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Abstract
Multi-domain sentiment classification deals with the scenario where labeled data exists for multiple domains but is insuffi-
cient for training effective sentiment classifiers that work across domains. Thus, fully exploiting sentiment knowledge shared 
across domains is crucial for real-world applications. While many existing works try to extract domain-invariant features 
in high-dimensional space, such models fail to explicitly distinguish between shared and private features at the text level, 
which to some extent lacks interpretability. Based on the assumption that removing domain-related tokens from texts would 
help improve their domain invariance, we instead first transform original sentences to be domain-agnostic. To this end, we 
propose the BERTMasker model which explicitly masks domain-related words from texts, learns domain-invariant sentiment 
features from these domain-agnostic texts and uses those masked words to form domain-aware sentence representations. 
Empirical experiments on the benchmark multiple domain sentiment classification datasets demonstrate the effectiveness of 
our proposed model, which improves the accuracy on multi-domain and cross-domain settings by 1.91% and 3.31% respec-
tively. Further analysis on masking proves that removing those domain-related and sentiment irrelevant tokens decreases 
texts’ domain separability, resulting in the performance degradation of a BERT-based domain classifier by over 12%.

Keywords  Natural language processing · Sentiment analysis · Cross domain · Masking

1  Introduction

Sentiment classification [17, 22, 32] is one of the key tasks 
in Natural Language Processing. The recent success of 
sentiment classification relies heavily on deep neural net-
works trained with a large number of carefully annotated 
data. However, as the diversity of domains leads to the dis-
crepancy of sentiment features, models trained on existing 
domains may not perform ideally on the domain of interest. 
Meanwhile, as not all domains have adequate labeled data, 
it is necessary to leverage existing annotations from multiple 

domains. For instance, in both DVD and Video domains, 
picture and animation can be opinion targets and thrilling 
and romantic are frequent polarity words. Exploiting such 
sharedness would help improve both in-domain and out-of-
domain sentiment classification results.

In this work, we focus on the task of multi-domain senti-
ment classification (MDSC) where we need to make full use 
of limited annotated data and large unlabeled data from each 
domain to train a classifier that achieves the best average 
performance on all domains. There exist two major lines 
of work attempting to tackle this challenge. One line is to 
exploit the shared-private framework [1, 28], where domain-
agnostic features are captured by the networks shared across 
all domains and domain-specific representations by the 
feature extractor of each domain. [4, 19] applied domain 
adversaries to shared features for better learning of domain-
invariant representations. The other major line of work [2, 
20, 33] implicitly utilized such share-private ideas where 
they first learned domain-specific query vectors (or domain 
embeddings) and then used these to compose domain-aware 
representation by attending features from shared sentence 

 *	 Bing Qin 
	 qinb@ir.hit.edu.cn

	 Jianhua Yuan 
	 jhyuan@ir.hit.edu.cn

	 Yanyan Zhao 
	 yyzhao@ir.hit.edu.cn

1	 Faculty of Computing, Harbin Institute of Technology, 
Harbin 150001, China

2	 Pengcheng Lab, Shenzhen 518066, China

http://orcid.org/0000-0002-2543-5604
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-022-01556-0&domain=pdf


2712	 International Journal of Machine Learning and Cybernetics (2022) 13:2711–2724

1 3

encoder. So far, these two major methods have not been 
effectively combined.

While shared-private models learn domain-agnostic fea-
tures in vector space, the discrimination between shared and 
private features cannot be directly interpreted to humans at 
the text-level. Therefore, we propose to distinguish domain-
related and domain-agnostic tokens before further feature 
extractions, based on the intuition that removing domain-
related words from texts would help improve their domain-
invariance. Given two sentences from Sports and Book 
domains respectively in Fig. 1, after removing domain-
related words like helmet from Sports domain and cookbook 
from Book domain, these sentences become more domain-
agnostic. Meanwhile, the most salient sentiment-related 
semantics are mostly preserved in the remaining texts. In this 
way, it would be possible to tell what features are domain-
related and what features are shared by all domains to some 
extent.

To combine the advantage of both paradigms in multi-
domain sentiment analysis, a model should employ the 
shared-private framework, where the shared part learns 
domain-agnostic sentiment features and the private part 
captures a domain-aware sentiment representation based 
on the shared feature extractors (contrary to using separate 
extractors for each domain in [19]). To learn good shared 
sentiment features with better interpretability at the text 
level, a model should be capable of discriminating between 
domain-related and domain agnostic tokens at first. To this 
end, we propose the BERTMasker model. The BERTMasker 
model learns to first select domain-related tokens from texts, 
then masks those tokens from the original text and acquires 
domain-agnostic sentiment features for the shared part. As 
the masked tokens are domain-related, they are appropri-
ate for learning domain-aware sentiment representations of 
texts from different domains. We incorporate this advantage 
into the private part of BERTMasker. Since simple models 
are not adequate for learning good sentiment features from 
fractional texts, we turn to BERT [5] for text encoding as it 
shares a similar input format during its pre-training phase 
of Masked Language Model (MLM). Motivated by previ-
ous work [26] utilizing Next Sentence Prediction task in 

BERT, we also expect inputting texts with [MASK] at both 
training and inference time would boost the performance in 
multi-domain sentiment analysis tasks. Though we have no 
accurate prior knowledge of what domain-related tokens are, 
the BERTMasker takes a detour of learning domain-related 
tokens as we have some knowledge of what domain-related 
tokens should not be for our sentiment classification task. 
In other words, tokens from general sentiment lexicons and 
commonly used stopwords are domain-agnostic. We enhance 
this prior knowledge as constraints to our model and train a 
domain classifier to guide more accurate learning of domain-
related tokens. Those tokens play important roles in learning 
both shared and private sentiment features.

