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Abstract
As spherical data (i.e. L

2
 normalized vectors) are often encountered in a variety of real-life applications (such as gesture 

recognition, gene expression analysis, etc.), sequential spherical data modeling has become an important research topic in 
recent years. Hidden Markov models (HMMs), as probabilistic graph models, have shown their effectiveness in modeling 
sequential data in previous research works. In this article, we propose a nonparametric hidden Markov model (NHMM) for 
modeling time series or sequential spherical data vectors. In our model, the emission distribution of each hidden state obeys 
a mixture of von Mises (VM) distributions which has better capability for modeling spherical data than other popular distri-
butions (e.g. the Gaussian distribution). As we construct our NHMM by leveraging a Bayesian nonparametric model namely 
the Dirichlet process, the amount of hidden states and the number of mixture components for each state can be automatically 
adjusted according to observed data set. In addition, to handle high-dimensional data sets which may contain irrelevant or 
noisy features, feature selection, which is the process of selecting the “best” feature subset for describing the given data 
set, is adopted in our framework. In our case, an unsupervised localized feature selection method is incorporated with the 
developed NHMM, which results in a unified framework that can simultaneously perform data modeling and feature selec-
tion. Our model is learned by theoretically developing a convergence-guaranteed algorithm through variational Bayes. The 
advantages of our model are demonstrated by conducting experiments on both synthetic and real-world sequential data sets.

Keywords  Hidden Markov model · Spherical data · Feature selection · Von Mises mixture · Dirichlet process · Variational 
Bayes

1  Introduction

With the rapid advancement in data acquisition technology, 
time series and sequential data modeling have become an 
important research topic in various domains, ranging from 
medical virus sequences and human genome sequences 
modeling [19], gesture recognition [31], abnormal behav-
iors detection [28] to text clustering [32]. One of the most 
powerful tools for modeling sequential data or time series is 

the hidden Markov model (HMM) [33, 34], which is a prob-
ability graphical model assuming that each data observation 
in a hidden state is generated based on a probability density 
(namely the emission distribution).

In the literature of HMMs, the Gaussian distribution or 
the Gaussian mixture model (GMM) are common choices 
as emission densities for HMMs to model continuous 
sequential observations [21, 41]. Nevertheless, a number of 
research works have shown that HMMs with other emis-
sion densities are better alternatives than Gaussian-based 
HMMs in various practical applications where data often 
possess non-Gaussian property (e.g. the distribution of 
data is normally not symmetric) [8, 11, 15, 30]. Among 
different types of data, the L2 normalized data, also called 
spherical data as they are defined on a unit hypersphere 
[29], have drawn considerable attention as they are usu-
ally confronted in many real-world applications [25, 29], 
such as gene expression clustering, fMRI data analysis, text 
clustering, etc. Moreover, in a variety of applications, the 
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L2 normalization is commonly adopted as an essential pre-
processing step to handel the issue of sparsity by restricting 
the data on a hypersphere. It also has been shown that the 
clustering performance can be improved for various models 
if L2 normalization is applied during training [2]. In contrast 
with other distributions, a reasonable choice for modeling 
spherical data is through directional distributions, such as 
the von Mises (VM) distribution [7, 12, 29], the von Mises-
Fisher (VMF) distribution [3, 29, 38], and the Watson dis-
tribution [14, 16, 36, 37]. Recently, an effective model has 
been proposed to model sequential spherical data based on 
HMM with VMF mixture models [15]. One limitation of this 
model is that the amount of hidden states for the HMM and 
the total number of VMF distributions for the VMF mixture 
model under each state are determined by treating the log-
likelihood function as the model selection criterion. This 
method, however, demands high-computational resources 
and is time-consuming, since it has to implement the model 
learning algorithm multiple times with different numbers 
of hidden states and mixture components in order to obtain 
the optimal solution with the highest model selection scores. 
Another limitation of the HMM in [15] and many other exit-
ing HMMs (such as [8, 11, 30], etc.) is that, they assume 
all features are equally important in data modeling. Never-
theless, this assumption is unsuccessful in real applications 
where high-dimensional data normally involve irrelevant 
features that may degrade the modeling performance. An 
effective solution to this problem is feature selection [17, 
26], which is the process of selecting the “best” feature 
subset for describing the given data set. Recently, a vari-
ety of feature selection techniques [1, 10, 20, 40] have been 
developed and shown their effectiveness for handling high-
dimensional data in different applications.

