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Abstract
A set-valued information system (SVIS) is the generalization of a single-valued information system. A SVIS with missing 
information values is called an incomplete set-valued information system (ISVIS). This paper focuses on studying uncertainty 
measurement for an ISVIS with application to attribute reduction. First, the similarity degree between information values on 
each attribute is presented in an ISVIS. Then, the tolerance relation induced by each subsystem is given and rough approxi-
mations based on this relation is considered. Next, some tools to measure the uncertainty of an ISVIS are put forwarded. 
Moreover, the validity of the proposed measures is analyzed from the statistical point of view. Finally, information granula-
tion and information entropy are applied to attribute reduction, the incomplete rate is adopted, and the effectiveness under 
different incomplete rates is analyzed and verified by k-means clustering algorithm and Mean Shift clustering algorithm.

Keywords RST · ISVIS · Similarity degree · Attribute reduction · Information granulation · Information entropy · 
Algorithm

1 Introduction

Rough set theory (RST), an effective data analysis tool put 
forward by Pawlak [23, 24]. It is based on the idea that some 
objects in the universe have the corresponding information 
values. By generalizing equivalence classes or equivalence 
relations, this theory has been widely extended. On the one 
hand, equivalence relations are divided into tolerance rela-
tions, dominance relations and reflexive relations. On the 
other hand, the division of an equivalence class is extended 
to cover. RST, as an important method to manage uncer-
tainty, has the merit of being directly based on the original 
data, rather than requiring preliminary or additional data 
information. Therefore, it is highly reliable. Many applica-
tions of RST are based on information systems (ISs) [6, 42, 
43, 47]. In addition, some scholars studied multigranulation 
rough sets [5, 20, 41, 44].

An IS as a database that displays relationships between 
objects and attributes is also put forwarded by Pawlak so as 
to reveal large databases and knowledge discovery process 
mathematically. It is important to note that there may be 
missing information values in an IS. An IS with missing 
information values is called an incomplete IS (IIS). A set 
containing all possible information values can be utilized to 
represent the missing information values. By representing 
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all missing information values of a single valued IS as a set 
containing all possible information values, it can be evolved 
into a set-valued information system (SVIS). In this way, a 
SVIS can effectively deal with the noise caused by the miss-
ing information values.

As an important IS, scholars have paid great attention 
to SVISs. For instance, Yao [46] studied SVISs with upper 
and lower approximations; Leung et al. [16] found a method 
to select minimum feature set for SVISs; Couso et al. [7] 
looked into the rationality of SVISs from a statistical point 
of view; Huang et al. [15] obtained a probabilistic set-valued 
ISs by using probability distribution to describe set values; 
Qian et al. [25] introduced two kinds of set-valued ordered 
ISs and put forward an attribute reduction method that can 
simplify set-valued ordered ISs. Liu et al. [21] researched 
feature selection for a set-valued decision IS from the view 
of dominance relations. Xie et al. [38] gave uncertainty 
measures for interval-valued ISs. Chen et al. [4] investigated 
feature selection in a SVIS according to tolerance relations. 
A SVIS has been successfully employed to the data analy-
sis of complete ISs, such as distinguishing the dependence 
between attributes, distinguishing the importance of attrib-
utes, and attribute reduction.

Uncertainty is mainly composed of four parts: random-
ness, fuzziness, incompleteness and inconsistency. It exists 
in every field of real life. Uncertainty measure has become a 
noticeable problem in many fields such as machine learning 
[40], image processing [22], medical diagnosis [14], and 
data mining [10]. With the development of research, some 
excellent results have been obtained. For example, informa-
tion entropy put forward by Shannon [28] has been recog-
nized as a very important research method to measure the 
uncertainty of ISs. Yao [45] considered granularity measure 
in terms of granularity. Until now, information granularity 
and information entropy have gradually become two impor-
tant tools to consider the uncertainty of ISs. On the basis of 
these two tools, some outstanding scholars have promoted 
and applied them. Wierman [36] discussed granularity meas-
ure in RST. D ̈untsch et al. [11] explored the measurement 
of decision rules in RST based on information entropy. Dai 
et al. [8] brought up the two tools of entropy measure and 
granularity measure to measure the uncertainty of SVISs. 
Li et al. [21] researched entropy theory in fuzzy relation IS. 
Wang et al. [35] applied information entropy and informa-
tion granularity to the measurement of interval and SVISs. 
Li et al. [18] analyzed the information structure of fuzzy 
set-valued ISs and the uncertainty measurement method 
of fuzzy set-valued ISs. Wu et al. [37] proposed a reliable 
approximation operator based on semi-monolayer covering 
for set-valued ISs.

Attribute reduction or feature selection, as an important 
technology of data processing in machine learning, can 
effectively reduce redundant attributes. It can also reduce 

the complexity of high-dimensional data for calculation and 
improve the accuracy of classification. To different data, 
many researchers study attribute reduction. For instance, 
Tang et al. [31] researched attribute reduction in set-valued 
decision ISs. Song et al. [30] applied attribute reduction in 
set-valued decision ISs. Cornelis et al. [6] studied a gen-
eral definition for a fuzzy decision reduct. Wang et al. [34] 
presented an iterative reduction algorithm from the view 
of variable distance parameter. Giang et al. [13] obtained 
an algorithm with application to attribute reduction in a 
dynamic decision table. Qian et al. [26] explored an accel-
erator algorithm for attribute reduction based on RST. Chen 
et al. [2] brought up the concept of fuzzy kernel alignment 
and applied it to attribute reduction for heterogeneous data. 
Singh et al. [29] introduced a attribute selection method of 
rough set based on fuzzy similarity in SVISs. Wang et al. 
[32] proposed four uncertainty measures. On this basis, 
they designed a greedy algorithm for attribute reduction. Li 
et al. [19] constructed a new acceleration strategy for general 
attribute reduction algorithms. Li et al. [17] studied existing 
reduction methods to help researchers better understand and 
use these reduction methods to meet their own needs.

Set-valued data is an important data in practical applica-
tions. However, in some practical cases, set-valued may be 
described by missing information values, which can cause 
some critical information to be missing. An incomplete set-
valued information system (ISVIS) is a SVIS with missing 
information values. Xie et al. [39] introduced the distance 
between the values of two information functions and applied 
it to obtain the information structures and uncertainty meas-
ure of incomplete probability set-valued ISs. Chen et al. [3] 
obtained some tools to measure the uncertainty of an ISVIS 
by means of Gaussian kernel.

This article focuses on studying uncertainty measurement 
of incomplete set-valued data and its attribute reduction. For 
an incomplete set-valued data, we treat it as an ISVIS. In 
an ISVIS, objects described by the same information are 
indiscernible. The indiscernibility relations produced in this 
mode constitute the mathematical foundation of RST. There-
fore, the similarity degree between information values on 
each attribute is shown in an ISVIS base on RST. The toler-
ance relation induced by each subsystem is given and the 
tolerance relation is dealt with by introducing an approxi-
mate equality between fuzzy sets. Some tools are put passed 
on to measure the uncertainty of ISVISs. From the point of 
view of data’s incomplete rate, some statistical methods are 
used to analyze the effectiveness of the proposed measures. 
Base on two measurement methods (i.e., information granu-
lation and information entropy), two reduction algorithms 
are given, and their effectiveness under different incomplete 
rates is analyzed and verified by k-means clustering algo-
rithm and Mean Shift clustering algorithm. The work pro-
cess of the paper is given in Fig. 1.



3033International Journal of Machine Learning and Cybernetics (2022) 13:3031–3069 

1 3

The rest of this paper is intended to be below. Section 2 
retrospects the cardinal perceptions of fuzzy relations and 
ISVISs. Section 3 obtains similarity degree and equivalence 
relations in an ISVIS. Section 4 investigates uncertainty 
measure for an ISVIS. Section 5 gives experiments analysis 
for the proposed measures. Section 6 studies an application 
for attribute reduction in an ISVIS. Section 7 compares the 
proposed algorithms with the other two algorithms. Sec-
tion 8 summaries this paper.

2  Preliminaries

In this section, we recall some basic notions about fuzzy 
relations and ISVISs.

Throughout this paper, U,  A denote two non-empty 
finite sets, 2U means the family of all subsets of U and |X| 
expresses the cardinality of X ∈ 2U.

In this paper, put

2.1  Fuzzy relations

Recall that R is a binary relation on U whenever R ⊆ U × U . 
If (x, y) ∈ R , then we denote it by xRy.

Let R be a binary relation on U. Then R is called 

(1)  reflexive, if xRx for any x ∈ U;

(2)  symmetric, if xRy implies yRx for any x, y ∈ U;

(3)  transitive, if xRy and yRz imply xRz for any x, y, z ∈ U.

