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Abstract
Hidden Markov Models (HMMs) have consistently been a powerful tool for performing numerous challenging machine 
learning tasks such as automatic recognition. The latter perceives all objects of the universe through information carried by 
their characteristics or features. However, not all available data is always valuable for distinguishing between the different 
objects, scenes, scenarios; referring analogically to states. More often than not, automatic recognition is accompanied by a 
feature selection to reduce the number of collected features to a relevant subset. Although sparse, the majority of literature 
resources available on feature selection for HMMs, presuppose either a single Gaussian or employ a Gaussian mixture model 
(GMM) as emission distribution. The proposed method builds upon the feature saliency model introduced by Adams, Cogill, 
and Beling (in IEEE Access 4:1642–1657), and is adjusted to handle complex multidimensional data by using as a novel 
experiment, GID (Generalized Inverted Dirichlet) mixture models) as emission probabilities. We make use of an Expecta-
tion-Maximization (EM) algorithm (Dempster et al. in J R Stat Soc 39(1):1–22) to compute maximum a posteriori (MAP) 
[Gauvain and Lee in IEEE Transact Speech Audio Process 2(2):291–298] estimates for model parameters. The complete 
inference and parameter estimation of our GID-FSHMM (GID Feature Selection-based HMM) are detailed in this work. 
Automatic recognition applications such as facial expression recognition and scenes categorization demonstrate compara-
ble to higher performance compared to the extensively used Gaussian mixture-based HMM (GHMM), the Dirichlet-based 
(DHMM) and the inverted Dirichlet-based HMM (IDHMM) without feature selection and also when the latter is embedded 
in all of the aforementioned models.

Keywords Hidden Markov models · Generalized inverted Dirichlet · Feature selection · Automatic recognition · Facial 
expressions recognition · Scene categorization

1 Introduction

The successful application of HMMs to a great number of 
areas ranging from speech recognition to image categoriza-
tion broke new grounds by bringing many extensions and 
novelties not only in terms of the methods used along with 
HMMs to better their performance but also in the volume 
and diversity of data collected for analysis using these meth-
ods. There is no doubt that this expansion of data, types of 
information, and features contributed enormously to refining 
and improving machine learning tasks and methods. Never-
theless, it has triggered a considerable amount of problems 

and challenges namely the formidable curse of dimension-
ality often resulting from the manipulation of high-dimen-
sional data. For example, in clustering tasks, it is a widely 
held view that the more information, data, and features we 
manipulate, the better an algorithm is expected to perform 
[48]. However, this is not the case in practice. Many features 
can be just “noise” and may cause the finest pattern recogni-
tion and machine learning techniques to struggle as a result 
of irrelevancy and thus degrade the modelling performance 
[18]. Thereby, feature selection is used to increase modelling 
performance since it allows eliminating noise in the data, 
speeding up the models’ training and prediction, decreasing 
overfitting odds and most importantly reducing the compu-
tational cost after disregarding many features.

We intend by feature selection, the process of decreas-
ing the number of gathered features to a relevant sub-
set of features and is usually used to counter the curse of 
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dimensionality [3]. Aside from feature extraction, which is 
a separate problem, feature selection determines relevant 
features from a given set of features, whereas feature extrac-
tion generates new features from a given set. Unlike feature 
extraction, feature selection does not come up with new fea-
tures nor does it amend the primary features.

The primary inducement for adopting feature selection 
strategies is their important potential to improve modelling 
and generalization capabilities if performed reliably and 
properly [4]. Applying feature selection permits taking into 
consideration the significant contribution of feature screen-
ing to the classification process. In fact, each different feature 
contributes differently to the classification structure based on 
its degree of relevance [21, 68]. The latter is intended to be 
determined to improve our models’ performance, in particu-
lar using simultaneous feature selection and classification in 
the course of an unsupervised process which is considered to 
be one of the most challenging problems in data mining and 
machine learning. In practice, the said case implies selecting 
features without a priori knowledge about data labels.

