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Abstract
Support vector machine (SVM) has always been one of the most successful learning methods, with the idea of structural risk 
minimization which minimizes the upper bound of the generalization error. Recently, a tighter upper bound of the generali-
zation error, related to the variance of loss, is proved as the empirical Bernstein bound. Based on this result, we propose a 
novel risk-averse support vector classifier machine (RA-SVCM), which can achieve a better generalization performance by 
considering the second order statistical information of loss function. It minimizes the empirical first- and second-moments 
of loss function, i.e., the mean and variance of loss function, to achieve the “right” bias-variance trade-off for general classes. 
The proposed method can be solved by the kernel reduced and Newton-type technique under certain conditions. Empirical 
studies show that the RA-SVCM achieves the best performance in comparison with other classical and state of art methods. 
The additional analysis shows that the proposed method is insensitive to the parameters, so abroad range of parameters lead to 
satisfactory performance. The proposed method is a general form of standard SVM, so it enriches the related studies of SVM.

Keywords  Bennetts’s inequality · Empirical Bernstein bounds · SVM · Risk-Averse SVCM · Representation theorem · 
Moment penalization · Newton algorithms

1  Introduction

Support Vector Machine (SVM) [1, 2] and its extensions 
have always been one of the most successful machine lean-
ing methods for supervised learning due to their accuracy, 
robustness and indifference towards the instance data type. 
They are widely used in classification and regression prob-
lems, such as face recognition [3, 4], spam recognition [5], 
handwriting number recognition [6], disease diagnosis 
[7–9], and pattern recognition [10], etc.

During the past few decades, many common improved 
methods based on SVM have been developed well, among 
which the most methods change the regularization terms, 
constraints, and loss functions to improve the learning abil-
ity of the model. For instance, the least-square SVM (LS-
SVM) [11] method can be easily implemented due to the 
utilization of the equality constraints. A radius-margin-based 
SVM model with LogDet regularization considers the radius 

and introduce a negative LogDet term to improve the model 
accuracy [12]. A risk-averse classifier allows for associat-
ing distinct risk functional to each classes [13]. The sparse 
LSSVM in primal using cholesky factorization for large-
scale problems and the random reduced P-LSSVM (RRP-
LSSVM) achieves the sparse solutions of LSSVM [14]. The 
twin Support vectors [15–17] finds two hyperplanes, one for 
each class, and classifies points according to which hyper-
plane a given point is closest to. These methods are mainly 
based on margin theory [1] or structural risk minimization 
theory. They focus on margin of a few instances or first-order 
information of loss function instead of the characteristics of 
the data itself.

There are a few studies considered the effect of the infor-
mation about data on the generalization ability of SVM-style 
algorithms. The SVM+ approach can lower the overall sys-
tem’s VC-dimension and hence attain better generalization 
by taking advantage of the structure in the training data [18, 
19]. But this model still consider only the samples that are in 
the class boundaries regardless of class distribution charac-
teristics. The Support Vector Machines with multiview Priv-
ileged improve the performance of the classification tasks by 
exploiting the complementary information among multiple 
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feature sets [20–22]. The margin distribution optimization 
(MDO) algorithm [23] optimizes margin distribution by 
minimizing the sum of exponential loss, but this method 
tends to get a local minima with slow convergence since the 
objective function is non-differential and non-differential. At 
the same time, more and more attention has been paid to the 
second-order statistical characteristics of training datas. A 
robust least-squares SVM [24] with minimization of mean 
and variance of modeling error distributes smaller weight 
to larger error training samples and lager weight to small 
error training samples, which is more robust in regards to 
random noise. The large margin distribution machine (LDM) 
[25] tries to optimize the margin distribution by maximiz-
ing the margin mean and minimizing the margin variance 
simultaneously. The optimal margin distribution machine 
(ODM) [26], which is a simpler but powerful formulation 
than LDM, were successively proposed by simplifing the 
variance term of LDM and introducing a insensitive loss. All 
studies of SVM above, however, focused on margin-based 
explanation or partial information of training data, whereas 
the influence of the loss distribution for SVM has not been 
well exploited.

Based on Hoeffding’s inequality, the SVM minimizes the 
structural risk that is upper bound of the generalization error. 
The empirical Bernstein bounds [27], however, disclosed 
that minimize the structural risk does not necessarily lead to 
better generalization performance, and instead the variance 
of loss function has been proven be more crucial. In other 
words, the empirical Bernstein bounds is a tighter upper 
bound of the generalization error. Inspired by the theory 
above, we propose a Risk-Averse support vector classifier 
machine(RA-SVCM). The RA-SVCM tries to achieve the 
“right” bias-variance trade-off for general classes by mini-
mizing the empirical first- and second-moments of loss 
simultaneously, i.e., the mean and variance of loss. Com-
prehensive experiments on twelve regular scale data sets and 
eight large scale data sets show the superiority of RA-SVCM 
to SVM and many state-of-the-art methods, verifying that 
the minimum variance of loss function is more crucial for 
SVM-style learning approaches than minimum structural 
risk.

The remainder of this paper is organized as follows. An 
overview of the related work is introduced in Sect. 2. In 
Sect. 3, the details of the developed RA-SVCM are stated. In 
Sect. 4, the differences with related methods are presented. 
the details of the developed RA-SVCM are stated. The 
experimental results are then reported in Sect. 5 to validate 
the validity of the method. Finally, Sect. 6 concludes this 
paper.

2 � Related work

2.1 � SVM

This section briefly introduces SVM. For convenience, 
we first introduce some notations which are used through-
out the paper. Let X ⊂ ℝ

d and Y = {+1,−1} denote the 
input space and output space, respectively. Denote by D 
an (unknown) underlying probability distribution over the 
product space X × Y . Let u+ = max{0, u} . For training set 
S = {(x1, y1)⋯ (xm, ym)} ∈ {X × Y}m , which drawn inde-
pendently and identically (i.i.d) according to the distribu-
tion D , the goal of soft SVM is to learn parameters (w, b) 
of a hypothesis f (x) = ⟨w,�(x)⟩ + b from the optimization 
problem:

where w ∈ ℍ, b ∈ ℝ , tradeoff paramete C > 0 and �(⋅) maps 
xi to a high dimensional feature space. ℍ is the reproducing 
kernel Hilbert space (RKHS) associated with a kernel fuc-
tion k ∶ ℝ

m ×ℝ
m
→ ℝ satisfying k(xi, xj) =

⟨
�(xi),�(xj)

⟩
 . 