U = {x1, x2,… , xn}, A = {a1, a2,… , am}

Let R be a binary relation on U. Then R is called an 
equivalence relation on U, if R is reflexive, symmetric and 
transitive. Moreover, R is called a universal relation on U if 
R = � ; R is said to be an identity relation on U if  R = △.

Recall that F is a fuzzy set whenever F is a function 
defined by F ∶ U → I.

In this article, IU shows the collection of fuzzy sets on U.
If R is a fuzzy set in U × U , then R is called a fuzzy rela-

tion on U, and R can be expressed by the following matrix

In this article, IU×U denotes the family of all fuzzy relations 
on U.

Definition 2.1 ([21]) Suppose R ∈ IU×U . For any x ∈ U , 
define

Then SR(x) is called the fuzzy information granule of the 
point x with respect to R.

In [33], SR(x) is denote by [x]R.

2.2  An ISVIS

Definition 2.2 ([24]) Let U be an object set and A an attrib-
ute set. Suppose that U and A are finite sets. Then the pair 
(U, A) is called an information system (IS), if each attribute 
a ∈ A determines a information function a ∶ U → Va , where 
Va = {a(x) ∶ x ∈ U}.

M(R) = (R(xi, xj))n×n.

SR(x)(y) = R(x, y),∀ y ∈ U.

Fig. 1  The work process of the 
paper
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Let (U, A) be an IS. If there is a ∈ A such that ∗∈ Va , here 
∗ means a null or unknown value, then (U, A) is called an 
incomplete information system (IIS).

If (U, A) is an IIS, given P ⊆ A . Then a binary relation TP 
on U can be defined as

Clearly, TP is a tolerance relation on U. For each x ∈ U , 
denote

Then, TP(x) is called the tolerance class of x under the toler-
ance relation TP.

For convenience, T{a} and T{a}(x) are denoted by Ta and 
Ta(x) , respectively.

Obviously,

Let (U, A) be an IIS. For each a ∈ A , denote

Then, V∗
a
 means the set of all non-missing information values 

of the attribute a.

Definition 2.3 ([45]) Suppose that (U, A) is an IIS. Then 
(U, A) is referred to as an incomplete set-valued information 
system (for short, an ISVIS), if for any a ∈ A and x ∈ U , 
a(x) is set.

If P ⊆ A , then (U, P) is referred to as the subsystem of 
(U, A).

Example 2.4 Table  1 depicts an ISVIS (U,  A), where 
U = {x1, x2,… , x7} and A = {a1, a2,… , a4}.

Example 2.5 (Continued from Example 2.4)

(x, y) ∈ TP ⇔ ∀ a ∈ P, a(x) = a(y) or a(x) =∗ or a(y) =∗ .

TP(x) = {y ∈ U ∶ (x, y) ∈ TP}.

TP =
⋂
a∈P

Ta, TP(x) =
⋂
a∈P

Ta(x).

V∗
a
= Va − {a(x) ∶ a(x) =∗}.

3  The equivalence relation induced by each 
subsystem of an ISVIS

In an ISVIS, objects described by the same information are 
indiscernible. The indiscernibility relation produced in this 
mode constitutes mathematical foundation of RST. Thus, 
this section constructs the similarity degree between infor-
mation values on each attribute in an ISVIS and gives the 
equivalence relation induced by each subsystem.

Definition 3.1  Let (U, A) be an ISVIS. Then ∀ x, y ∈ U , 
a ∈ A , the similarity degree between a(x) and a(y) is defined 
as follows:

For the convenience of expression, denote

sk
ij
 indicates the similarity degree between ak(xi) and ak(xj) . 

This also expresses the similarity degree between two 
objects xi and xj with respect to the attribute ak.

Example 3.2 (Continued from Example 2.4) By Defini-
tion 3.1, then sk

ij
 (i, j = 1,… , 7, k = 1,… , 4) is obtained as 

follows (see Tables 2, 3, 4, 5).

Let (U, A) be an ISVIS. For any a ∈ A , define

Then Ra is a fuzzy relation on U.
Below, we attempt to deal with a fuzzy relation Ra by 

introducing the approximate equality between fuzzy sets.

V∗
a1
= {{1, 3}, {1, 2}, {3, 4}, {1, 2, 3}},

V∗
a2
= {{a, c}, {a, b}, {a, b, c}},

V∗
a3
= {{2, 3}, {5, 6, 7}, {4, 5, 7}, {1, 2, 5}},

V∗
a4
= {{T ,F}, {T ,H}, {H, T ,F}}.

s(a(x), a(y))

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, x = y;
1

�V∗
a
�2 , x ≠ y, a(x) =∗, a(y) =∗ ;

1

�V∗
a
� , x ≠ y, a(x) ≠∗, a(y) =∗ ;

1

�V∗
a
� , x ≠ y, a(x) =∗, a(y) ≠∗ ;

1, x ≠ y, a(x) ≠∗, a(y) ≠∗, a(x) = a(y);
�a(x)⋂ a(y)�
�a(x)⋃ a(y)� , x ≠ y, a(x) ≠∗, a(y) ≠∗, a(x) ≠ a(y).

sk
ij
= s(ak(xi), ak(xj)).

Ra(x, y) = s(a(x), a(y)).

Table 1  An ISVIS (U, A)

a1 a2 a3 a4

x1 {1, 2} {a, b, c} {4, 5, 7} {H,T}

x2 {1, 2} {a, c} {2, 3} {H,T}

x3 {3, 4} {a, c} {2, 3} {T ,F}

x4 {1, 2} {a, b} {1, 2, 5} {T ,F}

x5 {1, 3} {a, b} ∗ {H,T ,F}

x6 {1, 2, 3} {a, b, c} {5, 6, 7} {T ,H}

x7 ∗ {a, b, c} {5, 6, 7} {H,T}
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Definition 3.3 ([49]) Suppose k ∈ N  . Given a, b ∈ [0, 1] . 
I f  a, b ∈ [0,

1

10k
) o r  a, b ∈ [

1

10k
,

2

10k
) o r  ⋅ ⋅ ⋅ ⋅ ⋅⋅ o r 

a, b ∈ [
10k−1

10k
, 1) or  a = b = 1 , then a and b are said to be 

class-consistent, and k is said to be a threshold value. We 
denote it by a ≈k b.

In this paper, we pick k = 1.

Definition 3.4 ([49]) Suppose A,B ∈ IU . Then

Definition 3.5 Let (U, A) be an ISVIS. Given P ⊆ A . Define

A ≈1 B ⇔ ∀ x ∈ U, A(x) ≈1 B(x).

R∗
a
= {(x, y) ∈ U × U ∶ SRa

(x) ≈1 SRa
(y)},

R∗
P
=
⋂
a∈P

R∗
a
.

Table 2  s1
ij s1

ij
     x1 x2 x3 x4 x5 x6 x7

x1 1 1 0 1 0.33 0.67 0.25
x2 1 1 0 1 0.33 0.67 0.25
x3 0 0 1 0 0.33 0.25 0.25
x4 1 1 0 1 0.33 0.67 0.25
x5 0.33 0.33 0.33 0.33 1 0.67 0.25
x6 0.67 0.67 0.25 0.67 0.67 1 0.25
x7 0.25 0.25 0.25 0.25 0.25 0.25 1

Table 3  s2
ij s2

ij
     x1 x2 x3 x4 x5 x6 x7

x1 1 0.67 0.67 0.67 0.67 1 1
x2 0.67 1 1 0.33 0.33 0.67 0.67
x3 0.67 1 1 0.33 0.33 0.67 0.67
x4 0.67 0.33 0.33 1 1 0.67 0.67
x5 0.67 0.33 0.33 1 1 0.67 0.67
x6 1 0.67 0.67 0.67 0.67 1 1
x7 1 0.67 0.67 0.67 0.67 1 1

Table 4  s3
ij s1

ij
     x1 x2 x3 x4 x5 x6 x7

x1 1 0 0 0.2 0.25 0.5 0.5
x2 0 1 1 0.25 0.25 0 0
x3 0 1 1 0.25 0.25 0 0
x4 0.2 0.25 0.25 1 0.25 0.2 0.2
x5 0.25 0.25 0.25 0.25 1 0.25 0.25
x6 0.5 0 0 0.2 0.25 1 1
x7 0.5 0 0 0.2 0.25 1 1

Table 5  s4
ij s2

ij
     x1 x2 x3 x4 x5 x6 x7

x1 1 1 0.33 0.33 0.67 1 1
x2 1 1 0.33 0.33 0.67 1 1
x3 0.33 0.33 1 1 0.67 0.33 0.33
x4 0.33 0.33 1 1 0.67 0.33 0.33
x5 0.67 0.67 0.67 0.67 1 0.67 0.67
x6 1 1 0.33 0.33 0.67 1 1
x7 1 1 0.33 0.33 0.67 1 1
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It is easy to see that R∗
P
 is an equivalence relation on U. 

