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Abstract
Harris Hawks optimizer (HHO) is a new swarm intelligence optimization algorithm proposed in recent years. It seeks the 
optimal solution by simulating the predation strategy of Harris hawks and many previous experiments show that HHO has a 
good effect on solving optimization problems. However, HHO also has the shortcomings of low convergence accuracy and 
easy to fall into local optimum. In order to improve the performance of HHO, an improved HHO hybridized with extremal 
optimization (IHHO-EO) is proposed. Aiming at the defect of insufficient information utilization and excessive randomiza-
tion in the exploration phase of the algorithm, the own historical optimal position of Harris hawks is introduced to better 
guide the individuals to search for better positions and improve the global search ability. Secondly, a nonlinear prey energy 
escaping factor is proposed to better balance the exploration and exploitation phases. Thirdly, refracted opposition-based 
learning (ROBL) with a dynamic parameter is proposed and combined with HHO, which can improve the quality of solu-
tions and convergence speed. Finally, the exploitation ability is improved by performing EO operation which has strong local 
search ability. The proposed algorithm is applied to 23 classical benchmark test functions and 29 CEC2017 test functions. 
IHHO-EO is compared with HHO, other newly proposed optimization algorithms and some improved variants of HHO. The 
experimental results verify the effectiveness of the added strategies. In addition, the proposed approach is applied to solving 
the pressure vessel design problem. The results show that IHHO-EO has an excellent performance in terms of accuracy, 
reliability and statistical tests.

Keywords Optimization algorithm · Harris Hawks optimizer · Refracted opposition-based learning · Extremal optimization

1 Introduction

Optimization is the search process for the best solution to a 
problem, i.e. to find the maximum or minimum value of an 
objective function. Optimization problems exist widely in 
engineering design, medicine, scientific research, economic 
management and other fields [34]. It is of great help to deal 

with optimization problems effectively in all fields. How-
ever, some traditional mathematical optimization methods, 
such as quasi-Newton process, conjugate gradient, strong 
steepest and sequential quadratic computing, are complex 
and highly restricted so they cannot solve various complex 
and non-differentiable optimization problems effectively 
[42, 49, 64].

Meta-heuristic algorithms are able to provide a useful 
and elegant solution to those optimization problems [16] 
due to their merits such as no limitation to specific prob-
lems, without needing gradient information and so on. 
Meta-heuristic algorithms can be generally divided into 
evolution-based methods, swarm intelligence-based meth-
ods and physics-based methods. The evolution-based algo-
rithms are inspired by the theory of biological evolution, 
starting with the initial solutions and continuously obtaining 
higher quality solutions through evolution from generation 
to generation. The most famous meta-heuristic algorithm 
based on evolution is genetic algorithm (GA) [31] which 
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simulates Darwin’s biological model of natural selection 
and genetic mechanism, evolving a new generation of bet-
ter individuals through parental chromosome selection, 
crossover, and mutation. Other algorithms based on evolu-
tion include differential evolution (DE) [57], biogeography-
based optimization (BBO) [56] and so on. In recent years, 
many new meta-heuristic optimization algorithms based on 
evolution have been proposed. [28] proposed an evolution-
ary algorithm based on ring theory (RTEA) and applied it 
to the combinatorial optimization problems. [27] proposed 
an optimization algorithm based on group theory (GTOA), 
which was applied to a variety of knapsack problems. [62] 
proposed an improved GTOA algorithm and a new operator 
to enhance the interpretability of group theory in discounted 
0–1 knapsack problem. [29] proposed the Taper-shaped 
transfer functions, and on this basis, a binary differential 
evolution algorithm based on the Taper-shaped transfer 
functions (T-NBDE) was proposed to solve the knapsack 
problem with a single continuous variable and the uncapac-
itated facility location problem. Physics-based algorithms 
are to simulate some physical phenomena in nature, such 
as simulated annealing algorithm (SA) [60] which simu-
lates the annealing phenomenon of objects, gravitational 
search algorithm (GSA) [52] based on universal gravita-
tion and Newton’s second law. Swarm intelligence-based 
algorithms are to simulate the behavior of groups in nature 
and seek optimal solutions through the wisdom of groups, 
such as particle swarm optimizer (PSO) [37], firefly algo-
rithm (FA) [67], butterfly optimization algorithm (BOA) 
[3], bat algorithm (BA) [9], shuffled frog-leaping algorithm 
(SFLA) [41], artificial bee colony (ABC) algorithm [24], 
etc. These swarm intelligence optimization algorithms have 
been applied to various practical optimization problems. 
For example, [69] proposed a distributed fault estima-
tion algorithm based on a hybrid improved biogeography 
based optimization (HIBBO), which introduced differential 
evolution into standard biogeography based optimization 
(BBO) to determine the moments when intermittent faults 
occur and disappear in discrete components. [65] proposed 
an adaptive competitive swarm optimization (ACSO) for 
intermittent fault estimation, which introduced a parameter 
adaptive adjustment strategy into the original competitive 
swarm optimization and improved the search ability of the 
algorithm. There are also some algorithms inspired by other 
ideas, such as teaching-learning-based optimization (TLBO) 
[51] inspired by teaching and feedback between teachers and 
students, sine cosine algorithm (SCA) [45] and golden sine 
algorithm (Gold-SA) [58] that based on mathematical ideas.

Harris Hawks Optimizer (HHO) is a swarm intelligence-
based meta-heuristic algorithm proposed by [30] that simu-
lates the behaviour of Harris hawks cooperatively foraging 
and surrounding prey with multiple strategies. HHO con-
sists of two phases of exploration and exploitation, switching 

between the two phases through the prey escape energy. 
HHO has strong competitive strengths compared with other 
swarm intelligence optimization algorithms [38]. On the 
one hand, HHO is easy to use because of its simple struc-
ture and no extra parameters except required parameters. 
On the other hand, the multiple strategies of HHO in the 
exploitation phase make the local search ability of the algo-
rithm better. In addition, HHO simulates the continuous loss 
process of the prey escaping energy, and switches between 
exploration phase and exploitation phase based on the 
value of the prey escape energy, which fits the optimization 
process and makes the algorithm have good performance. 
HHO has been applied to various numerical optimization 
and practical problems. For example, Hussain et al. [32] 
applied HHO to feature selection, [21] adapted HHO to the 
traditional travel salesman problem, [53] applied HHO to 
image segmentation, [6] used HHO to cluster features, and 
[25] built a geohazard radar identification model using con-
volutional neural network and HHO. However, according to 
the No Free Lunch (NFL) theorem [63], no algorithm can 
achieve superior results on all optimization problems. HHO 
also suffers from low convergence accuracy, slow conver-
gence, and unbalance in the exploration and exploitation 
phases. [50] pointed out that the global search ability based 
on the random strategy in HHO is insufficient in the explora-
tion stage, and it is easy to fall into local optimum. In addi-
tion, the prey escape energy cannot fully reflect the actual 
search process, and then cannot balance the exploration and 
exploitation process well. [38] pointed out that when HHO 
optimizes complex problems, it is easy to converge with 
low accuracy and premature convergence. In recent years, 
there have been a lot of research addressing improvements to 
HHO. [35] combined HHO algorithm with SCA algorithm 
to enhance exploration capability of HHO. [8] introduced 
chaos strategy, topological multi-population strategy, and 
differential evolution strategy into the algorithm to enhance 
the performance of HHO. [13] used chaotic and changed 
the control parameters to enhance the ability of HHO. [2] 
discussed the influence of three selection strategies on the 
algorithm during the exploration phase. [18] added quasi-
reflection-based learning mechanism into HHO to increase 
population diversity and speed of convergence. [22] used 
quantum particles to deal with dynamic optimization prob-
lems. In [33], opposition-based learning and chaotic local 
search strategy operator were combined to enhance the per-
formance of HHO.

Self-organized criticality [5] refers to a system far from 
the equilibrium state. It can automatically adjust to a critical 
state without manual adjustment of any parameters. When a 
small disturbance occurs in the system, a chain reaction may 
occur and have a significant impact on the whole system. 
Extremal optimization (EO) is derived from the Bak-Snep-
pen (BS) [4] model, which shows self-organized criticality. 
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Different from most optimization algorithms acting on the 
group, it acts on the individual and always selects the worst 
component in the individual for variation, which may lead 
to a huge avalanche effect on the individual system and 
complete the improvement. EO has the characteristic of few 
parameters. Many articles have also applied EO to numeri-
cal optimization and practical problems. [12] proposed a 
swarm-based EO algorithm (PEO) to deal with single objec-
tive function optimization problems. The application of EO 
algorithm to multi-objective problems in [11] shows that 
EO also has good performance on multi-objective problems. 
[10] hybridized PSO and EO to make a novel algorithm. An 
adaptive population extremal optimization-based multivari-
able proportional-integral-derivative (MPID) control method 
was proposed in [71].