For convenience, SVM for learning a homgenous halfpace is 
considered, where the bias term b is set to be zero. Because 
Steinwart et al. [28] proved that SVMs without offset term b 
have convergence rates and classification performance that 
are comparable to SVMs with offset, while the absence of 
the offset gives more freedom in the algorithm design.

On the basis of the representation theorem [29–31], the 
learning result w can be represented by a linear combination 
of the kernel functions:

which is a finite linear combination of �(xi) . Therefore, we 
can optimize problem (1) with respect to the coefficients � 
in ℝm instead of the parameters w in ℍ as follows.

where the kernel matrix K satisfies Ki,j = k(xi, xj)⟨
�(xi),�(xj)

⟩
 and Ki is the i-th row of K. It is infeasible to 

get the whole kernel matrix when the sample size m is larger 
enough. According to sparse representation theorem [32, 
33], the learning result can be represented as

where a reduced set J is selected randomly from the index 
set M = {1, 2, ....m} , and |J| ≤ 0.1m [33, 34]. So the reduced 

(1)min
w,b

C

m

m�

i=1

[1 − yi(⟨w,�(xi)⟩ + b)]+ +
1

2
‖w‖2,

(2)w =

m∑

i=1

�i�(xi),

(3)min
�∈ℝm

C

m

m∑

i=1

(
1 − yiKi�

)
+
+

1

2
�⊤K�,

(4)w =
∑

i∈J

�i�(xi),
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version of standard SVM corresponding to (3) can be rep-
resented as

 Here, KJJ is the sub-matrix of K, whose elements are 
k(xi, xj) for i ∈ J and j ∈ J . KJM is a sub-matrix of K, whose 
elements are k(xi, xj) for i ∈ J and j ∈ M and KJi is i-th col-
umn of KJM.

2.2 � LDM and ODM

Based on theoretical results that the margin distribution is 
more crucial to the generalization performance, the large 
margin distribution Machine (LDM) [25] is proposed to 
achieving a better generalization performance by optimiz-
ing the margin distribution of model characterized by the 
first and second order statistics, i.e., the margin mean and 
variance. The formulation of LDM is as following.

w h e r e  �m =
1

m

∑m

i=1
yiw

T�(xi)  a n d  �
v
=

1

m

∑m

i=1

(y
i
w
T�(x

i
) − �

m
)
2 are the margin mean and margin variance 

respectively.
The optimal margin distribution machine (ODM) [26], 

which is a simpler but powerful formulation than LDM, 
were successively proposed by simplifying the variance term 
of LDM and introducing a insensitive loss.

where � and � are trading-off parameters, and D is a param-
eter for controlling the number of support vectors. For kernel 
ODM, the objective function of primal problem (7) can be 
reformulated as the following form,

3 � The proposed Risk‑Averse SVCM

In this section, we begin with a discussion of the confidence 
bounds most frequently used in learning theory.

(5)min
�J∈ℝ

|J|

C

m

m∑

i=1

(
1 − yiKJi�J

)
+
+

1

2
�⊤
J
KJJ�J .

(6)
min
w,�i

1

2
‖w‖2 + �1�v − �2�m +

�

m

m∑
i=1

�i

s.t.yiw
T�(xi) ≥ 1 − �i, �i ≥ 0,∀i,

(7)
min
w,�i,�i

1

2
‖w‖2 + �

m

m∑
i=1

�2
i
+��2

i

(1−D)2
,

s.t. yiw
T�(xi) ≥ 1 − D − �i,

yiw
T�(xi) ≤ 1 + D + �i, ∀i.

(8)

fO(w) =
1

2

‖w‖2 + �

m(1 − D)2
(

m�

i=1

(1 − D − yiw
T�(xi))

2

+

+ �

m�

i=1

(yiw
T�(xi) − 1 − D)2

+
).

Suppose this underlying observation is modeled by a 
random variable (x, y) distributed in some space Z = X × Y 
according to law D , then this underlying observation 
can be denoted as l(y, f (x)) . The �(x,y)∼D[l(y, f (x))] and 
1

m

∑m

i=1
l(yi, f (xi)) are called expected risk and empirical risk 

of hypothesis f respectively.
According to the above-mentioned conditions and the 

related theorems in [27], some results can be given as:
Suppose that D is a distribution over X × Y such that with 

probability 1 we have that ‖x‖2 ≤ R . Let l ∶ H × Z → ℝ be 
a loss function, and l(yi, f (xi)) be a sequence of i.i.d. random 
variables with values in [0, 1]. Then for any 𝛿 > 0 , with 
probability at least 1 − � we have

The inequation of (9) cited Hoeffding’s inequality probabil-
ity in form of a confidence dependent bound on the deviation 
[35]. A drawback of this inequality is that the confidence 
interval is independent of the hypothesis in question, and 
of order 

√
1∕m.

And for any 𝛿 > 0 , then with probability at least 1 − � 
we aslo have

where � (l) = �(l − El)2 . The inequality of (10) is called 
Bennetts’s inequality, and the confidence interval of this 
inequality becomes 2

√
� l times the confidence interval of 

the Hoeffding’s inequality. This bound proves us of higher 
accuracy for hypotheses of small variance, and of lower 
accuracy for hypotheses of large variance. But the first term 
on the right hand side depends the unmeasurable variance, 
leaving us with a uniformly blurred view of the hypothesis 
class. So Maurer and Pontil [27] provide empirical Bern-
stein bounds (11), which is a purely data-dependent bound 
with similar properties as Bennetts’s inequality. This bound 
makes the diameter of the confidence interval observable 
and provides us with a view of the loss class which is more 
in focus for hypotheses of small sample variance.

where � (l) = �(l − El)2 , �m(l) =
1

m−1

∑m

i=1
(li − l̄)

2 , and 
li = l(yi, f (xi)) . Minimizing this uniform convergence bound 
leads to the sample variance penalization principle:

(9)�(x,y)∼D l(y, f (x)) ≤
1

m

m∑

i=1

l(yi, f (xi)) +

√
ln 1∕�

2m
,

(10)
�(x,y)∼D l(y, f (x)) ≤

1

m

m∑

i=1

l(yi, f (xi)) +

√
2� (l) ln 1∕�

m

+
ln 1∕�

3m
,

(11)

�(x,y)∼D l(y, f (x))≤
1

m

m∑

i=1

l(yi, f (xi)) +

√
2�m(l) ln 2∕�

m
+

7 ln 2∕�

3(m − 1)
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Based on this principle,we propose a new model, which 
allows for a reduction of mean of the hinge loss as well 
as the minimization of its variance. As the variance of 
model loss characterize the stability of the model at sam-
ple datas, we named it Risk-Averse support vector classifier 
machine(RA-SVCM).

