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Abstract
As an emerging research topic in the field of machine learning, unsupervised domain adaptation (UDA) aims to transfer 
prior knowledge from the source domain to help training the unsupervised target domain model. Although a variety of UDA 
works have been proposed, they mainly concentrate on scenarios from one source to one target (1S1T) or multi-source to one 
target domain (mS1T), the works on UDA from one source to multi-target (1SmT) is rare and they are mainly designed for 
ordinary problems. When countered with ordinal 1SmT tasks where there exists order relationship among the data labels, 
the existing methods degenerate in performance since the label relationships are not preserved. In this article, we propose an 
ordinal 1SmT UDA model which transfers both explicit and implicit knowledge from the supervised source and unsupervised 
target domains respectively via distribution alignment and dictionary transmission. We also design an efficient algorithm to 
solve the model and evaluate its convergence and complexity. Finally, the effectiveness of the proposed method is evaluated 
with extensive experiments.

Keywords Unsupervised domain adaptation (UDA) · Ordinal UDA · Representation distributions · Knowledge transfer · 
Implicit and explicit knowledge

1 Introduction

In machine learning, the models are typically trained by 
default under the hypothesis that training and test data com-
ply with the same statistical distribution [1, 2]. Neverthe-
less, in real world applications, such assumption often does 

not hold, resulting in degenerated model. To overcome this 
issue, the paradigm of unsupervised domain adaptation 
(UDA) [3–10] was proposed to mitigate the distribution 
inconsistency between the training and test data domains.

In UDA, the supervised domains with knowledge to be 
transferred are defined as source domains, while the other 
unsupervised domains are distinguished as target domains. 
According to the modeling methodology, the existing UDA 
methods can be grouped into three categories [11], i.e. 
instance-level, feature-level and model-level UDA. Specifi-
cally, the instance-level UDA [12–16] typically assigns the 
source instances weights in terms of their similarity to the 
target domains, and takes weighted source instances to help 
training the target model. Such methodology usually works 
effectively when the cross-domain divergence is small, oth-
erwise they may lose efficacy especially when the distribu-
tions of the source and target domains do not intersect. The 
feature-level UDA [17–22] typically transforms the source 
and target domains into a common correlated representation 
space, in which the cross-domain distributions are pulled as 
near as possible. Although such feature-level UDA usually 
can achieve better results, its efficacy greatly depends on the 
choice of the representation space. As for the model-level 
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UDA [23–26], it fulfils knowledge adaptation from the 
source model parameters. Although such kind of UDA can 
distill the source knowledge to the target domain, the data 
distribution priors are usually ignored.

Most of the existing UDA works concentrate on such task 
scenarios where merely one source and one target domain 
(1S1T) are involved, while few researches implement UDA 
from multiple sources to one target domain (mS1T). To 
generalize knowledge from one source to multiple target 
domains (1SmT), Yu et al. [27] proposed the 1SmT UDA 
method (PA-1SmT), which implements domain adaptation 
by reconstructing the source model with the target model 
parameters and relates the targets with a shared represen-
tation dictionary. Nevertheless, the PA-1SmT tends to fail 
when the union of the targets is proper subset of the source 
domain so that the latter cannot be completely approximated 
by the former. Even worse, the PA-1SmT is designed for 
ordinary problems, such that it may degenerate when fac-
ing the ordinal data problems. Let us take human age as an 
example, it exhibits ordinal relationships among different 
ages, e.g., the person aged 20 is younger than somebody 
aged 25, but elder than the people aged 18. In other words, 
the severity of misclassifying age 20 to 25 is more seri-
ous than to 18. Such order relationships are not preserved 
in existing UDA methods so that they cannot be directly 
employed to handle the cross-domain ordinal problems.

To implement 1SmT UDA for ordinal data scenarios, 
as shown in Fig.1, we construct an ordinal unsupervised 
domain adaptation through transferring both implicit and 
explicit knowledge from data distribution and model param-
eters perspectives, coined as OrUDA. In addition, we design 
an optimization algorithm to solve the OrUDA model alter-
natingly, with theoretically convergence guarantee. Finally, 
through extensive evaluations on artificial and real datasets, 
we demonstrate the effectiveness of the proposed method. 
In summary, the main contributions of this work are four-
fold as follows: 

1. A kind of 1SmT UDA for ordinal data is proposed 
(OrUDA), which transfers both explicit and implicit 
knowledge from the supervised source and unsupervised 
target domains respectively via distribution alignment 
and dictionary transmission.

2. The unknown ordinal prior of the target domains is 
transferred from the already trained source model via 
source model adaptation in the process of 1SmT UDA.

3. An alternating optimization algorithm is designed to 
solve the OrUDA model, with convergence guarantee.

4. Extensive evaluations are conducted to demonstrate the 
effectiveness and superiority of the proposed method.

The rest of this article is organized as follows. Section 2 
briefly reviews the related work. Section 3 elaborates the 
proposed method. Section 4 experimentally evaluates the 
proposed method with analysis. Finally, Section 5 concludes 
this article and gives future research directions.

