi-label prediction 
problems [20–22].

In summary, existing multi-label classification methods 
have achieved good achievements in capturing information 
from original data and in establishing correlations between 
labels. However, the following three challenges exist:

•	 Most of the previous research methods mainly used the 
same feature data set to represent each category label, 
which not only increased the complexity of calculation 
but also was not conducive to distinguishing and express-
ing the attribute information of each label.

•	 Existing multi-label learning algorithms are trained and 
predicted on multi-label datasets in the original feature 
space. With the explosive growth of feature dimensions, 
it will become very challenging to capture the internal 
laws of the instance feature space. Such learning may 

lead to an over dimensionality of the feature space that 
is difficult to visualize.

•	 Although considering the interrelationship among labels 
can improve the classification accuracy, as yet the intrin-
sic correlation among different instance samples is often 
ignored, and mining the correlation information of the 
instances can facilitate the training effect of the model 
and achieve the purpose of improving the classification 
performance.

In order to solve the above-mentioned problems, in this 
paper, we propose an algorithm to learn label-specific fea-
tures via neural network for multi-label classification(LLFN). 
First, we represent the original feature space of the input 
data by a neural network with a low-dimensional map-
ping:

X →
∧

X
 , and this nonlinear feature mapping can mine 

the feature information inside the complex feature space, 
visualize high-dimensional data and maintain the topology 
of the input space structure. According to this internal fea-
ture space information, we then employ the common squared 
minimization loss function to model the basic framework for 
label-specific feature learning. Based on this, we also intro-
duce label correlation and instance similarity to optimize 
the model. A unified end-to-end multi-label classification 
framework is finally constructed. The specific model dia-
gram is shown in Fig. 1.

The main contributions of the research in this paper are 
as follows:

•	 Different from the traditional multi-label classification 
method, this paper uses a single hidden layer neural net-
work to learn the latent representation of the feature and 
extracts the specific feature of the label in the latent fea-
ture space.

•	 This is an end-to-end multi-label classifier with a label-
specific feature-based joint learning model.

•	 Experimental results on 12 widely used datasets show 
that our proposed method achieves some advantages over 
the state-of-the-art algorithms.

The rest of the paper is organized as follows. Section 2 pro-
vides extensively referenced work, giving an introduction 
to previous neural network multi-label learning algorithms 
and multi-label specific feature learning. The LLFN algo-
rithm process is introduced in Sect. 3. Section 4 presents the 
experimental results and experimental analysis, and finally, 
the paper is summarized in Sect. 5.
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2 � Related work

2.1 � Neural network multi‑label learning

Neural networks have a widespread application in multi-
label learning, and many algorithms for neural network 
multi-label learning have been generated in the past dec-
ade or so. Zhang et al. [18] were the first to propose the 
application of neural networks to multi-label classification 
and achieved good results compared to traditional machine 
learning methods. This paper used the backpropagation of 
multi-label learning(BP-MLL) neural network algorithm, 
which captures the features of multi-label learning by mini-
mizing the inter-label sorting error. However, for large-scale 
multi-label text classification, the BP-MLL algorithm shows 
limitations. Nam et al. [20] proposed a single hidden layer 
of neural network architecture. The model replaces the rank-
ing loss minimization with a cross-entropy error function 
on basis of BP-MLL. It demonstrates that a simple network 
configuration makes the model scale better and is more suit-
able for large-scale text classification tasks. Subsequently, 
Zhang [23] also proposed an RBF neural network-based 
multi-label learning algorithm, in which the k-means clus-
tering analysis of the instances is first performed by the first 
neural network layer, and the center of mass of the clus-
tering group is used for the prototype vector of the basis 
function; then the error function is minimized to learn the 
second ML-RBF layer weights. In this way, we can make 
full use of prototype vector encoding information to opti-
mize the output neuron weights. Lu et al. [24] propose a 
method that uses a combination of fuzzy logic technique and 
DNN. The deep fuzzy hashing network (DFHN) automati-
cally generates more effective image features for accurate 

prediction and classification of image datasets. In addition, 
autoencoders can automatically learn features of data sam-
ples [25, 26], Based on this mind, Chen et al. [27] proposed 
a kernel limit learning machine based auto-encoder based 
multi-label learning algorithm, which improves multi-label 
classification performance by reconstructing the label space 
information with auto- encoder networks, and improved gen-
eralizability of the model.