In this paper, we propose an improved HHO hybridized 
with EO which is named IHHO-EO. The main contributions 
of this work are summarized as follows:

• The Harris hawk individual’s own historical optimal 
value is retained and applied to the exploration phase to 
enhance the exploration ability.

• The prey escape energy updating formula is changed to 
enable a better balance between the exploration phase 
and the exploitation phase.

• After the execution of the original HHO process, 
refracted opposition-based learning operation with 
dynamic k value is performed on all individuals. 
Refracted opposition-based learning is a variant of oppo-
sition-based learning that is important for improving the 
population quality as well as for jumping out of the local 
optimum. At the same time, the k value in the refracted 
opposition-based learning is dynamically generated to 
better generate the dynamic opposition-based solutions.

• Inspired by [10] that hybridized the PSO algorithm with 
EO, EO is added to our algorithm to enhance the local 
search capability.

• A large number of test functions are tested and compared 
with other algorithms to verify the excellent performance 
of the proposed algorithm IHHO-EO, and IHHO-EO is 
applied to the pressure vessel design problem.

In order to verify the performance of our proposed algo-
rithm, extensive experiments were carried out. Firstly, 
IHHO-EO is compared with the original HHO algorithm, 
other new intelligent optimization algorithms and various 
HHO variants on 23 classical basic functions [68], and the 
superiority of IHHO-EO is verified by Friedman test [20], 
Quade test [15] and Wilcoxon sign rank test [14]. Subse-
quently, the effectiveness of the each proposed strategy is 
verified on high dimensions situation of the same 23 func-
tions. Then, IHHO-EO is compared with many of the lat-
est optimization algorithms on 29 CEC2017 functions [39]. 

Finally, IHHO-EO is applied to the pressure vessel design 
problem [54] which is a practical engineering problem with 
constraints. The experimental results show that the proposed 
IHHO-EO algorithm has better performance than the origi-
nal HHO algorithm and other models in numerical optimiza-
tion and practical engineering optimization problems.

The remaining content of the paper is organized as fol-
lows: Sect. 2 introduces the original HHO, refracted oppo-
sition-based learning, and the concept of EO. Section 3 
presents the improved HHO hybridized with EO in detail. 
Section 4 performs experimental simulations and results 
analysis. Section 5 further applies the proposed algorithm 
to pressure vessel design problem. Section 6 concludes the 
whole paper as well as gives an outlook on future work.

2  Background

2.1  Harris Hawks optimizer (HHO)

HHO is a new swarm intelligence optimization algorithm 
proposed by [30]. The algorithm simulates the predation 
characteristics of Harris hawks. HHO is divided into two 
phases: exploration and exploitation, and uses the escape 
energy of prey as the basis for switching phases. The most 
important characteristic of Harris hawks is cooperative for-
aging and can show multiple attack patterns according to the 
change of environment and prey escape patterns. In Harris 
hawks optimization algorithm, Harris hawks individuals 
constitute candidate solutions, and the individual with the 
highest fitness in each iteration is considered as the prey. The 
phases of HHO are shown in Fig. 1.

2.1.1  Exploration phase

When exploring the prey location, Harris hawks often ran-
domly perch at a location and quietly search for the prey. 
During this phase, Harris hawks update their positions by 
two strategies: one is to explore based on the information 
about a randomly selected individual and the information 
about itself, while the other is to explore based on the cur-
rent optimal individual and the average information of all 
individuals. The two strategies are determined by the param-
eter q and have equal chances of execution. The mathemati-
cal model is as follows:

where Xi(t + 1) and Xi(t) mean the position of the individual 
i in iteration t + 1 and iteration t respectively, q, r1, r2, r3 , 
and r4 are random factors inside (0, 1), UB and LB are the 
upper and lower bounds of the search space, Xrand(t) is an 

(1)

Xi(t + 1) =

{
Xrand(t) − r1|Xrand(t) − 2r2Xi(t)| q ≥ 0.5

(Xprey(t) − Xm(t)) − r3(LB + r4(UB − LB)) q < 0.5
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individual randomly selected from the population in iteration 
t, Xprey(t) is the individual with the highest fitness in itera-
tion t, and Xm(t) is the average position of all individuals in 
iteration t which is defined as below:

where N denotes the total numbers of individuals.

2.1.2  Transition from exploration to exploitation

In HHO, the prey escape energy E is defined to simulate 
the physical exertion of the prey during the escape process. 
When |E| ⩾ 1 , the algorithm performs the exploration phase, 
reflecting the Harris hawks searching for the prey. When 
|E| < 1 , the Harris hawks pursue the prey and enter the 
exploitation phase. The equation for the change of the prey 
escape energy E is as follows.

where E2 represents the initial value of the energy and ranges 
from −1 to 1, which is regenerated randomly at each iter-
ation, and T is the maximum number of iterations of the 
algorithm.

(2)Xm(t) =
1

N

N∑

i=1

Xi(t)

(3)E1 = 2 × (1 −
t

T
)

(4)E =E2 × E1

2.1.3  Exploitation phase

During the exploitation phase, Harris hawks will besiege 
the prey they have discovered, forming an encirclement 
and waiting for an opportunity to surprise pounce. In the 
actual hunting process, the prey has a chance to escape, and 
the Harris hawks will also make different chasing actions 
according to the behavior of the prey. To more realistically 
mimic the actual siege behavior of the Harris hawks, HHO 
introduces four strategies. The random parameter r is defined 
to represent the chance that the prey can successfully escape 
( r < 0.5 ) or not successfully escape ( r ≥ 0.5 ) before the sur-
prise pounce. The decision of which strategy to use is based 
on the parameter r and the prey escape energy E together. 
No matter how the prey reacts, Harris hawks will make a 
hard or soft encirclement to capture the prey. Along with the 
constant chase, the prey slowly loses energy and is eventu-
ally captured by the Harris hawks.

• Soft besiege

When |E| ≥ 0.5 and r ≥ 0.5 , the prey has enough energy to 
escape, and tries to escape the encirclement through some 
jumping behaviors, but ultimately fails. In this process, the 
hawks perform a high-altitude soft encirclement operation 
on the prey, constantly consuming the energy of the prey. 
After the prey is exhausted, the hawks swoop to capture the 
prey. The mathematical model is described as follows:

where ΔX(t) is the difference between the location of the 
prey and the current individual in iteration t, J = 2(1 − r5) 
denotes the strength of the prey’s jump during escape, and 
r5 is a random number between (0, 1).

• Hard besiege

When |E| < 0.5 and r ≥ 0.5 , the prey is exhausted and does 
not have enough energy to escape, and there is no chance 
to escape. Harris hawks pounce on their prey in a hard-
encircling fashion, the mathematical model is described as 
follows:

• Soft besiege with progressive rapid dives

When |E| ≥ 0.5 and r < 0.5 , the prey has enough energy to 
escape successfully. At this point, Harris hawks will adopt a 
more intelligent soft-encirclement strategy, perform multiple 

(5)Xi(t + 1) =ΔX(t) − E|JXprey(t) − Xi(t)|

(6)ΔX(t) =Xprey(t) − Xi(t)

(7)Xi(t + 1) = Xprey(t) − E|ΔX(t)|

Fig. 1  The phases of HHO [30]
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dives, and gradually adjust their directions and positions. 
Under this strategy, Harris hawks take two steps. The rule 
for the first step is as follows:

Then, to judge whether this dive has achieved better results. 
if not, Harris hawks will also suddenly make an irregular 
and rapid dive when approaching the prey. The mathematical 
model is described as follows:

where D is the dimension of the optimization problem, S is a 
random vector of 1 × D dimension, and LF is the Levy flight 
[66]. The expression for LF is as follows:

where u, v is a random number between (0, 1) and � is a 
constant 1.5. Thus, the update formula for the soft besiege 
with progressive rapid dives of HHO is shown below:

(8)Y = Xprey(t) − E|JXprey(t) − Xi(t)|

(9)Z = Y + S × LF(D)

(10)LF(x) = 0.01 ×
u × �

�v�
1

�

, � =

⎛
⎜
⎜
⎝

�(1 + �) × sin(
��

2
)

�(
1+�

2
) × � × 2

(
�−1

2
)

⎞
⎟
⎟
⎠

1

�

• Hard besiege with progressive rapid dives

When |E| < 0.5 and r < 0.5 , the prey has a chance to escape, 
but does not have enough energy to do so. The hawks form 
a hard besiege before attacking, trying to reduce the average 
distance between their group and the prey, and then take a 
dive to kill the prey. The mathematical model is as follows:

This process is similar to soft besiege with progressive rapid 
dives, but it utilizes the average location information of the 
group. See Algorithm 1 for the pseudo-code of HHO.