2  Related work

In this section, we present the related researches on UDA 
including 1S1T, mS1T and the most related 1SmT UDA 
methods.

2.1  1S1T UDA

Thanks to the broad practice prospects, a large number 
of 1S1T UDA methods are proposed based on non-deep 
architecture and deep architecture, which can be grouped 
into three categories [11], i.e. instance-level, feature-level 
and model-level UDA. For the instance-level UDA, most 
methods [12–16] reweight the source instances according to 
the similarity of samples, which work effectively when the 
cross-domain divergence is small otherwise these methods 
may fail. A typical example is KLIEP [28], which reweights 

Fig. 1  Illustration of OrUDA. 
The implicit knowledge transfer 
and explicit knowledge transfer 
are represented by the purple 
solid line and black dashed 
line. And the target relationship 
transfer is represented by the 
solid line
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the instances by solving a convex optimization problem with 
a sparse solution. The model-level methods [23–26] mitigate 
the domain shift by transferring the parameters of the source 
model. For example, DAN [29] conducts domain adapta-
tion by sharing parameters of the probability distribution 
match layer. Additionally, most UDA methods [17–22] refer 
to the feature-level, which transfer knowledge by distribu-
tion alignment, such as MMD [30], CORAL [31], CMD 
[32] and so on. Recently, CMMS [21] captures the feature 
consistency by the class centroid matching and SALFL [22] 
aligns the domains by incorporating the projection cluster-
ing, label propagation and distributional alignment into a 
unified optimization framework.

2.2  mS1T UDA

Recently, more and more mS1T-UDA methods emerge 
which aim to transfer knowledge from multiple source 
domains at the same time to better assist the learning of the 
target domain. Specifically, mDA [33] aligns all the domains 
by selecting the shared latent sub-space. Differently, SSF 
[34] samples the sub-space along with the spline flow from 
the source domains to the target domain which associates 
the domains on the Grassmann manifold. Later, UMDL [35] 
realizes the domain adaptation by training the constructed 
task-shared and task-specific jointly. Additionally, to transfer 
the source decision model to the target domain without the 
bias, MDAN [36] learns the aligned cross-domain semantic 
network by the generative adversarial scheme. Further, WS-
UDA [37] and CMSS [38] trains the adversarial network by 
reweighting the samples and spaces of the source domains 
respectively, which transfer the source knowledge effec-
tively. Moreover, DistanceNet [39] conducts 1SmT UDA by 
the dynamic distance measure and the Bandit controller. And 
LtC-MSDA [40] constructs an adjacent relationship graph 
of the mixed knowledge domain to realize the consistent 
transfer of mS1T UDA.

2.3  1SmT UDA

Although a variety of 1S1T and mS1T UDA methods have 
been proposed, the research on 1SmT is quite rare. To our 
knowledge, PA-1SmT [27] is the first and representative 
1SmT UDA method that transfers knowledge between the 
source and target domains via model parameter adaptation. 
More specifically, it performs clustering in the label space 
of multiple target domains simultaneously through the soft 
large-margin clustering. It also assumes the label space of 
target domains is subset of the source domain. To trans-
fer the source domain knowledge to help clustering these 
unlabeled target instances, the PA-1SmT bridges the single 
source domain with each of the target domains with individ-
ual representing factor. Besides, a correlation dictionary is 

embedded in the model to capture the correlations between 
the target domains. Finally, when these considerations are 
taken into account, the objective function of PA-1SmT is 
achieved as follows:

where WS and Wm
T
 respectively denote the projection matri-

ces for the source and target domains, Vm and Vm
T

 indicate 
the individual selection matrices, D stands for the shared 
dictionary among the target domains, um

ki
 is the clustering 

membership of instance xm
i
 to the kth class in the mth target 

domain. � , � , � and � are the tradeoff parameters. For more 
details about the PA-1SmT model and its algorithm, please 
refer to [27].

Although PA-1SmT has incorporated the knowledge 
relationship between the source and the target domains, it 
fails to preserve the cross-target relationships, whose per-
formance may be limited especially in scenarios where the 
target domains are closely related to each other. Even worse, 
it does not characterize the ordinal relationships of the data.

3  The Proposed method

In this section, we propose an unsupervised domain adapta-
tion for ordinal data scenario (OrUDA) that transfers implicit 
and explicit knowledge from source domain.

3.1  Notation and hypothesis

For convenience of elaboration, we systematically define the 
notations to be used in the remainder sections in Table 1.