Our contributions can be summarized as follows:

•	 We propose a novel model named BERTMasker to better 
learn shared representation across domains by masking 
domain-related tokens from texts.

•	 Our model combines both shared-private framework and 
domain-aware feature learning, where the token masking 
network in the shared part learns domain-invariant text 
transformation and in the private part aggregates domain-
aware sentiment features.

•	 Evaluation results on benchmark multi-domain sentiment 
classification datasets demonstrate the superiority of our 
proposed model. Further analyses on masked tokens and 
remaining texts prove the plausibility and effectiveness 
of the token masking mechanism.

2 � Related work

Our work uses a BERT-based model for multi-domain sen-
timent classification. We describe related work from these 
two perspectives. Since our model learns to mask domain-
informative words, we also discuss relate work in domain 
words extraction for sentiment analysis.

2.1 � Multi‑domain sentiment classification

The task of multi-domain sentiment classification [16] aims 
at training models that leverage data from multiple domains 
to improve the overall classification performance on all 
domains. Currently, there exist mainly two lines of related 
methods. One line of methods [1, 4, 19, 20] is to exploit 
shared-private framework, where domain-agnostic features 
are usually captured with adversarial training or gradient 
reversal layer [6] at the shared part. Meanwhile, domain-
specific representations are learned by feature extractors of 
each domain. Further, [3, 7] apply mixture-of-expert [13] 
approach to explicitly capture knowledge shared among sim-
ilar domains. The other line of methods [2, 33] is to learn 
domain representations through domain classification and 

Fig. 1   Two examples from Sports and Books domains that illustrate 
our motivation for transforming sentences to be domain-invarint by 
masking domain-related words in square brackets
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use these as queries to acquire domain-sensitive representa-
tions of input texts.

Our proposed BERTMasker combines the power of both 
paradigms. It employs a shared-private framework. It first 
learns to select domain-related words. Then, our model 
obtains shared sentiment features by exploiting texts without 
those words and uses these selected words to obtain domain-
aware sentiment representations.

2.2 � BERT‑based models in sentiment analysis

BERT is one of the key techniques in the recent advances of 
contextualized representation learning [5, 8, 21, 23]. Its suc-
cess relies on two pre-training tasks, namely Masked Lan-
guage Model (MLM) and Next Sentence Prediction (NSP). 
Currently, there are mainly two ways to utilize BERT for 
downstream tasks. One is fine-tuning for each end task. For 
instance, to make the input format consistent with that of 
NSP, [26] constructs auxiliary sentences for aspect-based 
sentiment classification in four ways. And the other is inject-
ing task-specific knowledge [15, 27] using new pre-training 
tasks. Such injections are usually done along with MLM 
where other objectives like POS tag, sentiment polarity [15], 
and sentiment targets [27] are introduced.

Our work is partially motivated by [26], as we both 
transform inputs to have the same format as one of the pre-
training tasks of BERT (they use NSP while we use MLM 
instead). As MLM aims at predicting masked words based 
on context from both left and right, the BERT model can 
recover the semantic of the current word being masked. In 
other words, the BERT model could retain most of the fea-
tures of the sentences while a small portion of its constituent 
tokens being masked. We make use of this advantage and 
design a model that could automatically learn to mask some 
(domain-related) words. In this way, a sentence could be 
transformed to be domain-invariant while still retaining its 
most salient sentiment features.

2.3 � Domain words extraction

Domain words are usually referred to as domain-dependent 
sentiment words and target words in texts that are closely 
related to sentiment. Extracting those sentiment and tar-
get words is crucial for opinion mining. [9] proposed a 
dictionary-based method to extract sentiment words and 
used association-rules to identify target words. [24] intro-
duced a semi-supervised double-propagation method to 
extract sentiment words and target words using syntactic 
rules and manually collected seed words. [18] utilized an 
RNN-based sequence labeling model to identify senti-
ment expressions in a supervised manner. [12] leveraged an 
LSTM-based model to extract target words. Similar to [9], 
we use a manual collected sentiment lexicon. However, in 

our work, domain-informative tokens are not extracted by 
sequence labeling systems or syntactic rule-based methods. 
Instead, domain-informative tokens are selected according 
to whether they contribute to the identification of their corre-
sponding domains. Besides, those domain words are jointly 
constrained by the sentiment classification task.

3 � Model

3.1 � Overview

An overview of our model is shown in Fig. 2. Basically, 
our model adopts the popular adversarial shared-private 
framework, where the shared part (the left part in Fig. 2) 
is utilized for extracting domain-invariant features and the 
private part (the right part in Fig. 2) for learning domain-
specific features. For a given sentence, BERTMasker first 
encodes representations of each word in its context. Then it 
uses token masking networks (see Fig. 3) to select domain-
related tokens based on these features for shared and private 
parts respectively. In the shared part, each domain-related 
token is replaced by a [MASK] symbol in the original text, 
and a more domain-invariant text is obtained. After that, 
BERTMasker feeds the masked texts into BERT again and 
learns domain-invariant sentiment features with domain-
adversarial training. In the private part, domain-related 
tokens are utilized to learn domain-aware sentiment repre-
sentations with attention mechanism (see Fig. 4). Finally, 
the concatenations of shared and private features are used 

Fig. 2   The overall architecture of BERTMasker
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for sentiment prediction. In the following, we introduce key 
components of our model in detail.