(11)Xi(t + 1) =

{
Y , if F(Y) < F(Xi(t))

Z, if F(Z) < F(Xi(t))

(12)Ẏ =Xprey(t) − E|JXprey(t) − Xm(t)|

(13)Ż = Ẏ + S × LF(D)

(14)Xi(t + 1) =

{
Ẏ , if F(Ẏ) < F(Xi(t))

Ż, if F(Ż) < F(Xi(t))
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2.2  Extremal optimization (EO)

EO is inspired by Bak-Sneppen model of biological evolu-
tion [7]. EO has no concept of population and operates on 
a single individual. The specific operation is to mutate each 
component of the individual one by one, and then evaluate 
the fitness of the mutated individual. For the new individual 
with the best fitness, the corresponding component of the 
new individual is considered to be the worst component 
of the original individual. Then judging whether the new 
individual is better than the original individual. The basic 
EO has no extra parameters and only a mutation operation, 
which has a very good performance on local search [10]. The 
pseudo-code of EO is shown in Algorithm 2.

Fig. 2  Refracted opposition-based learning

2.3  Refracted opposition–based learning (ROBL)

2.3.1  Opposition–based learning (OBL)

Opposition-based learning is proposed by [59]. The basic 
idea is to expand the search by considering both the current 
solution and its inverse solution. Simultaneous search at that 
solution’s location and its opposite location improves the 
possibility of obtaining a better solution.

Suppose x is a solution in a one-dimensional space, then 
its opposite solution x̃ is defined as follows:

where x ∈ R , lb and ub are the lower and upper bounds of 
x, respectively.

Extending to the D-dimensional problem, then the oppo-
site solution of x in dimension i is defined as follows:

(15)x̃ = lb + ub − x

(16)x̃i = lbi + ubi − xi

where xi ∈ R , xi ∈ (lbi, ubi) , ∀i ∈ 1, 2,⋯ ,D , lbi and ubi are 
the lower and upper bounds in ith-dimension.

Opposition-based learning is able to explore the opposite 
side of the current solution, making it more likely to get 
a high-quality solution. In recent years, opposition-based 
learning has been combined with various algorithms, such 
as GWO [70], SCA [1]. However, algorithms still can not 
jump out of the local optimal in the late phase despite the 
use of the basic OBL strategy [17].

2.3.2  Refracted opposition–based learning (ROBL)

In order to improve the effect of opposition-based learning, 
a variant of OBL based on combining the laws of refraction 

of light to better generate opposition-based solutions is pre-
sented by [17]. The mathematical definition of refracted 
opposition–based learning is shown in Fig. 2.
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In Fig. 2, the x-axis represents the dividing line and the 
y-axis denotes the normal line. The upper halves and lower 
halves of the x-axis are regarded as two different medias. l1 
and l2 are the length of the incident light and the length of 
the refracted light, respectively. � , � mean the angles of inci-
dence and refraction. lb and ub denote the range of points on 
the x-axis. Point o is the midpoint of lb and ub. From Fig. 2, 
we can conclude the relational equation:

From the definition of the refractive index n, the following 
equation can be derived:

Let k = l1∕l2 , then Eq. (19) can be transformed into:

After the transformation of Eq. (20), the expression of the 
refracted opposition-based solution x̃ can be derived as 
follows:

If k is equal to 1 and n is also equal to 1, then Eq. (21) 
turns into basic opposition–based learning. This shows that 
basic opposition–based learning is a special case of refracted 
opposition–based learning. ROBL can dynamically gener-
ate reverse learning solutions by adjusting the values of k 
and n which improve the diversity of reverse solutions and 
improve the possibility of the algorithm jumping out of the 
local optimal. It has been testified that ROBL can effectively 
improve the performance of the algorithm in the literature 
[40] and [61]. When n is set to 1 and the problem is multi-
dimensional, the expression for refractive opposition–based 
solution is as follows:

where x̃i,j refers to the refracted opposition–based solution 
of individual i in the jth-dimension. lbj and ubj are the lower 
and upper bounds in jth-dimension.

(17)sin� = ((lb + ub)∕2 − x)∕l1

(18)sin𝛽 = (x̃ − (lb + ub)∕2)∕l2

(19)n =
sin𝛼

sin𝛽
=

l2(lb + ub)∕2 − x

l1(x̃ − (lb + ub)∕2)

(20)kn =
sin𝛼

sin𝛽
=

(lb + ub)∕2 − x

x̃ − (lb + ub)∕2

(21)x̃ =
lb + ub

2
+

lb + ub

2kn
−

x

kn

(22)x̃i,j =
lbj + ubj

2
+

lbj + ubj

2k
−

x

k

3  The proposed IHHO‑EO algorithm

3.1  Introducing the individual’s own historical 
optimal location strategy

If |E| ≥ 1 , Harris hawks perform the exploration phase, 
searching for the prey. When the parameter q ≥ 0.5 , Harris 
hawk individuals fly to the next location based on a ran-
domly selected companion and their own current locations. 
However, this way of randomly selecting a companion is too 
random and uses insufficient information. It is difficult to 
guide itself to fly to a better position and lacks exploration 
ability. Therefore, when q ≥ 0.5 , the individual’s historical 
optimal location is introduced and the global optimal loca-
tion of the current best individual is combined to enhance 
exploration ability. At the same time, considering that the 
individual’s historical optimal position has little reference 
value in the early stage but will become more and more reli-
able with the increase of the number of iterations, the linear 
increasing coefficient is added to the individual’s histori-
cal optimal position. The improved exploration formula is 
shown below:

where Xipbest(t) represents the historical optimal position of 
individual i in iteration t, and T is the maximum number of 
iterations.

3.2  Nonlinear change of prey escape energy 
coefficient E

1

In the basic HHO algorithm, the prey escape energy E con-
trols whether the algorithm performs the exploration phase 
or the exploitation phase. From Eq. (4), E is determined by 
the initial energy E2 and a coefficient E1 related to the num-
ber of iterations t. However, E1 is linearly reduced from 2 
to 0, which can not balance the exploration and exploitation 

(23)

Xi(t + 1) =

{
r1Xi(t) + r2|Xprey(t) −

t

T
∗ Xipbest(t)| q ≥ 0.5

(Xprey(t) − Xm(t)) − r3(LB + r4(UB − LB)) q < 0.5

0 100 200 300 400 500

 Iterations

0

0.5

1

1.5

2

  E
1 V
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u

e

proposed way

original way

Fig. 3  The changing curve of E1
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phases well. Therefore, Eq. (25) is proposed which updates 
E1 as follows:

Figure 3 shows a comparison between the original E1 update 
and the proposed E1 update.

From Fig. 3, it can be seen that E1 decreases faster in 
the early stage and is able to converge quickly to the opti-
mal solution vicinity in the early stage. On the other hand, 
it decreases slower in the later stage and is able to better 
model the energy loss of the prey. Therefore it can switch 
adequately among the four exploitation strategies to perform 
a full local search.

3.3  ROBL with dynamic parameter k

Compared with the basic opposition-based learning, the 
refracted opposition-based learning introduced in Sect. 2.3 
has two parameters k and n, which can produce opposition-
based solutions more flexibly and improve the diversity of 
opposition-based solutions. It has a good performance on 
improving the quality of opposition-based solutions and 
helping the algorithm jump out of local optimal. When n is 
set to 1, k can be controlled to achieve the desired reverse 
effect. So if the value range of k is wide, diverse opposition-
based solutions can be generated. The k value in basic ROBL 
is a fixed value, which can not generate dynamic opposition-
based solutions well. Therefore, our proposed formula for 
the value of k is as follows:

(24)A =
t −

T

2

T

2

(25)E1 =

�
2 −

√
1 − A2 t ≤

T

2√
1 − A2 t >

T

2

(26)k =
(
1 − cos(2� ∗

t

T
)
)10

Figure 4 shows the change of k value with the number 
of iterations.