Without loss of generality, we also comply with the 
hypothesis that the source data set XS ∈ ℝ

d×NS follows dis-
tribution PS(xS) , while the data set of the mth target fol-
lows distribution Pm

T
(xm

T
) . We concentrate on the UDA sce-

nario where the supervised source and unsupervised target 
domains share the same original feature space and label 
space, i.e. XS = Xm

T
 and YS = Ym

T
 . Considering the domain 

shift between the source and target domains, the marginal 
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distributions PS(xS) ≠ Pm
T
(xm

T
) and conditional distributions 

PS(yS ∣ xS) ≠ Pm
T
(ym

T
∣ xm

T
).

3.2  Ordinal UDA with implicit and explicit 
knowledge transfer

3.2.1  Implicit knowledge transfer from the source domain

For ordinal classification or regression (e.g. human age esti-
mation), one of the mainstream methods is to project the 
estimation samples into an ordered feature subspace and 
then make decisions in this space. Following this principle, 
the KDLOR method [41] was proposed to seek discrimi-
native ordinal projection. Furthermore, in order to obtain 
orthogonal projections with complementary components, a 
multi-direction counterpart of KDLOR [42] was derived, 
with objective function formulated as

where wp+1 denotes the (p+1)th ordinal projection direction 
who is restricted to be orthogonal to the previous p direc-
tions, with �p+1 being the class margin along this projection, 
SW is the intra-class scatter matrix, mk indicates the data 
centroid of the kth class. � is the tradeoff parameter.

(2)

min
{wp+1,�p+1}

w
T
p+1

SWwp+1 − ��p+1

s.t. w
T
p+1

(
mk+1 −mk

)
≥ �p+1, k = 1, ⋅ ⋅ ⋅,K − 1

w
T
p+1

wh = 0, h = 1, ⋅ ⋅ ⋅, p

The projections WS = [wp+1,wp, ⋅ ⋅ ⋅,w1] can be obtained 
by solving the variable wp+1 of (2) in the source domain. 
Then, we can transfer knowledge from the source domain 
via WS to the target domains. Nevertheless, considering the 
distribution shift between the source and the target domain, 
as well as the individuality divergence between different 
targets, it is not reasonable to directly assign {Wm

T
}M
m=1

 with 
WS . To this end, we propose to adaptively transfer positive 
components from the source to the target domains through 
designing the individual transfer matrices {Vm}M

m=1
 , and con-

sequently formulate it as

where the transfer matrix Vm acts to adaptively extract com-
ponents from the source model WS to represent the mth target 
module Wm

T
 . The constraint aims to preserve the discriminant 

component of the transfer matrix, with I being an identity 
matrix. Modeling individual transfer matrix Vm for each of 
the target domains can effectively preserve their personality. 
Since knowledge transfer from WS to Wm

T
 is implemented in 

an implicit manner, so we call it implicit knowledge transfer.

3.2.2  Explicit knowledge transfer from the source domain

Considering the distribution shift between the source and 
target domains, we need to align the domains by reducing 
their divergence in both marginal distribution and condi-
tional distribution. To this end, we propose to introduce the 
maximum mean discrepancy (MMD) [43] to model the mar-
ginal distribution, while the conditional MMD [44] to char-
acterize the conditional distribution between the domains. 
To seek a balance between the marginal divergence and con-
ditional divergence, we seek a tradeoff between the domain 
distributions and thus formulate the objective as

where the first term characterizes the marginal distribution 
divergence between the source and the M target domains 
while the second term describes their conditional diver-
gence, which are balanced by the parameter 0 ≤ � ≤ 1 . FS 
and Fm

T
 respectively store the class centroid in column for the 

source and target domains. It is worth noting that Fm
T
 is actu-

ally padded with “pseudo-centroid” for the target domains 
by classifying their instances using the classifier trained on 
the source domain. To boost the reliability, these pseudo-
centroid are updated in iterative manner in the process of 

(3)
Jim = min

{Wm
T
,Vm}

M�

m=1

�
‖Wm

T
−WSV

m‖2
F

�

s.t. (Vm)TVm = I

(4)
Jex = min
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,Fm
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�
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T
)TXm
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TXS‖22 + �‖Fm
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�

Table 1  Summary of notation definitions involved in this article

Notation Meaning

d The original feature dimension of data
p The transformed feature dimension of data
M The number of target domains
K The number of the source domain data classes
NS The number of instances in the source domain
Nm
T

The number of instances in the mth target domain
WS ∈ ℝ

d×p The projection matrix for the source domain
W

m
T
∈ ℝ

d×p The projection matrix for the mth target domain
G

m
T
∈ ℝ

Nm
T
×k The label coding matrix for the mth target domain

XS ∈ ℝ
d×NS The labeled data set of the source domain

X
m
T
∈ ℝ

d×Nm
T The data set of the mth target domain

XS ∈ ℝ
d×1 The entire centroid of the source domain

X
m
T
∈ ℝ

d×1 The entire centroid of the mth target domain

FS ∈ ℝ
p×k The centroid matrix of the source domain

F
m
T
∈ ℝ

p×k The centroid matrix of the mth target domain
D ∈ ℝ

d×r The dictionary shared among the target domains
V

m ∈ ℝ
p×p The transfer matrix of the mth target domain

V
m
T
∈ ℝ

r×p The relation matrix of the mth target domain
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model optimization. To gain performance improvement, 
we adaptively calculate � according to the A-distance [45] 
between the marginal and conditional distributions. Com-
pared to the implicit knowledge transfer manner in Sec-
tion 3.2.1, the domain distribution alignment is an explicit 
way of transferring prior knowledge from the source domain, 
so we distinguish it as explicit knowledge transfer.

