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Abstract
Probabilistic dual hesitant fuzzy set is a more powerful and important tool to express uncertain information. As we all

know, the distance and similarity measures are very useful tool in decision-making field. In this study, the distance measure

and similarity measure of probabilistic dual hesitation fuzzy set are systematically proposed from the perspectives of

discrete and continuous, ordered and unordered, which provides a theoretical support for the research of decision-making

problems in probabilistic dual hesitation fuzzy environment. Firstly, we proposed some novel distance and similarity

degrees for two probabilistic dual hesitant fuzzy sets and their weighted forms. Secondly, we proposed a decision technique

based on the novel built weighted distance and similarity measures to solve the multi-attribute group decision-making

problem in the PDHF environment. Finally, the proposed technique was applied to the suitability evaluation of new

urbanization. Meanwhile, the technique built in this study was compared with the existed methods to verify the practi-

cability and feasibility, and the superiorities of the built in this study were put forward, which has a better effect in solving

multi-attribute group decision-making problems.

Keywords Distance measure � Similarity measure � Multi-attribute group decision-making � Probabilistic dual hesitant

fuzzy set � Probabilistic dual hesitant fuzzy element

1 Introduction

Due to uncertainty of people’s cognition for the objective

world and the objective needs, to deal with these problems

with uncertain information, accordingly, the fuzzy set (FS)

was built by Zadeh [1]. With the development of FS and its

extensions, it has been applied in many fields, scholars

have proposed different decision-making (DM) methods

[2–6] for the problems they have solved. Since it was

proposed, many scholars have studied and extended FS in

detail, and put forward different dimensional FSs [7–9]

from different perspectives on the basis of FS. Atanassov,

Atanassov and Gargov, [10, 11] proposed intuitionistic FS

(IFS) and interval IFS (IVIFS) depend on FS, they include

two aspect of membership degree (MD) and non-mem-

bership degree (NMD), it is more in line with people’s

cognition of things, some scholars put forward some

interesting DM methods [12–15] and applied them to

practical problems. but these FSs can’t reflect the situation

that the DM gives multiple possible values to the decision

object, in order to better reflect this situation, Torra [16]

proposed the hesitant FS (HFS), and the its MD contains

several possible values, some scholars put forward some

DM methods [17–22] for HFS and applied them to some

real problems. Zhu et al. [23] proposed the dual HFS

(DHFS) based on HFS. It contains not only MD but also

NMD. Both MD and NMD are composed of several pos-

sible values, it is found that IFS and IVIFS are special cases

of DHFS.

According to some actual situations in real life, DHFS

can’t reflect the probability information of MD and NMD,
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some DM methods [24–31] are proposed for DHFS and

applied to some real problems. Based on this, Hao et al.

[32] introduces probability into DHFS, put forward the

probabilistic DHFS (PDHFS) and probabilistic dual hesi-

tant fuzzy element (PDHFE), and gave the basic operation

laws, at the same time, two PDHFEs are compared by

using the score and deviation degree of PDHFE, and the

calculation formula of entropy of PDHFE was given. Since

the PDHFS was put forward, there have been some studies

on the PDHFS, some novel multi-attribute decision-making

(MADM) and multi-attribute group decision-making

(MAGDM) methods have been built. Zhao et al. [33] gave

the DM technique by PROMETHEE-II method to solve

PDHF MCGDM problem. Garg and Kaur [34] presented a

correlation coefficient for PDHFS, and applied the decision

method to project managers’ evaluation of a software

company. Ren et al. [35] extended conventional TODIM

method to PDHF environment and it was applied to

enterprise strategic assessment. Zhang et al. [36] presented

a MAGDM model with MULTIMOORA and applied it to

the evaluation of the P-J fit algorithm. Garg and Kaur [37]

applied the MSM operator to PDHF environment to solve

the medical diagnosis problem. Although there have been

some studies on the DM methods for PDHFS, on the

whole, there are few studies on DM method under PDHF

setting.

Distance and similarity measures are very important

concepts in some MAGDM problems, from the literatures,

there have been many studies on distance and similarity

measures for multifarious extended FSs. For example,

distance and similarity measures of FS [38, 39]. Distance

and similarity measures of IFS and IVIFS [40, 41]. Dis-

tance and similarity measures of HFS [42–47]. Distance

and similarity measures of DHFS [48, 49].

Through literatures reviewed, we find that there are few

studies on the distance and similarity measures of PDHFS.

Ren et al. [35] studied the distance of PDHFS, in this study,

two PDHFEs with different probability distributions are

transformed into PDHFEs with the same probability dis-

tribution by probability splitting algorithm. Thus, the dis-

tance between two PDHFEs is calculated, but the

calculation method is more complex. Garg and Kaur [50]

also defined the distance between two PDHFEs, but from

the definition of distance, the distance calculated according

to this distance formula will be smaller than the real dis-

tance. The distance proposed in the paper is a generaliza-

tion of the famous Hamming distance, Euclidean distance

and Hausdorff metric, which is more representative and

will not change the original value of the distance. More-

over, the calculation method is simple. At the same time,

the systematic research is carried out for discrete and

continuous cases, ordered and unordered cases, which

plays a basic theoretical support for the research of distance

and similarity measures in PDHF environment, which will

play a very important role in the MADM/MAGDM whose

decision information is PDHFS.

Therefore, the ultimate goal of this study is to system-

atically propose the distance measure and similarity mea-

sure between two PDHFS, and propose a novel MAGDM

technique based on these distance measures and similarity

measures. Finally, by applying the novel MAGDM tech-

nique to evaluate the sustainability of new urbanization, the

flexibility of the proposed MAGDM technique is verified

by parameter analysis, and the effectiveness of the pro-

posed MAGDM technique is verified by comparative

analysis with existing decision-making methods.

The motivation of this paper as follows: (1) In the

increasingly complex decision-making environment, it is

very important to obtain evaluation information effec-

tively. PDHFS can more comprehensively and extensively

express the preference information of decision makers

(DMs). (2) We can find the famous Hamming distance,

Euclidean distance, Hausdorff metric have been success-

fully extended into many fuzzy setting, we divide the

distance into discrete and continuous cases, ordered and

unordered cases, and extend the several famous distance

measures to PDHF setting. (3) The existing distance does

not take into account the psychological behavior of deci-

sion-makers. It is necessary to propose some novel distance

measures that not only meets the axiomatic definition of

distance measure, but also reflects the psychological

behavior of decision-makers. (4) It is very important to

evaluate the sustainability of new urbanization, which can

play the most basic theoretical support for relevant

departments on how to better develop new urbanization.

Unscientific evaluation methods will lead to incalculable

wrong results. (5) Finally, the flexibility of the proposed

MAGDM technique is verified by parameter analysis, and

the effectiveness of the proposed MAGDM technique is

verified by comparative analysis with existing decision-

making methods.

The main contributions of this paper are as follow: (1)

Before defining the distance and similarity measures,

axiomatic definitions of the distance and similarity mea-

sures between two PDHFSs are proposed. (2) The famous

Hamming distance, Euclidean distance and Hausdorff

metric are extended to the PDHF environment, and some

distance measures with very interesting properties are

proposed. At the same time, some similarity measures are

proposed according to the relationship between distance

and similarity measures. (3) Some distance measures put

forward fully consider the psychological behavior of

decision-makers, and make decision-makers more flexible

in the process of use. (4) parameter analysis verifies the

flexibility of the proposed technique and the comparative

analysis with the existing methods further proves the
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effectiveness and superiority of the proposed technique. (5)

the proposed approach gives DMs more options in dealing

with uncertain problems and provides some reference for

the further extension of these distance and similarity

measures method in other decision environments.

The rest parts are listed in the following. Section 2

reviewed some basic concepts about PDHFS and some

classical distance measures. In Sect. 3, some novel con-

cepts for PDHFE were defined, and some novel distance

measures (unordered and ordered distance measures) for

PDHFE were proposed, these novel works laid a solid

foundation for proposing the distance measures for

PDHFS; Sect. 4 proposed the distance measures of PDHFS

in eight cases on the basis of Sect. 3; Sect. 5 proposed

some similarity measures for PDHFE based on the distance

measures proposed in Sect. 4; In Sect. 6, the similarity

measures proposed above were applied to the suitability

evaluation of new urbanization, and compared with the

existed MADM methods, which showed the effectiveness

of the study; Sect. 7 analyzed the advantages and puts

forward the advantages of the study; In Sect. 8, some

conclusions and future works were put forward.

2 Preliminaries

2.1 Probabilistic dual hesitant fuzzy set

In the subsection, we will review some basic conception,

score function, accuracy function, comparison method and

aggregation operator for PDHFS.

Definition 1 [32]. Let X be a fixed set, a PDHFS on X is

recorded as:

P ¼ x; h xð Þjp xð Þ; g xð Þjq xð Þh ix 2 Xjf g ð1Þ

The components �h ‘ð Þjs ‘ð Þ and ´ ‘ð Þjt ‘ð Þ are some

possible elements of MD and NMD, where �h ‘ð Þ and ´ ‘ð Þ
are the MD and NMD of ‘ 2 X, respectively. s ‘ð Þ and t ‘ð Þ
are the probabilistic information for �h ‘ð Þ and ´ ‘ð Þ.
Meanwhile,

0� c; g� 1; 0� cþ þ gþ � 1; ð2Þ

and

pi 2 0; 1½ �; qj 2 0; 1½ �;
X#h

i¼1

pi ¼ 1;
X#g

i¼1

qi ¼ 1; ð3Þ

where c 2 �h ‘ð Þ, g 2 ´ ‘ð Þ, cþ 2 �hþ xð Þ ¼ [c2�h xð Þ max cf g,
gþ 2 ´þ xð Þ ¼ [c2´ xð Þ max gf g, si 2 s ‘ð Þ and ti 2 t ‘ð Þ. The
symbols #�h is the number of elements in the components

�h ‘ð Þjs ‘ð Þ, the symbols #´ is the number of elements in

´ ‘ð Þjt ‘ð Þ.