3.2 � Sentence modeling with BERT

Given an input sequence X = {x1, x2,… , xN} , we first 
transform it into the required format of BERT model as 
X = {[CLS], x1, x2,… , xN , [SEP]} . Then we get the con-
textualized representation hi of token xi from the BERT 
encoder:

where N is the number of tokens in the input sequence.
The MLM task of BERT enables it to process sequences 

whose tokens are partially replaced by [MASK] sym-
bol. We exploit such intrinsic advantage of BERT to 
facilitate our idea of modeling text after the removal of 
domain-related tokens. Suppose K tokens in the given 
sequence are selected and we have the masked text 
X̂ = {[CLS], x1, x2,… , [MASK]1,… , [MASK]

K
,… , x

N
, [SEP]}  . 

(1)
{h[CLS], h1, h2,… , hN , h[SEP]}

= BERT([CLS], x1, x2,… , xN , [SEP])

Then we could model the new text with Equation 1 and obtain 
H

masked = {h[CLS], h1, h2,… , h[MASK]1
,… , h[MASK]K

,… , h
N
, h[SEP]}.

Following previous methods using BERT, we can choose 
the hidden feature h[CLS] of token [CLS] as the sequence 
representation.

3.3 � Token masking networks

It is intuitive that if we remove some domain-related tokens 
from a text, the remaining part should be more domain-
agnostic than the original one. Motivated by this, we design 
the token masking networks (TMN) to automatically dis-
criminate whether a token is domain-specific. Here, we 
describe how TMN selects domain-related words and 
generate masked results for the shared and private parts 
respectively.

3.3.1 � Shared part

For a token xi , TMN decides the masking result by measur-
ing its relatedness to the domain of its corresponding sen-
tence. Following [20], we also introduce domain descrip-
tors D = {d1, d2,… , dj,… , d|D|} for each domain, where 
|D| is the number of domains involved in training and test. 
A domain descriptor dj is an L dimensional vector that 
encodes the most representative characteristics of the jth 
domain. It is randomly initialized and is jointly trained with 
other networks using gradient descents. As domain labels 
are available at both training and test time, we can leverage 
those domain descriptors to help decide whether a token is 
highly correlated with a specific domain. For each token 
xi , we combine its contextualized representation hi and its 
domain descriptor dj as zi = hi ⊕ dj , where ⊕ represents 
vector concatenation. We use simple feed-forward neural 
networks with tanh non-linearity for measuring relatedness 
�i between a token and the domain of its text. Based on 
these relatedness scores, we can infer whether a token is 
domain-related and further remove those domain-specific 
ones from the original text. While we expect a discrete deci-
sion of mask, simply applying argmax operation on �i may 
break the gradients and the model can not be end-to-end 
trained. To enable end-to-end training and generate discrete 
decisions of masks, we apply GumbelSoftmax [14] instead 
of softmax. This is achieved as follows:

where Wtm1
 , Wtm2

 , btm1
 and btm2

 are weights and bias terms 
for measuring similarities respectively. ⊕ is the operation 
of vector concatenation. And Gi ∼ Gumbel(0, 1) are i.i.d. 

(2)𝜋i =Wtm2
tanh(Wtm1

(hi ⊕ dj) + btm1
) + btm2

(3)pi =
(Gi + log(�i))∕�

∑2

l=1
(Gl + log(�l))∕�

Fig. 3   Token masking network

Fig. 4   Domain-specific sentiment feature extractor
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samples drawn from the standard Gumbel distribution. � is 
the temperature parameter that controls how closely the new 
samples approximate discrete, one-hot vectors. As � → 0 , 
the softmax computation smoothly approaches the arg-
max, and the sample vectors approach one-hot; as � → ∞ , 
the sample vectors become uniform. pi = 0 means that a 
token is domain-invariant and pi = 1 means that a token is 
domain-related.

We aggregate the masking result of each token in a sen-
tence and denote it as Pshared = {p1, p2,… , pi,… , pN}.

3.3.2 � Private part

Instead of only using the domain descriptor dj of the current 
text, we adopt a mixture of domain descriptors for each input 
sequence in the private part. This modification is designed 
to better capture domain-related words for each sentence if it 
shares similarities with sentences from other domains. In our 
preliminary experiments, it consistently works better than 
only using the original domain descriptor. We treat h[CLS] as 
the current sentence representation and measure its related-
ness to the ith domain using a simple feed-forward attention 
network as follows:

where di is the ith domain descriptor and |D| is the number 
of domains.

Then, the aggregated mixture-of-descriptors is obtained:

We follow similar steps of Eqs. 2–3 except that dj in Eq. 2 
is replaced with d̂j . We denote the masking result of private 
part as Pprivate.