3.2.3  Relation transfer between the target domains

For 1SmT UDA, there are usually potential correlations 
between the target domains. To explore these relations, we 
construct a shared representation dictionary to bridge the target 
domains as

where D ∈ ℝ
d×r denotes the dictionary shared by the target 

domains, and Vm
T
 is the relation transfer matrix for the mth 

target domain. As formulated in (5), all the M target domains 
are related with knowledge transfer among them by the com-
mon dictionary.

3.2.4  Overall objective of OrUDA

For the concerned ordinal 1SmT UDA, we can consequently 
build the overall objective function for the OrUDA model by 
taking all the above considerations simultaneously, and for-
mulate it as

where the first term denotes the empirical loss on the target 
domain, while the other terms regularize the learning by 
transferring knowledge from the source domain (implicit 
and explicit) and other target domains (relation). It is worth 
noting that implicit knowledge transfer constructs the indi-
vidual transfer matrices for each target domain to learn the 
latent ordinal information from the source domain while 
the explicit knowledge transfer aims to mitigate the domain 
shift in the shared sub-space which is obtained according to 
the explicit measure of the domain distribution. In order to 
transfer from the source domain the ordinal structure for the 
target domains, we encode the target instance label through 
least-squares regression on their centroid. Then, we substi-
tute (3), (4), (5) into (6) and consequently rewrite (6) as

(5)Jre = min
{D,Vm

T
}

M�

m=1

�
‖Wm

T
− DVm

T
‖2
F
+ �‖Vm
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‖2,1

�

(6)J = Ltarget +
�1

2
Jex +

�2

2
Jim +

�3

2
Jre

where �1 to �4 , as well as � are predefined tradeoff param-
eters. By the modeling manner of (7), the data ordinal char-
acteristics, as well as other domain knowledge can be effec-
tively transferred to the target domains.

3.3  Optimization of OrUDA

As shown in (7), the objective function is jointly convex 
w.r.t. the variables; therefore, we construct an alternating 
optimization to solve it, i.e. solving one variable while fix-
ing the others.

• Solve Wm
T
 with Fm

T
 , Gm

T
 , Vm , Vm

T
 , D fixed.

  When Fm
T
 , Gm

T
 , Vm , Vm

T
 and D are fixed, then (7) w.r.t. 

Wm
T
 can be equivalently written as

Calculating the derivative of (8) w.r.t. Wm
T
 and making it 

to zero yields the closed-form solution

• Solve Fm
T
 with Wm

T
 , Gm

T
 , Vm , Vm

T
 , D fixed.

When Wm
T

 , Gm
T

 , Vm , Vm
T

 and D are fixed, then (7) w.r.t. Fm
T
 

can be written as

Taking the derivative of (10) w.r.t. Fm
T

 to zero, yields the 
following closed-form solution
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• Solve Gm
T
 with Wm

T
 , Fm

T
 , Vm , Vm

T
 , D fixed.

When Wm
T
 , Fm

T
 , Vm , Vm

T
 and D are fixed, then (7) w.r.t. Gm

T
 can 

be written as

Considering the (ij)th element, Gm
T(ij)

 of Gm
T
 stores the mem-

bership degree of the ith instance to the jth class, we com-
pare the distance of the instance to each of the class cen-
troids and assign it to the class with the closet distance, as 
formulated

• Solve Vm with Wm
T
 , Fm

T
 , Gm

T
 , Vm

T
 , D fixed.

When Wm
T
 , Fm

T
 , Gm

T
 , Vm

T
 and D are fixed, then (7) w.r.t. Vm can 

be written as

constrained by (Vm)TVm = I . We set the derivative of JVm 
to zero, yielding

Then, performing Gram-Schmidt orthogonalization opera-
tion on Vm generates the solution.

• Solve Vm
T
 with Wm

T
 , Fm

T
 , Gm

T
 , Vm , D fixed.

When Wm
T
 , Fm

T
 , Gm

T
 , Vm and D are fixed, then (7) w.r.t. Vm

T
 can 

be written as

For convenience of optimization, we introduce a diagonal 
matrix

into (16) and reformulate it as

(11)Fm
T
=
(
(Wm

T
)TXm

T
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T
+ �1�FS

)(
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T
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T
+ �1�Id
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(12)JGm
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=

�
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0, otherwise

(14)JVm = min
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+ �4tr

�
(Vm

T
)TSvV
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�

Setting the derivative of JVm
T
 w.r.t. Vm

T
 to zero, yields

Since Vm
T
 is involved in Sv , therefore we need to update them 

in an alternating manner.