The goal of our work is to propose a novel nonparametric 
HMM (NHMM) for modeling sequential spherical observa-
tions. In our model, the emission distribution of each hid-
den state is distributed according to a VM mixture model 
which has better capability for modeling spherical data 
than other popular distributions (e.g. Gaussian distribu-
tion). Our NHMM is constructed by leveraging a Bayesian 
nonparametric framework namely as the Dirichlet process 
(DP) [39]. By applying the stick-breaking representation 
[35] of the DP in our NHMM, the amount of hidden states 
and the number of mixture components for each state can 
be automatically adjusted based on the observed data set. 
Moreover, to deal with high-dimensional data which may 
include irrelevant features, feature selection is adopted in 
our approach. Here, we formulate a unified framework which 
can simultaneously perform data modeling and feature selec-
tion by integrating an unsupervised localized feature selec-
tion method [13, 27, 42] in terms of feature saliency [24] 
with the proposed NHMM. The proposed model (namely 
VM-NHMM-Fs) is learned by theoretically developing 

a convergence-guaranteed algorithm based on variational 
Bayes (VB) [6, 22], which is a deterministic learning 
algorithm for approximating probability densities through 
optimization, and has been successfully applied in various 
Bayesian models. The advantages of our model are dem-
onstrated by conducting experiments on both synthetic and 
real-world sequential data sets.

We summarize the contributions of our work as follows.

–	 A novel NHHM with VM mixture models as its emission 
densities is proposed for modeling sequential spherical 
data;

–	 The total number of hidden states and mixture compo-
nents of our model are inferred automatically by leverag-
ing the nonparametric stick-breaking DP;

–	 We integrate our model with a localized feature selection 
method which results in a unified framework for both 
data modeling and feature selection;

–	 A convergence-guaranteed algorithm based on VB infer-
ence is theoretically developed to learn the proposed 
model.

We organize the following parts of our paper as follows. We 
start by presenting the VM based NHMM with unsuper-
vised localized feature selection in Sect. 2. We develop an 
effective approach based on VB inference in Sect. 3 to learn 
the proposed model. In Sect. 4, we report the experimental 
results using both synthetic and real-world data sets. Finally, 
we provide the conclusion in Sect. 5.

2 � The nonparametric HMM with VM mixture 
model and localized feature selection

2.1 � The VM mixture model with localized feature 
selection

A proper choice to model a D-dimensional spherical (i.e. L2 
normalized ) vector y = {yd}

D
d=1

 is the D-dimensional von 
Mises (VM) distribution [29]

where ‖y‖2 = 1 , xd = (xd1, xd2) , and xd1 = yd . It is notewor-
thy that xd2 is included in the vector xd to attain the L2 nor-
malization of xd (i.e., ‖xd‖2 = 1 ). I0(⋅) represents the modi-
fied Bessel function of the first kind of order 0 [29]. The 
parameter � = {�d}

D
d=1

 indicates the mean direction, and 

(1)

p(y|�,�) =
D∏

d=1

VM
(
xd|�d, �d

)

=

D∏

d=1

1

2�I0(�d)
exp

(
�d�

T
d
xd

)
,
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� = {�d}
D
d=1

 in (1) represents the concentration parameter, 
where �d = (�d1,�d2) and �d ≥ 0.

A more flexible and powerful way to model the L2 nor-
malized D-dimensional vector y is though a mixture of K 
VM distributions as

where c = {ck}
K
k=1

 , 
∑K

k=1
ck = 1 represent mixing coeffi-

cients. As we may notice, all features in this VM mixture 
model (2) are equally treated. In practical applications, how-
ever, high-dimensional data often include noise or features 
that are irrelevant to the corresponding task. In our work, 
we solve this issue by adopting an unsupervised localized 
feature selection method [27]. The main idea is to assume 
that irrelevant features of the VM mixture model are distrib-
uted according to a common VM distribution that does not 
depend on class labels

where the binary variable zkd represents the feature relevancy 
in the kth component of the VM mixture model. If zkd equals 
0, it means that the dth feature associated with the kth VM 
density is irrelevant and is distributed as VM(xd|��

kd
, ��

kd
) . 

When zkd equals 1, it indicates that the dth feature is relevant 
and follows the VM distribution VM(xd|�kd, �kd).