In order to be more convenient in the process of use and

calculation, the pair p ¼ h xð Þjp xð Þ; g xð Þjq xð Þh i is called as

the PDHFE [32], denoted by p ¼ hjp; gjqh i.
Under conditions 0\

P#h
i¼1 pi\1 and 0\

P#g
i¼1 qi\1,

the decision-making offers only partial information, in

view of this situation, we need to normalize the PDHFS by

the following formula [32]:

P ¼ x; h xð Þjp xð Þ; g xð Þjq xð Þh ix 2 Xjf g ð4Þ

where the elements in p xð Þ and q xð Þ are calculated by

p xð Þ ¼ pi

.P#h
i¼1 pi and q xð Þ ¼ qi

.P#h
i¼1 qi, respectively.

In order to compare the size of two PDHFEs, Hao et al.

[32] defined the score function, Xu and Zhou [51] defined

the accuracy function of PDHFE.

Definition 2 [32]. Let p ¼ hjp; gjqh i be a PDHFE, then the

score function for PDHFE is defined as:

S pð Þ ¼
X#h

i¼1 c2h
ci � pi �

X#g

j¼1 c2g
gj � qj ð5Þ

Definition 3 [51]. Let p ¼ hjp; gjqh i be a PDHFE, the

accuracy function for PDHFE is defined as:

H pð Þ ¼
X#h

i¼1 c2h
ci � piþ

X#g

j¼1 c2g
gj � qj ð6Þ

Xu and Zhou [51] proposed the method used to compare

the size of two PDHFEs as follows.

Definition 4 [51]. Let pi i ¼ 1; 2ð Þ be two PDHFEs,

S pið Þ i ¼ 1; 2ð Þ and H pið Þ i ¼ 1; 2ð Þ are the score function

and accuracy function, respectively. Then.

1: If S p1ð Þ[ S p2ð Þ, then the PDHFE p1 is superior to

p2, denoted by p1 [ p2; On the contrary, there is

p1\p2.

2: If S p1ð Þ ¼ S p2ð Þ, then

(1) If H p1ð Þ\H p2ð Þ, the PDHFE p1 is superior to

p2, denoted by p1 [ p2;

(2) If H p1ð Þ[H p2ð Þ, the PDHFE p1 is inferior

to p2, denoted by p1\p2;

(3) If H p1ð Þ ¼ H p2ð Þ, the PDHFE p1 is equal to

p2, denoted by p1 ¼ p2.

How to use the information aggregation operator to

effectively aggregate the information provided by decision-

maker for better decisions is very important, Hao et al. [32]

defined the PDHF weighted averaging operator.

Definition 5 [32]. Let pi ¼ hijphi ; gijqgi
� �

i ¼ 1; 2; � � � ; nð Þ
be n PDHFEs and xj j ¼ 1; 2; � � � ; nð Þ be the weight with
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xj 2 0; 1½ � j ¼ 1; 2; � � � ; nð Þ and
Pn

j¼1 xj ¼ 1. Then the

PDHFWA operator is defined as:

PDHFWA P1;P2; � � � ;Pn;ð Þ¼ �
n

j¼1
xjpj

¼ [
c12h1;c22h2;���;cn2hn
g12g1;g22g2;���;gn2gn

1�P
n

i¼1
1�cið Þxi

� ���� Pn
i¼1

pci

n o
; P

n

j¼1
g
xj
j

� ���� Pn
j¼1

qgi

n on o

ð7Þ

2.2 Some classical distance measures

In the field of scientific research, distance and similarity

measures are very important tools, which are widely used

in important decision-making problems such as machine

learning, pattern recognition, bilateral matching and so on.

In most studies, the distance for two fuzzy sets A and B on

X ¼ x1; x2; � � � ; xnf g mainly includes the following dis-

tance measures, here we give several distance measures

[52–54]:

(1) The Hamming distance: h A;Bð Þ ¼
Pn

i¼1 lA xið Þ�j
lB xið Þj.

(2) The normalized Hamming distance: hn A;Bð Þ ¼
1
n

Pn
i¼1 lA xið Þ � lB xið Þj j.

(3) The Euclidean distance: e A;Bð Þ ¼
Pn

i¼1

�

lA xið Þ � lB xið Þð Þ2Þ1=2.
(4) The normalized Euclidean distance: en A;Bð Þ ¼

1
n

Pn
i¼1 lA xið Þ � lB xið Þð Þ2

� �1=2
.

(5) The Hausdorff metric: hm A;Bð Þ ¼ max lA xið Þ�j
lB xið Þj

where lA xið Þ and lB xið Þ represent the MD of A and B, and

satisfy condition 0� lA xið Þ; lB xið Þ� 1.

3 Some distance measures between PDHFEs

Since PDHFS is different from existing FSs, the existing

distance measures of various FSs can’t calculate the dis-

tance between two PDHFSs. Hence, this chapter will solve

this problem.

From the literatures review, most studies on distance

measure have given the axiomatic definition for distance

measure. Next, before giving the distance measure between

two PDHFSs, we first built the axiomatic definition of

distance measure for two PDHFEs.

Definition 6 Let s ¼ hsjps; gsjqsh i and t ¼ htjpt; gtjqth i
be two PDHFSs, then d s; tð Þ is named as distance measure

between two PDHFEs, if d s; tð Þ satisfies:

(A1) 0� d s; tð Þ� 1;

(A2) d s; tð Þ ¼ 0 if and only if s ¼ t;
(A3) d s; tð Þ ¼ d t; sð Þ.

Remark 1 For two different PDHFEs, if the lengths of two

PDHFEs are different, the shorter PDHFE should be

extended by adding the minimum element under pes-

simistic criterion until the two PDHFEs have the same

length, adding the maximum element under the optimism

criterion, and the probability of those added elements is

equal to zero. In fact, we can extend the shorter PDHFE by

adding any element according to the preference and actual

situation of the decision-maker until it has the same length

as the longer PDHFE.

Remark 2 Some definitions of deviation degree under

different cases.

(1) The deviation degree in discrete unordered case:

If # hsjpsð Þ ¼ # htjptð Þ ¼ U and # gsjqsð Þ ¼
# gtjqtð Þ ¼ W, then the discrete unordered devia-

tion degrees of MD and NMD from PDHFEs s to t
are defined as follows:

The discrete unordered deviation degree of MD:

pDUMD s; tð Þ¼ h j
sp

j
s � h j

tp
j
t

�� ��

The discrete unordered deviation degree of

NMD:

pDUNMD s; tð Þ¼ g j
sq

j
s � g j

tq
j
t

�� ��

(2) The deviation degree in discrete ordered case:

If # hsjpsð Þ 6¼ # htjptð Þ, # gsjqsð Þ 6¼ # gtjqtð Þ,
let C ¼ max # hsjpsð Þ;# htjptð Þð Þ, ! ¼ max # gsðð
jqsÞ;# gtjqtð ÞÞ.

The discrete ordered deviation degrees of MD

and NMD from s to t are defined as follows:

The discrete ordered divergences of MD:

pDOMD s; tð Þ¼ hr jð Þ
s pr jð Þ

s � hr jð Þ
t pr jð Þ

t

�� ��

The discrete ordered divergences of NMD:

pDONMD s; tð Þ¼ gr jð Þ
s qr jð Þ

s � gr jð Þ
t qr jð Þ

t

�� ��

where hr jð Þ
s

��pr jð Þ
s j ¼ 1; 2; � � � ;#hr jð Þ

s

��pr jð Þ
s

� �
is the

ith smallest in hsjps; h
r jð Þ
t

���pr jð Þ
t j ¼ 1; 2; � � � ;ð

#h
r jð Þ
t

���pr jð Þ
t Þ is the ith smallest in htjpt;

gr jð Þ
s

��qr jð Þ
s j ¼ 1; 2; � � � ;#gr jð Þ

s

��qr jð Þ
s

� �
is the ith

smallest in gsjqs; g
r jð Þ
t

���qr jð Þ
t j ¼ 1; 2; � � � ;#g

r jð Þ
t

�

jqr jð Þ
t Þ is the ith smallest in gtjqt, and
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hr jð Þ
s pr jð Þ

s � hr jþ1ð Þ
s pr jþ1ð Þ

s , h
r jð Þ
t p

r jð Þ
t � h

r jþ1ð Þ
t p

r jþ1ð Þ
t ,

gr jð Þ
s qr jð Þ

s � gr jþ1ð Þ
s qr jþ1ð Þ

s , g
r jð Þ
t q

r jð Þ
t � g

r jþ1ð Þ
t q

r jþ1ð Þ
t .

3.1 Some unordered distance measures
for PDHFE

Let s ¼ hsjps; gsjqsh i and t ¼ htjpt; gtjqth i be two

PDHFEs, then some distances between s and t are defined

as follows.

(1) The generalized unordered normalized distance

(GUND) between s and t is defined as:

dgund s; tð Þ ¼ 1

2

1

U

XU

j¼1
pkUMD s; tð Þ

	


þ 1

W

XW

j¼1
pkUNMD s; tð Þ

��1=k

where k[ 0.

If k¼1, GUND becomes the unordered normal-

ized Hamming distance (UNHD); If k¼ 2, GUND

becomes the unordered normalized Euclidean dis-

tance (UNED).

(2) The generalized unordered normalized Hausdorff

distance (GUNHD) between s and t is defined as:

dgunhd s; tð Þ ¼ max
j

pkUMD s; tð Þ; pkUNMD s; tð Þ
� �	 �1=k

where k[ 0.

If k¼1, GUNHD becomes the unordered nor-

malized Hamming–Hausdorff distance (UNHHD);

If k¼ 2, GUNHD becomes the unordered normal-

ized Euclidean–Hausdorff distance (UNEHD).

Also, some unordered hybrid distance measures

can be built as follows:

(3) The generalized unordered hybrid normalized dis-

tance (GUHND) between s and t is defined as:

If k¼1, GUHND becomes the unordered hybrid

normalized Hamming distance (UHNHD); If k¼ 2,

GUHND becomes the unordered hybrid normalized

Euclidean distance (UHNED).

3.2 Some ordered distance measures for PDHFE

Let s ¼ hsjps; gsjqsh i and t ¼ htjpt; gtjqth i be two

PDHFEs, then some ordered normalized distances between

s and t are defined as follows.

(1) The generalized ordered normalized distance

(GOND) between s and t is defined as:

dgond s; tð Þ ¼ 1

2

1

C

XC

j¼1
pkOMD s; tð Þ

	


þ 1

!