• Solve D with Wm
T
 , Fm

T
 , Gm

T
 , Vm , Vm

T
 fixed.

When Wm
T
 , Fm

T
 , Gm

T
 , Vm and Vm

T
 are fixed, then (7) w.r.t. D can 

be equivalently formulated as

Making the derivative of JD w.r.t. D to zero, yields the 
closed-form analytical solution

Through updating Wm
T
 , Fm

T
 , Gm

T
 , Vm , Vm

T
 , D alternatively until 

convergence, we can eventually achieve their optimal solu-
tions. The complete optimization algorithm is summarized 
in Algorithm 1.

Algorithm 1 Optimization Algorithm for OrUDA
Input: WS , µ, λ1, λ2, λ3, λ4, r.
Output: Wm

T , Fm
T , Gm

T , V m, V m
T , D.

1: Initialize V m, V m
T , D, Sv as identity matrices, as well as Gm

T and Fm
T by

projecting target instances to the source centroids via WS ;
2: repeat
3: Update Wm

T based on (9);
4: Update Fm

T based on (11);
5: Update Gm

T based on (13);
6: Update V m based on (15) with Gram-Schmidt operation;
7: repeat
8: Update V m

T based on (19);
9: Update Sv based on (17);

10: until Convergence;
11: Update the dictionary D based on (21);
12: until Convergence.

3.4  Convergence analysis

Here, we analyze the convergence property of Algorithm 1. 
Specifically, denote by J(Wm(t)

T
,F

m(t)

T
,G

m(t)

T
, Vm(t),V

m(t)

T
,D(t)) 

the objective value of (7) at the tth iteration. The objective is 
convex w.r.t. Wm

T
 when fixing Fm

T
,Gm

T
,Vm,Vm

T
,D . Therefore, 

after updating the solution of Wm
T
 , it holds

(19)Vm
T
= (�3DD

T + 2�4Sv)
−1(�3D

TWm
T
)

(20)JD = min
D

M�

m=1

�3

2
‖Wm

T
− DVm

T
‖2
F

(21)D =

(
M∑

m=1

Wm
T
(Vm

T
)T

)(
M∑

m=1

Vm
T
(Vm

T
)T

)−1

(22)
J(W

m(t+1)

T
,F

m(t)

T
,G

m(t)

T
,Vm(t),V

m(t)

T
,D(t))

≤ J(W
m(t)

T
,F

m(t)

T
,G

m(t)

T
,Vm(t),V

m(t)

T
,D(t))
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Considering the objective of (7) is also convex w.r.t each of 
Fm
T
 , Gm

T
 , Vm , Vm

T
 , D when fixing all the other variables.1 As 

a result, the following inequalities hold

and

Taking into account from (22) to (27), it appears that

It verifies that the entire objective value descends monoto-
nously with increased iterations. In addition, (7) is definitely 
lower-bounded by nonnegative value since it is a linear sum 
of nonnegative norms, i.e. ‖ ⋅ ‖2

F
 , ‖ ⋅ ‖2

2
 and ‖ ⋅ ‖2,1 . As a 

result, we draw the conclusion that the objective function 
of (7), solved by Algorithm 1, converges in finite iterations.

3.5  Time complexity analysis

The time cost of Algorithm 1 mainly lies in updating the 
variables. More specifically, the cost of calculating the solu-
tion of Wm

T
 in line 3 is O(d3 + d2p) , the cost of updating Fm

T
 

in line 4 is O(Km
T

3 + Km
T

2p) . In line 6 and 8, calculating Vm 
and Vm

T
 respectively costs O(d3 + p2d) and O(r3 + rdp) . As 

for the time cost of solving the dictionary D in line 11, it is 
O(Mr3 +Mdpr) . Usually, it holds that d ≥ p ≥ r . Assume 
the algorithm converges in L iterations. As a result, taking 
all the cost into account, the total time complexity of Algo-
rithm 1 is O

(
LMdpr + Ld3 + L(Km

T
)2p + L(Km

T
)3
)
.

(23)
J(W

m(t+1)

T
,F

m(t+1)

T
,G

m(t)

T
,Vm(t),V

m(t)

T
,D(t))

≤ J(W
m(t+1)

T
,F

m(t)

T
,G

m(t)

T
,Vm(t),V

m(t)

T
,D(t))
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≤ J(W
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T
,F
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T
,G
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T
,Vm(t),V

m(t)

T
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4  Experiment

In this section, we conduct experiments to evaluate the pro-
posed method. Firstly, we introduce the setting and data set 
used for the evaluations. Secondly, we report the comparison 
with other related methods, with performance Hypothesis 
test and ablation study. Finally, we evaluate the convergence 
efficiency of the proposed algorithm.