2.2 � The VM‑NHMM with localized feature selection

In this part, we propose a nonparametric HMM (NHMM) 
which is formulated through the stick-breaking representa-
tion of the DP. If an infinite VM mixture model (i.e. a VM 
mixture model with an infinite number of components) with 
localized feature selection is considered as the emission den-
sity of the NHMM with an infinite number of states, then the 
resulting VM-NHMM-Fs model can be defined with param-
eters � = {�,A,C,�} , where � = {�i}

∞
i

 denotes the initial 
state probability matrix, A = {aij}

∞,∞

i,j
 represents the state 

transition matrix, C = {cik}
∞,∞

i,k
 is the mixing coefficient 

matrix, and � = {�,�,��,��} denotes the set of parameters 
that governs the VM densities with � = {�ikd}

∞,∞,D

i,k,d
 , 

� = {�ikd}
∞,∞,D

i,k,d
 , �� = {��

ikd
}
∞,∞,D

i,k,d
 , �� = {��

ikd
}
∞,∞,D

i,k,d
.

Given a sequence of T observations Y = {yt}
T
t
 , where 

yt = {ytd}
TD
td

 represents the feature vector at time t. 
S = {st}

T
t
 , where st ∈ [1,∞] indicates the hidden state asso-

ciated with the tth observation. L = {lt}
T
t
 , where lt ∈ [1,∞] 

indicates from which component of the VM mixture model 
that the tth observation is generated. The latent variable 
z = {ztikd}

T ,∞,∞,D

t,i,k,d
 represents the saliencies of different fea-

tures in different components.

(2)p(y|c,�,�) =
K∑

k=1

ck

D∏

d=1

VM(xd|�kd, �kd),

(3)p(yd) = VM
(
xd|�kd, �kd

)zkdVM
(
xd|��

kd
, ��

kd

)1−zkd ,
The model diagram of VM-NHMM-FS is shown in Fig. 1, 

and the probability distribution of this model is given by

where p(yt|�, zt) denotes the VM density with feature selec-
tion and can be represented by

Therefore, we can represent the likelihood of parameters � 
for the data sequence Y as

2.3 � Priors over model parameters

Since the proposed VM-NHMM-Fs is a Bayesian model, each 
unknown variable is associated with a prior distribution. The 
prior probability of the indicator variable z is defined by

where �ikd represents the feature saliency indicating whether 
the dth feature in the kth component associated with the ith 
state is relevant.

(4)p(Y , S, L|z,�) = �s1

[ T−1∏

t=1

astst+1

][ T∏

t=1

cstlt p(yt|�, zt)

]
,

(5)

p
(
yt|�, zt

)

=

D∏

d=1

[
VM

(
xtd|�stltd

, �stltd
)ztst lt dVM

(
xtd|��

stltd
, ��

stltd

)1−ztst ltd
]
.

(6)p(Y|�) =
∑

S,L

�s1

[ T−1∏

t=1

astst+1

][ T∏

t=1

cstlt p(yt|�, zt)

]
.

(7)p(z|�) =
T∏

t=1

∞∏

i=1

∞∏

k=1

D∏

d=1

�
ztikd
ikd

(1 − �ikd)
1−ztikd ,

Fig. 1   Graphical model of the proposed VM-NHMM-Fs
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For parameters � , � , �′ , and �′ of the VM distributions, 
von Mises-Gamma priors are adopted

where mikd =
(
mikd1,mikd2

)
 and m�

ikd
=
(
m�

ikd1
,m�

ikd2

)
.

In our model, similar to [9], we adopt a nonparametric DP 
[39] as the prior over parameters �′ , A and C. According to 
the stick-breaking representation of the DP [35], �i , cik and 
aij can be represented by

where �′ , A′ and C′ are distributed according to Beta 
distributions

3 � Model learning algorithm based on VB 
inference

In this section, we systematically develop an effective learn-
ing approach which is tailored for learning the proposed 
VM-NHMM-Fs through variational Bayes (VB). In our case, 
our goal is to discover a proper approximation q(S, L, z,�) to 
the true posterior p(S, L, z,�|Y) , where {S, L, z,�} denotes 

(8)

p(�,�)

=

∞∏

i=1

∞∏

k=1

D∏

d=1

VM
(
�ikd|mikd, �ikd�ikd

)
G
(
�ikd|uikd, vikd

)
,

(9)

p
(
��,��

)