Here we first analyze the relevant loss function. Given an 
i.i.d. training set {xi, yi}mi=1 , our aim is to minimize the future 
probability of error ℙD[yf (x) ≤ 0] in classification problems. 
Note that 𝔼[�yf (x)≤0] = ℙD[yf (x) ≤ 0] , we can minimize the 
future probability of error by minimizing the mean of 0-1 
loss:

However, the empirical risk minimization with the 0-1 
loss is a difficult problem to deal with. Towards this end, we 
replace the 0-1 loss by the hinge loss :

which is a convex approximation of the 0–1 loss. Therefore, 
we relate the future probability of error to the hinge loss:

That is, we can minimize the mean and standard devia-
tion of hinge loss to improve the performance of the SVMs 
as follows:

(12)argmin
f∈F

1

m

m∑

i=1

l(yi, f (xi)) + �

√
V[l(y, f (x))]

m

(13)l(y, f (x)) = Iyf (x)≤0 =

{
0, yf (x) > 0

1, yf (x) ≤ 0.

(14)

l(y, f (x)) = max{0, 1 − yf (x)} =

{
0 yf (x) > 1

1 − yf (x) yh(x) ≤ 1,

(15)ℙD[yf (x) ≤ 0] = 𝔼[�yf (x)≤0] ≤ ED[(1 − yf (x))+].

Since there is an unknown trade-off parameter between 
the two terms in (16), and it is difficult to solve because of 
the standard deviation, we can minimize that cost by the 
following problem:

where F  is a finite class of hypotheses f ∶ X → [0, 1] , and 
the trade-off parameter is now parametrized by B. For every 
� , there is a B that obtains the same optimal function. In 
particular, B = ∞ is equivalent to � = 0 . The problem above 
can be equivalent to the problem as follows:

where �1 ≥ 0 is trade-off parameters of mean term. By intro-
ducing the Lagrange multipliers �2 for the constraints, the 
Lagrange of Eq.(19) lead to

Since the trird term does not involve the function f, we 
can merely optimize the first two items, and consider model 
regularization term, we can get new model as follows:

where �1 =
�1

m
, �2 =

�2

m(m−1)
 . This is the robust model we pro-

pose, and the specific forms of which are described in the 
next section.

(16)

min
f∈F

1

m

m�

i=1

(1 − yif (xi))+

+ �

������

m∑
i=1

((1 − yif (xi))+ −
1

m

m∑
j=1

(1 − yjf (xj))+)

2

m(m − 1)
.

(17)

min
f∈F

1

m

m∑
i=1

(1 − yif (xi))+

s.t.

����
m∑
i=1

((1−yif (xi))+−
1

m

m∑
j=1

(1−yjf (xj))+)

2

m(m−1)
≤ B,

(18)
min
f∈F

�1

m

m∑
i=1

(1 − yif (xi))+

s.t.

∑m

i=1
((1−yif (xi))+−

1

m

∑m

j=1
(1−yjf (xj))+)

2

m(m−1)
≤ B2,

(19)�1

m

m∑

i=1

(1−yif (xi))++
�2

m(m − 1)

m∑

i=1

(
(1 − yif (xi))+−

1

m

m∑

j=1

(1 − yjf (xj))+

)2

−�2B
2.

(20)min
f∈F

�1

m∑

i=1

(1 − yif (xi))+ + �2

m∑

i=1

(
(1 − yif (xi))+ −

1

m

m∑

j=1

(1 − yjf (xj))+

)2

+ R(f )
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3.1 � New objective function of RA‑SVCM

The objective function with the minimized mean and vari-
ance of the loss is constructed in order to improve generali-
zation performance of SVM.

The new objective function of nonlinear RA-SVCM is

where ri = 1 − yiKi� . �1 and �2 are the regularization param-
eters, which are determined by using the cross-validation 
method [36, 37].

The new objective function has the following features: 

1)	 The first term �1
∑m

i=1
(ri)+ is empirical risk that is mini-

mized to make the points generated by the model closer 
to the sample datas, hence it can minimize the entirety 
of classification error in the training phase.

2)	 The second term �2
∑m

i=1

�
(ri)+ −

1

m

∑m

j=1
(rj)+

�2

 is the 
variance regularization that acts as a global loss stabi-
lizer factor. This global loss adjusting factor is used to 
coordinate all of the samples in order to achieve a better 
modeling performance. It is clear that minimizing this 
term can improve the generalization performance of 

(21)

min
𝜶∈ℝm

�1

m∑

i=1

(ri)+ + �2

m∑

i=1

(
(ri)+ −

1

m

m∑

j=1

(rj)+

)2

+
1

2
𝜶⊤K𝜶,

modeling based on the empirical Bernstein bounds. 
Obviously, when �2 is equal to zero, the objective func-
tion of (21) is same as that of standard SVM. This means 
that the standard SVM is a special case of RA-SVCM.

3)	 The third term 1
2
𝜶⊤K𝜶 is the model regularization term 

that is used to avoid overfitting of the model.

It is evident that the regularization term in this new objective 
function includes both the variance and model regularization 
term as show in Fig. 1. It is also well-known that there is an 
increase in the classification accuracy when the mean of the 
loss is minimized, and that minimizing its variance can lead 
to a classifier with higher generalization ability.

For approximately separable dataset, the average loss of 
SVM tends to zero. Considering that the second-order cen-
tral moment of loss is similar to the second-order origin 
moment, the linear and nonlinear RA-SVCM can be simpli-
fied as follow:

These models are denoted as sRA-SVCM. When �2 → 0 ,  
the objective function of (22) is same as it is when using 
the standard SVM with hinge loss (SVM-H). And when 
�1 → 0 , the objective function of (22) is same as it is when 
using the standard SVM with squared hinge loss (SVM-SH), 

(22)min
�∈ℝm

�1

m∑

i=1

(ri)+ + �2

m∑

i=1

(ri)
2
+
+
1

2
�TK�.

Fig. 1   RA-SVCM
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this means that both the standard SVM with hinge loss and 
squared hinge loss are special cases of sRA-SVCM.