Then R∗
P
 is called the equivalence relation induced by the 

subsystem (U, P). And the partition on U induced by R∗
P
 is 

denoted by U∕R∗
P
.

For any x ∈ U , denote

Example 3.6 (Continued from Example 3.2) We can obtain 
R∗
A
(x1) = {x1}, R∗

A
(x2) = {x2}, R∗

A
(x3) = {x3}, R∗

A
(x4) = {x4}, 

R∗
A
(x5) = {x5}, R∗

A
(x6) = {x6}, R∗

A
(x7) = {x7}.

4  Measuring uncertainty of an ISVIS

In this section, some tools for measuring uncertainty of an 
ISVIS are obtained.

4.1  Granulation measure for an ISVIS

Definition 4.1 Suppose that (U,  A) is an ISVIS. Given 
P ⊆ A . Then information granulation of the subsystem 
(U, P) is specified as

Proposition 4.2 Let (U, A) be an ISVIS. Then for any P ⊆ A,

Furthermore, if R∗
P
 is an universal relation on U, G achieves 

the minimum value 1
n
 ; if R∗

P
 is a identity relation on U, G will 

achieve the maximum value 1.

Proof ∀ i, 1 ≤ |R∗
P
(xi)| ≤ n , n ≤

n∑
i=1

�R∗
P
(xi)� ≤ n2 . By Defini-

tion 4.1,

If R∗
P
 is an identity relation on U, for any i, |R∗

P
(xi)| = 1 , 

G(P) =
1

n
.

If R∗
P
 is a universal relation on U, for any i, |R∗

P
(xi)| = n , 

G(P) = 1 .   ◻

Proposition 4.3 Let (U, A) be an ISVIS. If Q ⊆ P ⊆ A , then 
G(P) ≤ G(Q).

Proof (1) Since Q ⊆ P ⊆ A , ∀ i , we have R∗
P
(xi) ⊆ R∗

Q
(xi) . 

Then |R∗
P
(xi)| ≤ |R∗

Q
(xi)| . By Definition 4.1,

R∗
P
(x) = {y ∈ U ∶ (x, y) ∈ R∗

P
}.

G(P) =
1

n2

n∑
i=1

|R∗
P
(xi)|.

1

n
≤ G(P) ≤ 1.

1

n
≤ G(P) ≤ 1.

Thus G(P) ≤ G(Q).

  ◻

This Proposition 4.3 shows that information granulation 
increases with the coarsening of information and decreases 
with the refinement of information. This means that the 
uncertainty of ISVISs can be evaluated based on the infor-
mation granulation introduced in Definition 4.1.

Example 4.4 (Continued from Example 3.6) By Defini-
tion 4.1, we can obtain

4.2  Entropy measure for an ISVIS

Entropy tends to measure the disorder degree of a system. 
The higher its value, the higher the disorder order of the 
system is. Shannon [28] applies this concept of entropy to 
information theory for calculating the measurement uncer-
tainty of a system. Similarly, information entropy of a given 
ISVIS is defined as following.

Definition 4.5 Suppose that (U,  A) is an ISVIS. Given 
P ⊆ A . Then information entropy of the subsystem (U, P) 
is defined as

Proposition 4.6 Let (U, A) be an ISVIS. If Q ⊆ P ⊆ A , then 
H(P) ≤ H(Q).

Proof Since Q ⊆ P ⊆ A , similar to the proof of Proposi-
tion 4.3, we again that ∀ i , 1 ≤ |R∗

P
(xi)| ≤ |R∗

Q
(xi)|.

Then ∀ i  ,  − log2
|R∗

P
(xi)|
n

= log2
n

|R∗
P
(xi)| ≥ log2

n

|R∗
Q
(xi)| =

− log2
|R∗

Q
(xi)|
n

.

Consequently, H(P) ≤ H(Q) .   ◻

This statement clarifies that information entropy increases 
with the refinement of information and decreases with the 
coarsening of information. This means that the uncertainty 
of ISVISs can be evaluated based on the information entropy 
introduced in Definition 4.5.

Example 4.7 (Continued from Example 3.6) By Defini-
tion 4.5, we can obtain

G(P) =
1

n

n∑
i=1

1

n
|R∗

P
(xi)| ≤ 1

n

n∑
i=1

1

n
|R∗

Q
(xi)| = G(Q).

G(A) =
1

72

7∑
i=1

|R∗
P
(xi)| = 7

49
≈ 0.14.

H(P) = −

n∑
i=1

1

n
log2

|R∗
P
(xi)|
n

.
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Rough entropy is used to measure granularity of a given 
partition. It is also called co-entropy by some scholars.

Similarly, rough entropy of a given ISVIS is put forward 
in the following definition.

Definition 4.8 Let (U, A) be an ISVIS. Given P ⊆ A . Then 
rough entropy of the subsystem (U, P) is deemed as

Proposition 4.9 Let (U, A) be an ISVIS. Given P ⊆ A . Then

What is more, if R∗
P
 is an identity relation on U, then E∗

r
 

reaches the minimum value 0; if R∗
P
 is an universal relation 

on U, then E∗
r
 attains the maximum value log2 n.

Proof Note that R∗
P
 is a fuzzy equivalence relation on U. 

Then ∀ i , R∗
P
(xi)(xi) = 1.

H e n c e  ∀ i  ,  1 ≤ |R∗
P
(xi)| ≤ n  ,  t h e n 

0 ≤ − log2
1

|R∗
P
(xi)| = log2 |R∗

P
(xi)| ≤ log2 n  .  T h e r e fo r e , 

0 ≤ −
∑n

i=1
log2

1

�R∗
P
(xi)� ≤ n log2 n.

By Definition 4.8, we obtain that

If R∗
P
 is an identity relation on U, then ∀ i , |R∗

P
(xi)| = 1 . Thus 

Er(P) = 0.
If R∗

P
 is an universal relation on U, then ∀ i , |R∗

P
(xi)| = n . 

Thus Er(P) = log2 n.
  ◻

Proposition 4.10 Let (U, A) be an ISVIS. If P ⊆ Q ⊆ A , then 
Er(Q) ≤ Er(P).

Proof Since P ⊆ Q ⊆ A , similar to the proof of Proposi-
tion 4.3, we obtain that ∀ i,

Then ∀ i ,  − log2
1

|R∗
P
(xi)| = log2 |R∗

P
(xi)| ≥ log2 |R∗

Q
(xi)| =

− log2
1

|R∗
Q
(xi)|

As a result, Er(P) ≥ Er(Q) .   ◻

For Proposition 4.10, it can be found that the more uncer-
tain the available information is, the bigger rough entropy 
value becomes. This means that rough entropy brought 

H(A) = −

7∑
i=1

1

7
log2

|R∗
P
(xi)|
7

≈ 2.81.

Er(P) = −

n∑
i=1

1

n
log2

1

|R∗
P
(xi)| .

0 ≤ Er(P) ≤ log2 n.

0 ≤ Er(P) ≤ log2 n.

1 ≤ |R∗
Q
(xi)| ≤ |R∗

P
(xi)|.

forward in Definition 4.8 can be used to evaluate the uncer-
tainty of an ISVIS.

Example 4.11 (Continued from Example 3.6) By Defini-
tion 4.8, we can obtain

Theorem 4.12 Let (U, A) be an ISVIS. Given P ⊆ A . Then

Proof 

  ◻

Corollary 4.13 Let (U, A) be an ISVIS. Given P ⊆ A . Then

Proof By Proposition 4.9, 0 ≤ Er(P) ≤ log2 n.
By Theorem 4.12, H(P) = log2 n − Er(P) . Consequently, 

0 ≤ H(P) ≤ log2 n .   ◻

4.3  Fuzzy information amount in an ISVIS

Similarly, information amount in a given ISVIS is stated in 
the following definition.

Definition 4.14 Let (U, A) be an ISVIS. Given P ⊆ A . Then 
information amount of the subsystem (U, P) is regarded as

Proposition 4.15 Let (U, A) be an ISVIS. If P ⊆ Q ⊆ A , then 
E(P) ≤ E(Q).

Proof Since P ⊆ Q ⊆ A , similar to the proof of Proposi-
tion 4.3, we get that ∀ i , 1 ≤ |R∗

Q
(xi)| ≤ |R∗

P
(xi)|. Then

Hence E(P) ≤ E(Q) .   ◻

Er(P) = −

7∑
i=1

1

7
log2

1

|R∗
P
(xi)| = 0.

Er(P) + H(P) = log2 n.