Combining Fig. 4 and Eq. (26), it can be concluded as 
follows: When the number of iterations t < 150 or t > 350 , 
the value of k is close to 0, while k obtains a larger value if 
150 < t < 350 . Therefore, the value of k can have a relatively 
wide range and is highly dynamic, which can effectively 
improve the diversity of opposition-based solutions and 
increase the possibility of jumping out of the local optimum.

In view of the shortcoming that HHO is easy to fall into 
local optimum, the proposed ROBL with dynamic parameter 
k is carried out on all individuals after the basic process of 
HHO is performed. The newly generated opposition-based 
solution population is mixed with the original population 
in order of fitness, and the N individuals with the highest 
fitness in two populations are greedily selected as the new 
population.

3.4  Combination with EO

The literature [10] has testified the strong local search ability 
of EO through a large number of experiments. The introduc-
tion of EO in Sect. 2.2 shows that EO acts on individuals, 
mutates each component in individuals, and generates new 
individuals with the same number of components. The new 
individual with the best fitness is judged with the original 
individual. If the new individual is superior to the original 
one, the original one will be replaced by the new one. Do 
the same for each individual.

In order to enhance the exploitation capability of HHO, 
EO operation is performed on all individuals after ROBL 
process. Since only mutation operation is performed on the 
elements in EO, mutation operation has a great influence 
on the effect of EO. The research work of [68] shows that 
Cauchy mutation can produce striding length for search with 
a higher probability than Gaussian mutation, so Cauchy 
mutation is more suitable for coarse tuning while Gaussian 
variation is more suitable for fine tuning. Hybrid Gaussian-
Cauchy mutation (G-C mutation) [11] is used here. Cauchy 
mutation is used first, and if the newly generated variable is 
outside the range, a certain number of Cauchy mutation (TC) 
is repeated to make the new variable fall within the range. 
If it still exceeds the range, a certain number of Gaussian 
mutation (TG) is used to produce a smaller step size. Finally, 
if the range requirements are not met, the corresponding 
upper and lower boundaries are used. The value of TC deter-
mines the coarse-grained search time, and the value of TG 
determines the fine-grained search time. Therefore, the val-
ues of these two parameters should not be too large, or the 
search time will be greatly prolonged. [11] pointed out that 
the appropriate values of TC and TG were 2 ∼ 4. The values 
of TC and TG in this paper are set to 3.
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Fig. 4  The changing curve of k value
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3.5  The IHHO‑EO algorithm

In view of the shortcomings of HHO, we propose the above 
four improvement strategies. The introduction of the histori-
cal optimal position of the Harris hawk individual can better 
guide the individual position update and enhance the explo-
ration ability. The improved prey escape energy update for-
mula makes the algorithm achieve a better balance between 
exploration and exploitation. The combination of ROBL and 
the proposed variation formula of parameter k increase the 
diversity of the solutions and the possibility of jumping out 
of local optimum. The hybridization with EO enhances the 
local exploitation capability of the algorithm. The pseudo-
code of IHHO-EO is shown in Algorithm 3, and the flow 
chart is shown in Fig. 5.

3.6  Computational complexity analysis

Assume that the maximum number of individuals in the 
population is N, the problem dimension is D, and the num-
ber of iterations is T. In the original HHO algorithm, the 
computational complexity mainly consists of three parts: 
initialization, fitness evaluation and individual location 
update. The computational complexity of HHO is as follows: 
O(HHO) = O(N) + O(T × N) + O(T × N × D)

In the proposed IHHO-EO, the introduction of the indi-
vidual’s own historical optimal position and the improve-
ment of the prey escape energy update formula will not 
add additional complexity. The computational complex-
ity of EO operation is O(T × N × D) + O(T × N × D) , 
which is the complexity of generating mutation and fitness 
evaluation. The computational complexity of ROBL is 
O(T × N × D) + O(T × 2N) , where O(T × N × D) is the time 

Fig. 5  Flow chart of IHHO-EO 
algorithm
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of refracted reverse operation for individuals, and O(T × 2N) 
is the complexity of fitness evaluation.

In summary, the complexity of IHHO-EO is 
O(N) + O(3 × T × N) + O(4 × T × N × D)  .  A l t h o u g h 
the complexity of IHHO-EO has increased slightly 
more than the original HHO, the complexity of which is 
O(N) + O(T × N) + O(T × N × D) , the performance of the 
proposed algorithm is excellent.

4  Experimental results and analysis

4.1  Experimental setup

To fully illustrate the performance of IHHO-EO, the 
experiments are divided into 4 parts, as shown in Table 1. 
In order to verify the performance of the proposed IHHO-
EO algorithm in solving numerical optimization problems, 
23 classical standard test functions [68] and 29 CEC2017 

test functions [39] are selected for evaluation. Among the 
23 classic standard test functions, F1 ∼ F7 are unimodal 

functions to test the exploitation performance of the algo-
rithm, F8 ∼ F13 are multimodal functions to test the explora-
tion performance and the ability of the algorithm to jump out 
of the local optimal solution. F14 ∼ F23 are multimodal func-
tions with fixed low dimensions to test the stability of the 
algorithm. The details of the 23 classic standard test func-
tions are shown in Tables 2, 3, 4. Among the 29 CEC2017 
test functions( f1 ∼ f30 ), there are unimodal, multimodal and 
composite functions, which are more complex and are used 
to test the ability of the algorithm in complex numerical 
optimization. The details of CEC2017 test functions are 
shown in Table 5. The bold data in all tables represent the 
best mean result achieved on this function among all the 
algorithms being compared.

In Exp.1, IHHO-EO is compared in 23 classical standard 
test functions with some new intelligent optimization algo-
rithms proposed in recent years and some famous classical 
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algorithms. The comparison algorithms include original 
HHO, Whale Optimization Algorithm (WOA) [47], Salp 
Swarm Algorithm (SSA) [46], Grey Wolf Optimizer (GWO) 
[48], Butterfly Optimization Algorithm [3], Moth-Flame 
Optimization Algorithm (MFO) [43], Genetic Algorithm 
(GA) [31], Differential Evolution (DE) [57], Biogeography-
Based Optimization (BBO) [56], Particle Swarm Optimizer 

(PSO) [37] . The number of population for each algorithm 
was set to 30 and each algorithm was run 30 times with 500 
iterations.

Exp.2 compares the IHHO-EO with three improved vari-
ants of HHO, including HHO-SCA [35], QRHHO [18], and 
THHO [2].

Exp.3 conducts on the classical standard test functions 
in 50 dimensions to explore the effectiveness of the added 
strategies.

Exp.4 conducts on CEC2017 test functions and set each 
test function to 50 dimensions. Some intelligent optimi-
zation algorithms (Grasshopper Optimisation Algorithm 
(GOA) [55], Dragonfly Algorithm (DA) [44], Sine Cosine 
Algorithm [45], HHO) and a variant of HHO (SCHHO [32]) 
were compared. The number of individuals of each algo-
rithm was set to 30, and 30 runs were performed with 1500 
iterations each time.

The parameters settings of the algorithms used in the 
experiment are shown in Table 6. The parameter setting 
has a certain impact on the performance of the algorithm. 

Table 1  Summary of experimental conditions

Experiement Test problem Dimension Algorithm Population size Maximum number of 
iterations

Number of runs

Exp.1 F1 ∼ F13 30 IHHO-EO 30 500 30
F14 ∼ F23 2∼6 HHO [30]

WOA [47]
SSA [46]
GWO [48]
BOA [3]
MFO [43]
GA [31]
DE [57]
BBO [56]
PSO [37]

Exp.2 F1 ∼ F13 30 IHHO-EO 30 500 30
F14 ∼ F23 2∼6 HHO-SCA [35]

QRHHO [18]
THHO [2]

Exp.3 F1 ∼ F13 50 IHHO-EO 30 500 30
F14 ∼ F23 2∼6 IHHO1

IHHO2
HHO-EO

Exp.4 f1 ∼ f30 50 IHHO-EO 30 1500 30
SCHHO [32]
GOA [55]
DA [44]
SCA [45]
HHO [30]

Table 2  The description of unimodal functions F1 ∼ F7 functions

Function Dimen-
sion

Range fmin

F1(x) =
∑n

i=1
x2
i

30,50 [– 100,100] 0

F2(x) =
∑n

i=1
�xi� +

∏n

i=1
�xi� 30,50 [– 10,10] 0

F3(x) =
∑n

i=1
(
∑i

j−1
xj)

2 30,50 [– 100,100] 0

F4(x) = maxi
{
|xi|, 1 ≤ i ≤ n

}
30,50 [– 100,100] 0

F5(x) =
∑n−1

i=1

�
100(xi+1 − x2

i
)2 + (xi − 1)2

� 30,50 [– 30,30] 0

F6(x) =
∑n

i=1
(
�
xi + 0.5

�
)2 30,50 [– 100,100] 0

F7(x) =
∑n

i=1
ix4

i
+ random

�
0, 1

�
30,50 [−1.28,1.28] 0
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Therefore, the values of the parameters of the compared 
algorithms were taken directly from their original papers 
for fair comparison. All experiments were performed on a 
2.60GHz computer with i5-3320 M CPU, and 8 GB RAM.