3.3.3 � Sentiment knowledge‑enhanced masking 
constraints

The masking process is directly affected by domain descrip-
tors and indirectly affected by adversarial domain classifi-
cation and sentiment classification in the latter part. While 
the above mentioned token masking networks generate 
good results for final sentiment classification, preliminary 
results show that the masked texts are less interpretable for 
humans due to that many irrelevant tokens are mis-classified 

(4)zj =di ⊕ h[CLS]

(5)sij =Wtp2
tanh(Wtp1

zj + btp1 ) + btp2

(6)aij =
esij

∑�D�
m=1

esmj

(7)d̂j =

|D|∑

1

aij ∗ di

as domain-related. This may owe to the existence of non-
robust features [11] that can be easily captured in these 
multi-domain datasets.

However, due to the diversity of domains in multi-domain 
sentiment classification, we are unlikely to have prior knowl-
edge of whether tokens are domain-related. Luckily, for sen-
timent analysis, we know that words from sentiment lexicons 
contain general sentiment features that are not domain-
specific. Similarly, common stop words are not domain-
related. With these heuristics, we take a detour to calibrate 
the masking results. Instead of pointing out which tokens 
are domain-related, we explicitly ignore masking decisions 
on tokens that are not domain-specific, namely tokens in 
manually annotated sentiment lexicons and stopword lexi-
cons. Furthermore, we add common negation and intensifier 
words into the constraints. In our preliminary results, these 
sentiment knowledge-enhanced masking constraints reduce 
the masking rate from 30% to less than 15% on average by 
preventing those general tokens from affecting the masking 
process.

It is intuitive to use the same masking networks for both 
shared and private parts. However, these two masking net-
works do have different emphases. In the shared part, its goal 
is to identify tokens that are not domain-general. In the pri-
vate part, it focuses on picking domain-discriminative tokens 
by leveraging a mixture of domain descriptors. Tokens from 
similar domains are also implicitly chosen in the private 
part. Besides, using different token masking networks allows 
us to control the strength of domain distinction by different 
coefficients of domain classification. Furthermore, in our 
preliminary experiments, using different networks works 
slightly better than using the same network.

3.4 � Domain‑invariant sentiment feature extraction

After acquiring the masking result Pshared from the token 
masking network in the shared part, we replace the chosen 
words with [MASK] symbol and feed the new sequence into 
the shared BERT model again. We use hidden output h[CLS] 
of token [CLS] as the sentiment representation of the input 
review, which is referred to as hshared.

3.4.1 � Adversarial feature learning

As pointed out in [19], the shared feature space is vulnerable 
to contamination by domain-specific information. To further 
ensure the representation hshared of the masked sequences is 
domain-agnostic, we perform a domain adversarial learning 
on the shared feature output with a Gradient Reversal Layer 
(GRL) [6] and a domain classifier.

During the forward propagation, GRL acts as an iden-
tity transform, making no changes to those features. During 
the back-propagation pass, GRL takes the gradient from the 
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subsequent level, reverses the gradient, and passes it to the 
preceding layer. The gradients from domain classification 
will not be correctly sent back to the encoder part, thus mak-
ing it hard to learn domain-distinguishable features. In this 
way, the reversed gradients from the domain classifier will 
drive the hshared to contain less domain-specific information 
and to become more domain-agnostic.

where GRL() is the gradient reversal layer, and hgrl has the 
same value as hshared but opposite gradients.

Then, we pass hgrl to a domain classifier as follows:

where ŷd is the prediction probabilities of domain classifica-
tion, Wadv1

 and Wadv2
 are weights which need to be learned, 

badv1 and badv2 are bias terms.
Given a corpus with Nd training samples for domain clas-

sification, the cross-entropy for the prediction is:

where yi
d
(j) is the ground-truth label; ŷd

i(j) is the prediction 
probabilities, and |D| is the number of domains.

3.5 � Domain‑specific sentiment feature extraction

In this part, we use the selected domain-related tokens to 
learn domain-aware sentence representations for final senti-
ment classification.

3.5.1 � Domain informative feature

Similarly, we can obtain domain-related tokens 
X̄ = {xj1 , xj2 ,… , xjK} from the private token mask layer, 
where K is the number of selected domain-related tokens 
Pprivate in input sequence. Then, hidden representations of 
those tokens are aggregated as domain-related clue hj:

Besides, we enforce these clues to be domain discriminate 
with another domain classifier:

where ŷd is the prediction probilities of domain classifica-
tion, Wdc1

 and Wdc2
 are weights which need to be learned, 

bdc1 and bdc2 are bias terms. Similar to Equation 10, we refer 
to the corresponding cross entropy loss as Ldp in this case.

(8)hgrl = GRL(hshared)

(9)ŷd = softmax(Wadv2
tanh(Wadv1

hgrl + badv1) + badv2 )

(10)Lds =

Nd∑

i=1

|D|∑

j=1

yi
d
(j)log(ŷd

i(j))

(11)hj =
1

K

K∑

t=1

hjt

(12)ŷd = softmax(Wdc2
tanh(Wdc1

hj + bdc1 ) + bdc2 )

3.5.2 � Domain‑aware sequence encoding

Since we have the domain-informative clue hj , we can use 
it as the query vector and apply the attention mechanism to 
find the most relevant features of the current review and its 
corresponding domain. Here, we use simple inner-product 
attention for simplicity:

where ⊕ means vector concatenation, ht is the tth token in 
the input review, and N is the number of tokens in the cur-
rent review.