Moreover, convolutional neural networks(CNN) [21, 
28, 29] and recurrent neural networks(RNN) [20, 30, 31] 
are increasingly used in the field of multi-label learning. 
Liao et al. [21] proposed a multi-label learning algorithm 
based on convolutional neural networks and fully initialized 
connections. It is a sequence-to-sequence multi-label clas-
sification model using encoders and decoders. In this, the 
encoder is used to encode semantic information using neu-
ral networks and attention mechanisms. The decoder com-
bines LSTM and initialized fully connected layers to mine 
the global correlation and local correlation of the labels. 
Chen et al. [31] proposed a recurrent neural network-based 
multi-label classification architecture for images, which 
introduces the LSMT model and reflects the dependen-
cies between labels through a visual attention mechanism. 
In [22], the authors propose a unified multi-label learning 
framework that combines the advantages of CNN and RNN 
for image/label embedding. The semantic label dependen-
cies and image-label interrelationships can be learned. The 
semantic features are first extracted from the images by the 
CNN part, and then the label dependencies and the picture-
label interrelationships are modeled using the RNN part to 
better predict the probability of labels.

Fig. 1   Model framework of LLFN
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2.2 � Label‑specific features learning

In multi-label learning, most of the existing algorithms deal 
with datasets with the same features, however, this is not the 
most ideal way, as each label tends to have its own inher-
ent feature properties. LPLC-LA [32] is a learning method 
based on extracting label-specific features for obtaining local 
positive and negative label correlations and addresses the 
label imbalance problem using perceptual weights between 
labels. The above algorithm considered the feature-to-feature 
dependency but failed to reasonably and effectively elimi-
nate the redundant features in the feature space. Bidgoli et al. 
[33] proposed a new multi-objective optimization method to 
reduce the complexity of the model by reducing the number 
of features; meanwhile, based on correlation analysis and 
redundancy analysis, it can effectively eliminate the redun-
dancy in related features, thereby improving the classifica-
tion performance.

Also for label space, using the correlation among labels 
to guide feature selection can greatly improve the classi-
fication performance [16, 34–36]. Huang et al. [16] argue 
that the strength of correlation among labels is potentially 
correlated with the magnitude of similarity among features, 
based on which label-specific features are learned by a linear 
regression model. To some extent, the method proves to fully 
exploit the correlation of the labels, and improve the perfor-
mance of the multi-label learning algorithm. GLOCAL [36] 
effectively solves the problem of global labels and missing 
labels by considering global label correlation and shared 
local label correlation.

In multi-label learning, besides using the potential rela-
tionship between labels to provide additional information 
for multi-label learning, the samples are also correlated 
with each other [37, 38], Jie et al. [37] proposed a popular 
regularization-based multi-task feature selection learning 
method (MTFS), which considers instance similarity by 
introducing a popular Laplace-based regularization. Han 
et al. [38] proposed a multi-label learning algorithm that 
uses correlation information to learn specific features of 
labels (LSF-CI). LSF-CI considers that if two instances in 
feature space have a strong correlation, their corresponding 
labels will be similar.

In the previous research on multi-label learning meth-
ods, neural network algorithms have been widely used, and 
in recent years, a large number of multi-label classification 
methods that combine label-specific features, label correla-
tion, and instance similarity have been proposed. However, 
most algorithms extract label-specific features in the origi-
nal feature space, which is possibly not the most optimal 
strategy. Therefore, in this paper, we propose a neural net-
work to map the original feature space into the embedded 
feature space of labels and then perform label-specific fea-
ture extraction in the embedded feature space, and finally, 

the performance and generalization of the algorithm are 
improved by introducing label correlation and instance 
similarity.

3 � Proposed approach

3.1 � Preliminaries

In multi-label learning, the input feature space is assumed to 
be represented as X =

[
x1,… , xn

]T
∈ ℝ

n×p , and represent the 
output label matrix space as Y =

[
y1,… , yn

]T
∈ ℝ

n×l , and the 
training dataset with n examples is D =

{
(xi, yi) ∣ 1 ≤ i ≤ n

}
 . 

Denote the p-dimensional feature vector by xi =
[
xi1,… , xip

]
 , 

xi ∈ X , and yi =
[
yi1,… , yil

]
 is a l-dimensional real-valued 

label vector. If the label yi is associated with xi , then each 
element yij = 1 , otherwise yij = 0 . The task of MLL involves 
learning a function h ∶ X → 2Y from the multi-label set of 
training that predicts the confidence of each label by the 
mapping function h(⋅) for any invisible instance x ∈ X.