3.2 � Theoretical analysis

In this section, we study the statistical property of RA-
SVCM. By applying the result from empirical bernstein 
bounds (11), for our model, i.e., f (x) = ⟨w,�(x)⟩ = GT

i
� , 

we can get a result as follows:

Theorem 1  Suppose that (xi, yi)mi=1 be drawn i.i.d. according 
to the distribution D such that with probability 1 we have 
that ‖x‖2 ≤ R , and let ‖�‖2 ≤ C , and the Gaussian kernel 
function Gi,j = K(xi, xj) = exp(−h

‖‖‖xi − xj
‖‖‖
2

) is bounded in 
the feature spaces, i.e., ∃M > 0 and c > 0 such that 
maxGT

i
�∈[−M,M]{0, 1 − yGT

i
�} ≤ c . Then, for any 𝛿 > 0 , with 

probability at least 1 − � , ∀� ∈ Rm,

where p̂ = P̂[l(y,GT
i
�)] =

1

m

m∑
i=1

(1 − yGT
i
�)+ is the empirical 

loss, and an extra c appears in the third term to normalize 
the hinge loss so that it has the range [0, 1].

Proof  Since ‖�‖2 ≤ C  , ‖x‖2 ≤ R , then the Gauss-
ian kernel is bounded on X  , thus ∃M > 0 , such that 
GT

i
� ∈ [−M,M] . So ∃c > 0 , such that the loss function 

l1(G
T
i
�, y) = (1 − yGT

i
�)+ ∈ [0, c] . Then we can apply the 

empirical bernstein inequation (11) on hinge loss which is 
normalized. 	�  ◻

It is clear that the bounds of theorem 1 has estimation 
errors which can be as small as O(1/n) for small sample vari-
ances, while the bound of Hoeffdings inequality on which 
SVMs are based is of order 1∕

√
n.

3.3 � Solutions to RA‑SVCM and sRA‑SVCM

In this section, Newton-type algorithms, which has quadratic 
convergence rate, is used to train the RA-SVCM and sRA-
SVCM. However, due to the hinge loss is not differentiable, 
the Newton-type methods do not work for it directly. Thus, 
some smooth loss function are chosen to approximate the 
hinge loss, such as least squares loss [11, 38], logistic loss 
[33] and Huber loss [1, 34]. According to SSVM presented 
by Lee and Mangasarian [32] and a Smoothing SVM with 
efficient reduced techniques proposed by Zhou [39], the 
logistic loss �p(r) =

1

p
log(1 + exp(pr)) is adopted to approx-

(23)

�D[(1 − yGT
i
�)+] ≤ p̂ +

√
18V[(1 − yGT

i
�)+] ln(M(m)∕𝛿)

m

+
15c ln(M(m)∕𝛿)

m − 1
,

imate hinge loss in this paper. To overcome any potential 
ove r f l ow i n g ,  a  s t a b l e  fo r m  i s  g i ve n  a s 
�p(r) = max{r, 0} +

1

p
log(1 + exp(−|pr|)).

For convenience, here we only introduce the solution of 
nonlinear models. The smooth forms of problem (21) and 
(22) can be formulated as:

and

respectively.
The gradient ∇f1(�t) and Hessian matrix ∇2f1(�

t) of the 
objective function in problem (24) are

and

The gradient ∇f2(�t) and Hessian matrix ∇2f2(�
t) of the 

objective function in problem (25) are

and

w h e r e  (u1)i = −2�2ri ∗ yi  ,  (u
2

)
i
=
(

2�
2

m
�
p
(r

i
) − �

1

)

��
p
(r

i
) ∗ y

i
 ,  (u3)i =

(
−�1

)
��
p
(ri) ∗ yi  ,  r = (r1, ....rm)

⊤  , 
�p(r) = (𝜑p(r1), ....𝜑p(rm))

⊤ ,  ��
p
(r) = (𝜑�

p
(r1), ....𝜑

�
p
(rm))

⊤ , 
Λ =

(
𝜆
1

−
2𝜆

2

m
�

p
(r)⊤e

)
diag [���

p
(r

1

)...,���
p
(r

m
)]   , 

Λ̄ = 𝜆1diag[𝜑
��
p
(r1)...,𝜑

��
p
(rm)] , qi = (K��

p
(r))i ∗ yi   , 

e = (1, ...1)⊤ , and I1 = {i ∈ M ∣ ri > 0} To improve compu-
ta t ional  e f f ic iency,  le t  I2 = {i ∈ M ∣ ��

p
(ri) ≥ �} , 

I3 = {i ∈ M ∣ ���
p
(ri) ≥ �} for a tiny number � like 10−10 . 

��(r) and ���(r) are calculated as ��(r) =
min{1,epr}

1+e−p|r|
 , 

���(r) =
p exp(−p|r|)

(1+exp(−p|r|))2.
It solves Newton equation

to update the current solution. Let d̄ is the solution of (30). 
If the full Newton step is acceptable, then 𝜶t+1 = 𝜶t + d̄ , 

(24)

min
�∈ℝm

f1(�) ∶= �1

m∑

i=1

𝜑p(ri) + 𝜆2

m∑

i=1

(𝜑p(ri) −
1

m

m∑

j=1

𝜑p(rj))
2

+
1

2
�⊤K�,

(25)

min
�∈ℝm

f2(�) ∶= 𝜆1

m∑

i=1

𝜑p(ri) + 𝜆2

m∑

i=1

(𝜑p(ri))
2 +

1

2
�⊤K�,

(26)∇f1(�) = KI1
u
1
+ KI2

u
2
+ K�,

(27)∇2f1(𝜶) = KI3

⊤ΛI3
KI3

+ 2𝜆2KI1

⊤KI1
−

2𝜆2

m
qq⊤ + K.

(28)∇f2(�) = KI1
u
1
+ KI3

u
3
+ K�,

(29)∇2f2(�) = KI3

⊤Λ̄I3
KI3

+ 2𝜆2KI1

⊤KI1
+ K.

(30)∇2f (�t)d = −∇f (�t)
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otherwise 𝜶t+1 = 𝜶t + � d̄ , where � is chosen by Armijo line 
search.

The reduced smoothing Algorithm for RA-SVCM and 
sRA-SVCM on large datasets is given as follows. For regular 
datasets, J = M , that is � = �J.

Setting of approximate parameters p: In order to make 
the Newton method working well, the approximate param-
eters p should be set moderately. Such as p = 1 at beginning, 
then p ∶= 10p if ‖gt‖ is small and repeat the algorithm until 
p = 104 and ‖gt‖ ≤ � for given �.

Remark 1  The solution of problem (25) obtained by algo-
rithm 1 is the globally optimal since the objective function 
in (25) is convex. And the solution of problem (24) obtained 
by algorithm 1 is almost globally optimal, because the objec-
tive function in (24) is convex in most cases. We defer the 
relevant proof to Appendix.