Er(P) + H(P) = −
1

n

n∑
i=1

(
log2

1

|R∗
P
(xi)| + log2

|R∗
P
(xi)|
n

)

= −
1

n

n∑
i=1

log2
1

n
= log2 n.

0 ≤ H(P) ≤ log2 n.

E(P) =

n∑
i=1

1

n

(
1 −

|R∗
P
(xi)|
n

)
.

E(P) =

n∑
i=1

1

n

(
1 −

|R∗
P
(xi)|
n

)
≤

n∑
i=1

1

n

(
1 −

|R∗
Q
(xi)|
n

)
= E(Q).
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It can be found that the more uncertain the available infor-
mation is, the bigger information amount value becomes.

Theorem 4.16 Let (U, A) be an ISVIS. Given P ⊆ A . Then 
G(P) + E(P) = 1.

Proof 
  ◻

Corollary 4.17 Let (U, A) be an ISVIS. Given P ⊆ A . Then 
0 ≤ E(P) ≤ 1 −

1

n
.

Proof By Proposition 4.2, 1
n
≤ G(P) ≤ 1.

By Theorem 4.16, E(P) = 1 − G(P).
Thus 0 ≤ E(P) ≤ 1 −

1

n
 .   ◻

From Proposition 4.15 and Corollary 4.17, we know that 
information amount introduced in Definition 4.14 can evalu-
ate the uncertainty of an ISVIS.

Example 4.18 (Continued from Example 3.6) By Defini-
tion 4.14, we can obtain

5  Experiments analysis

In this section, some numerical experiments are designed to 
evaluate the effectiveness of the proposed measures under 
different incomplete rates.

5.1  Incomplete rate

In this section, 8 incomplete data were selected in UCI to 
test the performance of the proposed measures, as shown 

G(P) + E(P) =
1

n2

n∑
i=1

[|R∗
P
(xi)| + (n − |R∗

P
(xi)|)] = 1.

E(P) =

7∑
i=1

1

7
(1 −

|R∗
P
(xi)|
7

) ≈ 0.86.

in Table 6, where Obesity was randomly hollowed out with 
20% of content and became an incomplete data.

For an ISVIS (U, A), the missing information values are 
randomly distributed on all attributes, and the incomplete 
rate of (U, A) (denoted by � ) is defined as

First, we transform the incomplete data into an ISVIS. 
Then, among all the information values, we delete 2%, 
4%, 6%, 8%, 10%, 12%, 14% and 16% randomly, and 
we call the created data ‘ �-ISVIS’ respectively, whose 
� = 0.02k (k = 1, 2,… , 8). If the incomplete rate of an 
incomplete data has exceeded the value of � we want to set, 
then the missing information value is randomly selected and 
set as the set composed of all possible values of this attrib-
ute. If the incomplete rate of an incomplete data does not 
reach the value of � we want to set, then the known informa-
tion value is randomly selected as the missing information 
value to achieve the value of � to be set.

First of all, we explore the number of objects with miss-
ing information values at � = 0.02k (k = 1, 2,… , 8) based 
on the data in Table 6. The results are shown in Fig. 2, 
where the X-axis represents � = 0.02k (k = 1, 2,… , 8) and 
the Y-axis represents the percentage of objects with miss-
ing information values. The values in Fig. 2 are the average 
values of 10 training sets.

From Fig. 2, we can draw the following conclusions:
(1) As the incomplete rate increases, so does the per-

centage of objects that contain missing information values; 
(2) The more attributes a data has, the more decentralized 
distributed the missing information values are. As a result, 
the rate of missing objects is much higher; (3) When the 
incomplete rate is only 6%, the percentage of missing objects 
in all data except Sl is greater than 50%. When the incom-
pleteness rate is only 10%, the percentage of missing objects 
in all data is greater than 70%; (4) Preprocessing methods 
such as deleting can seriously reduce the available informa-
tion in the database.

� =
Number of missing values

mn
.

Table 6  Eight data from UCI

Date sets Abbr. Objects Features

Autism-adolescent Aa 104 20
Autism-child Ac 292 20
Dermatology De 366 34
Hepatitis He 155 19
Processed-cleveland Pc 303 13
Soybean-large Sl 307 35
Obesity Ob 2111 16
Garments-worker Gw 1197 14

Fig. 2  Percentage of missing objects under different �
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5.2  Numerical experiments

In Aa, pick � = 0.02k  (k = 1,… , 8) , Ai = {a1,… , ai}   
(i = 1,… , 20) . Denote

In Ac, pick � = 0.02k (k = 1,… , 8) , Ci = {a1,… , ai} , 
(i = 1,… , 20) . Denote

In De, pick � = 0.02k (k = 1,… , 8) , Di = {a1,… , ai} , 
(i = 1,… , 34) . Denote

In He, pick � = 0.02k (k = 1,… , 8) , Hi = {a1,… , ai} , 
(i = 1,… , 19) . Denote

In Pc, pick � = 0.02k (k = 1,… , 8) , Pi = {a1,… , ai} , 
(i = 1,… , 13) . Denote

In Sl, pick � = 0.02k (k = 1,… , 8) , Li = {a1,… , ai} , 
(i = 1,… , 35) . Denote

In Ob, pick � = 0.02k (k = 1,… , 8) , Bi = {a1,… , ai} , 
(i = 1,… , 16) . Denote

In Gw, pick � = 0.02k (k = 1,… , 8) , Gi = {a1,… , ai} , 
(i = 1,… , 14) . Denote

X
�

G
(Aa) = {G�(A1),… ,G�(A20)}, X

�

E
(Aa) = {E�(A1),… ,E�(A20)},

X
�

Er
(Aa) = {E�

r
(A1),… ,E�

r
(A20)}, X

�

H
(Aa) = {H�(A1),… ,H�(A20)}.

X
�

G
(Ac) = {G�(C1),… ,G�(C20)}, X

�

E
(Ac) = {E�(C1),… ,E�(C20)},

X
�

Er
(Ac) = {E�

r
(C1),… ,E�

r
(C20)}, X

�

H
(Ac) = {H�(C1),… ,H�(C20)}.

X
�

G
(De) = {G�

(D1),… ,G�
(D34)},

X
�

E
(De) = {E�

(D1),… ,E�
(D34)},

X
�

Er

(De) = {E�
r
(D1),… ,E�

r
(D34)},

X
�

H
(De) = {H�

(D1),… ,H�
(D34)}.

X
�

G
(He) = {G�

(H1),… ,G�
(H19)},

X
�

E
(He) = {E�

(H1),… ,E�
(H19)},

X
�

Er

(He) = {E�
r
(H1),… ,E�

r
(H19)},

X
�

H
(He) = {H�

(H1),… ,H�
(H19)}.

X
�

G
(Pc) = {G�(P1),… ,G�(P13)}, X

�

E
(Pc) = {E�(P1),… ,E�(P13)},

X
�

Er
(Pc) = {E�

r
(P1),… ,E�

r
(P13)}, X

�

H
(Pc) = {H�(P1),… ,H�(P13)}.

X
�

G
(Sl) = {G�(L1),… ,G�(L35)}, X

�

E
(Sl) = {E�(L1),… ,E�(L35)},

X
�

Er
(Sl) = {E�

r
(L1),… ,E�

r
(L35)}, X

�

H
(Sl) = {H�(L1),… ,H�(L35)}.

X
�

G
(Ob) = {G�(B1),… ,G�(B16)}, X

�

E
(Ob) = {E�(B1),… ,E�(B16)},

X
�

Er
(Ob) = {E�

r
(B1),… ,E�

r
(B16)}, X

�

H
(Ob) = {H�(B1),… ,H�(B16)}.

From Figs. 3,4, 5, 6, 7, 8, 9 10, the following conclusions 
are obtained:

Regardless of the incomplete rate, Er and G decrease 
monotonously as the number of attributes in the attribute 

X
�

G
(Gw) = {G�

(G1),… ,G�
(G14)},

X
�

E
(Gw) = {E�

(G1),… ,E�
(G14)},

X
�

Er

(Gw) = {E�
r
(G1),… ,E�

r
(G14)},

X
�

H
(Gw) = {H�

(G1),… ,H�
(G14)}.

Fig. 3  Values of uncertainty measurement on Aa

Fig. 4  Values of uncertainty measurement on Ac



3040 International Journal of Machine Learning and Cybernetics (2022) 13:3031–3069

1 3

subset increases. At the same time, both E and H increase 
monotonously with the increase of the number of attributes 
in the attribute subset. Therefore, the four measures pro-
posed in this paper can be used to measure the uncertainty 
of ISVISs.