3.2 � Learning multi‑label specific features based 
on neural networks

As mentioned above, each category label has its own specific 
features. However, in previous studies, the specific feature 
of the label is a subspace filtered from the original feature 
space, and the subspace is relatively sparse compared to 
the original feature space. As shown in Fig. 1, we propose 
a potential mapping representation of instance features 
obtained by a low-dimensional mapping of the input feature 
space by a neural network. The neural network structure 
in Fig. 1 includes an input layer X , an output layer Y , and 
a hidden layer, where the weight coefficient matrices con-
nected to the hidden layer are W1 and W2 , respectively. In 
this paper, the activation function of the hidden layer is the 
hyperbolic tangent function tanh (⋅) . Our model can be ini-
tially expressed as

The first term in Eq. 1 is the squared loss term of the com-
bined neural network. where W1 ∈ ℝ

p×d denotes the weight 
matrix of neuronal connections between the hidden and 
input layers, and W2 ∈ ℝ

d×l is the weight matrix between 
the hidden and output layers. The second term is the l1-norm 
regularization term that simulates the sparsity of specific 
features of the label, and � is the parameter that controls its 
sparsity. The third term is a regularization term that controls 
the complexity of the model, and � is its weight coefficient. 
Moreover, combining Fig. 1 and Eq. 1, it can be found that 

(1)min
W1,W2

1

2
‖‖tanh(XW1)W2 − Y‖‖2F + �‖‖W2

‖‖1 +
�

2
‖‖W1

‖‖2F
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W1 aims at a low-dimensional data representation of the 
original feature space with a nonlinear mapping through the 
activation function. W2 aims to learn label-specific features 
naturally by reserving non-zero feature elements for each 
label.

3.3 � Combining Label Correlations

In multi-label learning, considering label correlation can 
improve the classification performance of multiple labels. 
From the work in [16], if two labels have strong correlations, 
the features contained in one of the labels should be very 
close to the features possessed by the other label. That is, if 
the labels yi and yj are strongly correlated, the similarity 
between the coefficient vector w2i

 and w2j
 will be large, oth-

erwise, the similarity will be small. After introducing label 
correlation, the objective function is obtained as

where R = 1 − C , The element Cij in C represents the simi-
larity between the label yi and the label yj . Because the label 
matrix Y is a binary variable, and the Hamming distance is a 
good way to measure the similarity of binary variables [39, 
40], the Hamming distance is used to calculate the label 
correlation.

3.4 � Combining instance similarities

Equation 2 only considers the relationship between labels, 
and the potential relationship between instances is ignored. 
From [37, 38], Considering the dependency among 
instances, the distribution information of data samples can 
be retained to the maximum extent. Introducing the instance 
similarity regularization term �(W1) , Eq. 2 can be opti-
mized as

�(W1) can be defined as

where Sij is the similarity between the i-th and j-th instances, 
L is the graph Laplacian matrix of the k-nearest neighbor 
graph S , L = D − S , Dii =

∑n

j=1
Sij , specifically, can be 

expressed as

(2)
min
W1,W2

1

2
‖‖tanh(XW1)W2 − Y‖‖2F +

�

2
tr(W2RW2

T )

+ �‖‖W2
‖‖1 +

�

2
‖‖W1

‖‖2F

(3)
min
W1,W2

1

2
‖‖tanh(XW1)W2 − Y‖‖2F +

�

2
tr(W2RW2

T )

+ �‖‖W2
‖‖1 + �

2
�(W1) +

�

2
‖‖W1

‖‖2F

(4)

�
(
W1

)
=

1

2

∑
i,j

‖‖‖W1

Txi −W
1

T
xj
‖‖‖
2

2
Sij = tr((XW1)

T
LXW1)

From Eq. 5, if there is a strong similarity between xi and xj , 
then the distance between them will be smaller, otherwise, 
the distance between instances will be larger. Therefore, 
considering the instance similarity regularization term, i.e., 
minimization �(W1) can be more accurately solved for the 
coefficient matrix W1 , Eq. 4 can further be formulated as

where �, �, � , and � are all positive constants, and their val-
ues are determined by five-fold cross-validation on the train-
ing data set.

3.5 � Optimization of LLFN model

There are two model coefficients W1 and W2 to be optimized 
in Eq. 6. Obviously, it is very difficult to optimize them at 
the same time. Therefore, we use alternate optimization 
techniques to optimize W1 and W2 . Specifically, first, fix W1 , 
use the accelerated proximal gradient method to optimize 
W2 , then fix W2 , use the gradient descent algorithm to opti-
mize W1 , and finally obtain the optimal W1 and W2.

1. Fix W1 , update W2

When W1 is fixed, the objective function of optimizing 
W2 can be further written as

It can be seen that Solving W2 in problem Eq. 7 is a convex 
optimization problem, but since the learning objective W2 
of the model in this paper with l1-norm regularization term, 
resulting in W2 is non-smooth and cannot be solved directly 
by deriving the derivative. Therefore, according to the lit-
erature [41], this paper uses Accelerated Proximal Gradient 
(APG) to solve the model parameters W2.