4 � Differences with related methods

There are a few studies considered the effect of the moment 
penalization on the generalization ability of SVM-style 
algorithms. Zhang and Zhou [25, 26] proposed the LDM 
and ODM algorithm, whose idea is to optimize the margin 
distribution by considering the margin mean and variance 
simultaneously. Our method optimizes losses distribution by 
minimizing the mean and variance of loss function.

From the generalization error bound (23) of RA-SVCM 
we proposed, We can derive the statistical characteristics 
our methods. Under appropriate conditions on the loss l, 
parameter space Θ , inequality (23) shows that the gener-
alization bound of RA-SVM can be upper bounded by the 
sum of three components, among which, the first term is the 
average of empirical loss, and the last term is a by-product 
which can be ignored, so the main inspiration comes from 

the second term. It’s not difficult to find that the smaller 
�m(l) , the smaller this term, so that the tighter the bound. 
Thus to achieve good generalization performance, we should 
minimize the upper bound of loss. Hence minimizing the 
mean and variance of the loss can result in good generaliza-
tion performance.

The generalization bound of ODM presented in the Theo-
rem 5.1 of [26] shows that the generalization bound of ODM 
also can be upper bounded by the sum of three components, 
among which, the first term is the average of margin, and the 
last term is a by-product of McDiarmid inequality which can 
be ignored, but the second term is affected by four related 
parameters.

Meanwhile, the resultant objective function (6) of LDM is 
quite complex, and both LDM and ODM require tuning four 
parameters. Comparatively speaking, the objective function 
of our method is relatively simple, and fewer parameters 
need to be adjusted.

5 � Empirical studies

In this section, we investigate the performance of our pro-
posed methods using the artificial and benchmark datasets. 
We first introduce the experiment settings in Sect. 5.1. Then, 
we visualize the classifier SVM, ODM, RA-SVCM and sRA-
SVCM on artificial dataset in Sect. 5.2, and then compare 
RA-SVCM and sRA-SVCM with standard SVM, LSSVM 
[11] (RRP-LSSVM [14]), SVM+ [19], SVM-2V [20] and 
ODM in Sect.  5.3. And the Friedman test is employed 
to compare the test accuracies of six methods on twenty 
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datasets in Sect. 5.4. In addition, we also study the loss 
distribution and relevant results produced by sRA-SVCM, 
SVM, LSSVM (RRP-LSSVM) and ODM in Sect.  5.5. 
Finally, the sensitivity of parameters is analyzed in Sect. 5.6, 
and the time cost of four method are compared in 5.7.

5.1 �  Experimental setup

We evaluate the effectiveness of our models on a artificial 
dataset, twelve regular scale datasets and eight large scale 
datasets, including both UCI data sets and real-word data 
sets like KDD2010. Table 1 summarizes the statistics of 
these datasets. The size of the datasets ranges from 145 to 
78823, and the dimensionality ranges from 2 to 784. All 
features are normalized into the interval [0,1]. Meanwhile, 
the optimal parameters are listed in table, and the abbrevia-
tions in table are explained at the bottom of the table. The 
Gaussian kernel function K(x1, x2) = exp(−h‖‖x1 − x2

‖‖
2
) 

is used for all datasets, kernel spread parameters h, regu-
larization parameters �1 , �2 are roughly chosen by 5-fold 
cross validation within h ∈ {2−6, 2−5....., 25, 26} and 
�1, �2 ∈ {106, 105......10−6}.

The regular scale datasets and Adult, IJCNN of larger 
datasets are original binary classification problems, the other 
five datasets are muti-class datasets. Specifically, the task of 
separating class 3 from the rest is trained on Vechile data-
set. For Shuttle data set, a binary classification problem is 

solved to separate class 1 from the rest. And for MNIST and 
USPS dataset, here two binary classification problems are 
solved to separate class 3 from the rest and separate class 8 
from the rest. For the datasets with partition of training sets 
and testing sets, we can adopt the original training sets and 
testing sets directly. And for the data sets without partition 
of training set and testing set, we can select eighty percent 
of the instances randomly as training data, and use the rest 
as testing data.

For standard SVM, LSSVM, SVM+ and SVM-2V, the 
regularization parameter � and Kernel spread parameter 
h are selected by 5-fold cross validation from the set of 
{10−6, 10−5 ⋯ 106} and {2−6, 2−5 ⋯ 26} respectively, and for 
RRP-LSSVM, 1000 of the training data is randomly selected 
as the working set for larger datasets. For ODM, the regu-
larization parameter �1 are selected by 5-fold cross valida-
tion from the set of {10−6, 10−5.....106} , while the parameters 
D and � is selected from the set of {0.2, 0.4, 0.6, 0.8} . For 
SVM-2V, other parameters are set as [20]. Experiments are 
repeated for 30 times, and the average accuracies as well as 
the standard deviations are recorded.

All the experiments are carried out on a desktop PC with 
Intel(R) Core(TM)i7-7700 CPU (3.60 GHz) and 16GB RAM 
under the MATLAB 2019b programming environment.

Table 1   Characteristics of 
experimental datasets and the 
optimal parameters

Note: h, �1 and �2 indicate kernel spread parameters, coefficients of mean and variance respectively

Scale ID Dataset Instance Feature h RA-SVCM ( �
1

�
2

) sRA-SVCM ( �
1

�
2

)

Regular 1 Liver-disorders 145 5 2

−1
10

1

10

1

10

1

10

1

2 Wine 178 13 2

−2
10

−1
10

1

10

1

10

−1

3 Soner 208 60 2

0

10

−1
10

3

10

1

10

1

4 Heart 270 13 2

−6
10

2

10

−1
10

1

10

−1

5 Ionosphere 351 34 2

−2
10

1

10

1

10

1

10

1

6 wbdc 569 30 2

−2
10

1

10

−1
10

−1
10

1

7 Breast-cancer 683 10 2

2

10

−1
10

0

10

−1
10

0

8 Fourclass 690 2 2

4

10

1

10

1

10

−1
10

1

9 German 800 24 2

−4
10

2

10

−1
10

2

10

−1

10 Vehicle 846 18 2

−2
10

3

10

2

10

3

10

1

11 svmguide3 1284 22 2

−4
10

1

10

3

10

1

10

3

12 svmguide1 7089 4 2

1

10

−1
10

0

10

−1
10

0

Large 13 USPS3 7291 256 2

−4
10

0

10

3

10

0

10

2

14 USPS8 7291 256 2

−4
10

0

10

1

10

0

10

1

15 Adult 32561 123 2

−6
10

2

10

3

10

−1
10

0

16 Shuttle 43500 9 2

4

10

2

10

2

10

2

10

2

17 MNIST3 60000 784 2

−6
10

0

10

1

10

1

10

1

18 MNIST8 60000 784 2

−6
10

0

10

1

10

1

10

1

19 IJCNN 49990 22 2

0

10

1

10

0

10

0

10

1

20 Vechile 78823 100 2

−3
10

4

10

4

10

4

10

5
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5.2 �  Experimental results with artificial data

We visualize the classification hyperplanes determined by 
SVM (7), ODM, RA-SVCM and the sRA-SVCM model (10) 
on a two-moon dataset with 800 samples (400 for training, 
400 for testing) and d = 2 features. Figure 2 shows the exper-
imental results.