4.2  Comparison with advanced meta‑heuristic 
algorithms and famous classical algorithms

This part of the experiment compares IHHO-EO with HHO, 
WOA, SSA, GWO, BOA, MFO, GA, DE, BBO, PSO which 
are some of the swarm intelligence optimization algorithms 
proposed in recent years and some famous classical algo-
rithms. Tables 7, 8, 9, 10, 11 show the experimental results.

4.2.1  Comparison with advanced meta‑heuristic 
algorithms

In terms of mean, standard deviation, best and worst results, 
IHHO-EO has a significant advantage over all these algo-
rithms or the results are essentially equivalent, which is 
obvious on functions F1 ∼ F4 . On the fixed dimensional 
functions F14 ∼ F23 , only the IHHO-EO algorithm was able 
to find the optimal value. Compared with the original HHO, 
IHHO-EO has similar performance on F5 , F12 and F13 , but 
slightly lower in terms of mean.

To further illustrate the difference between IHHO-EO 
and other algorithms, Wilcoxon signed rank test [14] was 

Table 3  The description of multimodal functions F8 ∼ F13 functions

Function Dimension Range fmin

F8(x) =
∑n

i=1
−xisin(

√
�xi�) 30,50 [– 500,500] −418.9829×

n
F9(x) =

∑n

i=1

�
x2
i
− 10cos(2�xi) + 10

�
30,50 [−5.12,5.12] 0

F10(x) = −20exp(−0.2

�
1

n

∑n

i=1
x2
i
) − exp(

1

n

∑n

i=1
cos(2�xi)) + 20 + e

30,50 [– 32,32] 0

F11(x) =
1

4000

∑n

i=1
x2
i
−
∏n

i=1
cos(

xi√
i
) + 1 30,50 [– 600,600] 0

F12(x) =
�

n

�
10sin(�y1) +

∑n−1

i=1
(yi − 1)2

�
1 + 10sin2(�yi+1)

�
+ (yn − 1)2

� 30,50 [– 50,50] 0

+
∑n

i=1
u(xi, 10, 100, 4)

yi = 1 +
xi+1

4
, u(xi, a, k,m) =

⎧
⎪
⎨
⎪
⎩

k(xi − a)m xi > a

0 − a < xi < a

k(−xi − a)m xi < −a

F13(x) = 0.1
�
sin2(3�x1) +

∑n

i=1
(xi − 1)2

�
1 + sin2(3�xi + 1)

�
+ (xn − 1)2

�
1 + sin2(2�xn)

��

+
30,50 [– 50,50] 0

∑n

i=1
u(xi, 5, 100, 4)

Table 4  The description of fixed-dimendion multimodal functions F14 ∼ F23 functions

Function Dimension Range fmin

F14(x) = (
1

500
+
∑25

j=1

1

j+
∑2

i=1
(xi−aij)

6
)−1 2 [−65.536,65.536] 0.998

F15(x) =
∑11

i=1

�
ai −

x1(b
2

i
+bix2)

b2
i
+bix3+x4

�2 4 [– 5,5] 0.0030

F16(x) = 4x2
1
− 2.1x4

1
+

1

3
x6
1
+ x1x2 − 4x2

2
+ 4x4

2
2 [– 5,5] −1.036

F17(x) = (x2 −
5.1

4�2
x2
1
+

5

�
x1 − 6)2 + 10(1 −

1

8�
)cosx1 + 10 2 x1 ∈ [– 5,10],x2 ∈[0,15] 0.39789

F18(x) =
[
1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2

1
− 14x2 + 6x1x2 + 3x2

2
)
]

2 [– 2,2] 3

×
[
30 + (2x1 − 3x2)

2 × (18 − 32x1 + 12x2
1
+ 48x2 − 36x1x2 + 27x2

2
)
]

F19(x) = −
∑4

i=1
ciexp(−

∑3

j=1
aij(xj − pij)

2) 3 [0,1] −3.8628

F20(x) = −
∑4

i=1
ciexp(−

∑6

j=1
aij(xj − pij)

2) 6 [0,1] −3.322

F21(x) = −
∑5

i=1

�
(X − ai)(X − ai)

T + ci
�−1 4 [0,10] −10.1532

F22(x) = −
∑7

i=1

�
(X − ai)(X − ai)

T + ci
�−1 4 [0,10] −10.4029

F23(x) = −
∑10

i=1

�
(X − ai)(X − ai)

T + ci
�−1 4 [0,10] −10.5364
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performed. If the p-value is less than 0.05, IHHO-EO can be 
considered significantly different from the compared algo-
rithm on this function, and NaN indicates that there is essen-
tially no difference between the two algorithms. It can be 
seen from Table 10 that IHHO-EO and the compared algo-
rithms have obvious effect differences on most functions. 
The symbol ”+/≈/-” indicates that IHHO-EO achieves better, 
similar, and worse results than other algorithms on the mean 
for 23 functions, and it is obvious that IHHO-EO has better 
results than the other algorithms for most functions.

4.2.2  Convergence analysis

The convergence diagram of experiments was analyzed to 
further illustrate the performance of IHHO-EO. Figure 6 
shows the convergence of each algorithm on some func-
tions. On most functions, IHHO-EO algorithm has faster 
convergence speed and higher convergence accuracy. For 
function F1 , IHHO-EO achieved the optimal value 0 in the 

first half of iterations, while the other algorithms couldn’t 
find the optimal value at the end of iterations. In functions 
F6 , F7 and F8 , IHHO-EO not only can achieve better results, 
but also has faster convergence speed, which reflects the 
effectiveness of the proposed strategies. In function F10 , 
IHHO-EO algorithm has a very good convergence speed 
compared with other algorithms and finds the optimal value 
of the function first. In function F13 , although the final result 
of IHHO-EO is slightly lower than that of the original HHO 
algorithm, the initial convergence speed is still higher than 
HHO. IHHO-EO still maintains good convergence speed and 
accuracy in function F14 with fixed dimension.

4.2.3  Comparison with famous classical algorithms

As can be seen from Table 11, compared with GA, DE, 
PSO and BBO, IHHO-EO achieves the smallest mean and 
standard deviation on the 23 classical standard test func-
tions, indicating the good performance of IHHO-EO. GA 

Table 5  The description of CEC2017 benchmark functions

Function Description Type Optimum

f1 Shifted and Rotated Bent Cigar Function Unimodal 100
f3 Shifted and Rotated Zakharov function Unimodal 300
f4 Shifted and Rotated Rosenbrock’s function Multimodal 400
f5 Shifted and Rotated Rastrigin’s function Multimodal 500
f6 Shifted and Rotated Expanded Scaffer’s F6 function Multimodal 600
f7 Shifted and Rotated Lunacek Bi-Rastrigin function Multimodal 700
f8 Shifted and Rotated Non-Continuous Rastrigin’s function Multimodal 800
f9 Shifted and Rotated Lévy function Multimodal 900
f10 Shifted and Rotated Schwefel’s function Multimodal 1000
f11 Hybrid Function 1 (N = 3) Hybrid 1100
f12 Hybrid Function 2 (N = 3) Hybrid 1200
f13 Hybrid Function 3 (N = 3) Hybrid 1300
f14 Hybrid Function 4 (N = 4) Hybrid 1400
f15 Hybrid Function 5 (N = 4) Hybrid 1500
f16 Hybrid Function 6 (N = 4) Hybrid 1600
f17 Hybrid Function 6 (N = 5) Hybrid 1700
f18 Hybrid Function 6 (N = 5) Hybrid 1800
f19 Hybrid Function 6 (N = 5) Hybrid 1900
f20 Hybrid Function 6 (N = 6) Hybrid 2000
f21 Composition Function 1 (N = 3) Composition 2100
f22 Composition Function 2 (N = 3) Composition 2200
f23 Composition Function 3 (N = 4) Composition 2300
f24 Composition Function 4 (N = 4) Composition 2400
f25 Composition Function 5 (N = 5) Composition 2500
f26 Composition Function 6 (N = 5) Composition 2600
f27 Composition Function 7 (N = 6) Composition 2700
f28 Composition Function 8 (N = 6) Composition 2800
f29 Composition Function 9 (N = 3) Composition 2900
f30 Composition Function 10 (N = 3) Composition 3000
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and BBO also find the theoretical optimal value on function 
F14 and F18.