The convex optimization problem is generally divided 
into two parts by APG, and the equation is expressed as 
follows

where H denotes the Hilbert space, f (W2) is a smooth con-
vex function and g(W2) is a non-smooth convex function. 
For f (W2) satisfying the Lipschitz condition, then for any 
matrix W21

 and W22
 have

(5)Sij =

{
exp

(
−

|xi−xj|2
�2

)
xi ∈ NK(xj) or xj ∈ NK(xi)

0 otherwise

(6)

f (W) = min
W1,W2

1

2
‖‖tanh(XW1)W2 − Y‖‖2F +

�

2
tr(W2RW2

T ) + �‖‖W2
‖‖1

+
�

2
tr((XW1)

T
LXW1) +

�

2
‖‖W1

‖‖2F

(7)
min
W1,W2

1

2
‖‖tanh(XW1)W2 − Y‖‖2F

+
�

2
tr(W2RW2

T ) + �‖‖W2
‖‖1

(8)min
W2∈H

F
(
W2

)
= f

(
W2

)
+ g

(
W2

)
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where Lf  is the Lipschitz constant,�W2 = W21
−W22

 . In 
accelerated gradient descent it is necessary to introduce 
Q
(
W2,W

(t)

2

)
 to quadratic approximation F

(
W2

)
 , instead of 

direct minimization F
(
W2

)
 , Q

(
W2,W

(t)

2

)
defined as

When

Then Eq. 10 can be written as

From Eqs. 7 and 8, f
(
W2

)
 and g

(
W2

)
 are further expressed 

as

Then according to Eqs. 12, 13, and 14 coefficient matrix W
2
 

can be optimized by

In [42], let W(t)

2
= W2t

+
bt−1−1

bt
(W2t

−W2t−1
) , W2t

 and W2t−1
 

here are the coefficient matrices of the t-th and t − 1-th itera-
tions respectively. When the sequence bt is satisfied 
b2
t+1

− bt+1 ≤ b2
t
 , the convergence rate of the algorithm can 

be increased to O
(
t−2

)
 . Since g(W2) is l1-norm, the iterative 

solution for W2 is as follows

where S�[⋅] is the soft-threshold operator, for each element 
Wij and � =

�

Lf
0 , the soft-threshold operator is defined as

(9)
‖‖‖∇f (W21

) − ∇f (W
22
)
‖‖‖ ≤ Lf

‖‖�W2
‖‖

(10)

Q(W2,W2

(t)) = f (W
2

(t))

+ ⟨∇f (W2
(t)),W2 −W2

(t)) +
Lf

2

���W2 −W2
(t)���

2

F
+ g(W2)

(11)G
(t) = W2

(t) −
1

Lf
∇f (W

2

(t))

(12)

W2 = argmin
W2

Q(W2,W2
(t)) = argmin

W2

g(W2) +
Lf

2

‖‖‖W2 − G
(t)‖‖‖

2

F

(13)
f (W2) =

1

2
‖‖tanh(XW1)W2 − Y‖‖2F +

�

2
tr(W2RW2

T )

+
�

2
tr((XW1)

T
LXW1) +

�

2
‖‖W1

‖‖2F

(14)g(W2) = �‖‖W2
‖‖1

(15)W2 = argmin
W2

1

2

‖‖‖W2 − G
(t)‖‖‖

2

F
+

�

Lf

‖‖W2
‖‖1

(16)W2t+1
= S�

[
G

(t)
]
= argmin

W2

�‖‖W2
‖‖1 + 1

2

‖‖‖W2 − G
(t)‖‖‖

2

F

(17)S𝜀
�
G

(t)
�
=

⎧⎪⎨⎪⎩

wij − 𝜀 if wij > 𝜀

wij + 𝜀 if wij < −𝜀

0 otherwise

Next, verify the Lipschitz continuity of Eq. 7, and according 
to Eq. 7, let M = tanh

(
XW1

)
,∇f

(
W2

)
 is

Given W21
 and W22

 , we obtain

where �W2 = W21
−W22

 , �max(⋅) is the maximum value of 
singularity of the given matrix. In summary, we can get

In short, the Lipschitz constant is

2. Fix W2 , update W1

When W2 is fixed, the objective function of updating W1 
is written as

The gradient descent algorithm is used to solve for W1 , and 
the derivative of W1 for the above equation can be obtained 
as

Where ⊙ is the Hadamard product operator, then the updated 
W1 is

Based on the above iterative optimization process, the 
specific iterative solution procedure is summarized in 
Algorithm 1.