4.1  Dataset and setting

Artificial dataset In order to verify the motivation of the 
proposed method, we construct an artificial dataset with 
known effects. As shown in Table 2, the artificial dataset 
consists of one source domain and two target domains with 
two classes. We fix the covariance matrix and generate 
randomly twenty samples that obey the Gaussian distribu-
tion for each class according to the given class centers. It 
is worth noting that compared with the source domain, the 
class center of target domain 2 is closer to target domain 1, 
which is designed to demonstrate the feasibility of target 
knowledge transfer.

Real dataset We evaluate on two types of ordinal image 
datasets: character dataset, i.e. Chars74k [47] and face aging 
datasets, i.e. AgeDB [48], Morph (album 2) [49], CACD 
[50]. For Chars74k, it is consisted of over 100000 images 
of three modalities of characters, i.e. Img, Hnd, Fnt, as 
shown in Fig. 2. We uniformly resize the images to 32 × 32 , 
extracted the Hog coefficients from them with normaliza-
tion and apply the generated 288-dimensional components 
as feature representation. For the AgeDB, Morph and CACD 
face datasets, they respectively contain 16,000, 55,000, and 
160,000 face images with age annotation, as demonstrated in 

Table 2  Statistics of the benchmarks

Source 
mean

Target1 
mean

Target2 
mean

Covari-
ance

Number

Class 1 [1,1] [3,1] [4,1]

 

[
0.5 0

0 0.5

]
20

Class 2 [2,2] [4,2] [5,2] 20

(a) Img (b) Hnd (c) Fnt

Fig. 2  Image examples of Img, Hnd, Fnt from the Chars74k dataset

1 Since the l
2,1

-norm on Vm

T
 is convex [46], therefore (18) is entirely 

convex.
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Fig. 3. We extract their normalized BIF visual features and 
retained 95% components for evaluation.

Setting To make extensive evaluations, we conduct com-
parison with the most related 1SmT UDA method PA-1SmT, 
as well as other related 1S1T UDA methods, i.e. STC [51], 
TSC [52], TFSC [53], CMMS [21], SLSA[22]. For fairness 
of comparison, the source modules of these methods are 
trained in supervised manner while the target unsupervised. 
The values of hyper parameters �1 , �2 , �3 , �4 are searched 
in the range of (1e−3, 1e−2, 1e−1, 1e1, 1e2, 1e3, 1e4, 1e5, 
1e6), the number p of source domain projection directions 
in KDLOR is selected in the range of [5, 10, 15, … , 100], 
the dimension r of the dictionary in the range of [5, 10, 15, 
… , p], all through five-fold cross-validation. The parameters 
in the compared methods are also tuned in cross-validation 
referring to the literature. To comprehensively evaluate the 
performance, we adopt the Normalized Mutual Information 
(NMI) and Rand Index (RI) [27], as well as the Mean Abso-
lute Errors (MAE) [18] as performance measure. In order to 
mitigate the randomness of results, we run the evaluations 
ten times and report the average results.

4.2  Results and analysis

Artificial dataset recognition For comparison, we construct 
two 1S1T tasks “source → target1”, “source → target2” and 
one 1SmT task “source → target1, target2”. The data dis-
tribution and classification bound of three tasks are shown 
in Fig. 4 (The classification bound is marked by the dashed 
line of the corresponding color of each domain. ). We can 
find that the classification result of target2 is worse than 
target1 in the 1S1T task while the performance improves 
in the 1SmT task, which is consistent with our expectation. 
Actually, in the process of 1SmT UDA, the target1 which is 
closer to the source could be seen as an intermediate domain 
between source and target2. And the dictionary learning can 
be regarded as a bias term in the linear space of this artificial 
dataset so that the discrimination information of target1 is 
utilized by the target2.

Ordinal character recognition We conduct ordinal char-
acter recognition evaluation on the Chars74k dataset. Spe-
cifically, we randomly choose one modality from Img, Fnt, 
Hnd as source domain while the rest as target domains. The 
results are shown in Table 3 and 4 (best in bold, second-best 
underlined).

We can observe the following findings. On the one hand, 
the proposed OrUDA model generated the best results in 
terms of both NMI and RI measures, with clear performance 
improvement. Moreover, in 1S1T setting, OrUDA still beats 
the other methods. It states that transferring both the implicit 
source model knowledge and explicit distribution informa-
tion, as well as the inter-target relations effectively benefit 
the target domain learning. On the other hand, the improve-
ment extent on different cases differs. It affirms the diver-
gence between the target domains and verifies the rational-
ity of modeling target-specific transfer matrix and relation 
matrix in OrUDA.

Human age estimation We also perform human age esti-
mation in the setting of cross datasets. Specifically, we ran-
domly take from AgeDB, Morph and CACD one dataset as 
the source dataset while the other two as target datasets. For 
the sake of domain knowledge transfer, we select their com-
mon age range of 16 to 62 years old, and divide them into 
several groups, i.e. 16–20, 21–25, … , 55–60, 61–62 for age 
group estimation. The averaged results on ten random runs 
are shown in Table 5.