=

∞∏

i=1

∞∏

k=1

D∏

d=1

VM
(
��
ikd
|m�

ikd
, ��

ikd
��
ikd

)
G
(
��
ikd
|u�

ikd
, v�

ikd

)
,

(10)�i = ��
i

i−1∏

n=1

(1 − ��
n
),

(11)aij = a�
ij

j−1∏

n=1

(
1 − a�

in

)
,

(12)cik = c�
ik

k−1∏

n=1

(
1 − c�

in

)
,

(13)p(��) =

∞∏

i=1

Beta
(
1,��

i

)
=

∞∏

i=1

��
i

(
1 − ��

i

)��
i
−1
,

(14)

p(A�) =

∞∏

i=1

∞∏

j=1

Beta(1,�A
ij
) =

∞∏

i=1

∞∏

j=1

�A
ij

(
1 − a�

ij

)�A
ij
−1

,

(15)

p(C�) =

∞∏

i=1

∞∏

k=1

Beta(1,�C
ik
) =

∞∏

i=1

∞∏

k=1

�C
ik

(
1 − c�

ik

)�C
ik
−1
.

the set of latent and unknown variables in VM-NHMM-Fs 
as described previously. To obtain a tractable inference pro-
cedure, we apply the mean-field theory [4] as

The approximations q(z) , q(S, L) and q(�) (also known as 
variational posteriors) in VB inference can be found by max-
imizing the objective function, which is the evidence lower 
bound (ELBO) and is defined by

In addition, the truncation technique [5] is adopted to trun-
cate the variational posteriors at finite numbers of hidden 
states and mixture components at N and K, respectively as

where N and K will be inferred automatically during the VB 
learning process.

3.1 � Optimizing variational posteriors q(��
) , q(C�) 

and q(A�)

The variational posteriors of the initial state probability 
matrix q(��) , the state transition matrix q(A�) , and the mix-
ing coefficient matrix q(C�) can be optimized by maximizing 
the ELBO in (17) as

(16)q(z, S, L,�) = q(z)q(S, L)q(�).

(17)

ELBO(q) =∫ q(z, S, L,�) ln
p(Y , z, S, L,�)

q(z, S, L,�)
dzdSdLd�

= ELBO
(
q
(
��
))

+ ELBO(q(A�)) + ELBO(q(C�))

+ ELBO(q(�)) + ELBO(q(z)) + Constant.

(18)𝜋�
N
= 1,

N∑

i=1

𝜋i = 1, 𝜋i = 0 if i > N,

(19)a�
iJ
= 1,

N∑

j=1

aij = 1, aij = 0 if j > N,

(20)c�
iK

= 1,

K∑

k=1

cik = 1, cik = 0 if k > K,

(21)q(��) =

N∏

i=1

Beta

(
��
i
|Ŵ�

i
, W̃�

i

)
,

(22)q(A�) =

N∏

i=1

N∏

j=1

Beta

(
a�
ij
|ŴA

ij
, W̃A

ij

)
,

(23)q(C�) =

N∏

i=1

K∏

k=1

Beta

(
c�
ik
|ŴC

ik
, W̃C

ik

)
,
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where the hyperparameters of the above variational poste-
riors are given by

where the classic forward-backward algorithm as described 
in [34] is adopted to compute q(s1) , q(st, st+1) and q(st, lt).

3.2 � Optimizing variational posterior q(z)

By maximizing the ELBO with respect to the feature saliency 
indicator z , we can optimize the variational posterior q(z) as

where �tikd can be computed by

(24)Ŵ�
i
= 1 + q(s1 = i),

(25)W̃�
i
= ��

i
+

N∑

n=i+1

q(s1 = n),

(26)ŴA
ij
= 1 +

T−1∑

t=1

q
(
st = i, st+1 = j

)
,

(27)W̃A
ij
= �A

ij
+

T−1∑

t=1

N∑

n=j+1

q
(
st = i, st+1 = n

)
,

(28)ŴC
ik
= 1 +

T∑

t=1

q(st = i, lt = k),

(29)W̃C
ik
= �C

ik
+

T∑

t=1

K∑

n=k+1

q
(
st = i, lt = n

)
,

(30)q(z) =

T∏

t=1

N∏

i=1

K∏

k=1

D∏

d=1

�
ztikd
tikd

(1 − �tikd)
1−ztikd ,

(31)�tikd =
exp

(
�̃tikd

)

exp
(
�̃tikd

)
+ exp

(
�̂tikd

) ,

(32)

�𝜑tikd = q(st = i, lt = k)