In most applications of HMM, features are pre-selected 
based on domain knowledge, and the feature selection pro-
cedure is completely omitted. Usually, to train HMMs, even 
in the case where feature selection is considered features 
are selected traditionally. That is, features are selected in 
advance either based on already available data or relying 
on experts’ knowledge. These practices are the result of the 
scarcity of literature in terms of unsupervised feature selec-
tion methods specific for HMMs [3] [30], not to mention 
the high computational cost of wrapping methods. Despite 
the extensive research and investigations that are made on 
feature selection in their general case, methods specific for 
HMMs are lacking. Feature selection methods for HMMs 
and mixture models are seldom treated as a joint topic. Most 
importantly, the use of generalized inverted Dirichlet mix-
tures to model the emission probabilities within the HMM 
framework together with feature selection as an embedded 
process is unprecedented. In this work, we propose a fully 
customized feature selection methodology with a com-
plete empirical and experimental study of Feature Saliency 
embedding into the GID-based HMM.

Feature selection plays a major role in speeding the learn-
ing process and refining the models’ interpretation. It can 
drastically minimize the risk of overfitting and mitigates 
the effects of the curse of dimensionality [39]. Above-
mentioned, the feature selection process is embedded in the 
training of the HMM, which represents the main takeaway 
from this research work.

Our vision of integrating feature selection in the HMM 
framework holds beyond the simple procedure of solely 
combining state of the art feature selection methods such 
as in the case of [55], where several ranking methods like 
Bhattacharyya distance [43], entropy and Wilcoxon [33], 

have been used to reduce the number of features fed to the 
HMM. As far as we are concerned, we are resolute to use 
the feature saliency as in [1], thoroughly embedded in the 
HMM framework making only one core method ready for 
use directly to treat any set of features.

The work presented in this manuscript can also be viewed 
intellectually at two different levels. First, it allows the inte-
gration of the non-conventional feature selection techniques 
into the framework of HMM, second, it allows the use of 
GID mixtures as a premiere to model data fed to HMM spe-
cifically emission distributions.

The remainder of this paper is organized as follows: 
In section 2 we summarize the previous works adopting 
HMMs. Then, we outline some of the applications using 
general feature selection methods along with HMMs as a 
predictive model. In section 3, we present our GID-FSHMM 
and explain all the corresponding integration steps. The sub-
sequent section 4 showcases real-life problems experimenta-
tion and analyses obtained results. Finally, the paper closes 
with a summary of work and concluding remarks.

2  Related work

2.1  Hidden Markov models

In this section, we recall a handful of background informa-
tion on HMMs, while focusing on previous related work 
using HMMs conjointly with feature selection. Hidden 
Markov models are a ubiquitous tool commonly utilized to 
model time series data [34] [37] with applications across 
numerous areas. Used for decades in speech recognition 
[62], text classification [15, 44], face recognition [58] and 
fMRI data analysis [26], HMMs represent a powerful sta-
tistical tool that have proven to be not only useful but also 
efficient in various machine learning-based applications.

An HMM consists mainly of two distinct sequences of 
states. The first is a sequence of hidden states modelled by 
a Markov chain [7], the second is a sequence of observed 
events or features related to the hidden states. The typical 
purpose behind using HMMs is to represent probability dis-
tributions over sequences of observations, with the assump-
tion that the observations are discrete. Therefore, the hid-
den states sequence can be estimated from the sequence of 
correlated observations. It is possible to specify an HMM 
by an initial probability, a matrix of transition probabilities 
between the states, and a set of parameters of the emission 
probability distribution which will be more focused on later 
in this paper. Most importantly, an HMM is outlined by two 
fundamental proprieties. Firstly, it assumes that an obser-
vation at time t is generated by some process whose state 
ht is hidden from the observer. Second, it implied that the 
state of the said hidden process fulfills the Markov property 
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[31]; that is, given the value of ht−1 , the current state ht is 
independent of all the states before the time t − 1 . Thus, 
the observed features are modelled meeting the property of 
conditional independence given the state sequence. At the 
application level, the learning of parameters is simply find-
ing the best set of state transitions and emission probabili-
ties amid the states of the model. Consequently, an output 
sequence or a set of sequences is specified. At each time a 
state sequence is handled, there is a corresponding vector of 
observations composed of features collected from various 
sources. However, not all features are likely to be useful to 
the model. That is why, to build a rigorous model, we ought 
to remove all features that do not contribute to its usefulness, 
without degrading its accuracy.