4.3  Comparison with three variants of HHO

Since the HHO algorithm was proposed, many improved 
HHO variants have been proposed and achieved good results. 
In this experiment, three HHO modified variants(HHO-
SCA, QRHHO, THHO) proposed in recent two years are 
selected for comparison. Table 12 shows the comparison of 
the results in 23 classical standard test functions. It can be 
seen that IHHO-EO obtains the best or comparable mean 
values for most of the functions. The standard deviation of 
IHHO-EO is also small, indicating good stability. Firedman 
test [20] and Quade test [15] are conducted on the results, as 
shown in Table 13. The results show that IHHO-EO ranked 
higher than other algorithms, indicating that IHHO-EO has 
better performance than other algorithms.

4.4  Impact of the added strategies on the optimizer

This experimental section explores the effectiveness of the 
various added strategies of the proposed IHHO-EO. Tests 
are performed on the 50 dimensions of F1 ∼ F13 and on the 
F14 ∼ F23 with fixed dimensions. IHHO1 is used to repre-
sent the addition of the own historical optimal position strat-
egy and the nonlinear prey energy escaping factor strategy, 
IHHO2 to represent the addition of only the refracted oppo-
sition-based learning strategy, HHO-EO to represent the 
addition of only the EO strategy, and IHHO-EO to represent 
the addition of all strategies. As shown in Tables 14, 15, the 
original HHO, IHHO1, IHHO2, HHO-EO, and IHHO-EO 
are all able to find optimal values for functions F9 , F10 , F16 , 
and F18 , but the original HHO does not achieve as well as 
they do for the remaining functions, indicating the effective-
ness of the added strategies. IHHO1 obtains better results 
than HHO algorithm on functions F1 ∼ F4 , F7 , F8 , F19 and 
F21 . The improved effect of IHHO2 on functions F1 ∼ F4 and 
F21 ∼ F23 is obvious while HHO-EO achieved best results 
on functions F8 , F12 , F13 and F15 . IHHO-EO combines these 
strategies and achieves good results on most functions.

4.5  Comparison with advanced meta‑heuristic 
algorithms and one variant of HHO on CEC2017 
functions

In order to test the performance of IHHO-EO on complex 
function optimization problems, IHHO-EO was applied to 
solving more complex CEC2017 test functions. The results 
of IHHO-EO in comparison with GOA, DA, SCA, HHO and 
a modified HHO variant (SCHHO), are shown in Table 16. 
The mean in Table 16 is the difference between the actual 
run result and the optimal value of the function. Compared 
with GOA, DA, SCA and HHO, IHHO-EO has better per-
formance with respect to the mean. GOA has a smaller 
mean value than IHHO-EO on funciton f7 , while it does 
not perform as well as IHHO-EO on the remaining func-
tions. IHHO-EO achieves better average results than DA, 
SCA, and HHO on all functions. Our algorithm outperforms 
SCHHO on 22 functions, and is slightly inferior to SCHHO 
on the remaining 7 functions.

5  IHHO‑EO for pressure vessel design 
problem

In this section, IHHO-EO algorithm is further applied to the 
pressure vessel design [36], which is a typical engineering 
design problem. The problem contains four variables: inner 
radius (R), the thickness of the shell ( Ts ), the thickness of the 
head ( Th ) and the length of the cylindrical section without 
the head (L). The objective of the problem is to minimize the 

Table 6  Parameter settings

Algorithm Parameter Value

WOA Convergence constant a [0,2]
SSA Coefficient c1 [2/e, 2]
GWO Convergence constant a [0,2]
BOA Sensory modality c 0.01

Power exponent dependent a 0.1
MFO Convergence constant a [– 2,– 

1]
GOA Convergence constant cmax 1

Convergence constant cmin 0.0004
DA Inertia weight w 0.7

Separation weight s 0.1
Alignment weight a 0.1
Cohesion weight c 0.7
Food factor f 1
Enemy factor e 1

SCA Convergence constant � 2
SCHHO Convergence constant � 2
DE Scaling factor 0.5

Crossover probability 0.5
PSO Inertia factor 0.3

c1 1
c2 1

BBO Habitat modification probability 1
Immigration probability limits [0,1]
Step size 1
Max immigration (I) and Max emigra-

tion (E)
1

Mutation probability 0.005
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cost, including material cost, forming cost and welding cost. 
A diagram of the problem is shown in Fig. 7. The pressure 
vessel design problem can be abstracted as a single objective 
minimization problem containing four variables and four 
constraints. The mathematical model of the problem is as 
follows.

IHHO-EO is compared with IEHHO [50], HHO, GWO 
[48], GA [47], HPSO [26], BA [19] and WOA [47] algo-
rithms on this problem, and the optimal results obtained 
by them are shown in Table 17. It can be seen from the 
table that the proposed IHHO-EO algorithm is superior to 
all compared algorithms in solving this practical engineer-
ing optimization problem with constraints and has excellent 
performance.

6  Conclusion and future work

In this paper, four improved strategies were introduced to 
the original HHO and a novel algorithm, named IHHO-
EO, was proposed. First of all, the historical optimal 
location of the individual is added to solve the defect of 
over-randomization and using insufficient information in 
the exploration stage of HHO when updating the loca-
tion. The better location that has been searched is used to 
enhance the guidance and reduce the possibility of blind 
search. Second, the linear update of prey escape energy is 
improved to allow for a better balance between the explo-
ration and exploitation phases. Refracted opposition-based 
learning is introduced and a dynamic approach to the value 
of k is proposed to produce dynamic opposition-based 
solutions on a larger scale, improving the quality of the 
population and increasing the likelihood of jumping out 
of the local optimum. Finally, EO operation is combined 
to enhance the local exploitation capability of the algo-
rithm. To illustrate the performance of IHHO-EO, exten-
sive experiments are conducted. Exp.1 tested IHHO-EO 
on 23 classical benchmark functions in 30 dimensions and 
compared it with various optimization algorithms such as 

(27)

Consider x⃗ = [x1 x2 x3 x4] = [Ts Th R H]

Minimize f (x⃗) = 0.6224x1x3x4 + 1.7781x2x
2

3

+ 3.1661x2
1
x4 + 19.84x2

1
x3

Subject to g1(x⃗) = −x1 + 0.0193x3 ≤ 0

g2(x⃗) = −x2 + 0.00954x3 ≤ 0

g3(x⃗) = −𝜋x2
3
x4 −

4

3
𝜋x3

3
+ 1296000 ≤ 0

g4(x⃗) = x4 − 240 ≤ 0

Variable range 0 ≤ x1, x2 ≤ 99

10 ≤ x3, x4 ≤ 200
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Fig. 6  Convergence curve of 
some functions
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Table 11  Results of comparison with the famous classical algorithms

Function Metric IHHO-EO GA PSO DE BBO

F1 Mean 0 1.03E+03 1.83E+04 1.33E-03 7.59E+01
Std 0 5.79E+02 3.01E+03 5.92E-04 2.75E+01

F2 Mean 0 2.47E+01 3.58E+02 6.83E-03 1.36E-03
Std 0 5.68E+00 1.35E+03 2.06E-03 7.45E-03

F3 Mean 0 2.65E+04 4.05E+04 3.97E+04 1.21E+04
Std 0 3.44E+03 8.21E+03 5.37E+03 2.69E+03

F4 Mean 0 5.17E+01 4.39E+01 1.15E+01 3.02E+01
Std 0 1.05E+01 3.64E+00 2.37E+00 4.39E+00

F5 Mean 0.049514 1.95E+04 1.96E+07 1.06E+02 1.82E+03
Std 0.052258 1.31E+04 6.25E+06 1.01E+02 9.40E+02

F6 Mean 0.00040275 9.01E+02 1.87E+04 1.44E-03 6.71E+01
Std 0.00055358 2.84E+02 2.92E+03 5.38E-04 2.20E+01