X!

j¼1
pkONMD s; tð Þ

��1=k

If k¼1, GOND becomes the ordered normalized

Hamming distance (ONHD); If k¼ 2, GOND

becomes the ordered normalized Euclidean distance

(ONED).

(2) The generalized ordered normalized Hausdorff

distance (GONHD) between s and t is defined as:

dgonhd s; tð Þ ¼ max
j

pkOMD s; tð Þ; pkONMD s; tð Þ
� �	 �1=k

where k[ 0.

If k¼1, GONHD becomes the ordered normal-

ized Hamming–Hausdorff distance (ONHHD); If

k¼ 2, GONHD becomes the ordered normalized

Euclidean–Hausdorff distance (ONEHD).

Additionally, some ordered hybrid distance

measures can be built for PDHFE as follows:

(3) The generalized ordered hybrid normalized dis-

tance (GOHND) between s and t is defined as:

dguhnd s; tð Þ ¼ 1

2

1

2

1

U

XU

j¼1
pkUMD s; tð Þ þ 1

W

XW

j¼1
pkUNMD s; tð Þ

	 �

þmax
j

pkUMD s; tð Þ; pkUNMD s; tð Þ
� �

2

664

3

775

8
>><

>>:

9
>>=

>>;

1=k
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If k¼1, GOHND becomes the ordered hybrid

normalized Hamming distance (OHNHD); If k¼ 2,

GOHND becomes the ordered hybrid normalized

Euclidean distance (OHNED).

4 Distance measures between two
collections of PDHFSs

Before giving distance measures between two collections

of PDHFSs, we firstly give some basic and necessary

remarks.

Remark 4 Some definitions of deviation degree under

different cases.

(1) The deviation degree in discrete unordered case:

Let # hM xið ÞjpM xið Þð Þ ¼ # hN xið ÞjpN xið Þð Þ ¼ Uxi ;

# gM xið ÞjqM xið Þð Þ ¼ # gN xið ÞjqN xið Þð Þ ¼ Wxi :

The discrete unordered divergences of MD and

NMD from PDHFSs M to N on X ¼
x1; x2; � � � ; xnf g are defined as follows:

The discrete unordered deviation degree of

MD:

pDUMD M;Nð Þ¼ h j
M xið Þp j

M xið Þ � h j
N xið Þp j

N xið Þ
�� ��

The discrete unordered deviation degree of

NMD:

pDUNMD M;Nð Þ¼ g j
M xið Þq j

M xið Þ � g j
N xið Þq j

N xið Þ
�� ��

In the next subsection, we firstly proposed some

distances under.

(2) The deviation degree in continuous unordered

case:

If # hM xð ÞjpM xð Þð Þ ¼ # hN xð ÞjpN xð Þð Þ ¼
Ux;# gM xð ÞjqM xð Þð Þ ¼ # gN xð ÞjqN xð Þð Þ ¼ Wx:

The unordered continuous deviation degrees of

MD and NMD from PDHFSs M to N on x 2 X:

The continuous unordered deviation degree of

MD:

pCUMD M;Nð Þ¼ h j
M xð Þp j

M xð Þ � h j
N xð Þp j

N xð Þ
�� ��

The continuous unordered deviation degree of

NMD:

pCUNMD M;Nð Þ¼ g j
M xð Þq j

M xð Þ � g j
N xð Þq j

N xð Þ
�� ��

(3) The deviation degree in discrete ordered case:

If # hM xið ÞjpM xið Þð Þ 6¼ # hN xið ÞjpN xið Þð Þ,
# gM xið ÞjqM xið Þð Þ 6¼ # gN xið ÞjqN xið Þð Þ, let Cxi ¼
max # hM xið ÞjpM xið Þð Þ;# hN xið ÞjpN xið Þð Þð Þ and

!xi ¼ max # gM xið ÞjqM xið Þð Þ;# gN xið ÞjqN xið Þð Þð Þ.
The discrete ordered deviation degrees of MD

and NMD from PDHFSs M to N on

X ¼ x1; x2; � � � ; xnf g:
The discrete ordered deviation degree of MD

degree:

pDOMD M;Nð Þ¼ h
r jð Þ
M xið Þpr jð Þ

M xið Þ � h
r jð Þ
N xið Þpr jð Þ

N xið Þ
���

���

The discrete ordered deviation degree of NMD:

pDONMD M;Nð Þ¼ g
r jð Þ
M xið Þqr jð Þ

M xið Þ � g
r jð Þ
N xið Þqr jð Þ

N xið Þ
���

���

where h
1j
M xið Þ

��p1jM xið Þ i ¼ 1; 2; � � � ;ð #hM xið ÞjpM
xið ÞÞ is the ith smallest in hM xið ÞjpM xið Þ;
h
1j
N xið Þ

��p1jN xið Þ i ¼ 1; 2; � � � ;ð #hN xið ÞjpN xið ÞÞ is the

ith smallest in hN xið ÞjpN xið Þ; g
1j
M xið Þ

��

q
1j
M xið Þ i ¼ 1; 2; � � � ;ð #hM xið ÞjpM xið ÞÞ is the ith

smallest in gM xið ÞjqM xið Þ; g
1j
N xið Þ

��q1jN xið Þ
i ¼ 1; 2; � � � ;ð #gN xið ÞjqN xið ÞÞ is the ith smallest

in gN xið ÞjqN xið Þ, and h
1j
M xið Þp1jM xið Þ� h

1jþ1

M xið Þ
p
1jþ1

M xið Þ, h1jN xið Þp1jN xið Þ� h
1jþ1

N xið Þp1jþ1

N xið Þ, g1jM xið Þq1jM
xið Þ� g

1jþ1

M xið Þq1jþ1

M xið Þ,
g
1j
N xið Þq1jN xið Þ� g

1jþ1

N xið Þq1jþ1

N xið Þ.
(4) The deviation degree in continuous ordered case:

If # hM xð ÞjpM xð Þð Þ 6¼ # hN xð ÞjpN xð Þð Þ ,

# gM xð ÞjqM xð Þð Þ 6¼ # gN xð ÞjqN xð Þð Þ , let Cx ¼
max # hM xð ÞjpM xð Þð Þ;# hN xð ÞjpN xð Þð Þð Þ and

!x ¼ max # gM xð ÞjqM xð Þð Þ;# gN xð ÞjqN xð Þð Þð Þ ,
The continuous ordered distance measures for

PDHFS, we give the continuous ordered diver-

gences of MD and NMD from PDHFSs M to N:

The continuous ordered divergences of MD:

pCOMD M;Nð Þ¼ h
r jð Þ
M xð Þpr jð Þ

M xð Þ � h
r jð Þ
N xð Þpr jð Þ

N xð Þ
���

���

The continuous ordered divergences of NMD:

dgohnd s; tð Þ ¼ 1

2

1

2

1

C

XC

j¼1
pkOMD s; tð Þ þ 1

!

X!

j¼1
pkONMD s; tð Þ

	 �

þmax
j

pkOMD s; tð Þ; pkONMD s; tð Þ
� �

2
664

3
775

8
>><

>>:

9
>>=

>>;

1=k
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pCONMD M;Nð Þ¼ g
r jð Þ
M xð Þqr jð Þ

M xð Þ � g
r jð Þ
N xð Þqr jð Þ

N xð Þ
���

���

where h
1j
M xð Þ

��p1jM xð Þ i ¼ 1; 2; � � � ;ð #hM xð ÞjpM xð ÞÞ
is the ith smallest in hM xð ÞjpM xð Þ;
h
1j
N xð Þ

��p1jN xð Þ i ¼ 1; 2; � � � ;ð #hN xð ÞjpN xð ÞÞ is the

ith smallest in hN xð ÞjpN xð Þ; g
1j
M xð Þ

��q1jM xð Þ
i ¼ 1; 2; � � � ;#hM xð ÞjpM xð Þð Þ is the ith smallest

in gM xð ÞjqM xð Þ; g
1j
N xð Þ

��q1jN xð Þ i ¼ 1; 2; � � � ;ð #gN
xð ÞjqN xð ÞÞ is the ith smallest in gN xð ÞjqN xð Þ, and
h
1j
M xð Þp1jM xð Þ� h

1jþ1

M xð Þp1jþ1

M xð Þ, h
1j
N xð Þp1jN xð Þ�

h
1jþ1

N xð Þp1jþ1

N xð Þ, g
1j
M xð Þq1jM xð Þ� g

1jþ1

M xð Þq1jþ1

M xð Þ,
g
1j
N xð Þq1jN xð Þ� g

1jþ1

N xð Þq1jþ1

N xð Þ.

The distances between two PDHFEs can only calculate

the distance between two fuzzy elements, but in the process

of practical decision-making, each decision alternative has

several multiple decision attributes, and each decision

attribute corresponds to a PDHFE. The distance between

two PDHFSs cannot be calculated, and different decision

attributes have different importance, the weight of each

decision attribute is different. To solve these problems, we

propose some distance measures for PDHFS.

4.1 Unordered weighted distance measures
between two collections of PDHFSs
in discrete case

Let M ¼ hM xið ÞjpM xið Þ; gM xið ÞjqM xið Þh i and N ¼
hN xið ÞjpN xið Þ; gN xið ÞjqN xið Þh i be two PDHFSs on

X ¼ x1; x2; � � � ; xnf g. In practical problems, we believe that

the weight of each element should be considered. For

example, in the field of MADM, the importance of each

decision attribute is different and should be given different

weights, then some discrete unordered weighted distances

between M and N are defined as follows.

(1) The generalized discrete unordered weighted dis-

tance (GDUWD) between M and N is recorded as:

dgduxd M;Nð Þ ¼ 1

2

Xn

i¼1
xi

1

Uxi

XUxi

j¼1
pkDUMD M;Nð Þ

	


þ 1

Wxi

XWxi

j¼1
pkDUNMD M;Nð Þ

��1=k

where k[ 0.

If k¼1, GDUWD becomes the discrete unor-

dered weighted Hamming distance (DUWHD); If

k ¼ 2, GDUWD becomes the discrete unordered

weighted Euclidean distance (DUWED).

(2) The generalized discrete unordered weighted haus-

dorff distance (GDUWHD) between M and N is

defined as:

dgduxhd M;Nð Þ

¼
Xn

i¼1
xi max

j
pkDUMD M;Nð Þ; pkDUNMD M;Nð Þ
� �	 �
 �1=k

If k¼1, GDUWHD becomes the discrete unor-

dered weighted Hamming-Hausdoff distance

(DUWHHD); If k ¼ 2, GDUWHD becomes the

discrete unordered weighted Euclidean-Hausdorff

distance (DUWEHD).