From the comparisons of Fig. 2a–d, it can be seen that 
for the two moon dataset, the classification boundaries of 
ODM, RA-SVCM, and sRA-SVCM are relatively similar, 
and the classification boundaries of these three methods are 
obviously better than that of standard SVM. Meanwhile, the 
classification accuracies of these three methods are higher 
than that of standard SVM. Compared with standard SVM, 
the margin of RA-SVCM that we proposed is wider than that 
of SVM, and the classification confidence of our methods 
are obviously higher than that of SVM on Data from the end 
of the crescent moon. Compared with ODM, the margin of 
RA-SVCM that we proposed is narrower than that of ODM 

but the number of support vector is smaller than ODM. We 
can also find that the classification performance of RA-
SVCM and sRA-SVCM is similar. It can be concluded that 
our method has good generalization performance.

5.3 �  Experimental results with regular scale 
and large benchmark Datasets

According to the experimental setup in Sect. 4.1, experi-
ments were carried out on the twenty datasets above, the 
results summarized in Table 2 (the experimental result of 
the SVM-2V and SVM+ on the eight scale data is missing 
because the quadratic programming is difficult to deal with 
large kernel matrix).

As can be seen, the overall performance of our models are 
superior to the other compared methods. According to the 
test accuracy, these twenty datasets can be divided into Two 
levels: The datasets which test accuracy less than 95% are 
“hard” datasets; The rest are belonging to “easy” datasets. 

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) SVM

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) ODM

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(c) RA-SVM

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(d) sRA-SVCM

Fig. 2   Plots for comparing the classification boundaries of SVM, ODM, RA-SVCM and SRA-SVCM on the two moon dataset. For this dataset, 
the test accuracies of these four algorithms are 97.00%, 97.50%, 97.75% and 97.50%
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As showing in Table 2, For “easy” datasets, the test accuracy 
of our methods can do up to 1.95% better than the standard 
SVM; For “hard” datasets, the test accuracy of our methods 
can do up to 4.71% better than the standard SVM. This indi-
cates that our methods have a better generalization ability 
than the standard SVM, especially for the “hard” datasets.

Meanwhile, it can be seen from the experimental results 
that sRA-SVCM and RA-SVCM behave almost similarly. 
For simplicity, the sRA-SVCM will be used to compare with 
other models.

5.4 � Statistical comparisons by friedman test

In order to evaluate multiple methods systematically, the 
Friedman test [40] is employed to compare the test accura-
cies of the five methods over the 20 benchmark datasets. 
For the different datasets, Friedman test at significance level 
� = 0.05 rejects the null hypothesis of equal performance, 
which leads to the use of post-hoc tests to find out which 
algorithms are actually different. The Nemenyi test is used 
to further distinguish different methods. Specifically, Neme-
nyi test is used where the performance of two algorithms is 
significantly different if their average ranks over all datasets 
differ by at least one critical difference

where critical values q� are based on the studentized range 
statistic, K is the number of comparison algorithms, and M 
is the number of datasets.

Take Fig. 3a as an example, for the five methods on 
twelve datasets, according to

and

the friedman statistic �F = 25.60 , which at significance level 
� = 0.05 rejects the null hypothesis of equal performance, 
where oi is the average ordinal number of the ith algorithm, 
and k is the number of algorithms. Then, the critical dif-
ference ( CD = 1.3640 ) is calculated by (31). If the dif-
ference between the average ranks of the two algorithms 
exceeds the critical value 1.3640, the assumption that “the 

(31)CD = q�

√
k(k + 1)

6M
,

(32)��2=
12M

k(k + 1)

(
k∑

i=1

o2
i
−

k(k + 1)2

4

)

(33)�F=
(M − 1)��2

M(k − 1) − ��2

,

Table 2   Accuracy (mean ± td) comparison on regular and large scale data sets

All the results are the mean of 30 random trials, the best values are in bold

Scale Data set SVM LSSVM SVM+ SVM-2v ODM RA-SVCM sRA-SVCM

Regular Liver disorders 73.10 (1.20) 74.25 (6.42) 75.52 (5.26) 75.86 (7.62) 75.40 (6.70) 76.55(7.10) 76.55(6.20)

Wine 96.72 (2.85) 96.57 (2.80) 98.33 (1.94) 98.89(1.43) 98.33 (2.99) 98.52 (1.96) 98.61 (1.59)
Soner 87.94 (4.00) 88.17 (5.88) 90.48 (6.04) 90.05 (6.33) 89.44 (4.23) 91.19(4.87) 90.95 (3.38)
Heart 84.26 (4.96) 84.01 (4.63) 81.48 (3.08) 83.70 (1.46) 83.33 (5.24) 85.93(3.90) 85.19 (3.62)
Ionosphere 91.43 (1.78) 89.29 (2.70) 91.86 (3.50) 92.00 (3.10) 92.19 (3.04) 93.00 (2.78) 93.43(2.81)

wbdc 98.33 (0.77) 97.57 (1.12) 98.25 (1.32) 97.63 (1.37) 98.16 (0.97) 98.51(0.55) 98.42 (1.17)
Breast-cancer 97.35 (1.35) 97.57 (1.06) 97.59 (0.91) 97.51 (1.38) 97.62 (1.21) 98.25(1.01) 98.00 (0.51)
Fourclass 99.94 (0.18) 100.00(0.25) 100.00(0.00) 100.00(0.00) 100.00(0.00) 100.00 (0.00) 100.00(0.00)