(18)∇f
(
W2

)
=MT

MW2 −M
T
Y + �W2R

(19)

���∇f
�
W21

�
− ∇f

�
W22

����
2

F
=
���M

T
MW2 − �W2R

���
2

F

≤ 2
���M

T
M�W2

���
2

F
+ 2����W2R

��2F
≤ 2

���M
T
M
���
2

2

���W2
��2F + 2‖�R‖2

2
���W2

��2F
=

�
2
���M

T
M
���
2

2
+ 2‖�R‖2

2

�
���W2

��2F
=
�
2�2

max

�
M

T
M
�
+ 2�2

max
(�R)

����W2
��2F

(20)
‖‖‖∇f

(
W21

)
− ∇f

(
W22

)‖‖‖
2

F
≤
(
2�2

max

(
M

T
M
)

+2�2
max

(�R)
)‖‖�W2

‖‖2F

(21)Lf =

√
2�2

max

(
M

T
M
)
+ 2�2

max
(�R)

(22)
min
W1,W2

1

2
‖‖tanh(XW1)W2 − Y‖‖2F +

�

2
tr((XW1)

T
LXW1)

+
�

2
‖‖W1

‖‖2F

(23)
∇f

(
W1

)
= X

T (1 −M ⊙M)
(
MW2W

T

2
− 2YWT

2

)

+ 𝜆XT
LXW1 + 𝛾W1

(24)W1 = W1 − �∇f (W1)
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The nonzero entities W2i
 are considered as label-specific 

features of yi , which are used as inputs to the classification 
algorithm with multi-labels, and then the binary classifier 
BSVM is used to achieve multi-label classification. The pro-
cedure is summarized in Algorithm 3.

3.6 � Complexity analysis

The time complexity of LLFN consists of two main com-
ponents: the algorithm initialization and the iterative pro-
cess. The complexity of updating the weight matrix W20

 
of the model in initialization is O(np2 + npl + p3 + p2l) , 
the complexity of the computing label similarity matrix is 
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O(nl2) , and the graph Laplacian matrix L requires O(n2d) . 
During the iteration, the complexity of computing the Lip-
schitz constant Lf  is O(npd + nd2 + d3 + nl2 + l3) , and the 
focus in the loop process is to compute ∇f (W

1
) . Which is 

obtained from Eq. 23 as O(npd + nd2 + d2l + ndl + dl2) . In 
summary, the complexity of ∇f (W1) and Lf  is relatively the 
highest time complexity, and if the time complexity of the 
initialization process is relatively low, then the overall com-
plexity has to be the higher order of magnitude part of the 
time complexity. Furthermore, because Lf  only needs to be 
calculated once, so the complexity of the whole algorithm 
is O(npd + nd2 + d2l + ndl + dl2) . Meanwhile, we also com-
pare the time complexity of the LLFN algorithm with LLSF, 
LSML, JLCLS, and BDLS algorithms. From the work in 
[16, 34, 43, 44], it can be seen that the time complexity of 
LLSF is O

(
d2 + dl + l2 + nd + nl

)
 , the complexity of LSML 

is O
(
(n + l)d2 + (n + d)l2 + dnl + l3 + d3

)
 , the complexity of 

JLCLS is O
(
(n + 1)

(
d2l2 + nl2 + nd2l

)
+ d3 + l3

)
 , and the 

complexity of BDLS is O((n + d + l)ldt) . The comparison 
finds that the algorithm proposed in this paper is competitive 
with other algorithms in terms of time efficiency.

4 � Experiment

In this section, to verify the competitiveness and extensive-
ness of our proposed LLFN, six existing multi-label clas-
sification algorithms are used to compare with LLFN, and 
these methods are experimented on 12 datasets using five 
multi-label evaluation criteria. The dataset analysis, perfor-
mance metrics, and comparison algorithms are first briefly 
introduced to prepare for the analysis of the experimental 
results.

4.1 � Data sets

In this section, the comparison data were selected from 12 
multi-label datasets of different domains, and the details 
of the experimental datasets are described in Table 1. Spe-
cifically, These datasets can be downloaded from Mulan,1 
Yahoo,2 and Image.3

4.2 � Evaluation metrics

In contrast to single-label learning, multi-label learning is 
not unique due to the number of labels corresponding to 
the samples to be classified. The classification complex-
ity leads to the complexity of measuring the performance 
of multi-label generalization, while the goodness of label 
prediction can be measured based on certain evaluation 
metrics. To measure the performance of multi-label clas-
sification and feature selection intuitively and numeri-
cally, five evaluation metrics [6] commonly used in the 
multi-label domain are selected in this paper to compare 
with the algorithms introduced above. Among them, the 
D = {(Xit, Yil|1 ≤ t ≤ p, 1 ≤ i ≤ n, 1 ≤ l ≤ L)} is the multi-
label data set.

•	 Hamming Loss (HL ↓ ) evaluates the variance between the 
set of true label sets and the predicted label set that is the 
number of times a sample label pair is misclassified. 

•	 Average Precision (AP ↑ ) is used to evaluate the average 
score of the real labels ranked higher than the non-real 
labels in the predicted label ranking of the whole sample. 

•	 Ranking Loss (RL ↓ ) indicates the probability value that 
the confidence level of the associated labels in the sample 
prediction result is smaller than the confidence level of 
the unassociated labels. 