Similarly, some discrete unordered hybrid

weighted distance measures can be defined. Next,

we define some discrete unordered hybrid weighted

distance measures.

(3) The generalized discrete unordered hybrid

weighted distance (GDUHWD) between M and N

is defined as

where k[ 0.

If k ¼ 1, GDUHWD becomes the discrete

unordered hybrid weighted Hamming distance

(DUHWHD); If k ¼ 2, GDUHWD becomes the

discrete unordered hybrid weighted Euclidean dis-

tance (DUHWED).

dgduhxd M;Nð Þ ¼ 1

2

Xn

i¼1

xi

1

2

1

Uxi

XUxi

j¼1
pkDUMD M;Nð Þ þ 1

Wxi

XWxi

j¼1
pkDUNMD M;Nð Þ

	 �

þmax
j

pkDUMD M;Nð Þ; pkDUNMD M;Nð Þ
� �

0
BB@

1
CCA

2
664

3
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1=k
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4.2 Unordered weighted distance measures
between two collections of PDHFSs
in continuous case

Some continuous unordered weighted distances between M

and N are defined as follows.

(1) The generalized continuous unordered weighted

distance (GCUWD) between M and N is defined as:

dgcuxd M;Nð Þ ¼ 1

2

Z b

a

x xð Þ 1

Ux

XUx

j¼1
pkCUMD M;Nð Þ

	


þ 1

Wx

XWx

j¼1
pkCUNMD M;Nð Þ

�
dx

�1=k

where k[ 0 ,where x xð Þ 2 0; 1½ � and
R b
a x xð Þdx ¼ 1.

If k ¼ 1, GCUWD becomes the continuous unordered

weighted Hamming distance (CUWHD); If k ¼ 2,

GCUWD becomes the continuous unordered weighted

Euclidean distance (CUWED); If x xð Þ ¼ 1
b�a, GCUWD

becomes the generalized continuous unordered equal

weighted distance (GCUEWD); If x xð Þ ¼ 1
b�a and k ¼ 1,

GCUWD becomes the continuous unordered equal

weighted Hamming distance (CUEWHD); If x xð Þ ¼ 1
b�a

and k ¼ 2, GCUWD becomes the continuous unordered

equal weighted Euclidean distance (CUEWED).

Next, we define the generalized continuous unordered

weighted Hausdorff distance (GCUWHD) between M and

N is defined as:

dgcuxhd M;Nð Þ ¼
Z b

a

x xð Þ max
j

pkCUMD M;Nð Þ;
�	

pkCUNMD M;Nð Þ
��
dx

�1=k

where k[ 0.

If k ¼ 1, GCUWHD becomes the continuous unordered

weighted Hamming-Hausdorff distance (CUWHHD); If

k ¼ 2, GCUWHD becomes the continuous unordered

weighted Euclidean-Hausdorff distance (CUWEHD); If

x xð Þ ¼ 1
b�a, GCUWHD becomes the generalized

continuous unordered equal weighted Hausdorff distance

(GCUEWHD); If x xð Þ ¼ 1
b�a and k ¼ 1, GCUWHD

becomes the continuous unordered equal weighted Ham-

ming-Hausdorff distance (CUEWHHD); If x xð Þ ¼ 1
b�a and

k ¼ 2, GCUWHD becomes the continuous unordered equal

weighted Euclidean-Hausdorff distance (CUEWDHD).

Similarly, some hybrid continuous unordered weighted

distance measures can be defined. Next, we define the

generalized continuous unordered hybrid weighted distance

(GCUHWD):

where k[ 0.

If k ¼ 1, GCUHWD becomes the continuous unordered

hybrid weighted Hamming distance (CUHWHD); If k ¼ 2,

GCUHWD becomes the continuous unordered hybrid

weighted Euclidean distance (CUHWED); If x xð Þ ¼ 1
b�a,

GCUHWD becomes the generalized continuous unordered

hybrid equal weighted distance (GCUHEWD); If x xð Þ ¼
1

b�a and k ¼ 1, GCUHWD becomes the hybrid continuous

equal weighted Hamming distance (HCEWHD); If x xð Þ ¼
1

b�a and k ¼ 2, GCUHWD becomes the continuous unor-

dered hybrid equal weighted Euclidean distance

(CUHEWED).

4.3 Ordered weighted distance measures
between two collections of PDHFSs
in discrete case

Some ordered weighted distances between M and N is

defined as follows.

(1) The generalized discrete ordered weighted distance

(GDOWD) between M and N is defined as:

dgcuhxd M;Nð Þ ¼ 1

2

Z b

a

x xð Þ
1

2

1

Ux

XUx

j¼1
pkCUMD M;Nð Þ þ 1

Wx

XWx

j¼1
pkCUNMD M;Nð Þ

	 �

þmax
j

pkCUMD M;Nð Þ; pkCUNMD M;Nð Þ
� �

0
BB@

1
CCAdx

2
664

3
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1=k
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dgdoxd M;Nð Þ ¼ 1

2

Xn

i¼1
xi

1

Cxi

XCxi

j¼1
pkDOMD M;Nð Þ

	


þ 1

!xi

X!xi

j¼1
pkDONMD M;Nð Þ

��1=k

ð8Þ

where k[ 0.

If k¼1, GDOWD becomes the discrete ordered

weighted Hamming distance (DOWHD); If k¼ 2,

GDOWD becomes the discrete ordered weighted

Euclidean distance (DOWED).

(2) The generalized discrete ordered weighted Haus-

dorff distance (GDOWHD) between M and N is

defined as:

dgdoxhd M;Nð Þ ¼
Xn

i¼1
xi max

j
pkDOMD M;Nð Þ;
�	

pkDONMD M;Nð Þ
��1=k

If k¼1, GDOWHD becomes the discrete ordered

weighted Hamming–Hausdorff distance

(DOWHHD); If k¼ 2, Eq. (56) becomes the dis-

crete ordered weighted Euclidean–Hausdorff dis-

tance (DOWEHD).

Next, we define the generalized discrete ordered

hybrid weighted distance (GDOHWD) between M

and N is defined as:

dgdohwd M;Nð Þ ¼ 1

2

Xn

i¼1
xi

1

2

1

Cxi

XCxi

j¼1
pkDOMD M;Nð Þ þ 1

!xi

X!xi

j¼1
pkDONMD M;Nð Þ

	 �

þmax
j

pkDOMD M;Nð Þ; pkDONMD M;Nð Þ
� �

2
664

3
775

8
>><

>>:

9
>>=

>>;

1=k

where k[ 0.

If k ¼ 1, GDOHWD becomes the discrete

ordered hybrid weighted Hamming distance

(DOHWHD); If k ¼ 2, GDOHWD becomes the

discrete ordered hybrid weighted Euclidean dis-

tance (DOHWED).

4.4 Ordered weighted distance measures
between two collections of PDHFSs
in continuous case

Some continuous ordered weighted distances between M

and N are defined as follows.

(1) The generalized continuous ordered weighted dis-

tance (GCOWD) between M and N is defined as:

dgcoxd M;Nð Þ ¼ 1

2

Z b

a

x xð Þ 1

Cx

XCx

j¼1
pkCOMD M;Nð Þ

	


þ 1

!x

X!x

j¼1
pkCONMD M;Nð Þ

�
dx

�1=k

where k[ 0, x xð Þ 2 0; 1½ � and
R b
a x xð Þdx ¼ 1.

If k ¼ 1, GCOWD becomes the continuous ordered

weighted Hamming distance (COWHD); If k ¼ 2,

GCOWD becomes the continuous ordered weighted

Euclidean distance (COWED); If x xð Þ ¼ 1
b�a, GCOWD

becomes the generalized continuous ordered equal weigh-

ted distance (GCOEWD); If x xð Þ ¼ 1
b�a and k ¼ 1,

GCOWD becomes the continuous ordered equal weighted

Hamming distance (COEWHD); If x xð Þ ¼ 1
b�a and k ¼ 2,

GCOWD becomes the continuous ordered equal weighted

Euclidean distance (COEWED).

Next, we define a generalized continuous ordered

weighted Hausdorff distance (GCOWHD) between M and

N is defined as:

dgcoxhd M;Nð Þ ¼
Z b

a

x xð Þ max
j

pkCOMD M;Nð Þ;
�	

pkCONMD M;Nð Þ
��
dx

�1=k

where k[ 0.

If k ¼ 1, GCOWHD becomes the continuous ordered

weighted Hamming-Hausdorff distance (COWHHD); If

k ¼ 2, GCOWHD becomes the continuous ordered

weighted Euclidean-Hausdorff distance (COWEHD); If

x xð Þ ¼ 1
b�a, GCOWHD becomes the generalized continu-

ous ordered equal weighted Hausdorff distance

(GCOEWHD); If x xð Þ ¼ 1
b�a and k ¼ 1, GCOWHD

becomes the continuous ordered equal weighted Hamming-

Hausdorff distance (COEWHHD); If x xð Þ ¼ 1
b�a and

k ¼ 2, GCOWHD becomes the continuous ordered equal

weighted Euclidean-Hausdorff distance (COEWEHD).

Similarly, some continuous ordered hybrid continuous

weighted distance measures can be defined.

(1) The generalized continuous ordered hybrid

weighted distance (GCOHWD) between M and N

is defined as:
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dgcohxd M;Nð Þ ¼ 1

2

Z b

a

x xð Þ
1

2

1

Cx

XCx

j¼1
pkCOMD M;Nð Þ þ 1

!x

X!x

j¼1
pkCONMD M;Nð Þ

	 �

þmax
j

pkCOMD M;Nð Þ; pkCONMD M;Nð Þ
� �

0
BB@

1
CCAdx

2
664

3
775

1=k

where k[ 0.

If k ¼ 1, GCOHWD becomes the continuous ordered

hybrid weighted Hamming distance (COHWHD); If k ¼ 2,

GCOHWD becomes the continuous ordered hybrid

weighted Euclidean distance (COHWED); If x xð Þ ¼ 1
b�a,

GCOHWD becomes the generalized continuous ordered

hybrid equal weighted distance (GCOHEWD); If x xð Þ ¼
1

b�a and k ¼ 1, GCOHWD becomes the continuous ordered

hybrid equal weighted Hamming distance (COHEWHD);

If x xð Þ ¼ 1
b�a and k ¼ 2, GCOHWD becomes the hybrid

continuous equal weighted Euclidean distance

(COHEWED).