3.5.3 � Sentiment classification

The final feature for sentiment classification is the concat-
enation of hshared and hprivate . We use a shared sentiment clas-
sifier for all domains and the probability of each sentiment 
is calculated as follows:

where ŷs is the prediction probabilities of sentiment classi-
fication, Wsc1

 and Wsc2
 are weights which need to be learned, 

bsc1 and bsc2 are bias terms.
Given Ns training samples for sentiment classification, the 

cross-entropy for the sentiment prediction is:

where yi
s
(j) is the ground-truth sentiment label; ŷs

i(j) is the 
prediction probabilities, and C is the number of sentiment 
polarities.

3.6 � Final loss

The total loss of our model can be computed as follows:

where �ds and �dp are coefficients for domain classification, � 
is coefficients for sentiment classification, and � is the coef-
ficients for L2 regularization.

(13)𝛼t =softmax(hj ⊕ ht)

(14)hprivate =

N∑

t=1

�t ∗ ht

(15)hc =hshared ⊕ hprivate

(16)ŷs =softmax(Wsc2
tanh(Wsc1

hc + bsc1) + bsc2 )

(17)Ls =

Ns∑

i=1

C∑

j=1

yi
s
(j)log(ŷs

i(j))

(18)Lall = �ds ∗ Lds + �dp ∗ Ldp + � ∗ Ls + �‖�‖2
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4 � Experiments

4.1 � Dataset

We use the dataset from [19]1 for multi-domain sentiment 
classification task. which consists of product and movie 
reviews from 16 domains. Each dataset has roughly 2000 
examples. Following previous works, we partition the data-
set of each domain into training, development, and test-
ing sets according to the proportions of 70%, 10%, and 
20%. The detailed statistics of all the datasets are listed in 
Table 1. From Table 1, we can see that reviews from differ-
ent domains have highly variant average lengths. As each 
domain has a similar number of reviews for training and 
test, we use accuracy to evaluate the proposed models as in 
previous works.

4.2 � Implementation details

We adopt BERTbase , to be specific, its implementation2 in 
PyTorch for all the experiments. The maximum sequence 
length for the BERT model is set to 128. The mini-batch 
size is set to 8 and we train the model for 3 epochs. We 
select hyper-parameters by tuning our model on the devel-
opment set. The model with the highest averaged accuracy 
on the development set is chosen for final comparison. 
Adam is adopted to optimize all our models with an initial 
learning rate of 0.00001. The coefficients �ds and �dp for 

domain classification loss are set to 0.002 and � for sen-
timent classification loss is set to 1. For domain descrip-
tors, the dimension is set to 200. For multi-domain senti-
ment classification, we train on the domain classification 
task in all domains for the first 2000 steps and sentiment 
classification in all domains for the next 3000 steps. After 
that, we train the model with both sentiment classification 
and domain classification in all domains jointly. For cross-
domain experiments, we train on the domain classification 
task in all domains for the first 2000 steps and sentiment 
classification in source domains for the next 3000 steps. 
After that, we train the model with both sentiment classifi-
cation and domain classification in source domains jointly. 
We reported the averaged results of five different seeds for 
all experiments. We use stop words from this site3 and senti-
ment words from [10].

4.3 � Multi‑domain classification

We experiment with multi-domain sentiment classification 
on 16 test sets respectively. We compare several baselines 
and previous state-of-the-art models. All the methods use 
the same train/valid/test split provided by [19]. And unla-
beled reviews from target domains are available for learning 
domain-invariant sentiment features.

Single Task. We use a bi-directional LSTM and a simple 
CNN model as single-task baselines which are trained on 
each domain independently.

BERT [5]. BERT is a pre-trained contextualized repre-
sentation learning model which has achieved state-of-the-art 
results on many tasks. We use the pre-trained BERT-base 
model and fine-tune it for each domain.

ASP-MTL [19]. The model adopted adversarial training 
on the shared part and separate LSTMs for each domain in 
the private part.

DA-MTL [33]. It dynamically generated a query vector 
for each instance and then used this query vector to attend 
over the hidden representations of the input sentence.

DSR-at [20]. It was also based on the share-private 
scheme. Different from ASP-MTL, it applied memory net-
works as the private feature extractor.

MAN-NLL [4]. This model was also based on the share-
private scheme and it provided theoretical justifications for 
the multi-nominal adversarial network.

DAEA [2]. This was an attention-based method that first 
generates domain-specific query vector and domain-aware 
word embeddings. It then used the query vector to attend 
over the hidden representations from BLSTM with domain-
aware word embeddings as input.

Table 1   Statistics of datasets from 16 domains

Dataset Train Dev. Test Avg. length

Books 1400 200 400 159
Electronics 1398 200 400 101
DVD 1400 200 400 173
Kitchen 1400 200 400 89
Apparel 1400 200 400 57
Camera 1397 200 400 130
Health 1400 200 400 81
Music 1400 200 400 136
Toys 1400 200 400 90
Video 1400 200 400 156
Baby 1300 200 400 104
Magazines 1370 200 400 117
Software 1315 200 400 129
Sports 1400 200 400 94
IMDB 1400 200 400 269
MR 1400 200 400 21

1  http://​pfliu.​com/​paper/​adv-​mtl.​html.
2  https://​github.​com/​huggi​ngface/​trans​forme​rs. 3  https://​github.​com/​amuel​ler/​word_​cloud.

http://pfliu.com/paper/adv-mtl.html
https://github.com/huggingface/transformers
https://github.com/amueller/word_cloud
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DAEA+BERT [2]. It improved DAEA by using BERT as 
word initialization. It was the previous state-of-the-art model 
in multi-domain sentiment classification. The domain-wise 
results were not provided in the original paper and we only 
report the overall result.