(25)Hamming Loss =
1

n

n∑
i=1

(
1

|Y|
|||h
(
xi
)
�Yi

|||
)

(26)

Average Precision =
1

n

n∑
i=1

1
||Yi||

⋅

∑
y∈Yi

|||
{
y� ∣ rankf

(
xi, y

�
)
≤ rankf

(
xi, y

)
, y� ∈ Yi

}|||
rankf

(
xi, y

)

Table 1   Description of the LLFN datasets

Data set Instances Features Labels Cardinality Domains

Arts2 5000 462 26 1.636 Text
Computers2 5000 681 33 1.508 Text
Education2 5000 550 33 1.461 Text
Emotion1 593 72 6 1.869 Music
Image3 2000 294 5 1.236 Image
Medical 1 978 1449 45 1.245 Text
Science2 5000 743 40 1.451 Text
Social2 5000 1047 39 1.233 Text
Health2 5000 612 32 1.663 Text
Society2 5000 636 27 1.461 Text
Business2 5000 438 30 1.588 Text
Recreation2 5000 606 22 1.423 Text

1  code: http://​mulan.​sourc​eforge.​net/​datas​ets-​mlc.​html.
2  code: http://​www.​kecl.​ntt.​co.​jp/​as/​membe​rs/​ueda/​yahoo.​tar.
3  code: http://​cse.​seu.​edu.​cn/​people/​zhang​ml/​Resou​rces.​htm#​data.

http://mulan.sourceforge.net/datasets-mlc.html
http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar
http://cse.seu.edu.cn/people/zhangml/Resources.htm#data
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•	 One-Error (OE ↓ ) reflects the probability that the Top-
Ranked Label in the prediction result is not in the true 
set of labels for that sample. 

•	 Coverage (CV ↓ ) is used to evaluate the ranking of the 
marks to be tested for all samples, and how many steps 
are needed to cover all the marks related to the sample 
on average. 

4.3 � Comparative algorithms

•	 ML-kNN [8] It is based on the classical KNN method for 
multi-label data, which counts the number of occurrences 
of these neighboring instances to be predicted, and the 
maximum a posteriori probability (MAP) principle is 
used to identify the label set of the unknown sample. In 
our experiments, the parameter k is set to 10.

•	 LIFT [15] It uses clustering techniques to study the posi-
tive and negative instances of each category label to con-
struct label-specific features. Then the generated label-
specific features are then used to generalize a binary 
classification model for the corresponding category 
labels. LIFT reduces the dimensionality of the feature 
space but does not consider label correlation. The ratio 
parameter r is set to 0.1 for all data sets.

•	 LLSF [16] A method of sparse superposition is used to 
learn related feature subsets for label-specific feature 
extraction, but does not consider instance correlation. 
The parameters � , � , and � are set to 0.1, 0.1 and 0.01 
respectively. the threshold � is set to 0.5.

•	 LSML [34] It handles missing multi-label specific data 
for classification by learning higher-order label correla-
tion matrix with label feature method. The parameters 
�1,�2, �3 , and �4 are set to 102, 10-5, 10-3 , and 10-5 respec-
tively.

(27)
RankingLoss =

1

n

n∑
i=1

1

|Yi||Yi|
⋅
||{(y1, y2)|f (xi, y1)

≤ f (xi, y2), (y1, y2) ∈ Yi × Yl}
|||

(28)One Error =
1

n

n∑
1

[[
argmax

y ∈ Y
f
(
xi, y

)
∉ Yi

]]

(29)Coverage =
1

n

n∑
i=1

max rankf
y∈Yi

(xi, y) − 1
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•	 JLCLS [43] It learns jointly by considering the misla-
beled tags and tag-specific features. The algorithm uses 
alternating iterative optimization to obtain the comple-
tion matrix and label-specific features with full consid-
eration of label correlation. The parameters �, � , and � 
are searched in {2−10, 2−9,… , 29, 210} , � selects from 
{0.1, 1, 10}.

•	 BDLS [44] It considers bidirectional mapping and 
label causality and thereby learns specific features of 
the labels. The parameters �, � and � are searched in 
{2−7, 2−6,… , 26, 27} , � selects from {0.01, 0, 1, 10}.

•	 LLFN The method proposed in this paper combines 
multi-label classification by neural networks after learn-
ing multi-label specific features, considering label rel-
evance and instance relevance. The parameters �, �, � , � , 
and � are searched in {2−10, 2−9,… , 29, 210} , � is also set 
to 0.5.

•	 LLFN-BSVM The binary classifier BSVM is added to 
LLFN, and a data matrix consisting of label-specific 
features generated by LLFN is set as the training data 
for BSVM. Where the kernel function is linear and all 
parameters are set the same as LLFN.