�
⟨𝜆ikd�T

ikd
xtd⟩

−

�
𝜕

𝜕𝜆ikd
ln I0(𝜆̄ikd)

��
⟨𝜆ikd⟩ − 𝜆̄

(t−1)

ikd

�

− ln I0
�
𝜆̄ikd

��
+ ln 𝜁ikd,

where ⟨⋅⟩ denotes the calculation of expectation, 
𝜕

𝜕𝜆ikd
ln I0

(
𝜆̄ikd

)
=

I1(𝜆̄ikd)
I0(𝜆̄ikd)

 is obtained based on the property 
I�
0
(�) = I1(�) of the modified Bessel function as discussed 

in [38].
The saliency of the dth feature in the kth component for the 

ith hidden state can be calculated by setting the derivative of 
ELBO with respect to �ikd to zero as

where the expectation ⟨ztikd⟩ = �tikd.

3.3 � Optimizing variational posterior q(�)

Through the maximization of the ELBO with respect to 
� = {�,�,��,��} , the variational posteriors of the VM dis-
tributions q(�,�) and q

(
�′,�′

)
 can be obtained by

where the hyperparameters can be computed by

(33)

�𝜑tikd =q(st = i, lt = k)

�
⟨𝜆�

ikd
��T
ikd
xtd⟩

−

�
𝜕

𝜕𝜆�
ikd

ln I0(𝜆̄
�
ikd
)

��
⟨𝜆�

ikd
⟩ − 𝜆̄�

ikd

�

− ln I0
�
𝜆̄�
ikd

��
+ ln(1 − 𝜁ikd),

(34)�ikd =
1

T

T�

t=1

⟨ztikd⟩,

(35)

q(�,�)

=

N∏

i=1

K∏

k=1

D∏

d=1

VM
(
�ikd|m∗

ikd
, �∗

ikd
�ikd

)
G
(
�ikd|u∗ikd, v

∗
ikd

)
,

(36)

q
(
��,��

)

=

N∏

i=1

K∏

k=1

D∏

d=1

VM
(
��
ikd
|m�∗

ikd
, ��∗

ikd
��
ikd

)
G
(
��
ikd
|u�∗

ikd
, v�∗

ikd

)
,

(37)�∗
ikd

= ‖�ikdmikd +

T�

t=1

q(st = i, lt = k)⟨ztikd⟩xtd‖,

(38)m
∗
ikd

=
1

�∗
ikd

�
�ikdmikd +

T�

t=1

q(st = i, lt = k)⟨ztikd⟩xtd
�
,

(39)u∗
ikd

= uikd + 𝛽∗
ikd
𝜆̄ikd

(
𝜕

𝜕𝛽∗
ikd
𝜆ikd

ln I0(𝛽
∗
ikd
𝜆̄ikd)

)
,
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3.4 � Optimizing variational posterior q(S, L)

Lastly, the joint variational posterior q(S, L) is optimized (S 
represents the state indicator and L denotes the mixture com-
ponent indicator) by maximizing the ELBO with respect to 
S and L

where

(40)

v∗
ikd

= vikd +

T�

t=1

q(st = i, lt = k)⟨ztikd⟩
�

𝜕

𝜕𝜆ikd
ln I0

�
𝜆̄ikd

��

+ 𝛽ikd

�
𝜕

𝜕𝛽ikd𝜆ikd
ln I0(𝛽ikd𝜆̄ikd)

�
,

(41)��∗
ikd

= ‖��
ikd
m

�
ikd

+

T�

t=1

q(st = i, lt = k)⟨1 − ztikd⟩xtd‖,

(42)

m
�∗
ikd

=
1

��∗
ikd

�
��
ikd
m

�
ikd

+

T�

t=1

q(st = i, lt = k)⟨1 − ztikd⟩xtd
�
,

(43)u�∗
ikd

= u�
ikd

+ 𝛽�∗
ikd
𝜆̄�
ikd

(
𝜕

𝜕𝛽�∗
ikd
𝜆�
ikd

ln I0(𝛽
�∗
ikd
𝜆̄�
ikd
)

)
,

(44)

v�∗
ikd

= v�
ikd

+

T�

t=1

q(st = i, lt = k)⟨1 − ztikd⟩
�

𝜕

𝜕𝜆�
ikd

ln I0(𝜆̄
�
ikd
)

�

+ 𝛽�
ikd

�
𝜕

𝜕𝛽�
ikd
𝜆�
ikd

ln I0(𝛽
�
ikd
𝜆̄�
ikd
)

�
.