5.3  Dispersion analysis

Coefficient of variation CV, also known as discrete coeffi-
cient, is a statistic to measure the degree of variation of each 
observation in the data, which is obtained from the ratio of 

standard deviation to mean value. Coefficient of variation 
can eliminate the influence of unit difference or average dif-
ference on the variation degree of two or more data.

Let A = {a1, a2,… , an} be a data set. Then, the coefficient 
of variation of A is denoted as CV(A), which is defined as 
follows

CV(A) =

�
1

n

∑n

i=1
(ai −

1

n

∑n

i=1
ai)

2

1

n

∑n

i=1
ai

.

Fig. 5  Values of uncertainty measurement on De

Fig. 6  Values of uncertainty measurement on He

Fig. 7  Values of uncertainty measurement on Pc

Fig. 8  Values of uncertainty measurement on Sl
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Continue the above experiment, CV-values of four meas-
ure sets are compared at different incomplete rates. The 
results are shown in Figs. 11, 12, 13, 14, 15, 16, 17, 18.

As can be seen from Figs. 11–18, some conclusions are 
obtained: 

(1) When the data in Table 6 are at different incomplete 
rates, the CV-values of Er are all greater than 0.5, the 
CV-values of E and H are all less than 0.5, and the CV-
values of E are all smaller than the CV-values of H.

(2) When the data in Table 6 are at different incomplete 
rates, CV-values of G are greater than 0.5 in all other 
gave data except He.

(3) For He with different incomplete rates, CV-values of Er 
are all greater than CV-values of G.

(4) For Pc with an incomplete rate 0.14 or 0.08, the CV-
values of Er are greater than the CV-values of G, while 
there is little difference between the CV-values of G and 
the CV-values of Er at other incomplete rates.

Therefore, the coefficient of variation of E is the smallest 
in the given data with different incomplete rates, so E has 
the best measurement effect on the uncertainty of an ISVIS.

Fig. 9  Values of uncertainty measurement on Ob

Fig. 10  Values of uncertainty measurement on Gw

Fig. 11  CV-values of four measure sets of Aa

Fig. 12  CV-values of four measure sets of Ac
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5.4  Correlation analysis

Spearman rank correlation [48], as an important statistical 
analysis method in statistics, is used to estimate the correla-
tion between two statistical variables by using monotone 
equation.

Suppose that A = {a1, a2,… , an} and B = {b1, b2 … , bn} 
are two data sets. By sorting A and B (ascending or descend-
ing at the same time), two element ranking sets 
R = {R1,R2,… ,Rn} and Q = {Q1,Q2,… ,Qn} are obtained, 
where Ri and Qi ( i = 1,… , n ) are the ranking of ai in A and 
bi in B respectively. Spearman rank correlation coefficient 

between A and B, denoted by rs(A,B) , is defined as 
rs(A,B) = 1 −

6
∑n

i=1
di

2

n(n2−1)
, where di = Ri − Qi . Obviously, 

−1 ≤ rs(A,B) ≤ 1.

To test the significance of a correlation, we assume that 
there is no correlation between A and B. In the case of small 
samples, that is, the number of samples is less than 30, we 
can verify the hypothesis directly using the lookup method 
in Table 7 [48]. When |rs(A,B)| is greater than the threshold 
value of r� , which indicates that the assumption is rejected, 
then correlation between A and B is significantly.

Continue the above experiment, rs-values of four measure 
sets on Aa and Ac are compared. For Aa and Ac, the number 

Fig. 13  CV-values of four measure sets of De

Fig. 14  CV-values of four measure sets of He

Fig. 15  CV-values of four measure sets of Pc

Fig. 16  CV-values of four measure sets of Sl
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of four measure sets is 20. Then, from Table 7, we can obtain 
r0.05 = 0.380 . Since |rs| in Aa and Ac exceeds 0.380, we can 
conclude that the pairwise correlations between these four 
measures are significant.

Example 5.1 

If 0.7 ≤ rs(A,B) < 1 , −1 ≤ rs(A,B) < −0.7 , rs(A,B) = 1 
and rs(A,B) = −1 then the correlations between A and B are 
called height positive correlation (for short, HPC), height 
negative correlation (for short, HNC), completely positive 
correlation (for short, CNC) and completely positive nega-
tive correlation (for short, CPC), respectively. The following 
conclusions are obtained through calculation (see Tables 8, 
9).

5.5  Friedman test and Nemenyi test

In this subsection, Friedman test [12] and Nemenyi test are 
used to further evaluate the performance of the proposed 
measures.

Friedman test, a nonparametric method to test whether 
there are significant differences among multiple algorithms 
by using rank, which is defined as

 where k, N and ri are respectively the number of algorithms 
to be evaluated, the number of samples, and the average 
ranking of the i-th algorithm. This test is too conservative, 
which is why it is often replaced by the following statistic

When FF  is greater than the threshold value of 
F�(k − 1, n − 1) , which indicates that the assumption that “ 
all algorithms have the same performance” is rejected, then 
the performance of the algorithms is significantly different. 
Nemenyi test calculates the critical distance CD� of average 
rank to judge which algorithm is better. If the corresponding 
average rank difference of the two algorithms reaches at least 
a critical distance, the performance of the two algorithms is 
significantly different. The critical distance CD� is denoted 
as CD� = q�

√
k(k+1)

6N
, where q� and � are the critical tabu-

lated value and significance level of Nemenyi test, 
respectively.

According to Figs. 11–18, we obtained the ranking of 
CV-values of the four measurement sets in the eight data 
(see Tables 10, 11, 12).

�2
F
=

12N

k(k + 1)

(
k∑

i=1

r2
i
−

k(k + 1)2

4

)
,

FF =
(N − 1)�2

F

N(k − 1) − �2
F

.

Fig. 17  CV-values of four measure sets of Ob

Fig. 18  CV-values of four measure sets of Gw

Table 7  Tables of critical values 
for Spearman rank correlation 
in which level of significance 
� = 0.05-one-tailed test

n 4 5 6 7 8 9 10 11 12

r� 1 0.9 0.829 0.714 0.643 0.600 0.564 0.536 0.503
n 13 14 15 16 17 18 19 20
r� 0.484 0.464 0.443 0.429 0.414 0.401 0.391 0.380



3044 International Journal of Machine Learning and Cybernetics (2022) 13:3031–3069

1 3

Friedman test was used to introduced whether 
there were significant differences in the four meas-
ures obtained in this paper. Since k = 4,N = 8. Then 
k − 1 = 3, (k − 1)(N − 1) = 21,  F0.05(3, 21) = 3.072  . 
Therefore, for Table 10, FF ≈ 109.29 and FF > F0.05(3, 21) . 
For Table  11, FF ≈ 61.67 and FF > F0.05(3, 21) and the 
results in Table 12 are the same as in Table 11. Therefore, 

Table 8  rs-values of four measure sets on Aa

r X
�

H
(Aa) X

�

Er
(Aa) X

�

G
(Aa) X

�

E
(Aa)

X
�

H
(Aa) CPC

X
�

Er
(Aa) CNC CPC

X
�

G
(Aa) HNC HPC CPC

X
�

E
(Aa) HPC HNC CNC CPC

Table 9  rs-values of four measure sets on Ac

r X
�

H
(Ac) X

�

Er
(Ac) X

�

G
(Ac) X

�

E
(Ac)

X
�

H
(Ac) CPC

X
�

Er
(Ac) CNC CPC

X
�

G
(Ac) HNC HPC CNC

X
�

E
(Ac) HPC HNC CPC CPC

Table 10  The ranking of 
CV-values of the four measure 
sets on eight datasets with 
� = 0.02k, k = 1, 2, 3, 6, 8

Date G H Er E

Aa 4 2 3 1
Ac 4 2 3 1
De 4 2 3 1
He 3 2 4 1
Pc 4 2 3 1
Sl 4 2 3 1
Ob 4 2 3 1
Gw 4 2 3 1
Average 3.875 2 3.125 1

Table 11  The ranking of 
CV-values of the four measure 
sets on eight datasets with 
� = 0.02k, k = 4, 7

Date G H Er E

Aa 4 2 3 1
Ac 4 2 3 1
De 4 2 3 1
He 3 2 4 1
Pc 3 2 4 1
Sl 4 2 3 1
Ob 4 2 3 1
Gw 4 2 3 1
Average 3.75 2 3.25 1

Table 12  The ranking of 
CV-values of the four measure 
sets on eight datasets with 
� = 0.02k, k = 5

Date G H Er E

Aa 4 2 3 1
Ac 4 2 3 1
De 4 2 3 1
He 3 2 4 1
Pc 4 2 3 1
Sl 4 2 3 1
Ob 4 2 3 1
Gw 3 2 4 1
Average 3.75 2 3.25 1

Fig. 19  Friedman test base on Table 10

Fig. 20  Friedman test base on Tables 11 and 12
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the assumption that “ all algorithms have the same perfor-
mance” is rejected at � = 0.05 , then the performance of the 
obtained algorithms is significantly different. Next, to fur-
ther illustrate the significant differences between the four 
measures, Nemenyi test was investigate. Since � = 0.05 , 
then q� = 2.569 and CD� ≈ 1.658 . Based on these tests, we 
get Figs. 19, 20, where the dots represent the average rank-
ing and the line segments represent the range of CD� . If the 
two line segments do not overlap on the X-axis, there is a 
significant difference between the two uncertainty measures. 