DACL [29]. This method also employed the shared-
private structure and deployed dual adversarial regulariza-
tion to align features across different domains and between 
labeled and unlabeled data.

GLR-MTL [25]. This work proposed a generic dual 
channels multi-task learning framework to capture global-
shared, local-shared, and private features simultaneously.

MRAN [31]. This method introduced the domain and 
category mixup regularizations to enrich intrinsic features 
and consistent predictions.

CAN [30]. This model adopted a conditional domain dis-
criminator to model the domain variance and entropy condi-
tioning to guarantee the transferability of the shared features.

We present results of multi-domain text classification 
in Table 2. Generally, using data from multiple domains 
improves average classification performances. We can see 
that large-scale pretraining helps BERT achieve superior 
performance on the single domain setting. It even outper-
forms ASP-MTL and DSR-at which use labeled data from 
multiple domains. Our model outperforms all the other mod-
els in 10 out of 16 domains and achieves the best perfor-
mance on average accuracy.

Compared to the previous state-of-the-art DAEA+BERT 
model, our model still achieves 1.91% absolute performance 
gain on average accuracy. DAEA+BERT model learns a 
domain-aware sentiment representation of the input review 
while our model learns better domain-invariant and domain-
specific sentiment features. Compared with other shared-
private methods (ASP-MTL, MAN-NLL, DACL, CAN, 
MRAN and GLR-MTL), our model obtains the best results 
or comparable performances to the best ones in 14 out of 
16 domains. We can conclude that the utilization of tokens 
masking networks helps to pick out domain-specific tokens 
and acquires better domain-agnostic and domain-aware rep-
resentations. For domains like Magazines, single BLSTM 
alone already achieves good performances. Thus, senti-
ment features from other domains contribute little to final 
sentiment prediction. While for harder domains like MR, 
Music, Books, and Electronics, our model brings significant 
improvements, showing that our model excels at utilizing 
features shared by different domains than other models.

4.4 � Cross‑domain experiments

Multi-domain and Cross-domain sentiment classification 
both aim at transferring sentiment knowledge learned from 
source domains to target domains. Unlike multi-domain 
sentiment classification, the task of cross-domain sentiment 

classification doesn’t provide any labeled training data for 
the target domain. Thus, it calls for better utilization of the 
shared knowledge across all domains. To further understand 
whether BERTMasker achieves such capability, we also test 
our model on the 15-to-1 cross-domain sentiment classifi-
cation setting [2, 19], where models are trained using the 
training data of sentiment and domain classification from 15 
domains and unlabeled data from the target domain.

As shown in Table 3, our model achieves 3.31% perfor-
mance gain in averaged accuracy compared to the previ-
ous best performing model DAEA. Besides, it outperforms 
all the other models in 15 out of 16 domains on the cross-
domain sentiment classification task. By comparing the per-
formances of these models between Table 2 and Table 3, we 
can see that DAEA performs extremely well in the video 
domain on both multi-domain and cross-domain settings. 
The ASP-MTL model gets 2.3% performance gains in video 
domain under cross-domain setting than under multi-domain 
settings while the DSR-at model loses 5% in terms of accu-
racy. The performance of our model decreases by 2.5% in 
the video domain and by 1.14% in all domains. We can 
conclude that our performance drop in the video domain is 
relatively rational. These results confirm the superiority of 
token masking networks in BERTMasker, which manifests 
in learning better shared representations for sentiment clas-
sification than other models.

4.5 � Ablation test

To further explore how well each component contributes to 
the prediction of sentiment, we carry out an ablation study of 
BERTMasker on the test set in the multi-domain setting. As 
shown in Table 4, the performance decreases when remov-
ing either the shared or private network. The removal of the 
private part leads to more performance loss compared to 
the shared part. An intuitive explanation is that the domain-
aware sentiment features integrate both domain-agnostic 
and domain-specific sentiment features through the atten-
tion mechanism. Moreover, the token masking network in 
the private part helps increase the performance by 0.32%, 
proving its effectiveness in choosing domain-informative 
tokens. By comparing between results of the model w/o 
shared part and w/o shared mask, we can see that directly 
adding shared features without masking even slightly hurts 
the performance, which proves that masking helps reduc-
ing noise in learning transferable features across domains. 
On the contrary, adding shared features with masking can 
further improve the performance by 0.43%.

Masking constraints Besides, further experiments 
on two masking constraints demonstrate both stop words 
masking and sentiment words masking improve the per-
formance of BERTMasker, by 0.60% and 0.11% respec-
tively. As sentiment words are crucial features for final 
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sentiment classification, they are less likely to be chosen 
as domain-specific tokens whether we have the sentiment 
constraint or not. In contrast, stop words do not directly 
correlate with final sentiment classification, they maybe be 
wrongly selected as domain-specific tokens and add noise 
to the aggregated domain representations. Thus, removing 
stop words from masking can reduce such noise, purify 
the masked tokens and improve the interpretability of the 
remaining domain-invariant texts.

5 � Analysis of masking

In this part, we conduct several quantitative and qualitative 
experiments with BERTMasker on it masking part.