We observe that in both 1S1T and 1SmT settings, the 
proposed OrUDA model generates the best age estimation 
results, compared to related methods. It demonstrates the 
effectiveness of the proposed model and its superiority to 
other compared models.

In order to estimate the effectiveness of the OrUDA 
method in improving performance, we perform hypoth-
esis test [54] on the results in Table 3 to Table 5. The test 
results are shown in Fig. 5. We can observe that the proposed 
OrUDA method (i.e. OURS) generates a quite clear perfor-
mance improvement than the others.

4.3  Ablation study

In order to explore the effectiveness of the modules of 
the proposed model (objective function), we addition-
ally perform ablation study. Specifically, we estimate 
respectively the efficacy of orderly projection, implicit 
knowledge transfer, explicit knowledge transfer and target 
knowledge transfer in (7). As shown in Table 6, each of 
the four modules in OrUDA is significant, especially the 
explicit knowledge transfer. Moreover, though the target 
knowledge transfer could not improve the model as much 
as knowledge transfer from the labeled source domain in 
most tasks due to the absence of supervised information, 

(a) AgeDB (b) Morph (c) CACD

Fig. 3  Image examples of the AgeDB, Morph and CACD datasets
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it is far away from enough to transfer supervised knowl-
edge only for a UDA model. Actually, various relation-
ships of domains are crucial to benefit the process of 
domain adaptation, which acts as the complementary set 
of the source domain knowledge, such as relationship of 
target domains or the ordered relationship of samples. 

The results of the ablation study prove our hypothesis 
and explain why our model performs better than other 
UDA models.

(a) source→target1 (b) source→target2

(c) source→target1,target2

Fig. 4  The distribution and classification bound of artificial datasets
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4.4  Convergence evaluation

We also empirically evaluate the convergence efficiency of 
Algorithm 1. Without loss of generality, we conduct analysis 

experiments with the same setting aforementioned on the 
three face aging datasets and report the convergence results 
in Fig. 6. We can observe from the results that, the algorithm 
efficiently converges in about 15 iterations.

Table 3  Character recognition 
NMI results on Chars74k

D
S

D
T

1S1T 1SmT

TSC STC TFSC CMMS SLSA PA-1S1T OrUDA PA-1SmT OrUDA

Fnt Hnd 0.3267 0.3182 0.3198 0.3378 0.3205 0.3255 0.3423 0.3384 0.3654
Img 0.3394 0.3114 0.3281 0.3417 0.3321 0.3232 0.3289 0.3496 0.3376

Hnd Fnt 0.2627 0.2309 0.2508 0.2851 0.2700 0.2493 0.3027 0.2572 0.3044
Img 0.2140 0.2006 0.2073 0.2479 0.2294 0.2117 0.2364 0.2403 0.2519

Img Fnt 0.3673 0.3708 0.3863 0.4535 0.4261 0.4118 0.4559 0.4239 0.4634
Hnd 0.3323 0.3091 0.2967 0.3331 0.3433 0.3163 0.3222 0.3324 0.3694

Table 4  Character recognition 
RI results on Chars74k

D
S

D
T

1S1T 1SmT

TSC STC TFSC CMMS SLSA PA-1S1T OrUDA PA-1SmT OrUDA

Fnt Hnd 0.7820 0.7878 0.7999 0.8165 0.7908 0.7906 0.8208 0.7981 0.8394
Img 0.8002 0.8019 0.7918 0.8206 0.8071 0.8246 0.8305 0.8526 0.8461

Hnd Fnt 0.8037 0.7861 0.7879 0.8471 0.8098 0.8039 0.8292 0.8213 0.8667
Img 0.8059 0.7749 0.7785 0.8051 0.7945 0.7955 0.8167 0.8128 0.8261

Img Fnt 0.8209 0.7959 0.8294 0.8407 0.8618 0.8423 0.8503 0.8581 0.8863
Hnd 0.8024 0.8102 0.8081 0.8485 0.8287 0.8313 0.8500 0.8477 0.8621

Table 5  Age group estimation 
MAE results on the AgeDB, 
Morph and CACD datasets

D
S

D
T

1S1T 1SmT

TSC STC TFSC CMMS SLSA PA-1S1T OrUDA PA-1SmT OrUDA

Morph AgeDB 2.7037 2.7649 2.6247 2.3781 2.4541 2.5681 2.4078 2.5329 2.3565
CACD 2.6853 2.7065 2.6238 2.4012 2.5562 2.5778 2.3701 2.4078 2.2377

AgeDB Morph 2.8568 2.9302 2.8878 2.6755 2.6208 2.7527 2.6834 2.4847 2.3693
CACD 2.8743 2.8552 2.8031 2.3957 2.4346 2.7639 2.3869 2.5226 2.3238