From Figs. 19, 20, in the case of data with an incomplete 
rate, the following conclusions can be drawn. (1) As far as 
performance is concerned, E is superior to G and Er. (2) 
In terms of performance, there are significant differences 
between E and Er, and between E and G.

6  An application in attribute reduction

In this section, an application of the proposed measures in 
attribute reduction is presented.

Definition 6.1 Suppose that (U, A) is an ISVIS. Then P ⊆ A 
is referred to as consistent, if R∗

P
= R∗

A
.

Definition 6.2 Suppose that (U, A) is an ISVIS. Then P ⊆ A 
is referred to as a reduct of A, if P is consistent and ∀ a ∈ P , 
P − {a} is not consistent.

In this paper, the family of all coordination subsets (resp., 
all reducts) of A is denoted by co(A) (resp., red(A)).

Theorem 6.3 Suppose that (U, A) is an ISVIS. Given P ⊆ A . 
Then the following conditions are equivalent:

(1) P ∈ co(A) ; (2) G(P) = G(A) ; (3) H(P) = H(A) ; (4) 
Er(P) = Er(A) ; (5) E(P) = E(A).

Proof (1) ⇒ (2). Clearly. (2) ⇒ (1). Suppose G(P) = G(A) . 
Then 1

n2

n∑
i=1

�R∗
P
(xi)� = 1

n2

n∑
i=1

�R∗
A
(xi)�.

So 
n∑
i=1

(�R∗
P
(xi)� − �R∗

A
(xi)�) = 0.

Note that R∗
A
⊆ R∗

P
 . Then ∀ i , R∗

A
(xi) ⊆ R∗

P
(xi) . This 

implies that

So ∀ i,     |R∗
P
(xi)| − |R∗

A
(xi)| = 0. It follows that ∀ i

,  R∗
P
(xi) = R∗

A
(xi).

Thus R∗
P
= R∗

A
. Hence

∀ i, |R∗
P
(xi)| − |R∗

A
(xi)| ≥ 0.

(2) ⇔ (5). It can be obtained by Theorem 4.16.
(1) ⇒ (3). This is clear.
(3) ⇒ (1). Suppose H(P) = H(A) . Then

So

Note that R∗
A
⊆ R∗

P
 . Then ∀ i , R∗

A
(xi) ⊆ R∗

P
(xi) . This implies 

that

So ∀ i,  log2
|R∗

P
(xi)|

|R∗
A
(xi)| = 0. It follows that ∀ i,  R∗

P
(xi) = R∗

A
(xi).

Thus R∗
P
= R∗

A
. Hence P ∈ co(A).

(3) ⇔ (4). It follows from Theorem 4.12.   ◻

Corollary 6.4 Suppose that (U, A) is an ISVIS. Given P ⊆ A . 
Then the following conditions are equivalent: 

(1)  P ∈ red(A);

(2)  G(P) = G(A) and ∀ a ∈ P , G(P − {a}) ≠ G(A);

(3)  H(P) = H(A) and ∀ a ∈ P , H(P − {a}) ≠ H(A);

(4)  Er(P) = Er(A) and ∀ a ∈ P , Er(P − {a}) ≠ Er(A);

(5)  E(P) = E(A) and ∀ a ∈ P , E(P − {a}) ≠ E(A).

Proof It can be proved by Theorem 6.3.   ◻

Below, we study reduction algorithms in an ISVIS 
based on its uncertainty measurement. By Theorems 4.12 
and  4.16, we have

where (U, A) is an ISVIS and P ⊆ A . Then, we only need to 
consider reduction algorithms based on information granula-
tion and information entropy, respectively.

Reduction algorithms based on information granulation 
and information entropy are given as follows.

P ∈ co(A).

−

n∑
i=1

1

n
log2

|R∗
P
(xi)|
n

= −

n∑
i=1

1

n
log2

|R∗
A
(xi)|
n

.

n∑
i=1

log2
|R∗

P
(xi)|

|R∗
A
(xi)| = 0.

∀ i, log2
|R∗

P
(xi)|

|R∗
A
(xi)| ≥ 0.

Er(P) + H(P) = log2 n, G(P) + E(P) = 1,
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For Algorithms 1–2, we assume that the number of attrib-
utes is m and the number of samples is n. First of all, we 
need to calculate each attribute ak similarity matrix sk

ij
 , its 

time complexity and space complexity are both O(mn2) . 
Algorithm 1 randomly selects an attribute in each loop and 
judges whether the attribute can be discarded according to 
G. If not, the loop is terminated and the reduction set P is 
obtained. Therefore the worst search time for a reduct will 
need m evaluations. Algorithm 2 selects an attribute that 
meets the condition to add P in each loop according to H. If 
none of the attributes meet the condition, the loop is termi-
nated and the reduction set P is obtained. Therefore the 
worst search time for a reduct will need (m2 + m)∕2 evalua-
tions. Obviously, the overall time complexity of Algorithm 1 
and Algorithm  2 is O(mn2 + m) and O(mn2 + m2 + m) 
respectively. Since the space occupied above can be reused, 
the total space complexity of Algorithm 1 and Algorithm 2 
is O(mn2).

6.1   Cluster analysis

In this subsection, in order to verify the effectiveness of 
the proposed algorithms, t-distributed stochastic neighbor 
embedding, k-means clustering algorithm ad Mean Shift 
clustering algorithm are used to cluster and analyze the 
reducts of the obtained algorithms.

In this paper, we give eight data from UCI described in 
Table 6. Each data can be regarded as an ISVIS. In order 
to verify that those algorithms are still effective in the case 
of different data missing, we also conducted experiments 
with Algorithm 1 and Algorithm 2 according to the incom-
plete rate from 0.02 to 0.16 with step size of 0.02. Then, 
for each algorithm, we obtained 8 reducts for each data and 
listed them in Tables 13, 14, respectively. As the reducts in 
Tables 13, 14 can be observed, Algorithms 1–2 can effec-
tively reduce the dimension of incomplete data. Therefore, 
the results obtained from Algorithms 1–2 are employed to 
cluster analysis.
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6.1.1  k‑means cluster

we first use k-means clustering algorithm and the data before 
and after reduction to cluster. Then, we use three indexes, 

namely silhouette coefficient [27], calinski-harabasz index 
[1] and daviesbouldin index [9] to evaluate the clustering 
effect, so as to verify the effectiveness of the proposed algo-
rithms. Among the three indicators, the larger the silhouette 

Fig. 21  The reduced clustering 
image of Algorithm 1 on Aa

Fig. 22  The reduced clustering 
image of Algorithm 1 on Ac
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coefficient and calinski-harabasz index are, the better clus-
tering effect is, while the daviesbouldin index is on the con-
trary. In order to make the experiment more reasonable, we 
set the number of clustering to the number of categories 
inherent in the data.

Clustering results are visualized by t-distributed stochas-
tic neighbor embedding, as shown in Figs. 21, 22, 23, 24, 25, 
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36. The three indices 
values corresponding to the clustering results of Algorithms 
1–2 are shown in Figs. 37, 38, 39, 40, 41, 42, 43, 44.

Fig. 23  The reduced clustering 
image of Algorithm 1 on De

Fig. 24  The reduced clustering 
image of Algorithm 1 on He
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6.1.2  Mean Shift

we first use Mean Shift clustering algorithm and the data 
before and after reduction to cluster. Then, we also evaluate 

the clustering effect with these three indexes to verify the 
effectiveness of the proposed algorithms.