4.5 Unordered two-stage weighted distance
measures between two collections
of PDHFSs in discrete case

Some discrete unordered two-stage weighted distances

between M and N are defined as follows.

(1) The generalized discrete unordered two-stage

weighted distance (GDUT-SWD) between M and

N is defined as:

dgdut�sxd M;Nð Þ ¼ 1

2

Xn

i¼1

wi

Uxi

XUxi

j¼1
pkDUMD M;Nð Þ

	


þ gi
Wxi

XWxi

j¼1
pkDUNMD M;Nð Þ

��1=k

where wi i ¼ 1; 2; � � � ; nð Þ with
Pn

i¼1 wi ¼ 1 and

gi i ¼ 1; 2; � � � ; nð Þ with
Pn

i¼1 gi ¼ 1 be the weights

assigned to MD and NMD of PDHFS.

If k¼1, GDUT-SWD becomes the discrete

unordered two-stage weighted Hamming distance

(DUT-SWHD); If k ¼ 2, GDUT-SWD becomes the

discrete unordered two-stage weighted Euclidean

distance (DUT-SWED).

(2) The generalized discrete unordered two-stage

weighted hausdorff distance (GDUT-SWHD)

between M and N is defined as:

dgdut�sxhd M;Nð Þ ¼
Xn

i¼1
max

j
wip

k
DUMD M;Nð Þ;

�	


gip
k
DUNMD M;Nð Þ

���1=k

where k[ 0.

If k¼1, GDUT-SWHD becomes the discrete

unordered two-stage weighted Hamming-Hausdoff

distance (DUT-SWHHD); If k ¼ 2, GDUT-SWHD

becomes the discrete unordered two-stage weighted

Euclidean-Hausdorff distance (DUT-SWEHD).

Combining the GDUT-SWD and the GDUT-

SWHD, the generalized discrete unordered two-

stage hybrid weighted distance (GDUT-SHWD)

between M and N is defined as:

where k[ 0.

If k ¼ 1, GDUT-SHWD becomes the discrete

unordered two-stage hybrid weighted Hamming

distance (DUT-SHWHD); If k ¼ 2, GDUT-SHWD

becomes the discrete unordered two-stage hybrid

weighted Euclidean distance (DUT-SHWED).

4.6 Unordered two-stage weighted distance
measures between two collections
of PDHFSs in continuous case

Some continuous unordered two-stage weighted distances

between M and N are defined as follows.

dgdut�shxd M;Nð Þ ¼ 1

2

Xn

i¼1

1

2

wi

Cxi

XCxi

j¼1
pkDUMD M;Nð Þ þ gi

!xi

X!xi

j¼1
pkDUNMD M;Nð Þ

	 �

þmax
j

wip
k
DUMD M;Nð Þ; gipkDUNMD M;Nð Þ

� �

2
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(1) The generalized continuous unordered two-stage

weighted distance (GCUT-SWD) between M and N

is defined as:

dgcut�sxd M;Nð Þ ¼ 1

2

Z b

a

w xð Þ
Ux

XUx

j¼1
pkCUMD M;Nð Þ

	


þ g xð Þ
Wx

XWx

j¼1
pkCUNMD M;Nð Þ

�
dx

�1=k

where k[ 0, w xð Þ with
R b
a w xð Þdx ¼ 1 and g xð Þ

with
R b
a g xð Þdx ¼ 1 be the weights assigned to MD

and NMD of PDHFS.

If k ¼ 1, GCUT-SWD becomes the continuous unor-

dered two-stage weighted Hamming distance (CUT-

SWHD); If k ¼ 2, GCUT-SWD becomes the continuous

unordered two-stage weighted Euclidean distance (CUT-

SWED); If x xð Þ ¼ 1
b�a and g xð Þ ¼ 1

b�a, GCUT-SWD

becomes the generalized continuous unordered two-stage

equal weighted distance (GCUT-SEWD); If x xð Þ ¼ 1
b�a,

g xð Þ ¼ 1
b�a and k ¼ 1, GCUT-SWD becomes the continu-

ous unordered two-stage equal weighted Hamming dis-

tance (CUT-SEWHD); If x xð Þ ¼ 1
b�a, g xð Þ ¼ 1

b�a and

k ¼ 2, GCUT-SWD becomes the continuous unordered

two-stage equal weighted Euclidean distance (CUT-

SEWED).

Next, we define a generalized continuous unordered

two-stage weighted Hausdorff distance (GCUT-SWHD)

between M and N is defined as:

dgcut�sxhd M;Nð Þ ¼
Z b

a

max
j

w xð ÞpkCUMD M;Nð Þ;
�	

g xð ÞpkCUNMD M;Nð Þ
��
dx

�1=k

where k[ 0.

If k ¼ 1, GCUT-SWHD becomes the continuous unor-

dered two-stage weighted Hamming-Hausdorff distance

(CUT-SWHHD); If k ¼ 2, GCUT-SWHD becomes the

continuous unordered two-stage weighted Euclidean-

Hausdorff distance (CUT-SWEHD); If x xð Þ ¼ 1
b�a and

g xð Þ ¼ 1
b�a, GCUT-SWHD becomes the generalized con-

tinuous unordered two-stage equal weighted Hausdorff

distance (GCUT-SEWHD); If x xð Þ ¼ 1
b�a, g xð Þ ¼ 1

b�a and

k ¼ 1, GCUT-SWHD becomes the continuous unordered

two-stage equal weighted Hamming-Hausdorff distance

(CUT-SEWHHD); If x xð Þ ¼ 1
b�a, g xð Þ ¼ 1

b�a and k ¼ 2,

GCUT-SWHD becomes the continuous unordered two-

stage equal weighted Euclidean-Hausdorff distance (CUT-

SEWEHD).

Similarly, some hybrid continuous unordered two-stage

weighted distance measures can be defined. Next, we

define the generalized continuous unordered two-stage

hybrid weighted distance (GCUT-SHWD):

where k[ 0.

If k ¼ 1, GCUT-SHWD becomes the continuous unor-

dered two-stage hybrid weighted Hamming distance (CUT-

SHWHD); If k ¼ 2, GCUT-SHWD becomes the hybrid

continuous two-stage weighted Euclidean distance (CUT-

SHWED); If x xð Þ ¼ 1
b�a and g xð Þ ¼ 1

b�a, GCUT-SHWD

becomes the generalized continuous unordered two-stage

hybrid equal weighted distance (GCUT-SHEWD); If

x xð Þ ¼ 1
b�a, g xð Þ ¼ 1

b�a and k ¼ 1, GCUT-SHWD becomes

the continuous unordered two-stage hybrid equal weighted

Hamming distance (CUT-SHEWHD); If x xð Þ ¼ 1
b�a,

g xð Þ ¼ 1
b�a and k ¼ 2, GCUT-SHWD becomes the con-

tinuous unordered two-stage hybrid equal weighted Eucli-

dean distance (CUT-SHEWED).

4.7 Ordered two-stage weighted distance
measures between two collections
of PDHFSs in discrete case

The generalized discrete ordered two-stage weighted dis-

tance (GDOT-SWD) and generalized discrete ordered two-

stage weighted Hausdorff distance (GDOT-SWHD)

between M and N are defined as:

dgdot�sxd M;Nð Þ ¼ 1

2

Xn

i¼1

wi

Cxi

XCxi

j¼1
pkDOMD M;Nð Þ

	"

þ gi
!xi

X!xi

j¼1
pkDONMD M;Nð Þ

��1=k ð9Þ

dgcut�shxd M;Nð Þ ¼ 1

2

Z b

a

1

2

w xð Þ
Ux

XUxi

j¼1
pkCUMD M;Nð Þ þ g xð Þ

Wx

XWxi

j¼1
pkCUNMD M;Nð Þ

	 �

þmax
j

w xð ÞpkCUMD M;Nð Þ; g xð ÞpkCUNMD M;Nð Þ
� �

0
BB@

1
CCAdx

2
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3
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1=k
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dgdot�sxhd M;Nð Þ

¼
Xn

i¼1

max
j

wip
k
DOMD M;Nð Þ; gipkDONMD M;Nð Þ

� �
 !1=k

where k[ 0.

If k¼1, GDOT-SWD and GDOT-SWHD become the

discrete ordered two-stage weighted Hamming distance

(DOT-SWHD) and the discrete ordered two-stage weighted

Hamming–Hausdorff distance (DOT-SWHHD), respec-

tively. If k¼ 2, GDOT-SWD and GDOT-SWHD become

the discrete ordered two-stage weighted Euclidean distance

(DOT-SWED) and the discrete ordered two-stage weighted

Euclidean–Hausdorff distance (DOT-SWEHD). Combin-

ing the GDOT-SWD and the GDOT-SWHD, the general-

ized discrete ordered two-stage hybrid weighted distance

(GDOT-SHWD) between M and N is defined as:

dgdot�shxd M;Nð Þ ¼ 1

2

Xn

i¼1

1

2

wi

Cxi

XCxi

j¼1
pkDOMD M;Nð Þ þ gi

!xi

X!xi

j¼1
pkDONMD M;Nð Þ

	 �

þmax
j

wip
k
DOMD M;Nð Þ; gipkDONMD M;Nð Þ

� �

2
664

3
775

8
>><

>>:

9
>>=

>>;

1=k

where k[ 0.

If k ¼ 1, GDOT-SHWD becomes the discrete ordered

two-stage hybrid weighted Hamming distance (DOT-

SHWHD); If k ¼ 2, GDOT-SHWD becomes the discrete

ordered two-stage hybrid weighted Euclidean distance

(DOT-SHWED).

4.8 Ordered two-stage weighted distance
measures between two collections
of PDHFSs in continuous case

Some continuous ordered two-stage weighted distances

between M and N are defined as:

(1) The generalized continuous ordered two-stage

weighted distance (GCOT-SWD) between M and N

is defined as:

dgcot�sxd M;Nð Þ ¼ 1

2

Z b

a

w xð Þ
Cx

XCx

j¼1
pkCOMD M;Nð Þ

	


þ g xð Þ
!x

X!x

j¼1
pkCONMD M;Nð Þ

�
dx

�1=k

where k[ 0.