German 71.00 (0.00) 70.00 (0.01) 71.02(0.03) 71.00 (0.01) 68.50 (0.00) 71.00 (0.01) 71.00 (0.00)
Vehicle 84.99 (2.78) 83.55 (1.99) 84.38 (2.91) 84.78 (1.23) 85.25 (2.53) 86.27 (2.79) 86.57(2.62)

svmguide3 80.16(0.72) 78.60 (0.33) 79.46 (0.61) 79.38 (0.54) 79.07 (0.87) 80.16(0.41) 80.16(0.52)
svmguide1 96.04 (0.59) 95.90 (0.43) 94.66 (2.16) 95.00 (0.63) 96.10 (0.79) 96.15(0.70) 96.15(0.62)

 Scale Data set SVM RRP-LSSVM SVM+ SVM-2v ODM RA-SVM sRA-SVM

Lager USPS3 98.60 (0.05) 98.38 (0.00) − − 98.72(0.06) 0.9860 (0.04) 98.60 (0.04)
USPS8 99.34 (0.08) 99.05 (0.00) − − 99.38(0.08) 99.38(0.08) 99.38(0.08)
Adult 85.05 (0.01) 85.07 (0.00) − − 85.25 (0.07) 85.34 (0.06) 85.34(0.05)
Shuttle 99.88 (0.01) 99.83 (0.00) − − 99.89 (0.01) 99.92(0.01) 99.92(0.01)
minist3 99.04 (0.06) 99.10 (0.00) – – 99.05 (0.05) 99.09 (0.05) 99.10(0.05)
minist8 99.29 (0.04) 99.24 (0.00) – – 99.31 (0.07) 99.32(0.05) 99.32(0.05)
ijcnn1 98.72 (0.01) 96.60 (0.00) – – 98.58 (0.24) 98.75 (0.13) 98.78(0.05)
Vechile 87.84 (0.04) 88.04 (0.00) – – 88.00 (0.07) 88.04 (0.04) 88.05(0.04)
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two algorithms have the same performance” is rejected with 
corresponding confidence.

Figure 3 illustrates the CD diagrams for the comparison 
methods on the twenty benchmark datasets, where the aver-
age rank of each comparing method is marked along the 
axis. The axis is turned so that the best ranks are to the 
right. Groups of methods that are not significantly different 
according to Nemenyi test are connected with a red line. 
The critical difference is also shown above the axis in each 
subfigure.

As can be seen from Fig. 3, our methods achieve the sta-
tistically superior performance on the whole twenty datasets. 
Our two methods are not significantly different from ODM 
on “easy” datasets, but are significantly superior to the other 
methods. The sRA-SVCM are significantly different from 
ODM, SVM and R-LSSVM on“hard” datasets, and our two 
methods are significantly different from SVM, LSSVM, 
SVM+ and SVM-2v on regular datasets. Meanwhile, we can 

also see that the generalization performance of our method 
is best on the whole datasets, and our two methods (sRA-
SVCM and sRA-SVCM) are not significantly different. So 
for simplicity, the sRA-SVCM will be used to compare with 
other models in the following experiments.

5.5 � Specific results and loss distribution on four 
datasets

In this section, the experiments of sRA-SVCM, standard 
SVM, ODM and LSSVM (RRP-LSSVM) are performed on 
svmguide1, Adult, Vechile and IJCNN datasets (the optimal 
parameters of four models are used). Some specific results 
of these experiments are listed in Table 3.

As can be seen from Table 3, the training accuracy of 
our model are not always the best, but the test accuracy is 
always the largest. This is because the mean of loss of sRA-
SVCM is slightly larger than that of SVM, but the variance 

Fig. 3   CD diagrams of the 
comparison approaches on the 
certain datasets. Groups of 
methods that are not sig-
nificantly different according 
to Nemenyi test are connected 
with a red line
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of loss of sRA-SVCM is slightly less than that of SVM. The 
differences bring good results that the test accuracy of sRA-
SVCM have been improved than the standard SVM. ODM 
optimizes the distribution of margin, to a certain extent, 
and it also optimizes the distribution of loss. SVM does not 
care about the variance of the loss, so the variances of loss 
are lager than RA-SVCM and ODM. For the LSSVM, the 
loss of most points are concentrated between 0 and 1, which 
makes too many points near the classification hyperplane. In 
this case, their generalization performance will be slightly 
lower than sRA-SVCM. Meanwhile, the AUC and F1-score 
of RA-SVCM are superior to SVM. The above show that 
our method have a good generalization ability and better 
performance.

Figure 4 plots the positive loss distribution of sRA-SVCM 
and standard SVM on training sets of four representative 
datasets. It can be seen that the positive loss of SVM is 
relatively scattered and the maximum value larger than our 
models. That of RA-SVCM is relatively concentrated, and 
the number of sRA-SVCM between 0 and 1 is higher than 
SVM. And the Fig. 5 plots the corresponding results of r on 
test sets of the four datasets. It is obvious that the test error 
of our method is smaller than that of SVM, and the maxi-
mum error is much smaller than the standard SVM. So that 
our model has a better classification ability on the test sets. 
Namely, our model has a better generalization performance 
than standard SVM. A reasonable interpretation is that there 

have a suitable loss distribution of the new model on the 
training set, and thus it get a better generalization ability 
on test sets.

5.6 � Sensitivity analysis of parameter of RA‑SVCM

There are two tuned parameters in the proposed model, such 
as �1 and �2 , which are used to balance the importance of 
the corresponding terms. The first term is used to make the 
points generated by the model closer to the sample datas. 
The second term guarantees the stability of the entire sample 
data in the model.

To analyze the sensitivity of parameters in the proposed 
method, we first define a candidate set where the optimal 
parameter located for these parameters. We have performed 
the proposed model 20 times with the parameters in candi-
date set and report the mean classification accuracy. From 
the Fig. 6, it is obvious that the average test accuracies are 
almost steady with respect to different values of parameter �1 
and �2 , which indicates that those parameters do not require 
careful tuning, and a broad range of �1 and �2 lead to satis-
factory performance.