Clustering results are visualized by t-distributed stochas-
tic neighbor embedding, as shown in Figs. 45, 46, 47, 48, 49, 

Fig. 25  The reduced clustering 
image of Algorithm 1 on Pc

Fig. 26  The reduced clustering 
image of Algorithm 1 on Sl
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Table 13  Reduction results 
of Algorithm 1 at the 
incomplete rates of � = 0.02k 
(k = 1, 2,… , 8)

Date sets Reduction results at the incomplete rate of 0.02k, k = 1, 2,… , 8

Aa Re1={1, 4, 11, 13, 18, 19}, Re2={8, 13, 16, 18}, Re3={2, 6, 9, 16, 18}
Re4={1, 7, 10, 12, 17, 18, 19}, Re5={11, 18, 19, 20}, Re6={8, 12, 16, 18}
Re7={2, 14, 16, 20}, Re8={2, 4, 8, 9, 16}

Ac Re1={2, 11, 16, 18}, Re2={2, 9, 10, 13, 16, 18}, Re3={1, 7, 11, 16, 18, 20}
Re4={8, 10, 13, 14, 16, 17, 18}, Re5={4, 5, 10, 11, 16, 18}, Re6={2, 11, 12, 14, 16}
Re7={7, 11, 15, 16, 17}, Re8={5, 10, 12, 15, 16, 18, 20}

De Re1={8, 10, 12, 14, 24, 31, 34}, Re2={14, 22, 25, 33, 34}, Re3={8, 9, 11, 17, 30, 34}
Re4={2, 4, 11, 34}, Re5={6, 12, 23, 26, 29, 34}, Re6={1, 11, 27, 34}
Re7={5, 12, 27, 29, 34}, Re8={4, 27, 34}

He Re1={5, 7, 16, 17}, Re2={6, 11, 13, 15}, Re3={1, 2, 10, 15}, Re4={9, 15}
Re5={1, 5, 12}, Re6={11, 18}, Re7={6, 16}, Re8={15, 16}

Pc Re1={1, 3, 5}, Re2={1, 4, 6, 9}, Re3={2, 4, 5, 10}, Re4={1, 7, 10}
Re5={4, 8, 12}, Re6={3, 6, 8, 12}, Re7={5, 7}, Re8={2, 7, 8, 9}

Sl Re1={1, 4, 5, 6, 8, 9, 11, 21, 26, 32}, Re2={1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 16}
Re3={1, 2, 4, 5, 6, 9, 15, 29, 30, 33, 34}, Re4={1, 5, 6, 7, 16, 21, 22, 26, 28}
Re5={1, 2, 3, 4, 9, 11, 19, 27, 28, 34}, Re6={1, 4, 6, 9, 20, 24, 26, 27}
Re7={4, 5, 6, 7, 10, 21, 23}, Re8={1, 5, 7, 10, 25, 34}

Ob Re1={2, 3, 10}, Re2={3, 8, 10, 16}, Re3={1, 5, 10, 12, 14, 15}
Re4={3, 10, 15}, Re5={3, 15}, Re6={1, 2, 5}, Re7={1, 9, 11, 12}, Re8={2, 8, 10}

Gw Re1={2, 3, 8, 11}, Re2={2, 3, 6, 8, 10, 11, 12, 13}, Re3={3, 8}
Re4={6, 8}, Re5={6, 7, 8, 13}, Re6={8, 10}, Re7={4, 8}, Re8={4, 10, 14}

Table 14  Reduction 
results of Algorithm 2 at 
the incomplete rates of 
� = 0.02k, k = 1, 2,… , 8

Date sets Reduction results at the incomplete rate of 0.02k, k = 1, 2,… , 8

Aa Re1={1, 11, 13, 16, 18, 20}, Re2={8, 11, 13, 16, 18, 20}
Re3={1, 2, 11, 13, 16, 18}, Re4={7, 8, 11, 13, 16, 18}
Re5={2, 3, 5, 8, 11, 16, 18}, Re6={5, 8, 11, 16, 18, 20}
Re7={2, 8, 11, 16, 18}, Re8={2, 11, 16, 18}

Ac Re1={4, 6, 7, 10, 11, 13, 14, 16, 18, 20}, Re2={2, 8, 11, 13, 14, 16, 17, 18}
Re3={1, 2, 4, 11, 13, 14, 16, 18}, Re4={1, 3, 4, 8, 11, 12, 13, 16, 18}
Re5={1, 2, 3, 9, 11, 13, 14, 16, 18}, Re6={3, 4, 6, 9, 11, 13, 16, 18}
Re7={7, 11, 13, 14, 16, 18}, Re8={4, 8, 11, 13, 16, 18}

De Re1={3, 4, 18, 19, 23, 32, 34}, Re2={3, 4, 16, 17, 18, 19, 34}
Re3={1, 2, 3, 4, 19, 21, 34}, Re4={4, 5, 19, 26, 32, 34}
Re5={3, 4, 9, 14, 16, 32, 34}, Re6={4, 14, 16, 19, 33, 34}
Re7={2, 4, 5, 16, 19, 34}, Re8={2, 4, 6, 16, 24, 34}

He Re1={1, 14, 16}, Re2={1, 15, 16},Re3={1, 16, 18}, Re4={1, 14, 18}
Re5={14, 16, 18}, Re6={15, 16, 18}, Re7={10, 16, 18}, Re8={1, 18}

Pc Re1={1, 5, 7}, Re2={1, 5, 13}, Re3={4, 5, 8}, Re4={1, 5}
Re5={1, 5, 10}, Re6={1, 3, 5}, Re7={1, 5}, Re8={5, 8, 12}

Sl Re1={1, 4, 6, 7, 8, 9, 10, 13, 16, 22}, Re2={1, 3, 4, 6, 7, 8, 9, 10, 15, 16}
Re3={1, 3, 6, 7, 8, 9, 10, 14, 16, 18, 22}
Re4={1, 2, 3, 6, 7, 8, 9, 10, 12, 13, 14, 17, 18, 21, 22, 28, 30, 31}
Re5={1, 3, 4, 6, 7, 9, 10, 14}, Re6={1, 3, 6, 7, 8, 10, 15, 22, 28}
Re7={1, 4, 6, 7, 9, 10, 21, 29}, Re8={1, 6, 7, 8, 10, 14, 29}

Ob Re1={2, 3, 4, 14, 15}, Re2={2, 3, 4, 5, 15}, Re3={2, 3, 4, 5, 14}
Re4={2, 3, 4, 5, 9}, Re5={2, 3, 4, 5, 8}, Re6={2, 3, 4, 14}, Re7={2, 3, 4, 

14}, Re8={2, 3, 4, 15}
Gw Re1={1, 5, 8}, Re2={1, 5, 8},Re3={4, 6, 8, 9, 11}

Re4={1, 5, 8}, Re5={1, 5, 8}, Re6={1, 8, 10}, Re7={5, 8, 9}, Re8={1, 3, 8}
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50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60. The three indices 
values corresponding to the clustering results of Algorithms 
1–2 are shown in Figs. 61, 62, 63, 64, 65, 66, 67, 68.

6.1.3  Analysis of clustering results

According to 37-44 and 61 -68, the following findings can 
be made: 

Fig. 27  The reduced clustering 
image of Algorithm 1 on Ob

Fig. 28  The reduced clustering 
image of Algorithm 1 on Gw
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(1) For Aa and De, the results of the two clustering meth-
ods under the three indicators are superior to the origi-
nal data.

(2) For Ac, only the calinski-Harabasz index under the 
Mean Shift clustering algorithm shows the reducts 

of Algorithm 2 have little difference with the origi-
nal data. Besides, other indices indicate all reducts are 
superior to the original data.

(3) For He, the three indices under the Mean Shift cluster-
ing algorithm show that all the reducts are better than 

Fig. 29  The reduced clustering 
image of Algorithm 2 on Aa

Fig. 30  The reduced clustering 
image of Algorithm 2 on Ac
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the original data. In addition, the silhouette coefficient 
index and daviesbouldin index of Algorithm 2’s R4 and 
R8 under k-means clustering algorithm are worse than 
the original data, while other reducts are superior to the 
original data.

(4) For Pc, the three indices under the k-means clustering 
algorithm show that all the reducts are better than the 
original data. The calinski-Harabasz index under the 
Mean Shift clustering algorithm shows that the R2–R4, 
R6–R8 of Algorithm 1 and the R6–R8 of Algorithm 2 

Fig. 31  The reduced clustering 
image of Algorithm 2 on De

Fig. 32  The reduced clustering 
image of Algorithm 2 on He
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are better than the original data, while the other indica-
tor has little difference with the original data. In addi-
tion, the other two indexes indicate that all the reducts 
are better than the original data.

(5) For Sl, the daviesbouldin index under the k-means clus-
tering algorithm indicates that all the reducts are better 
than the original data. The coefficient index show that 
only the Re4 of Algorithm 2 has little difference with 
the original data, while other reducts are superior to 

Fig. 33  The reduced clustering 
image of Algorithm 2 on Pc

Fig. 34  The reduced clustering 
image of Algorithm 2 on Sl
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the original data. The silhouette coefficient index under 
the k-means clustering algorithm shows that the Re4, 
Re5, Re7 and Re8 of Algorithm 1 and Re7 and Re8 of 

Algorithm 2 are better than the original data. The sil-
houette coefficient index and daviesbouldin index under 
the Mean Shift clustering algorithm show that all the 

Fig. 35  The reduced clustering 
image of Algorithm 1 on Ob

Fig. 36  The reduced clustering 
image of Algorithm 1 on Gw
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reducts are better than the original data, while the other 
indicator has little difference with the original data.