CACD Morph 2.6562 2.5329 2.5516 2.2879 2.4390 2.5297 2.2741 2.3393 2.1999
AgeDB 2.7215 2.7570 2.6247 2.3056 2.4226 2.5057 2.5330 2.4445 2.2919

CD

9 8 7 6 5 4 3 2 1

1.5294 OrUDA
2.6471 OrUDA(1S1T)
3.1765 CMMS

4 PA-1SmT
4.6471 SLSA

5.8235PA-1S1T

6.8824TSC

7.8235TFSC

8.4706STC

(a) Friedman Test of NMI and RI

CD

9 8 7 6 5 4 3 2 1

1.5625 OrUDA
2.5625 OrUDA(1S1T)
3.125 CMMS

3.8125 PA-1SmT
4.3125 SLSA

5.75PA-1S1T

7.25TSC

8.125TFSC

8.5STC

(b) Friedman Test of MAE

Fig. 5  Hypothesis test (Friedman Test) among the compared methods
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Table 6  Ablation estimation 
MAE results on the AgeDB, 
Morph and CACD datasets

Settings Morph AgeDB CACD

AgeDB CACD Morph CACD Morph AgeDB

OrUDA w/o orderly projection 2.5288 2.5987 2.6709 2.7677 2.5049 2.5052
OrUDA w/o explicit knowledge transfer 2.6079 2.6263 2.7589 2.9105 2.6555 2.7845
OrUDA w/o implicit knowledge transfer 2.5011 2.5668 2.5818 2.4559 2.4088 2.4225
OrUDA w/o target knowledge transfer 2.4078 2.3701 2.6834 2.3869 2.2741 2.5330
OrUDA 2.3565 2.2377 2.3693 2.3238 2.1999 2.2919

(a) AgeDB→Morph,CACD (b) Morph→AgeDB,CACD

(c) CACD→Morph,AgeDB

Fig. 6  Convergence efficiency of Algorithm 1 on the AgeDB, Morph and CACD datasets
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4.5  Parameter sensitivity analysis

To assess the parameters of the proposed model, we per-
form parameter sensitivity analysis for OrUDA on the 
face datasets. Specifically, we evaluate by just tuning the 
concerned parameter while fixing all the other ones. The 
evaluation results are shown in Fig. 7. We can observe the 
following findings. On the one hand, although OrUDA 
is sensitive to �1 , �2 and �3 , the performance changes 
with good trends. In summary, the best performance can 
be achieved when 1e5 < 𝜆1 < 1e7 , 𝜆2 < 1e1 , 𝜆3 < 1e1 , 
regardless on which face dataset the source target sub-
model is trained. On the other hand, the performance is 

preferably not sensitive to �4 , which can be fixed in practi-
cal applications.

5  Conclusion

In this work, we proposed an ordinal model of unsupervised 
domain adaptation, i.e. OrUDA, by transferring knowledge 
from both the implicit model parameters and explicit cross-
domain data distributions, as well as the relations between 
the target domains. By this kind of model, the knowledge 
from the source and target has been exploited to training 
the concerned target model. In addition, we designed an 

1

AgeDB Morph,CACD 
CACD AgeDB,Morph 
Morph     AgeDB,CACD 

M
A

E

(a) Performance with varying λ1

1e-5 1e-4 1e-3 1e-2 1e-1 1e0 1e1 1e2 1e3 1e4 1e5
2

2.0

2.5

3.0
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4.5

5.0

AgeDB Morph,CACD  
CACD AgeDB,Morph 
Morph     AgeDB,CACD 

M
A

E

(b) Performance with varying λ2

1e-2 1e-1 1e0 1e1 1e2 1e3 1e4 1e5 1e6 1e7 1e8
3

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
A

E

AgeDB Morph,CACD  
CACD AgeDB,Morph 
Morph     AgeDB,CACD 

(c) Performance with varying λ3

4

AgeDB Morph,CACD 
CACD AgeDB,Morph 
Morph     AgeDB,CACD 

M
A

E

(d) Performance with varying λ4

Fig. 7  Parameter sensitivity results on the AgeDB, Morph and CACD datasets
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alternating optimization algorithm to solve the OrUDA 
model and provided theoretical convergence proof. Finally, 
we experimentally evaluated the effectiveness of the pro-
posed method in performance and the sensitivity of its 
parameters. We proved that this modeling method can 
effectively handle the UDA problem in ordinal and 1SmT 
scenarios. Compared with related existing UDA methods, 
the proposed OrUDA outperforms others thanks to the uti-
lization of ordinal prior and related information in other tar-
get domains. Actually, there are more priors that could be 
taken into consideration such as sparsity, low-rank and so on. 
Hence, in the future, we will consider generalizing the pro-
posed method by exploring more prior knowledge [55] and 
extending the method into the deep network architecture.
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