(45)q(S, L) =
1

�
�∗
s1

T−1∏

t=1

a∗
stst+1

T∏

t=1

c∗
st ,lt

p∗
(
yt|�, zt

)
,

(46)
�∗
i
= exp

{
�
(
Ŵ�

i

)
− �

(
Ŵ�

i
+ W̃�

i

)
+

i−1∑

n=1

[
�
(
W̃�

n

)

− �
(
Ŵ�
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n

)]}
,

where � in (45) is the normalizing constant and is given by

It is noteworthy that (50) can be considered as the approxi-
mation to the likelihood of the model with optimized param-
eters �∗ , as we compare (50) with (6).

Algorithm 1 provides the VB inference algorithm for 
learning the VM-NHMM-Fs model. This learning algorithm 
is guaranteed to converge as the ELBO in (17) is convex 
with respect to each variational posterior [4]. By monitor-
ing the variation of the ELBO, we can easily discover the 
convergence status if the difference of the values of ELBO 
between two consecutive iterations is less than some prede-
fined threshold. 

(47)
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= exp
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ŴA

in
+ W̃A

in

)]}
,

(48)
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,

(49)
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−
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,

(50)� = q(X|�∗) =
∑

S,L

�∗
s1

T−1∏

t=1

a∗
stst+1

T∏

t=1

c∗
st ,lt

p∗
(
yt|�, zt

)
.

Table 1   The parameters for 
generating the 3 relevant 
features for the 15-dimensional 
data set, where S1 and S2 
indicate state 1 and state 2, 
respectively; n

k
 denotes the 

number of data points that are 
generated from the kth VM 
density, d represents the feature 
number

S1 S2

k n
k

d � � k n
k

d � �

1 750 1 (0.8575,0.5145) 3 1 750 1 (0.7071,0.7071) 8
2 (0.3162,0.9487) 8 2 (0.8321,0.5547) 6
3 (0.7649,0.6441) 16 3 (0.7682,0.6402) 10

2 750 1 (0.9751,0.2216) 10 2 750 1 (0.4472,0.8944) 20
2 (0.5647,0.8253) 5 2 (0.6690,0.7433) 15
3 (0.3511,0.9363) 20 3 (0.8480,0.5300) 6
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4 � Experimental results

The proposed nonparametric HMM with localized feature 
selection (VM-NHMM-Fs) is evaluated through experi-
ments on both synthetic and real-world time series or 
sequential data sets. We set the initial truncation values of 
N and K in our experiments as 20 and 30, respectively. The 
initial value of the hyperparameter � of the feature sali-
ency is set to 0.5. The hyperparameters �� , �A and �C of 
the stick-breaking representation are all initialized to 0.5. 
The hyperparameters m and m′ are initialized as the aver-
age of the data set. The other hyperparameters are initial-
ized as: (�, ��, u, u�, v, v�) = (0.01, 0.01, 0.3, 0.3, 0.05, 0.05) . 
We report the experimental results using the average 
performance of our model based on 20 runs for all 
experiments.

4.1 � Experiments on synthetic sequential data

In this part, a synthetic sequential data set is generated to 
validate the effectiveness of the proposed learning approach 
to inferencing parameters and selecting important features 
for the proposed VM-NHMM-Fs.

Our synthetic sequential data set contains a sequence 
of 3000 data points that were generated based on 2 hidden 
states, where State 1 is used to generate the sequential obser-
vations at t = 1 ∶ 1500 , while state 2 is in charge of generat-
ing the sequential observations at t = 1501 ∶ 3000 . In each 
state, a mixture of two 3-dimensional VM densities corre-
sponding to relevant features (i.e. we have 3 relevant features 

in total) was used as the emission density. The parameters 
that were adopted for generating the 3 relevant features are 
shown in Table 1. Then, we generated 12 irrelevant features 
according to a common VM distribution using parameters 
� = (0, 1) and � = 1 and appended these features to the 3 
relevant features to form a 15-dimensional data set.

To verify the “correctness” of the proposed VB learning 
algorithm, we compared the discrepancy between the true 
values of the parameters for generating the data set and the 
corresponding estimated values as in [3]. The comparison 
results of parameters for generating the synthetic sequential 
data set are demonstrated in Tables 2 and 3 , under state 1 
and state 2, respectively. From these tables, we can see that 
the proposed VB inference algorithm can accurately esti-
mate model parameters which illustrates the effectiveness 
of our VB algorithm.