If k ¼ 1, GCOT-SWD becomes the continuous ordered

two-stage weighted Hamming distance (COT-SWHD); If

k ¼ 2, GCOT-SWD becomes the continuous ordered two-

stage weighted Euclidean distance (COT-SWED); If

w xð Þ ¼ 1
b�a and g xð Þ ¼ 1

b�a, GCOT-SWD becomes the

generalized continuous ordered two-stage equal weighted

distance (GCOT-SEWD); If w xð Þ ¼ 1
b�a, g xð Þ ¼ 1

b�a and

k ¼ 1, GCOT-SWD becomes the continuous ordered two-

stage equal weighted Hamming distance (COT-SEWHD);

If w xð Þ ¼ 1
b�a, g xð Þ ¼ 1

b�a and k ¼ 2, GCOT-SWD

becomes the continuous ordered two-stage equal weighted

Euclidean distance (COT-SEWED).

Next, we define a generalized continuous ordered two-

stage weighted Hausdorff distance (GCOT-SWHD)

between M and N is defined as:

dgcot�sxhd M;Nð Þ ¼
Z b

a

max
j

w xð ÞpkCOMD M;Nð Þ;
�	

g xð ÞpkCONMD M;Nð Þ
��
dx

�1=k

where k[ 0.

If k ¼ 1, GCOT-SWHD becomes the continuous

ordered two-stage weighted Hamming-Hausdorff distance

(COT-SWHHD); If k ¼ 2, GCOT-SWHD becomes the

continuous ordered two-stage weighted Euclidean-Haus-

dorff distance (COT-SWEHD); If w xð Þ ¼ 1
b�a and

g xð Þ ¼ 1
b�a, GCOT-SWHD becomes the generalized con-

tinuous ordered two-stage equal weighted Hausdorff dis-

tance (GCOT-SEWHD); If w xð Þ ¼ 1
b�a, g xð Þ ¼ 1

b�a and

k ¼ 1, GCOT-SWHD becomes the continuous ordered

two-stage equal weighted Hamming-Hausdorff distance

(COT-SEWHHD); If w xð Þ ¼ 1
b�a, g xð Þ ¼ 1

b�a and k ¼ 2,

GCOT-SWHD becomes the continuous ordered two-stage

equal weighted Euclidean-Hausdorff distance (COT-

SEWEHD).

Similarly, some continuous ordered hybrid continuous

weighted distance measures can be defined.

(1) The generalized continuous ordered two-stage

hybrid weighted distance (GCOT-SHWD):
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dgcot�shxd M;Nð Þ ¼ 1

2

Z b

a

1

2

w xð Þ
Cx

XCx

j¼1
pkCOMD M;Nð Þ þ g xð Þ

!x

X!x

j¼1
pkCONMD M;Nð Þ

	 �

þmax
j

w xð ÞpkCOMD M;Nð Þ; g xð ÞpkCONMD M;Nð Þ
� �

0
BB@

1
CCAdx

2
664

3
775

1=k

where k[ 0.

If k ¼ 1, GCOT-SHWD becomes the continuous

ordered two-stage hybrid weighted Hamming distance

(COT-SHWHD); If k ¼ 2, GCOT-SHWD becomes the

continuous ordered two-stage hybrid weighted Euclidean

distance (COT-SHWED); If w xð Þ ¼ 1
b�a and g xð Þ ¼ 1

b�a,

GCOT-SHWD becomes the generalized continuous

ordered two-stage hybrid equal weighted distance (GCOT-

SHEWD); If w xð Þ ¼ 1
b�a, g xð Þ ¼ 1

b�a and k ¼ 1, GCOT-

SHWD becomes the continuous ordered two-stage hybrid

equal weighted Hamming distance (COT-SHEWHD); If

w xð Þ ¼ 1
b�a, g xð Þ ¼ 1

b�a and k ¼ 2, GCOT-SHWD becomes

the continuous ordered two-stage hybrid equal weighted

Euclidean distance (COT-SHEWED).

Theorem 1 From the form of the formula given above in

Sects. 4.1–4.8, the distance measures in Sect. 4.1 is special

case of the distance measures in Sect. 4.5; the distance

measures in Sect. 4.2 is special case of the distance mea-

sures in Sect. 4.6; the distance measures in Sect. 4.3 is

special case of the distance measures in Sect. 4.7; the

distance measures in Sect. 4.4 is special case of the dis-

tance measures in Sect. 4.8.

5 Some similarity measures for PDHFSs

In the field of MADM, similarity measure is a very

important tool in solving the MADM problems.

Researchers have proposed some similarity measures for

FS, type-2FS, IFS, IVIFS, HFS, DHFS, and so on. For

example, Beg and Ashraf [55] proposed the similarity

measure for FS. The similarity measures for type-2 fuzzy

sets were proposed [56–61]. The similarity measures for

IFS [62–67]. The similarity measures for PFS [68–72]. The

similarity measures for IVIFS [73–76]. Hu et al. [77]

proposed the similarity measure for HFS. The similarity

measures for DHFS [78, 79]. From the literatures, there is

no research on the similarity measure of PDHFS, and the

existing similarity measures can’t calculate the similarity

of two PDHFSs, so it is necessary to study the similarity

measure of PDHFS.

From the literatures review, most studies on similarity

measure have given the axiomatic definition of similarity

measure. Next, before giving the similarity measure

between two PDHFSs, we first give the axiomatic

definition of similarity measure for PDHFS, then we will

define the similarity measure between two PDHFSs with

the help of the distance measure between two PDHFSs

proposed above.

Definition 6 Let M and N be two PDHFSs on X, then

s M;Nð Þ is called as similarity measure between M and N,

if s M;Nð Þ satisfies:

(A1) 0� s M;Nð Þ� 1;

(A2) s M;Nð Þ ¼ 1� d M;Nð Þ;
(A3) s M;Nð Þ ¼ 1 if and only if M ¼ N;

(A4) s M;Nð Þ ¼ s N;Mð Þ if and only if M ¼ N.

Based on Eq. (3), we obtain the similarity measure

corresponding to the distance measure as follows:

s M;Nð Þ ¼ 1� dgduxd M;Nð Þ

¼ 1� 1

2

Xn

i¼1
xi

1

Uxi

XUxi

j¼1
pkDUMD M;Nð Þ

	


þ 1

Wxi

XWxi

j¼1
pkDUNMD M;Nð Þ

��1=k

ð10Þ

Using the distance defined in Sects. 4.1–4.8 instead of

dgduxd M;Nð Þ in the above similarity measure, we can get

the corresponding similarity measure.

6 A numerical example and comparative
analysis

In this subsection, we applied our proposed making tech-

nique to select the optimal alternative in MAGDM with

PDHF information in discrete ordered cases.

The following is a basic description of a PDHF

MAGDM problem. Let X ¼ X1;X2; � � � ;Xmf g be a set of

alternatives, and C ¼ C1;C2; � � � ;Cnf g be decision attri-

butes for a MAGDM with PDHFSs, and E ¼
e1; e2; � � � ; ep
� �

be a set of decision experts, whose weight

vector is x ¼ x1;x2; � � � ;xp

� �T
. The decision-making

provides decision information with PDHFSs dij ¼
hij
��pij; gij

��qij
� �

i ¼ 1; 2; � � � ;m; j ¼ 1; 2; � � � ; nð Þ, thus, we

obtain the decision matrix D ¼ dij
� �

mn
. In order to better

identify the optimal alternative from the alternative sets,

the concept of ideal point is proposed. In this study, let

Cþ¼ Cþ
1 ;C

þ
2 ; � � � ;Cþ

n

� �
be the most ideal PDHFS in the
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PDHFSs. Because PDHFS is divided into MD and NMD,

in practice, the weights of these two parts should also be

different, so we let wj 2 0; 1½ �; j ¼ 1; 2; � � � ; lxi ,
Pn

j¼1 wj ¼
1 and gj 2 0; 1½ �; j ¼ 1; 2; � � � ;mxi ,

Pn
j¼1 gj ¼ 1 be the

weighting assigned to MD and NMD in each alternative,

respectively.

Then, basic calculation steps of the proposed decision-

making technique is as follows:

Step 1: Obtain the PDHF decision matrix D ¼
dij
� �

m�n
i ¼ 1; 2; � � � ;m; j ¼ 1; 2; � � � ; nð Þ;

Step 2: Obtain the normalized decision matrix

D
0 ¼ dCij

� �

m�n
;

Step 3: Obtain the collective assessment information

matrix for six alternatives under four attri-

butes through aggregating the opinion of three

experts according to the Eq. (7).

Step 4: Calculate the ideal point vector

Xþ¼ Cþ
1 ;C

þ
2 ; � � � ;Cþ

n

� �
of attributes according

to the Definition 2;

Step 5: Calculate dgdoxd and dgdot�sxd between alter-

native Xi i ¼ 1; 2; � � � ;mð Þ and Xþ according to

the Eqs. (8) and (9);

Step 6: Calculate the similarity measure between

alternative Xi i ¼ 1; 2; � � � ;mð Þ and the ideal

point vector Xþ using sgdoxd Xi;X
þð Þ ¼ 1�

dgdoxd Xi;X
þð Þ and

Table 1 The PDHF decision matrix given by E1

Alternatives C1 C2 C3 C4

X1 0:7j0:2; 0:6j0:2; 0:5j0:6f g;
0:2j1f g

* +
0:7j1f g; 0:25j1f gh i 0:2j1f g; 0:2j1f gh i 0:7j0:5; 0:6j0:5f g; 0:3j1f gh i

X2 0:1j1f g; 0:4j1f gh i 0:3j1f g; 0:7j1f gh i 0:7j1f g;
0:3j0:5; 0:2j0:5f g

* +
0:3j1f g; 0:3j1f gh i

X3 0:6j1f g; 0:35j1f gh i 0:56j1f g; 0:2j1f gh i 0:1j1f g; 0:7j1f gh i 0:2j0:6; 0:4j0:4f g; 0:4j1f gh i
X4 0:05j0:7; 0:2j0:3f g; 0:5j1f gh i 0:3j0:5; 0:2j0:5f g;