(6) For Ob, the three indices under the k-means cluster-
ing algorithm show that all the reducts are better than 
the original data. The silhouette coefficient index and 
daviesbouldin index under the Mean Shift clustering 
algorithm show that all the reducts are better than the 
original data. The coefficient index show that only the 
Re4, Re5 and Re6 of Algorithm 1 are better than the 

original data while other reductions are not much dif-
ferent from the original data.

(7) For Gw, the three indices under the k-means cluster-
ing algorithm show that all the reducts are better than 
the original data. The silhouette coefficient index and 
daviesbouldin index under the Mean Shift clustering 
algorithm show that all the reducts are better than the 
original data. The coefficient index indicates that the 
R2 of Algorithm 1 and the R3, R6 and R7 of Algo-
rithm 2 are worse than the original data.

Fig. 37  The clustering evaluation coefficient of Algorithm  1 and 
Algorithm 2 on Aa

Fig. 38  The clustering evaluation coefficient of Algorithm  1 and 
Algorithm 2 on Ac

Fig. 39  The clustering evaluation coefficient of Algorithm  1 and 
Algorithm 2 on De

Fig. 40  The clustering evaluation coefficient of Algorithm  1 and 
Algorithm 2 on He
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In a nutshell, the three indices values of those reducts are 
obviously better than those original data. Therefore, those 
reducts of Algorithms 1–2 are credible. This also means 
that the obtained algorithms can effectively perform attribute 
reduction at different miss rates, so it is of great significance 
to study the attribute reduction of these two algorithms at 
different miss rates. In addition, these three indices show 
that, under the same incomplete rate, the reduct of Algo-
rithm 1 is better than Algorithm 2 in most cases. There-
fore, Algorithm 1 can be preferred for attribute reduction to 
improve efficiency.

7  Comparison and discussion

In this subsection, we evaluate the performance of the pro-
posed method and existing methods. We consider compar-
ing our algorithm with two other algorithms. Dai et al. [8] 
brought up the two tools of entropy measure and granu-
larity measure to measure the uncertainty of SVISs. They 
also explored the problem of attribute reduction for SVISs 
and proposed a representative attribute selection algorithm 
(FRSM) based on fuzzy rough sets. Liu et al. [21] researched 
feature selection for a set-valued decision IS from the view 
of dominance relations. They proposed a representative 

Fig. 41  The clustering evaluation coefficient of Algorithm  1 and 
Algorithm 2 on Pc

Fig. 42  The clustering evaluation coefficient of Algorithm  1 and 
Algorithm 2 on Sl

Fig. 43  The clustering evaluation coefficient of Algorithm  1 and 
Algorithm 2 on Ob

Fig. 44  The clustering evaluation coefficient of Algorithm  1 and 
Algorithm 2 on Gw
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attribute selection algorithm (DRM) based on dominance 
relation.

Table  15 shows the reduction results of FRSM and 
DRM for the data in Table 6. By comparing the results 
in Tables 13, 14 and 15, we can see that the attributes of 

the reduction set obtained by Algorithms 1–2 are less than 
FRSM and DRM by in most case.

For Algorithms 1–2, we choose the reducts when the miss 
rate is 8%, and compare it with the reducts of FRSM and 

Fig. 45  The reduced clustering 
image of Algorithm 1 on Aa

Fig. 46  The reduced clustering 
image of Algorithm 1 on Ac
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DRM. Through Mean Shift clustering algorithm and the 
three evaluation indexes, we get Fig. 69.

From Fig. 69, the following conclusions can be drawn. 
(1) The silhouette coefficient index shows that Algorithms 
1–2 are superior to the other two algorithms in Aa, De, He 

and Ob. In Ac and Gw, Algorithm 1 are superior to the other 
algorithms. Besides, in the other data, the results of the four 
algorithms are not very different. (2) The calinski-Harabasz 
index shows that Algorithms 1–2 are superior to the other 
two algorithms in Ob. In He, Algorithm 1 are superior to the 

Fig. 47  The reduced clustering 
image of Algorithm 1 on De

Fig. 48  The reduced clustering 
image of Algorithm 1 on He
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other algorithms. What’s more, in the other data, the results 
of the four algorithms are not very different. (3) The davies-
bouldin index shows that Algorithms 1–2 are superior to 
the other two algorithms in Aa, Ac, De and Ob. In the other 
data, the results of the four algorithms are not very different.

Therefore, Algorithms 1–2 are more effective in data 
reduction than FRSM and DRM algorithm. So it is mean-
ingful to explore the application of ISVISs.

Fig. 49  The reduced clustering 
image of Algorithm 1 on Pc

Fig. 50  The reduced clustering 
image of Algorithm 1 on Sl
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Fig. 51  The reduced clustering 
image of Algorithm 1 on Ob

Fig. 52  The reduced clustering 
image of Algorithm 1 on Gw
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Fig. 53  The reduced clustering 
image of Algorithm 2 on Aa

Fig. 54  The reduced clustering 
image of Algorithm 2 on Ac
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8  Conclusions

In this paper, incomplete set-valued data has been viewed 
as ISVISs. By this way, the similarity degree between 

information values on each attribute in incomplete set-val-
ued data has been presented. The tolerance relation induced 
by each subsystem in an ISVIS has been given and rough 
approximations based on this relation have been investi-
gated. To explore the potential information of this data, four 

Fig. 55  The reduced clustering 
image of Algorithm 2 on De

Fig. 56  The reduced clustering 
image of Algorithm 2 on He
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Fig. 57  The reduced clustering 
image of Algorithm 2 on Pc

Fig. 58  The reduced clustering 
image of Algorithm 2 on Sl
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Fig. 59  The reduced clustering 
image of Algorithm 1 on Ob

Fig. 60  The reduced clustering 
image of Algorithm 1 on Gw
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methods for measuring uncertainty in incomplete set-valued 
data have been studied, which is information granulation, 
information amount, rough entropy and information entropy 
respectively. The validity of the proposed measures has been 
statistically analyzed. It can be verified that the obtained 
measures can effectively measure the uncertainty of incom-
plete set-valued data with different incomplete rates. In order 
to study the attribute reduction of incomplete set-valued 

data, Algorithms 1 and 2 have been proposed based on infor-
mation granulation and information entropy, respectively, 
and their validity has been analyzed and verified by k-means 
clustering algorithm and Mean Shift clustering algorithm. 
It is worth mentioning that the incomplete rate has been 
adopted. In the future, we will further explore more effective 
reduction methods for incomplete set-valued data.

Fig. 61  The clustering evaluation coefficient of Algorithm  1 and 
Algorithm 2 on Aa

Fig. 62  The clustering evaluation coefficient of Algorithm  1 and 
Algorithm 2 on Ac

Fig. 63  The clustering evaluation coefficient of Algorithm  1 and 
Algorithm 2 on De

Fig. 64  The clustering evaluation coefficient of Algorithm  1 and 
Algorithm 2 on He
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Fig. 65  The clustering evaluation coefficient of Algorithm  1 and 
Algorithm 2 on Pc

Fig. 66  The clustering evaluation coefficient of Algorithm  1 and 
Algorithm 2 on Sl

Fig. 67  The clustering evaluation coefficient of Algorithm  1 and 
Algorithm 2 on Ob

Fig. 68  The clustering evaluation coefficient of Algorithm  1 and 
Algorithm 2 on Gw

Table 15  Reduction results of 
FRSM and DRM

Date FRSM DRM

Aa Re={1–6, 8–13, 18–20} Re={1–3, 5, 7, 10–12, 16, 18, 20}
Ac Re={1-5, 7–18, 20} Re={1–5, 7–9, 11, 16–18, 20}
De Re={1–2, 5–6, 9–10, 12–13, 15–16, 18–19, 23, 

25–27, 30, 32, 34}
Re={2–3, 5, 9, 14–18, 21, 24, 26, 30–31, 34}

He Re={1–3, 5–6, 14, 16, 17, 19} Re={5, 8, 9, 11, 14–17}
Pc Re={3, 5–7, 10} Re={1, 3, 5–7, 9–11}
Sl Re={1–10, 12, 15–17, 19–22, 24, 30, 35} Re={1, 3–7, 10–13, 16, 18, 21–23, 27–29}
Ob Re1={1–4, 7–8, 10–16} Re2={1, 3–4, 6–9, 11, 13, 15}
Gw Re1={1–3, 5, 7, 10, 11, 14} Re2={1–3, 5, 7, 9, 10, 12}
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