4.4 � Experimental results

In order to accurately evaluate the performance of each 
multi-label classification algorithm, a five-fold cross-vali-
dation is applied to the training data of each dataset. The 
comparison of the values of the five evaluation metrics for 
each algorithm is shown in Tables 2, 3, 4, 5, 6, and the best 
results in the table are indicated by bold numbers. The evalu-
ation metrics are followed by the symbols ε ↑ ε and ε ↓ ε 
after the evaluation metrics indicate that the larger the value 
of the evaluation metric is, the better the performance of the 
algorithm and the smaller the value is, the better the perfor-
mance of the algorithm, respectively.

In addition, the Friedman test is used in this paper to 
compare the relative performance among the algorithms, and 
the corresponding critical values of the Friedman statistic 
and each evaluation metric are given in Table 7. At the sig-
nificance level of � = 0.05 , the hypothesis that all algorithms 
have the same performance is explicitly rejected. Therefore, 
we need to use the Nemenyi test to further distinguish the 
classification performance of LLFN as well as other com-
parative algorithms on the 12 datasets. Figure 2 presents the 
CD plots for each algorithm under different evaluation met-
rics, respectively. In each subplot, if the corresponding mean 
ordinal values differ by at least the critical value domain 
(CD): CD = q�

√
K(K+1)

6N
 , then it indicates a significant dif-

ference in performance between classifiers. For the Nemenyi 
test, it can be calculated as CD = 3.031(K = 8,N = 12) at 
the significance level � = 0.05 and the critical difference 

q� = 3.031 . As shown in Fig. 2, the algorithm with the red 
line connected to each subgraph is considered as the algo-
rithm with less significant difference. To summarize the 
above experimental results, it can be concluded that: 

1.	 Analyzing the optimal comparison experiments shown 
in Tables 2, 3, 4, 5, 6, it can be observed that LLFN-
BSVM significantly outperforms the LLSF, LSML, 
KNN, JLCSC, and BDLS algorithms on the eight data-
sets in terms of HL metrics, while showing suboptimal 
results on art, computers, and emotion. And on AP and 
OE metrics, LLFN-BSVM presented optimal results 
on 10 data sets. For RL and CV metrics, LLFN-BSVM 
had the best experimental results with 6 and 7 datasets, 
respectively, and LLFN-BSVM slightly outperformed 
LIFT in RL and CV indicators in general. In addition, it 
was found from Fig. 2 that when the significance level 
� = 0.05 , LLFN-BSVM ranked first in all performance 
metrics. LLFN ranked higher than LLSF, LSML, KNN, 
JLCLS, and BDLS algorithms in HL, AP, and OE, but 
ranked just below JLCLS and BDLS algorithms in RL 
metrics and below BDLCS in CV algorithms. This veri-
fies the effectiveness of the algorithm proposed in this 
paper, that is, the introduction of neural networks for 
label-specific feature learning can improve the perfor-
mance of multi-label classification.

2.	 LLFN-BSVM performs better than LLFN in 85% of the 
cases and obtains more stable experimental results in 
comparison. Additionally, as shown in Tables 5 and 6, 
LLFN-BSVM and LIFT are close in RL and CV values 
and perform well. This is because the base classifiers 
of LLFN-BSVM and LIFT are SVM, and SVM clas-
sifiers cannot deal with multi-label problems directly 
but treat multi-label classification problems as multiple 
single-label classification problems, so they have supe-
rior results in RL and CV. In most cases, LLFN-BSVM 
has a better presentation on each performance metric 
compared to LIFT, which is because LIFT does not con-
sider correlation information among labels and similar-

Table 7   Summary of the Friedman statistics F
F
(K = 8 , N = 12 ) and 

the critical value in each evaluation metric (K: Comparing Algo-
rithms; N: Data Sets)

Metric F
F

Criti-
cal value 
( � = 0.05)

Hamming loss 20.4108
Average precision 12.3432
One error 15.9344 2.1310
Ranking loss 17.4975
Coverage 13.8054
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ity among instances, resulting in poor performance on 
the rest of the performance metrics.

3.	 We further observed that in most cases, for data sets 
with a larger number of samples (such as education, 
science, business, etc.), the neural network has higher 
accuracy for multi-label classification. For the image, 
medical, and social data sets (the cardinality of the aver-
age value of labels is about 1.2), the labels are relatively 
sparse compared to other data sets, resulting in insuf-
ficient label correlation information obtained from the 
original label set, so the least square loss model is based 
on Performance is inferior to SVM. LIFT is better than 
LLFN-BSVM, which is because LIFT uses various fea-
ture sets to distinguish different labels by performing 
cluster analysis on positive and negative instances.

According to the analysis above, it is possible to obtain that 
the LLFN algorithm and LLFN-SVM algorithm are compet-
itive with several other algorithms. A great variety of experi-
mental results show the effectiveness of multi-label learning 
by jointing neural networks with label-specific features.