0:6j0:5; 0:5j0:5f g

* +
0:8j1f g; 0:15j1f gh i 0:2j1f g; 0:6j1f gh i

X5 0:15j1f g; 0:8j1f gh i 0:5j1f g; 0:5j1f gh i 0:8j0:6; 0:6j0:4f g;
0:15j1f g

* +
0:12j1f g; 0:7j0:9; 0:6j0:1f gh i

X6 0:08j1f g; 0:6j1f gh i 0:1j0:6; 0:3j0:4f g;
0:7j1f g

* +
0:3j1f g; 0:65j1f gh i 0:5j1f g; 0:2j0:3; 0:4j0:7f gh i

Table 2 The PDHF decision matrix given by E2

Alternatives C1 C2 C3 C4

X1 0:5j1f g; 0:5j1f gh i 0:2j1f g; 0:4j0:8; 0:6j0:2f gh i 0:7j0:4; 0:4j0:6f g;
0:3j0:7; 0:2j0:3f g

* +
0:6j0:7; 0:7j0:3f g; 0:25j1f gh i

X2 0:3j0:5; 0:5j0:5f g; 0:4j1f gh i 0:1j1f g;
0:6j0:6; 0:8j0:4f g

* +
0:4j0:8; 0:3j0:2f g;
0:5j0:3; 0:4j0:7f g

* +
0:2j0:3; 0:3j0:7f g; 0:6j1f gh i

X3 0:1j0:1; 0:2j0:9f g; 0:5j1f gh i 0:2j0:5; 0:3j0:5f g;
0:3j0:5; 0:2j0:5f g

* +
0:2j1f g; 0:7j0:6; 0:5j0:4f gh i 0:5j1f g; 0:4j1f gh i

X4 0:2j1f g; 0:6j0:9; 0:7j0:1f gh i 0:1j1f g; 0:7j1f gh i 0:2j1f g; 0:6j1f gh i 0:1j0:2; 0:2j0:8f g;
0:2j0:6; 0:3j0:4f g

* +

X5 0:2j1f g; 0:7j1f gh i 0:45j1f g; 0:5j1f gh i 0:8j0:9; 0:6j0:1f g;
0:11j1f g

* +
0:3j1f g; 0:2j1f gh i

X6 0:4j0:4; 0:5j0:6f g; 0:5j1f gh i 0:3j0:4; 0:4j0:6f g;
0:5j1f g

* +
0:3j1f g; 0:6j1f gh i 0:2j1f g; 0:6j1f gh i
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sgdot�sxd Xi;X
þð Þ ¼ 1� dgdot�sxd Xi;X

þð Þ,
respectively;

Step 7: Sort the alternatives by values of similarity

measure;

Step 8: Select the optimal alternative according to the

value of maximum similarity measure.

6.1 A numerical example

6.1.1 Application of MAGDM technique in sustainability
assessment of new urbanization

New urbanization is a necessary historical process after

China’s economic and social development to a certain

extent. The 17th National Congress of the Communist

Party of China clearly put forward that the 18th and 19th

national congresses further emphasized the path of urban-

ization with Chinese characteristics. In recent years, a large

number of scholars have invested in the research on the

measurement of the development level of new urbaniza-

tion, and analyzed the possibility of building a new

urbanization evaluation system from different aspects, so

as to measure the quality of urbanization development and

evaluate the suitability of new urbanization. In the illus-

trative example (adapted from Ref. [32]), there are six

alternatives Xi i ¼ 1; 2; � � � ; 6ð Þ to be evaluated. Four deci-

sion attributes are employed: the infrastructure factor (C1),

the economic and development factor (C2), the ecological

environment factor (C3) and the equity factor (C4). In the

evaluation process, there are three experts Ei i ¼ 1; 2; 3ð Þ to
give the original preference values, whose weight vector is

Table 3 The PDHF decision matrix given by E3

Alternatives C1 C2 C3 C4

X1 0:4j1f g; 0:5j1f gh i 0:9j1f g; 0:1j1f gh i 0:3j1f g;
0:5j0:4; 0:6j0:6f g

* +
0:6j1f g; 0:3j1f gh i

X2 0:75j1f g; 0:2j1f gh i 0:4j1f g; 0:6j1f gh i 0:2j0:7; 0:4j0:3f g;
0:2j1f g

* +
0:3j1f g; 0:6j1f gh i

X3 0:6j0:6; 0:8j0:4f g; 0:1j1f gh i 0:5j1f g; 0:2j1f gh i 0:1j1f g; 0:8j1f gh i 0:2j0:7; 0:4j0:3f g; 0:6j1f gh i
X4 0:2j1f g; 0:7j1f gh i 0:5j0:6; 0:7j0:4f g;

0:1j1f g

* +
0:3j0:3; 0:5j0:7f g;
0:2j0:5; 0:5j0:5f g

* +
0:1j0:6; 0:3j0:4f g; 0:6j1f gh i

X5 0:3j0:7; 0:4j0:3f g; 0:4j0:6; 0:5j0:4f gh i 0:6j1f g;
0:1j0:5; 0:2j0:5f g

* +
0:7j1f g; 0:2j1f gh i 0:1j0:45; 0:3j0:55f g;

0:5j0:5; 0:65j0:5f g

* +

X6 0:2j0:2; 0:1j0:8f g; 0:7j1f gh i 0:2j1f g; 0:8j1f gh i 0:2j0:8; 0:3j0:2f g; 0:6j1f gh i 0:35j1f g; 0:5j0:5; 0:6j0:5f gh i

Table 4 The PDHF decision

information matrix <1 obtained

by e1

Alternatives C1 C2 C3

X1 0:2j0:5; 0:3j0:5f g; 0:7j1f gh i 0:6j1f g; 0:4j0:6; 0:3j0:4f gh i 0:1j0:3; 0:6j0:7f g; 0:2j1f gh i
X2 0:7j1f g; 0:2j0:5; 0:3j0:5f gh i 0:9j0:4; 0:6j0:6f g; 0:1j1f gh i 0:3j0:2; 0:4j0:8f g;

0:3j0:5; 0:1j0:5f g

* +

X3 0:2j1f g; 0:3j1f gh i 0:2j1f g; 0:3j0:7; 0:1j0:3f gh i 0:2j0:5; 0:1j0:5f g; 0:6j1f gh i
X4 0:1j0:3; 0:5j0:7f g; 0:4j1f gh i 0:3j0:4; 0:6j0:6f g; 0:4j1f gh i 0:2j1f g; 0:5j0:5; 0:5j0:5f gh i

Table 5 The PDHF decision

information matrix <2 obtained

by e2

Alternatives C1 C2 C3

X1 0:1j0:2; 0:4j0:8f g; 0:2j1f gh i 0:4j0:5; 0:6j0:5f g; 0:4j1f gh i 0:3j1f g; 0:4j1f gh i
X2 0:7j1f g; 0:3j0:7; 0:3j0:3f gh i 0:8j1f g; 0:1j1f gh i 0:3j0:5; 0:2j0:5f g; 0:3j1f gh i
X3 0:6j0:3; 0:4j0:7f g; 0:3j1f gh i 0:4j0:6; 0:3j0:4f g;

0:3j0:7; 0:1j0:3f g

* +
0:2j1f g; 0:6j0:5; 0:2j0:5f gh i

X4 0:2j1f g; 0:3j0:5; 0:2j0:5f gh i 0:4j1f g; 0:6j1f gh i 0:2j0:6; 0:3j0:4f g; 0:2j1f gh i
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m ¼ 0:2; 0:3; 0:5ð ÞT , the three experts give the original

evaluation values of X1, X2, X3, X4, X5, and X6 under C1,

C2, C3 and C4. The weight vector of attribute is in the

distance measure dgdoxd Xi;X
þð Þ is x ¼ 0:1; 0:4; 0:2; 0:3ð Þ,

the weight vectors of MD and NMD are w ¼
0:2; 0:4; 0:1; 0:3ð Þ and g ¼ 0:1; 0:35; 0:25; 0:3ð Þ in the dis-

tance measure dgdot�sxd Xi;X
þð Þ, where k ¼ 2. All assess-

ments values are given by three experts in Tables 1, 2 and

3.

Next steps, the proposed MAGDM technique is used to

evaluate the suitability of new urbanization.

According to the steps 1–8, we can give the ranking of

six alternatives is X1�X5�X2�X4�X3�X6 (by

sgdoxd Xi;X
þð Þ) and X1�X2�X5�X4�X3�X6 (by

sgdot�sxd Xi;X
þð Þ)(‘‘�’’ means ‘‘super to’’), respectively.

6.1.2 Application of MAGDM technique in sustainability
assessment of new urbanization

In the illustrative example, there are four substation sites

Xi i ¼ 1; 2; 3; 4ð Þ to be evaluated. Three attributes are

employed: the geographical factor (C1), the technical factor

(C2) and the environmental factor (C3), two experts

ei i ¼ 1; 2ð Þ give the original preference values of X1, X2,

X3 and X4 under C1, C2 and C3, the weight vector of two

experts is m ¼ 0:4; 0:6ð ÞT . Two decision information

matrices <1 and <2 are showed in Tables 4 and 5 by two

experts.

According to the steps 1–8, we can give the ranking of

four alternatives is X2�X1�X3�X4 (by sgdoxd Xi;X
þð Þ) and

X2�X1�X3�X4 (by sgdot�sxd Xi;X
þð Þ)(‘‘�’’ means ‘‘super

to’’), respectively.

6.2 Comparative analysis

6.2.1 Comparative analysis 1

Here, we compare the method proposed in this study with

the BASD model based PROMETHEE-II method proposed

by Ref. [33], let’s bring the data into the model.

Calculate the overall BASD degrees

H Xið Þ i ¼ 1; 2; � � � ; 6ð Þ for alternatives Xi i ¼ 1; 2; � � � ; 6ð Þ,
respectively, the overall BASD degrees are listed in

Table 6.

Thus, the ranking of alternatives is

X1�X5�X2�X3�X4�X6. Although the order of alterna-

tives a little different, the optimal alternative is X1.

6.2.2 Comparative analysis 2

Here, we compare the method proposed in this study with

the visualization model based on the entropy of PDHFS

proposed by Ref. [32], let’s bring the data into the model.

We can get X1�X4�X5�X2�X3�X6.