5.1 � Number of words masked

As observed in Table  5, the number and percentage of 
masked tokens of each domain correlate with its average sen-
tence length, where domains with longer average sequence 
length usually have more tokens masked and lower mask-
ing rate. Another interesting finding is that the final mask-
ing rates of both shared and private parts are similar to the 
percentage (15%) of [MASK] token in the Mask Language 
Model pre-training task of BERT. We leave it as future work 
to explore whether this rate correlates with the implemen-
tation of mask in BERT or the number of domain-related 
tokens in original data distribution.

5.2 � Top words masked

Apart from the number and percentage of masking, we also 
would like to investigate whether the token masking net-
works of BERTMasker mask meaningful words. In Fig. 5a, 
b, we use word cloud to illustrate tokens after masking from 
the shared part and masked tokens from the private part of 
all domains. Besides, we exhibit masked tokens from the 
private part of Apparel and Music domains. From Fig. 5b we 
can see that, the top tokens from the masked sequence in the 
shared part are mostly domain-invariant sentiment-related 
words, which includes polarity words like good, great, 
well, negation words like but, not, no and intensifiers like  
really, very. This demonstrates that after the token masking 
network removing domain-related tokens, the shared part 
focuses more on domain-invariant sentiment features. From 
Fig. 5c, d, we find that as two domains share fewer opinion 
targets, the distribution of domain-related tokens from their 
corresponding private masking networks are quite differ-
ent from each other, where Apparel domain can be depicted 
with words like fit, shoes, wear, size, shirt, .etc and Music 
domain can be represented using words including album, 
song, sound, music, cd, .etc. When analyzing Fig. 5a, we find 
that no domain-related words outnumber the other words in 
the private part from all domains, which again shows the 
distinction of data distribution of domains in the datasets.

5.3 � Domain classification after masking

To further verify whether masking “domain-related” tokens 
from a text improves its domain invariance, we conduct 
domain classifications on both original and masked texts. 
Here, we utilize BERT-base as a powerful feature extractor 
and apply an MLP similar to that in Eq. 12 for domain clas-
sification. We evaluate the results using accuracy.

As shown in Table 6, it’s relatively easy to distinguish 
domains based on original texts. Our mask network suc-
cessfully degrades the domain classification performance 
by over 10% on masked texts. This reveals that our strategy 

Table 3   Results of cross-domain (15-to-1) sentiment classification

Accuracy (%) is adopted for evaluation

ASP-MTL DSR-at DAEA BERTMasker

Books 81.50 85.80 87.30 90.75
Electronics 83.80 89.50 85.80 94.25
DVD 84.50 86.30 88.80 89.25
Kitchen 87.50 88.30 88.00 91.75
Apparel 85.30 85.80 88.00 91.50
Camera 85.30 88.80 90.00 91.50
Health 86.00 90.50 91.00 94.75
Music 81.30 84.80 86.50 90.25
Toys 88.00 90.30 90.30 93.50
Video 86.80 85.30 91.30 89.00
Baby 86.50 84.80 90.30 93.50
Magazines 87.00 84.00 88.50 90.25
Software 87.00 90.80 89.80 93.00
Sports 87.00 87.00 90.50 94.25
IMDB 84.00 83.30 85.80 91.00
MR 72.00 76.30 75.50 81.75
Avg 84.59 86.35 87.96 91.27

Table 4   Ablation test results of BERTMasker on multi-domain senti-
ment classification

Average accuracy is presented. w/o stands for without

Avg. 
accuracy 
(%)

w/o shared part 92.0
w/o private part 90.98
w/o shared mask 91.98
w/o private mask 92.09
w/o sentiment word mask 92.3
w/o stop word mask 91.81
Full model 92.41
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of masking is working towards our expectations of domain-
invariant text. However, as we don’t have direct knowledge 
of what domain-related tokens are, tokens extracted using 
the masking network constrained by external sentiment and 
stop word lexicons are sub-optimal for the domain classifica-
tion task. Thus, the result demonstrates that the remaining 
text still contains rich clues for domain classification.

To further explore how the masking works on each 
domain, we visualize the confusion matrices of domain 
classification on original and remaining text separately in 
Fig. 6. For example, by comparing the Sports row in Fig. 6a, 
b, we can see that shallow blocks in 6a become darker in 6b 
and opposite case happens to darker blocks. This reflects 
that domain classifier can’t find necessary features on the 
remaining texts, thus mis-classifies more cases into domains 
sharing some similarities with Sports domain, eg. Electron-
ics, Toys, Camera and even on Software domain.

From the above experiments, we can see that the token-
level masking strategy succeeds in transforming the sen-
tences to be more domain-invariant in the shared part and 
selecting domain-related words for better domain-aware 
sentiment feature learning.

6 � Case study and error analysis

6.1 � Case study

We visualize the words selected by token masking networks 
in BERTMasker from both shared and private parts in Fig. 7. 
As illustrated in Example 1, the model successfully masks 

Fig. 5   Word cloud of Tokens from Token Masker Layer. Larger word size means higher frequency of occurrence

Table 5   The number and percentage of masked words in shared and 
private part of BERTMasker on test set in multi-domain sentiment 
classification setting