Next, we fix parameter �2 and select the seven candidate 
parameters of �1 to compare with SVM-H and SVM-SH 
(standard SVM with hinge loss and squared hinge loss) 
on datasets above. The Fig. 7 shows the relationships of 
the average test accuracy and mean parameters �1 of sRA-
SVCM, SVM-H and SVM-SH. And the Fig. 7 represents the 
average test accuracies of sRA-SVCM, SVM-H and SVM-
SH by red line, magenta line, and green line respectively. It 

Table 3   Experimental results on four representative datasets

Here � , � , “TRA”, and “TEA” are indicate “Mean of loss”,“Varivance of loss”, “Train accuracy ”and “Test accuracy ” respectively. S
r<0 , S0−1 

and S
r>1 are the numbers of samples in the interval [rmin, 0) , (0, 1] and (1, rmax] for the loss

Method � � TRA (%) TEA (%) AUC​ F1-score S
r<=0 S

0−1 S
r>1

svmguide1 SVM 0.0853 0.1170 96.96 96.05 0.9956 0.9616 2755 240 94
LSSVM 0.2229 0.0955 96.89 95.85 0.9880 0.9597 1179 1814 97
ODM 0.1696 0.0907 97.15 96.10 0.9960 0.9621 1747 1254 88
sRA-SVCM 0.0887 0.0917 97.35 96.15 0.9961 0.9626 2656 351 82

Adult SVM 0.3422 0.4111 84.24 84.87 0.9008 0.6377 20914 6675 4972
RRP-LSSVM 0.4247 0.2243 85.56 85.23 0.9012 0.6529 7071 20788 4702
ODM 0.5094 0.1722 85.66 85.22 0.9038 0.6567 3972 23920 4669
sRA-SVC 0.4042 0.2440 85.38 85.38 0.9044 0.6581 13095 14707 4759

IJCNN SVM 0.0392 0.0517 98.64 98.81 0.9949 0.9366 46963 2348 679
RRP-LSSVM 0.1298 0.0492 98.63 98.18 0.9911 0.9006 20070 29237 683
ODM 0.0396 0.0302 99.12 98.23 0.9940 0.9101 45540 4012 438
sRA-SVCM 0.0480 0.0389 98.80 98.84 0.9957 0.9388 44762 4630 598

Vechile SVM 0.2783 0.4097 87.62 87.88 0.9226 0.8712 56887 12178 9758
RRP-LSSVM 0.3953 0.2243 87.69 87.96 0.9271 0.8738 12197 56923 9703
ODM 0.4588 0.1817 87.86 87.99 0.9275 0.8737 12056 57195 9572
sRA-SVCM 0.3604 0.2465 87.92 88.13 0.9275 0.8751 25171 44132 9520
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is obvious that the magenta and green lines fluctuate greatly 
with the change of the parameters �1 , but the red lines are 
relatively stable, and the red lines are generally above the 
magenta and green lines. This indicates that compared with 
SVM-H and SVM-SH, the sRA-SVCM achieve a better gen-
eralization performance, and the sRA-SVCM is not sensitive 
to the parameter �1 . The sensitivity analysis to �1 reveals that 
this conclusion is stable to reasonable pertubations of �1.

5.7 � Time cost

We compare the cost of our methods with SVM and ODM 
on six large scale datasets(RRP-LSSVM, SVM+ and 
SVM-2v can be solved without iterative methods). All the 
experiments are carried out on a desktop PC with Intel(R) 
Core(TM)i7-7700 CPU (3.60 GHz) and 16GB RAM under 
the MATLAB 2019b programming environment. The aver-
age CPU time (in seconds) on each dataset is show in Fig. 8. 
The Newton algorithm is used to solve these four models. It 

can be seen that, except for the vechile datasets, our meth-
ods are faster than SVM and slightly faster than ODM. On 
vechile datasets, RA-SVCM is slightly slower than ODM, 
but sRA-SVCM is still faster than ODM. This show that our 
methods are computationally efficient.

6 � Conclusion

Recent theoretical results suggested that the distribution 
of loss, rather than only mean of loss, is more crucial to 
the generalization performance. In this paper, based on the 
empirical Bernstein inequality, we propose a novel method, 
named Risk-Averse support vector classifier machine (RA-
SVCM), which tries to optimize the loss distribution by 
considering the mean and variance of loss. Our models are 
general learning approach which can be used in any place 
where SVM can be applied. Comprehensive experiments on 
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Fig. 4   Plots for comparing positive loss distribution on training datasets of svmguide1, Adult,Vechile and IJCNN 
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the artificial and benchmark datasets validate the superiority 
of our method to other classical models.

In the future, it will be interesting to further investigate 
the application of mean-variance minimization to other 
particular loss functions (Such as ramp loss, squares hinge 
loss, etc). And this raise a pressing issue to find an efficient 
implementation, which can deal with the case that the sam-
ple variance penalization is non-convex. In addition, it is 
necessary to automatically estimate the parameter �2 with-
out cross-validation in order to make RA-SVCM free from 
additional parameters. And another line of future research is 
to refine these generalized boundaries with additional theo-
retical work.

Appendix A Proof of remark 1

Theorem 2  Under the condition of Theorem 1, the objective 
function f1(�) in (24) is convex if 

P r o o f   H e r e ,  l e t 
gi(�) =

1

p
log(1 + epri ) = max{ri, 0} +

1

p
log(1 + e−p|ri|) , the 

objective function of (24) can be written as

The Hessian matrix of f1(�) is:

(A1)
�1

�2
≥ 2

(
c +

1

p

)
.

(A2)f1(�) = 𝜆1
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i=1

gi(�) + 𝜆2g
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1
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Fig. 5   Plots for comparing r distribution on test datasets of svmguide1, Adult, Vechile and IJCNN datasets
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where Q = I −
1

m
e⊤e , � = Qg(�) , and

(A3)

∇2f1(�) =𝜆1
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Fig. 6   Plots for relationships of the average test accuracies (%) and different combinations of parameters on the six larger datasets



3356	 International Journal of Machine Learning and Cybernetics (2022) 13:3341–3358

1 3

To prove that the objective function in Eq.(A2) is convex, it 
suffices to show that ∇2f1(�) ⪰ 0 for every � . It’s obvious 
that 2�2∇g(�)Q∇gT (�) + K ⪰ 0 . That is, we need to prove 
that 

∑m

i=1
(�1 + 2�2�i)∇

2gi(�) ⪰ 0 . Thus, let �i = �1 + 2�2�i , 

then we need to prove �i ≥ 0 , based on (A4), we get 
�1

�2
≥ 2(c +

1

p
) . That is, when �1

�2
≥ 2(c +

1

p
) , for each � ∈ Rm , 

we have ∇2f1(�) ⪰ 0 . Therefore, the objective function f1(�) 
in (24) is convex. 	�  ◻

It is obvious that the objective function in Eq.(25) is convex 
since �p(r) and (�p(r))

2 are convex functions. When 
�1

�2
≥ 2(c +

1

p
) , the solution of problem (24) obtained by algo-

rithm 1 is globally optimal based on the Theorem 2. In fact, 
we have rarely encountered non-convergence in a large num-
ber of experiments. Of course we can also make a simple 
rule for selecting a optimal superparameter that satisfies the 
conditions given above.
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