Although the order of alternatives a little different, the

optimal alternative is X1.

Table 6 The overall BASD degrees Hþ Xið Þ and H� Xið Þ

H X1ð Þ H X2ð Þ H X3ð Þ H X4ð Þ H X5ð Þ H X6ð Þ

1.7384 0.1877 0.0165 - 0.9314 0.6319 - 1.6432

Table 7 The sgdoxd Xi;X
þð Þ for

different values of DMs’

attitude k

k X1 X2 X3 X4 X5 X6 Ranking

k¼ 1 0.9447 0.8446 0.6618 0.7575 0.7790 0.3585 X1�X2�X5�X4�X3�X6

k¼2 0.9347 0.8520 0.7700 0.8138 0.8536 0.6801 X1�X5�X2�X4�X3�X6

k¼ 3 0.9190 0.7975 0.7584 0.776 0.8549 0.6855 X1�X5�X2�X4�X3�X6

k¼ 4 0.9054 0.7306 0.7360 0.7337 0.8498 0.6668 X1�X5�X3�X4�X2�X6

k¼6 0.8849 0.6134 0.6934 0.6662 0.8385 0.6261 X1�X5�X3�X4�X6�X2

k¼ 8 0.8707 0.5272 0.6609 0.6188 0.8291 0.5919 X1�X5�X3�X4�X6�X2

k¼10 0.8603 0.4629 0.6367 0.5842 0.8216 0.5638 X1�X5�X3�X4�X6�X2

λ=1

λ=2

λ=3

λ=4λ=6

λ=8

λ=10

0
0.2
0.4
0.6
0.8
1

X1 X2 X3 X4 X5 X6

Fig. 1 The change of sgdoxd Xi;X
þð Þ for different values of DMs’

attitude k
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Table 8 The sgdot�sxd Xi;X
þð Þ

for different w, g and different k w ¼ 0:2; 0:4; 0:1; 0:3ð ÞT ;g ¼ 0:1; 0:35; 0:25; 0:3ð ÞT

k X1 X2 X3 X4 X5 X6 Ranking

k¼ 1 0.9457 0.8472 0.6651 0.7519 0.7735 0.3536 X1�X2�X5�X4�X3�X6

k¼2 0.9373 0.8540 0.7698 0.8123 0.8524 0.6783 X1�X2�X5�X4�X3�X6

k¼ 3 0.9225 0.7985 0.7581 0.7755 0.8544 0.6847 X1�X5�X2�X4�X3�X6

k¼ 4 0.9093 0.7311 0.7358 0.7336 0.8495 0.6667 X1�X5�X3�X4�X2�X6

k¼6 0.8889 0.6138 0.6933 0.6662 0.8384 0.6267 X1�X5�X3�X4�X6�X2

k¼ 8 0.8745 0.5276 0.6609 0.6188 0.8291 0.5925 X1�X5�X3�X4�X6�X2

k¼10 0.8639 0.4632 0.6367 0.5842 0.8216 0.5643 X1�X5�X3�X4�X6�X2

Table 9 The sgdot�sxd Xi;X
þð Þ

for different w, g and different k w ¼ 0:1; 0:5; 0:2; 0:2ð ÞT ;g ¼ 0:2; 0:4; 0:1; 0:3ð ÞT

k X1 X2 X3 X4 X5 X6 Ranking

k¼ 1 0.9291 0.8464 0.6589 0.7324 0.7506 0.3951 X1�X2�X5�X4�X3�X6

k¼2 0.9210 0.8453 0.7611 0.7940 0.8422 0.6802 X1�X2�X5�X4�X3�X6

k¼ 3 0.9064 0.7856 0.7475 0.7574 0.8467 0.6811 X1�X5�X2�X4�X3�X6

k¼ 4 0.8940 0.7166 0.7244 0.7173 0.8430 0.6609 X1�X5�X3�X4�X2�X6

k¼6 0.8758 0.5995 0.6825 0.6532 0.8333 0.6189 X1�X5�X3�X4�X6�X2

k¼ 8 0.8633 0.5144 0.6515 0.6079 0.8250 0.5841 X1�X5�X3�X4�X6�X2

k¼10 0.8542 0.4513 0.6285 0.5748 0.8182 0.5559 X1�X5�X3�X4�X6�X2

Table 10 The sgdot�sxd Xi;X
þð Þ

for different w, g and different k w ¼ 0:3; 0:2; 0:1; 0:4ð ÞT ;g ¼ 0:2; 0:3; 0:3; 0:2ð ÞT

k X1 X2 X3 X4 X5 X6 Ranking

k¼ 1 0.9166 0.8589 0.7428 0.7675 0.7999 0.3258 X1�X2�X5�X4�X3�X6

k¼2 0.9195 0.8794 0.8096 0.8341 0.8662 0.6779 X1�X2�X5�X4�X3�X6

k¼ 3 0.9074 0.8338 0.7941 0.8061 0.8655 0.6931 X1�X5�X4�X2�X3�X6

k¼ 4 0.8960 0.7710 0.7706 0.7684 0.8590 0.6804 X1�X5�X3�X4�X2�X6

k¼6 0.8782 0.6540 0.7250 0.7008 0.8457 0.6465 X1�X5�X3�X4�X2�X6

k¼ 8 0.8657 0.5650 0.6886 0.6500 0.8349 0.6152 X1�X5�X3�X4�X6�X2

k¼10 0.8565 0.4975 0.6609 0.6119 0.8264 0.5876 X1�X5�X3�X4�X6�X2

Table 11 The sgdot�sxd Xi;X
þð Þ

for different w, g and different k w ¼ 0:5; 0:1; 0:2; 0:2ð ÞT ;g ¼ 0:4; 0:1; 0:2; 0:3ð ÞT

k X1 X2 X3 X4 X5 X6 Ranking

k¼ 1 0.8595 0.8327 0.7959 0.7543 0.7876 0.4045 X1�X2�X3�X5�X4�X6

k¼2 0.8909 0.8774 0.8356 0.8314 0.8605 0.7052 X1�X2�X5�X3�X4�X6

k¼ 3 0.8850 0.8508 0.8203 0.8140 0.8610 0.7184 X1�X5�X2�X3�X4�X6

k¼ 4 0.8770 0.8025 0.7985 0.7859 0.8549 0.7068 X1�X5�X2�X3�X4�X6

k¼6 0.8635 0.6927 0.7529 0.7275 0.8416 0.6750 X1�X5�X3�X4�X2�X6

k¼ 8 0.8536 0.6024 0.7140 0.6774 0.8307 0.6438 X1�X5�X3�X4�X6�X2

k¼10 0.8462 0.5324 0.6835 0.6375 0.8221 0.6147 X1�X5�X3�X4�X6�X2
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From the comparison with the two methods, although

the ranking is slightly different, the best alternative is X1,

which shows that the MAGDM technique built in this study

is effective, but the following analysis can also see the

advantages of our proposed method.

7 Advantages of the proposed method

(1) On the basis of reviewing the famous Hamming dis-

tance, Euclidean distance, Hausdorff metric and their

generalization, we divide the distance into discrete and

continuous cases, ordered and unordered cases. We

develop some PDHF distance measures and their weighted

forms, and discussed their properties and relations as their

parameters change.

(2) From the comparison and analysis of the two

methods, the research results given by the method proposed

in this study are basically consistent with results obtained

by Refs. [32] and [33].

(3) We analyze the change of the ranking of the eval-

uated alternatives with the change of risk attribute

parameter k, which is more in line with the reality and

gives DMs more choices. From the results, the ranking

results are relatively stable, and the best alternative is

always X1, which also shows the superiority and effec-

tiveness of the method proposed in this study.

(4) We can observe the change of the ranking of the

evaluated alternatives with the change of values of risk

attribute parameter k and weights x, w, g. From the results,

the ranking is relatively stable, and the best object is

always, which also shows the superiority and effectiveness

of the method proposed in this study.

Because the ranking results of alternatives are mainly

affected by the risk attribute parameter k, the weight x of

attribute is in the distance measure dgdoxd Xi;X
þð Þ, the

weights w and g of MD and NMD in the distance measure

dgdot�sxd Xi;X
þð Þ. Next, we analyze the change of the

ranking of the evaluated alternatives with the different

changes of DMs’ attitude k, weight x, weights w and g of

MD and NMD.

(1) Analysis of the change of the ranking of the evalu-

ated alternatives with the different k and

x ¼ 0:1; 0:4; 0:2; 0:3ð Þ, the ranking changes of alternatives

are shown in Table 7 and Fig. 1.

Next, we analyze the change of the ranking of the

evaluated alternatives with the change of k value.

Fig. 2 The change of

sgdot�sxd Xi;X
þð Þ for different w,

g and different k
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(2) Analysis of the change of the ranking of the evalu-

ated alternatives with the different k and different weights

w and g of MD and NMD, the results are listed in Tables 8,

9, 10, 11 and Fig. 2.

8 Conclusions

As we all know, distance and similarity measures play a

very important role in the field of decision-making.

Through literatures analysis, we find that the research on

distance and similarity measures of PDHFS is relatively

lacking. In this study, we study the distance and similarity

measures of PDHFS. On the basis of reviewing the famous

Hamming distance, Euclidean distance, Hausdorff metric

and their generalization, we divide the distance into dis-

crete and continuous cases, ordered and unordered cases.

We develop some PDHF distance measures, and discussed

their properties and relations as their parameters change.

We also give various weighted distance measures of

PDHFS. Using the relationship between distance measure

and similarity measure, the corresponding similarity mea-

sures of PDHFS are obtained. It should be noted that all the

above measures are based on two assumptions: if the dif-

ferent PDHFEs have the different lengths or same length, if

the lengths are different, the shorter PDHFE should be

extended by adding the minimum or maximum element

until the two PDHFSs have the same length. In fact, we can

extend the shorter PDHFE by adding any element

according to the preference and actual situation of the

decision-maker until it has the same length as the longer

PDHFE. In the future research, In the next research work,

we will continue to focus on the research of decision-

making methods and aggregation operators, such as

QUALIFLEX method, BWM method, ARAS method,

WASPAS method [80–83] with the PDHF environment,

study the PDHF aggregation operator, and propose some

new MADM method. It is also committed to applying the

decision-making method proposed in this study to uncer-

tain MAGDM problems such as pattern recognition and

substation optimization.
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