Table 2   The comparison of the true and the estimated parameters by 
the proposed VM-NHMM-Fs under State 1 for the synthetic data set

min�⊤�� avg�⊤��
max

|�−�̂|
|�| avg

|�−�̂|
|�|

max
|�−�̂|
|�| avg

|�−�̂|
|�|

0.997 0.998 0.002 0.004 0.001 0.003

Table 3   The comparison of the true and the estimated parameters by 
the proposed VM-NHMM-Fs under State 2 for the synthetic data set

min�⊤�� avg�⊤��
max

|�−�̂|
|�| avg

|�−�̂|
|�|

max
|�−�̂|
|�| avg

|�−�̂|
|�|

0.998 0.997 0.003 0.002 0.001 0.002
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Next, we test the performance of feature selection of our 
VM-NHMM-Fs on the synthetic data set. The results of fea-
ture selection in terms of feature saliency (i.e. the values of 
{�d} ) are demonstrated in Fig. 2. According to the results 
shown in this figure, it is obvious that high degree of rel-
evancies (i.e. above 0.9) have been assigned to the first three 
features while the remaining 12 features are considered as 
irrelevant features due to their low degrees of saliencies (i.e. 
close to 0). These results are consistent with the true settings 
of the synthetic sequential data set.

4.2 � Experiments on real data sets

4.2.1 � Data sets and experimental settings

In this part, the effectiveness of the proposed VM-NHMM-
Fs was validated by conducting experiments on real sequen-
tial data sets in terms of unsupervised clustering applica-
tions. We adopted two real data sets from the UCI machine 
learning repository1, including the gesture phase segmenta-
tion data set and the epileptic seizure recognition data set.

The gesture phase segmentation data set contains seven 
recorded videos consisted in a temporal segmentation of ges-
tures (rest, preparation, stroke, hold and retraction) using 
Microsoft Kinect sensor. In our case, we teste the perfor-
mance of VM-NHMM-Fs on three videos of this data set: 
A1 (1747 frames), A2 (1264 frames) and A3 (1834 frames), 

where each video includes the original version and a pro-
cessed version. 50 features are extracted based on this data 
set, from which 18 features are obtained based on original 
videos and 32 features are extracted from processed videos.

The epileptic seizure recognition data set that we adopted 
is a pre-processed version of a data set regarding epileptic 
seizure detection as described in the UCI machine learn-
ing repository. It contains 11500 observations, where each 
observation consists of 178 data points, where each data 
point represents the value of the EEG observed at a differ-
ent point in time. It contains five classes: (1) the EEG of 
seizure activity; (2) the EEG from the area where the tumor 
was located; (3) the EEG from the healthy brain area; (4) the 
EEG of the patient had their eyes closed; (5) the EEG of the 
patient had their eyes open.

In our experiment, these two data sets were L2 normalized 
and then modeled by the proposed VM-NHMM-Fs. In order 
to demonstrate the advantages of our model, we compared it 
with other well-defined HMMs that employ different mixture 
models: the HMM with Gaussian mixture models (GMM-
HMM) [21], the HMM with Gaussian mixture models and 
unsupervised feature selection (GMM-HMM-Fs) [43], the 
HMM with Dirichlet mixture model (DMM-HMM) [11], 
the HMM with inverted Dirichelt mixture model (IDMM-
HMM) [30] and the HMM with VMF mixture models 
(VMF-HMM) [15]. Furthermore, to evaluate the impor-
tance of integrating feature selection in our model, we 
respectively applied the proposed model with localized fea-
ture selection (VM-NHMM-Fs) and without it (denoted by 
VM-NHMM). For the tested models, we adopted the same 

Fig. 2   Average feature saliences 
on the synthetic data set by 
VM-NHMM-FS plus and minus 
one standard deviation over 20 
runs

1  https://​archi​ve.​ics.​uci.​edu.

https://archive.ics.uci.edu
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parameter values as in their original papers. All tested mod-
els were implemented on the same data sets as described in 
our experiments.