4.5 � Component analysis

To further validate the effectiveness of each module of the 
LLFN algorithm, component analysis experiments were 
conducted on 12 multi-label datasets , and the experimen-
tal results of three evaluation metrics are shown in Fig. 3. 
Among them, the algorithm LLFN-Ori only considers the 

extraction of specific features by the neural network and 
adds l1-norm without considering any correlation. The algo-
rithm LLFN-LC only adds label correlation, and the algo-
rithm LLFN-IC adds only instance similarity. The algorithm 
LLFN in this paper adds label correlation and instance cor-
relation at the same time.

Comparing LLFN-LC, LLFN-IC, and LLFN-Ori, it can 
be found that LLFN-LC and LLFN-IC outperform LLFN-
Ori in all five evaluation metrics on all data sets, which indi-
cates that considering label correlation in label space and 
instance relevance in feature space alone helps multi-label 
classification. LLFN is superior to its variant algorithms 
in most cases. The main reason is that LLFN improves the 
performance of the algorithm by integrating both label rel-
evance and instance similarity, which confirms the effective-
ness of each module of our model.

4.6 � Parameter sensitivity analysis

There are 3 basic parameters in the algorithm of this paper 
�, � , and � , which respectively control the label correlation, 
sparsity of label-specific features after input space map-
ping, and correlation between instances, respectively. In this 
paper, experiments are conducted on the emotion dataset 
to investigate the sensitivity of LLFN. As shown in Fig. 4. 
First, the sensitivity of � and � is analyzed by fixing an opti-
mal parameter � . We observed that � is almost unchanged 
when � changes within {2−5, 2−4,… , 21, 22} , finding that the 
performance index of LLFN is not sensitive to � , and the 

Fig. 2   Nemenyi test results for 
different evaluation metrics. (at 
� = 0.05)

(a) (b)

(c) (d)

(e)
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best performance is when the value of � is small. We find 
an interesting phenomenon that the classification perfor-
mance gradually decreases with the increase of � , intuitively 
because the instance correlation and feature correlation in 
the real label set is small, and the � peak in the feature space, 
it means that these two instances can share more label sub-
sets, which affects the experimental results to some extent.

The next step is to study the � effect on the classification 
performance of the algorithm LLFN by setting the other 

two parameters to their optimal values: � = 2-1, � = 2-3 . 
Figure 5 gives the variation of � under each metric within 
{2−6, 2−5,… , 25, 26} , and it can be seen that the situation 
is best when � = 2-1 , and the sparsity constraint for label-
specific features cannot be well constrained when � is too 
small, and the performance drops sharply when � is too 
large. This is because too large � will cause most elements 

Fig. 3   Five evaluation metrics 
results of LLFN and its variants 
on all datasets

(a)

(b)

(c)
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Fig. 4   Sensitivity analysis of LLFN under different input values of � and �

Fig. 5   Sensitivity analysis of 
� , where � = 2

−1 , � = 2
−3 and 

� ∈
{
2
−6
, 2

−5
,… , 2

5
, 2

6
}

Fig. 6   Convergence trend 
analysis

(a) (b)
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of the coefficient matrix W to be zero, and some features 
will be ignored, which leads to a decrease in classification 
performance

4.7 � Convergence analysis

As mentioned earlier, the proposed algorithm LLFN in this 
paper solves the optimal solution by the accelerated proxi-
mal gradient method (APG), and the convergence rate of 
the APG for a given appropriate step size is O(t−2) . Figure 6 
shows the number of iterations of the objective loss func-
tion of LLFN on the two datasets education and emotion, 
the objective function decreases sharply and stabilizes after 
60 iterations.

5 � Conclusion

In this paper, we propose a novel neural network-based 
multi-label specific feature learning algorithm. Different 
from many multi-label classification methods, this method 
learns a low-dimensional mapping representation of the 
original feature space through a neural network, uses the 
instance feature space as the input layer of the neural net-
work, and eventually obtains the label space as the output 
layer after the processing of the hidden layer. Meanwhile, 
the empirical minimization loss function is used to learn 
the specific features of the labels. Finally, label correlation 
and instance similarity are introduced for multi-label clas-
sification. The experimental results demonstrate that the 
proposed algorithm is effective in multi-label classifica-
tion, and compared with many state-of-the-art algorithms, 
the proposed algorithm has better performance. However, 
the results of our proposed algorithm are not very satisfac-
tory when dealing with multi-label datasets with a small 
amount of samples, which is the part that we will optimize 
and study subsequently. Currently, the research on multi-
label classification is widely used. Next, we expect to extend 
our proposed algorithm to practical application scenarios 
for related research. Furthermore, We present experimental 
results of the algorithm in this paper on SVM classifiers, but 
we are also interested in extending this technique to other 
classifiers.
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