Shared (no./portion) Private (no./portion) Avg. length

Books 39.78/0.21 36.08/0.19 190
Electronics 30.63/0.24 25.93/0.20 128
DVD 38.46/0.17 35.31/0.16 226
Kitchen 26.31/0.24 26.12/0.23 111
Apparel 17.27/0.23 17.17/0.23 74
Camera 33.46/0.23 32.15/0.22 148
Health 23.78/0.23 21.82/0.22 101
Music 33.62/0.21 32.22/0.20 162
Toys 27.49/0.25 25.43/0.23 112
Video 36.51/0.19 30.46/0.16 191
Baby 30.39/0.24 27.02/0.21 128
Magazines 35.16/0.24 32.16/0.22 144
Software 33.10/0.22 29.77/0.20 151
Sports 27.74/0.22 26.63/0.21 125
IMDB 51.78/0.20 46.05/0.17 264
MR 7.48/0.27 6.30/0.23 27
Avg. 30.81/0.22 28.16/0.20 143

Table 6   Results of domain classification on original sequences, 
sequences after removing masked words and masked words

Accuracy (%)

On masked sequences 71.0
On original sequences 81.47
On masked words 70.27
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domain-related words like fabric, cushion, baby in the sen-
tence and makes correct sentiment predictions based on both 
domain-invariant and domain-aware representations.

However, we note that in many cases, due to the existence 
of unknown words and errors incurred by the word-piece 
tokenizer used by BERT, the masked tokens may not be 
semantically adequate or meaningful. From Example 2, we 
can see that as renown is not recognized by BERT, it further 
influences the masking result in the shared part. Besides, 
we notice that in some cases, tokenized negation expres-
sions and sentiment words with different forms (past tense, 
plurals, etc.) are sometimes wrongly masked. These may 
lead to failures of the BERTMasker model, especially when 

there are only limited sentiment words in the short reviews. 
This suggests that we need better curating of the masking 
constraints.

6.2 � Quantitative error analysis

6.2.1 � Manual error analysis

We also perform manual analysis on randomly sampled 20% 
of mis-classified reviews. We find that in over 63% error 
cases, the authors wrote about both positive and negative 
opinions, which shows that reviews with mixed sentiments 
are generally hard to classify. Among those cases, about 13% 
of reviews’ polarities are derived from the last conclusion 
sentences. In 37.4% of cases, one sentiment overwhelms the 
other one. In 3.7% of cases, the authors expressed positive 
and negative sentiment towards different targets/aspects. In 
8.4% of cases, the authors held different sentiments towards 
the products and content of products, e.g., the books and 
stories or roles in the books. In 0.93% of cases, the authors 
described some bad things brought by the good quality of 
the products, e.g., the camera can take a clear picture of 
pores in your face. Besides, over 10.2% of cases contain 
sarcasms or double negations which are not easy to handle. 
Also, in 6.5% of cases, the authors talked about counterfac-
tual situations relating to the products.

Meanwhile, we conduct automatic analyses to evaluate 
the influence of the length of reviews, number of sentiment 
words, and number of negation words.

Fig. 6   Confusion matrices of domain classification on original and masked sequences

Fig. 7   Visualization of masked words in two sentences from maga-
zine and baby domains
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6.2.2 � Influence of review length

The average length of all reviews is 127 (words), while the 
average length of mis-classified reviews is 147. We see that 
mis-classified reviews are longer on average. For example, 
the accuracy on reviews with over 187 words is 89.5% while 
the accuracy on all reviews is 92.41%. Longer reviews usu-
ally contain diverse positive and negative opinions, thus 
making it difficult for sentiment classifiers to figure out the 
most salient polarity. During processing, our model trun-
cates the reviews to have less than 200 words, which could 
potentially harm the performance on longer reviews.

6.2.3 � Influence of number of negation words

If a review contains many negation words, it usually means 
that this review has turning points in sentiments, which 
makes it hard for models to classify. Our model only gets 
an accuracy of 87.38% on reviews with over 7 negation 
words while 92.41% on all reviews, which verifies the above 
assumption.

6.2.4 � Influence of number of sentiment words

Here, we use the diff value in Eq. 19 to roughly measure the 
difference between positive and negative sentiment words.

If words of one sentiment outnumber those of the other 
sentiment in a review, the value would be quite closer to 1 
and the polarity of the review would be more likely to be 
the dominant one. The smaller difference usually means a 
similar number of positive and negative words in a review, 
implying that both sentiments are expressed, and complex 
sentiment semantic composition exists. As a result, our 
model only gets an accuracy of 92.41% on all reviews while 
it achieves 89.97% on reviews with a diff value less than 0.1.

7 � Conclusion

In this paper, we propose the BERTMasker model with token 
masking networks under the shared-private framework. In 
the shared part, instead of directly learning domain-variant 
features in a high-dimensional space, we propose to first 
transform sentences to be more domain-invariant through 
masking domain-related words. Then BERTMasker learns a 
good sentiment representation from the remaining domain-
invariant review, which utilizing a similar input format of 
BERT’s mask language model pretraining. In the private 
part, BERTMasker aggregates the masked domain-related 

(19)diff =

|||numpos − numneg
|||

numpos + numneg

tokens as the domain representation and acquires a domain-
aware sentiment representation. Our model outperforms 
existing works on the benchmark dataset by a large margin 
in both multi-domain and cross-domain settings. Detailed 
analysis of the masked words further proves the effectiveness 
of our proposed masking strategy.

In the future, we would like to work in following direc-
tions: (1) replace the mask network with a simpler network, 
e.g. distilled BERT models, to accelerate training and infer-
ence of our model. (2) incorporate more external knowledge 
to guide the fine-grained and accurate selection of domain-
related words and phrases. (3) explore whether replacing 
certain portion of [MASK] with other random words could 
improve robustness of the proposed method.
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