F7 Mean 0.00011401 1.91E-01 1.07E+01 5.24E-02 2.91E-03
Std 0.0001374 1.50E-01 3.05E+00 1.37E-02 1.83E-03

F8 Mean − 20948.6474 – 1.26E+04 – 3.86E+03 – 6.82E+03 – 1.24E+04
Std 0.41048 4.51E+00 2.49E+02 3.94E+02 3.50E+01

F9 Mean 0 9.04E+00 2.87E+02 1.58E+02 0.00E+00
Std 0 4.58E+00 1.95E+01 1.17E+01 0.00E+00

F10 Mean 8.8818E-16 1.36E+01 1.75E+01 1.21E-02 2.13E+00
Std 0 1.51E+00 3.67E-01 3.30E-03 3.53E-01

F11 Mean 0 1.01E+01 1.70E+02 3.52E-02 1.46E+00
Std 0 2.43E+00 3.17E+01 7.20E-02 1.69E-01

F12 Mean 1.0635E-05 4.77E+00 1.51E+07 2.25E-03 6.68E-01
Std 9.6391E-06 1.56E+00 9.88E+06 1.70E-03 2.62E-01

F13 Mean 7.9115E-05 1.52E+01 5.73E+07 9.12E-03 1.82E+00
Std 7.4781E-05 4.52E+00 2.68E+07 1.16E-02 3.41E-01

F14 Mean 0.998 9.98E-01 1.39E+00 1.23E+00 9.98E-01
Std 2.4801E-15 4.52E-16 4.60E-01 9.23E-01 4.52E-16

F15 Mean 0.00033615 3.33E-02 1.61E-03 5.63E-04 1.66E-02
Std 4.5518E-05 2.70E-02 4.60E-04 2.81E-04 8.60E-03

F16 Mean − 1.0316 −3.78E-01 −1.03E+00 −1.03E+00 −8.30E-01
Std 1.0508E-10 3.42E-01 2.95E-03 6.78E-16 3.16E-01

F17 Mean 0.39789 5.24E-01 4.00E-01 3.98E-01 5.49E-01
Std 4.0947E-10 6.06E-02 1.39E-03 1.69E-16 6.05E-02

F18 Mean 3 3.00E+00 3.10E+00 3.00E+00 3.00E+00
Std 7.6861E-13 0.00E+00 7.60E-02 0.00E+00 0.00E+00

F19 Mean − 3.8628 −3.42E+00 −3.86E+00 −3.86E+00 −3.78E+00
Std 3.1006E-11 3.03E-01 1.24E-03 3.16E-15 1.26E-01

F20 Mean − 3.2863 −1.61351 −3.11088 −3.27048 −2.70774
Std 0.055415 0.46049 0.029126 0.058919 0.357832

F21 Mean − 10.1532 −6.66177 −4.14764 −9.64796 −8.31508
Std 9.1365E-08 3.732521 0.919578 1.51572 2.883867

F22 Mean − 10.4029 −5.58399 −6.01045 −9.74807 −9.38408
Std 9.2175E-08 2.605837 1.962628 1.987703 2.597238

F23 Mean − 10.5364 −4.69882 −4.72192 −10.5364 −6.2351
Std 2.4566E-08 3.256702 1.742618 8.88E-15 3.78462
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Table 12  Comparison results 
with other HHO variants

Function Metric IHHO-EO HHO-SCA QRHHO THHO

F1 Mean 0 1.8568E-91 0 3.11E-102
Std 0 9.48882E-91 0 1.57E-101

F2 Mean 0 2.46034E-51 3.55E-268 2.27E-51
Std 0 1.11204E-50 0 9.67E-51

F3 Mean 0 8.88008E-72 0 1.50E-77
Std 0 4.86382E-71 0 8.05E-77

F4 Mean 0 8.01525E-49 2.07E-244 1.34E-50
Std 0 2.82586E-48 0 5.77E-50

F5 Mean 0.028631 0.014313995 1.16E-01 6.80E-03
Std 0.032677 0.020188417 1.06E-01 9.17E-03

F6 Mean 9.427E-05 0.000223702 1.25E-03 2.48E-04
Std 0.00028983 0.000338117 5.39E-04 4.12E-04

F7 Mean 9.6075E-05 0.00012246 8.04E-05 2.02E-04
Std 9.6785E-05 0.000110326 5.36E-05 2.23E-04

F8 Mean − 12569.3743 −12569.08113 -1.26E+04 -1.26E+04
Std 0.066997 0.76690716 6.17E+02 1.04E+02

F9 Mean 0 0 0 0
Std 0 0 0 0

F10 Mean 8.8818E-16 8.88178E-16 8.88E-16 8.88E-16
Std 0 0 0 0

F11 Mean 0 0 0 0
Std 0 0 0 0

F12 Mean 1.0136E-05 1.13E-05 9.37E-05 8.15E-06
Std 2.0648E-05 1.5E-05 4.81E-05 1.37E-05

F13 Mean 7.9115E-05 0.000113 1.42E-03 9.24E-05
Std 7.4781E-05 0.000166 5.11E-04 1.47E-04

F14 Mean 0.998 1.26E+00 1.0643 1.06E+00
Std 2.4801E-15 4.47E-01 0.2522 2.48E-01

F15 Mean 0.00033615 3.45E-04 3.12E-04 3.64E-04
Std 4.5518E-05 4.03E-05 4.79E-06 3.99E-05

F16 Mean − 1.0316 −1.03E+00 − 1.0316 −1.03E+00
Std 1.0508E-10 1.80E-09 6.53E-13 2.00E-09

F17 Mean 0.39789 3.98E-01 0.398 3.98E-01
Std 4.0947E-10 2.15E-05 1.29E-06 6.46E-06

F18 Mean 3 3.00E+00 3 3.00E+00
Std 7.6861E-13 9.98E-07 6.09E-07 6.82E-07

F19 Mean − 3.8628 −3.86E+0 −3.86 −3.86E+00
Std 3.1006E-11 3.00E-03 3.93E-08 1.46E-03

F20 Mean − 3.2863 −3.09E+00 −3.27 −3.16E+00
Std 0.055415 1.09E-01 7.71E-02 1.18E-01

F21 Mean −10.1532 −5.21E+00 −10.1532 -1.02E+01
Std 9.1365E-08 8.95E-01 7.18E-06 1.07E-03

F22 Mean − 10.4029 −5.25E+00 −10.2258 −1.04E+01
Std 9.2175E-08 9.26E-01 0.9704 6.66E-04

F23 Mean − 10.5364 −5.28E+00 − 10.5364 −1.05E+01
Std 2.4566E-08 8.65E-01 2.60E-06 5.23E-04
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HHO to illustrate the effectiveness of the IHHO-EO algo-
rithm. The results showed that IHHO-EO algorithm was 
superior to other optimization algorithms in terms of the 
obtained best value, mean value and standard deviation. 
Through the Wilcoxon signed rank test, the p value of 
IHHO-EO in most functions was less than 0.05, indicat-
ing that IHHO-EO was significantly different from other 
algorithms in performance. In addition, IHHO-EO had 
faster convergence speed and accuracy according to the 
convergence graphs of the functions. In Exp.2, in order to 

illustrate the superior performance of the proposed algo-
rithm, IHHO-EO was compared with several other HHO 
variants. Friedman test and Quade test were performed, 
and the results showed that IHHO-EO got the highest 
ranking for functional experiments among the four HHO 
variants compared. Exp.3 verified the effectiveness of 
each improved strategy of IHHO-EO. The results indi-
cated that the mean and standard deviation of the algo-
rithm are improved in most functions after adding the pro-
posed strategies. IHHO-EO combined these strategies and 
obtained the best performance. In Exp.4, IHHO-EO was 
compared with several optimization algorithms and one 
HHO variant on the complex 50-dimensional CEC2017 
test funcions. Experimental results indicated that IHHO-
EO was also effective for complex funcion optimization 
problems. Finally, IHHO-EO was applied to the pressure 
vessel design problem and got the minimum manufactur-
ing cost, which showed that the algorithm also had good 
competitiveness in the practical engineering design prob-
lem with constraints.