In our experiment, we set the initial size of states for 
two data sets as N = 20 , and the optimal number of states 
was automatically determined in the process of model 
learning. According to the results obtained by the pro-
posed VM-NHMM-Fs, the gesture phase segmentation 
data set and the epileptic seizure recognition data set even-
tually converged to 3 and 2 states, respectively. For other 
tested approaches, the number of hidden states were set 
manually. Table 4 shows the recognition performance by 
different models on the two real data sets. As can be seen 
from this table, both VM-NHMM-Fs and VM-NHMM 
are able to outperform other HMM-based approaches 
with higher recognition accuracies for all data sets, which 

verified the merits of applying nonparametric VM-based 
HMMs for modeling gestures and EEG data. Another 
advantage of our approach is that, in contrast with other 
tested HMM-based approaches in which the number of 
clusters was determined through an extra evaluation step 
based on model selection scores, this number in our case 
was automatically determined during the inference proce-
dure thanks to the nonparametric framework of Dirichlet 
process. According to Table 4, we may also notice the 
improvement of the performance when feature selection 
is integrated with VM-NHMM, by comparing the results 
of VM-NHMM-Fs with that of VM-NHMM.

The obtained feature saliencies of the 50-dimensional 
gesture phase data vectors of the resting phase by VM-
NHMM-FS are shown in Fig. 3. It can be seen from this 
figure that there are 7 features that have obtained low 
degrees of relevance (i.e. saliencies are less than 0.5). 
Therefore, these features are considered as irrelevant 
features in the modeling process. On the other hand, the 
remaining features are considered as relevant features as 
they have high-level feature saliencies (i.e. greater than 
0.5). Figure 4 illustrates the results of feature saliencies 
obtained by VM-NHMM-FS for the class of seizure activ-
ity of the epileptic seizure recognition data set. Based on 
this figure, different features have different contributions 
in the task of epileptic seizure recognition, where 22 of 
the 178 features have obtained relatively low saliencies 
(i.e. less than 0.5) and therefore have less contributions 
in data modeling.

Table 4   The average recognition performance over 20 runs by differ-
ent approaches

Methods Gesture phase Epileptic seizure

GMM-HMM [21] 0.806 ± 0.007 0.716 ± 0.010

GMM-HMM-Fs [43] 0.821 ± 0.014 0.738 ± 0.018

DMM-HMM [11] 0.827 ± 0.009 0.732 ± 0.015

IDMM-HMM [30] 0.843 ± 0.012 0.749 ± 0.012

VMF-HMM [15] 0.861 ± 0.015 0.785 ± 0.013

VM-NHMM 0.875 ± 0.012 0.797 ± 0.009

VM-NHMM-Fs 0.903 ± 0.010 0.811 ± 0.012

Fig. 3   Average feature saliences 
for the resting phase of the 
gesture phase segmentation data 
set by VM-NHMM-FS plus and 
minus one standard deviation 
over 20 runs
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5 � Conclusion

In this work, a nonparametric HMM has been proposed for 
modeling time series or sequential spherical data vectors. 
In our model, the emission distribution of each hidden state 
obeys a mixture of VM distributions which has shown better 
capability for modeling spherical data than other commonly 
used distributions (such as the Gaussian distribution). We 
constructed our NHMM by leveraging a Bayesian nonpara-
metric DP framework, and therefore the amount of hidden 
states and the number of mixture components for each state 
can be automatically adjusted according to observed data set. 
In addition, to deal with high-dimensional data sets which 
may contain irrelevant or noisy features, an unsupervised 
localized feature selection method was incorporated with 
the proposed NHMM, which results in a unified framework 
that can simultaneously perform data modeling and feature 
selection. The proposed model was learned by developing 
an effective algorithm based on VB inference. The advan-
tages of our model were demonstrated through both simu-
lated and real-world data sets. Particularly, according to 
the experimental results, our model was able to outperform 
other tested HMM-based models by at least 4.2% in gesture 
recognition and at least 2.6% in epileptic seizure recognition.

One limitation of the proposed NHMM is that it is not 
very efficient for dealing with large-scale data sets. This is 
mainly caused by the batch learning strategy of the con-
ventional VB inference adopted in our work. Thus, a pos-
sible future work is to extend the developed VB inference 
algorithm with stochastic variational Bayes (SVB) [18], 
which has shown its efficiency in learning over large data 

sets through stochastic optimization. Moreover, in recent 
years, deep learning techniques have been successfully 
applied in different fields owing to their promising capabili-
ties of automatically extracting meaningful representations 
from observed data. Therefore, another interesting future 
work is to integrate deep neural networks (e.g. variational 
auto-encoder [23]) with the proposed NHMM to improve its 
performance by leveraging the more representative features 
learned by these deep learning techniques.
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