Table 13  Friedman and Quade tests of Exp.2

Algorithms Firedman Quade

IHHO-EO 1.9348 1.7736
HHO-SCA 3.0217 3.2989
QRHHO 2.5652 2.5597
THHO 2.4783 2.3768
p-value 0.041482 0.00000568

Table 14  Comparison of 
various improvement strategies 
( F1 ∼ F13 of 50 dimensions)

Function Metric HHO IHHO1 IHHO2 HHO-EO IHHO-EO

F1 Mean 3.2564E-93 1.4991E-209 0 1.032E-138 0
Std 1.7836E-92 0 0 5.5966E-138 0

F2 Mean 1.0592E-49 6.2337E-112 0 2.8466E-86 0
Std 5.2174E-49 2.1295E-111 0 7.851E-86 0

F3 Mean 1.1368E-70 2.2981E-161 0 8.7762E-68 0
Std 6.1378E-70 1.1795E-160 0 4.8069E-67 0

F4 Mean 1.6927E-46 4.3819E-97 0 6.9232E-53 0
Std 9.2707E-46 2.3202E-96 0 2.2983E-52 0

F5 Mean 0.025156 0.038481 0.017575 0.04701 0.049514
Std 0.049794 0.058184 0.021293 0.05094 0.052258

F6 Mean 0.00031938 0.00033723 0.00021484 0.00028573 0.00040275
Std 0.00042628 0.00040536 0.0003158 0.00039863 0.00055358

F7 Mean 0.00016787 0.00013888 0.0001195 0.00020249 0.00011401
Std 0.00026998 0.00017664 0.00011661 0.00017603 0.0001374

F8 Mean −20948.3397 −20948.6803 −20146.5227 − 20949.0944 −20948.6474
Std 1.1392 0.38484 1258.893 0.045084 0.41048

F9 Mean 0 0 0 0 0
Std 0 0 0 0 0

F10 Mean 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16 8.8818E-16
Std 0 0 0 0 0

F11 Mean 0 0 0 0 0
Std 0 0 0 0 0

F12 Mean 7.3616E-06 1.4869E-05 1.1499E-05 3.6383E-06 1.0635E-05
Std 1.4336E-05 2.1029E-05 2.076E-05 2.8377E-06 9.6391E-06

F13 Mean 0.00012963 0.00017913 9.684E-05 7.6751E-05 0.00018826
Std 0.00019134 0.00020107 0.00012243 6.8603E-05 0.00016501
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Table 16  Results of benchmark 
functions (CEC2017 f1 ∼ f30)

Function Metric GOA DA SCA HHO SCHHO IHHO-EO

f1 Mean 3.20E+10 3.30E+11 7.38E+09 2.84E+08 7.72E+03 2.88E+03
Std 1.19E+06 8.90E+8 1.00E+09 1.10E+07 3.31E+01 3.71E+03

f3 Mean 4.76E+05 6.05E+07 1.34E+05 1.37E+05 5.82E+03 8.30E+03
Std 9.96E+05 1.45E+06 3.44E+05 1.61E+06 1.18E+03 4.70E+03

f4 Mean 4.47E+04 1.26E+04 1.52E+04 7.86E+03 4.31E+02 1.48E+02
Std 4.16E+03 1.70E+03 9.99E+03 4.14E+02 5.72E+01 5.45E+01

f5 Mean 2.84E+03 8.25E+02 1.22E+03 8.96E+02 5.12E+02 3.21E+02
Std 5.72E+02 2.10E+02 1.20E+02 8.64E+01 1.29E+01 2.51E+01

f6 Mean 6.92E+02 7.10E+02 6.81E+02 5.72E+02 6.47E+02 2.10E-03
Std 1.94E+02 2.23E+02 5.74E+02 2.04E+01 8.66E+01 6.50E-03

f7 Mean 2.42E+00 3.86E+01 1.21E+01 6.63E+01 1.83E+01 4.80E+02
Std 2.80E+02 2.23E+02 5.74E+02 2.40E+01 9.26E+00 5.93E+01

f8 Mean 1.55E+03 1.55E+03 1.41E+03 1.20E+03 1.02E+03 3.28E+02
Std 8.52E+01 2.33E+01 9.95E+01 3.44E+01 2.03E+01 2.77E+01

f9 Mean 5.98E+04 4.31E+04 2.87E+04 2.77E+04 1.11E+04 1.09E+04
Std 9.21E+04 6.03E+03 1.22E+03 3.02E+04 2.16E+02 1.18E+03

f10 Mean 1.54E+04 1.59E+04 1.54E+04 9.87E+03 3.66E+03 6.65E+03
Std 3.22E+02 5.23E+02 7.35E+03 6.38E+02 1.62E+02 8.06E+02

f11 Mean 3.40E+04 2.43E+04 1.22E+04 1.68E+03 1.46E+04 1.80E+02
Std 5.52E+03 2.27E+03 6.29E+02 1.88E+02 7.21E+02 3.71E+01

f12 Mean 6.05E+10 2.66E+10 2.15E+10 2.48E+08 8.03E+05 1.72E+06
Std 1.12E+10 2.23E+10 6.73E+10 3.01E+08 7.28E+05 1.02E+06

f13 Mean 1.65E+10 1.44E+10 4.55E+09 1.38E+07 3.94E+05 9.29E+03
Std 1.00E+10 1.20E+09 2.91E+09 3.62E+07 3.73E+05 8.74E+03

f14 Mean 7.63E+07 4.23E+07 7.10E+06 2.40E+06 5.61E+03 1.35E+05
Std 8.28E+06 4.20E+07 1.01E+06 1.60E+06 3.73E+03 1.03E+05

f15 Mean 9.89E+08 3.54E+09 9.77E+08 1.20E+06 1.05E+05 1.10E+04
Std 9.22E+08 3.20E+09 5.21E+06 1.11E+06 6.54E+03 6.93E+03

f16 Mean 8.78E+03 5.52E+03 6.20E+03 4.33E+03 3.10E+03 2.14E+03
Std 1.12E+03 4.33E+03 2.87E+03 3.61E+02 1.59E+02 4.80E+02

f17 Mean 1.40E+05 5.38E+03 4.81E+03 3.96E+03 3.12E+03 1.98E+03
Std 5.10E+02 3.72E+03 2.22E+03 4.27E+02 2.39E+02 3.17E+02

f18 Mean 4.27E+07 6.62E+07 3.85E+08 3.78E+06 2.63E+04 6.98E+05
Std 7.74E+06 3.61E+07 2.74E+08 6.55E+05 2.25E+03 4.77E+05

f19 Mean 4.67E+08 1.69E+09 5.77E+08 1.19E+06 5.25E+05 1.99E+04
Std 3.54E+07 2.63E+08 3.88E+08 1.05E+05 3.05E+05 1.11E+04

f20 Mean 4.92E+03 3.36E+03 4.20E+03 3.67E+03 2.42E+03 1.26E+03
Std 3.34E+03 1.90E+02 2.11E+02 2.83E+03 2.62E+02 2.45E+02

f21 Mean 3.32E+03 2.53E+03 2.69E+03 2.88E+03 1.60E+03 6.16E+02
Std 1.14E+02 6.15E+01 8.00E+02 1.33E+01 5.80E+01 5.96E+01

f22 Mean 1.83E+04 1.31E+04 1.84E+04 1.11E+04 2.51E+03 7.45E+03
Std 3.64E+03 7.75E+03 3.34E+03 4.71E+03 5.12E+02 9.49E+02

f23 Mean 3.66E+03 3.61E+03 3.97E+03 3.86E+03 1.99E+03 1.13E+03
Std 6.04E+01 4.02E+01 4.74E+01 5.81E+01 7.01E+01 2.13E+02

f24 Mean 3.42E+03 4.26E+03 3.88E+03 4.41E+03 5.70E+03 2.10E+03
Std 2.46E+02 4.00E+02 3.09E+02 6.41E+02 2.66E+02 4.40E+02

f25 Mean 2.34E+04 7.52E+03 8.63E+03 3.25E+03 1.87E+03 5.70E+02
Std 4.73E+02 2.57E+02 1.36E+01 3.02E+01 2.26E+01 2.82E+01

f26 Mean 3.02E+04 1.16E+04 1.25E+04 1.07E+04 5.95E+03 3.00E+02
Std 1.53E+04 2.11E+03 2.38E+03 6.12E+03 1.96E+03 1.19E-01

f27 Mean 5.98E+03 5.60E+03 4.80E+03 4.88E+03 3.40E+03 8.22E+02
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In future work, IHHO-EO can be applied for more engi-
neering design problems, such as compression spring design 
problem, welded beam design problem [54], and typical 
combinatorial optimization problems such as traveling sales-
man problem [23].
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