2.2  Feature selection and its application with HMMs

Feature selection is a wide research area and many methods 
to reduce a given set of features have been implemented in 
both supervised and unsupervised contexts [47].

Typically, feature selection techniques are present in the 
state of the art under three main categories, namely, filters, 
wrappers, metaheuristic methods and embedded [3]. While 
filter methods such as information gain [49, 71], Pearson’s 
correlation coefficient [35] and variance threshold [72], treat 
the evaluation of all features and return a relevant subset 
out of them apart from the model building process, wrapper 
methods tend to optimize the classifier’s performance for the 
most part. Wrappers, which commonly adopt either forward 
selection [45], backward elimination [20] or recursive fea-
ture elimination [22, 53, 78], identify the relevant features 
depending on the learning algorithm. That is, when using 
wrappers, the model itself is built depending on a certain 
subset of features and its performance is measured upon 
particular criteria. Methods relying on metaheuristic algo-
rithms tackle feature selection as an optimization problem. 
Composed but not limited to evolution-based algorithms 
such as Genetic Algorithm [42], these methods obtain the 
optimal solution thanks to their simplicity, flexibility and 
their capability to avoid local optima [59]. They start their 
feature selection process by generating random solutions that 
do not require heavy derivatives calculations and carry on 
an exploration phase to thoroughly investigate search space 
and identify promising areas. Embedded methods namely L1 
regularization and decision trees [9, 36] aspire to simultane-
ously select the features and build the model. Although filter 
methods exhibit a significant low time complexity, they are 
usually criticized for ignoring certain informative features 
[63]. On the other hand, metaheuristic and wrapper-based 
methods evaluate the usefulness of selected features using 
learner’s performance and can thus be more complex but 
still not very time-consuming. However, it has been proved 
that other optimization algorithms, namely embedded 

methods, can be more efficient given the fact that they not 
only improve the performance of the model but also facili-
tate results analysis. Indeed, there is a significant complexity 
compromise when it comes to using embedded methods, 
but these methods succeeded in adapting to several types of 
data and can be used with the majority of machine learning 
models. Embedded methods are also very useful when inves-
tigating relationships between features, which is an arising 
challenge nowadays.

In particular, feature selection for HMMs is driven by a 
crucial need to determine which feature to use in the model. 
Despite being investigated in numerous general and mixture 
models-based studies [25] [48], feature selection methods 
dedicated to HMMs are particularly limited. In fact, in the 
majority of applications, features are selected beforehand 
based on domain knowledge, and a consonant feature selec-
tion procedure is fully lacking [56] [74]. Clearly, transforma-
tion methods such as Principal Component Analysis (PCA) 
and Independent Component Analysis (ICA) do reduce the 
number of features in the model and for this same reason, 
they have been integrated into HMMs in [6, 80]. However, 
the mentioned methods do not really act as feature selection 
techniques as they are not able to eliminate data streams, 
and hence they merely are considered feature extraction 
techniques.

Embedded or integrated feature selection approaches, 
which are the main focus in this manuscript, ought to 
consider the whole set of features at once. These features 
serve as an input to the maximizing learning algorithm 
that is deployed to optimize the models’ performance. As 
an output, the reduced set of features, as well as the mod-
els’ parameters, are generated. Hence, an embedded feature 
selection method is identified as a simultaneous selection 
of features and model construction. This combines both the 
wrappers and filters advantages of respectively selecting 
feature subsets concerning a specific learning algorithm 
and the computational efficiency [1]. As previously indi-
cated, one of the embedded methods for feature selection 
is the classification and regression trees [57]. The latter 
applies a recursive splitting of the feature space to gener-
ate a classification model. Features identified as the ones 
being involved in improving the model will exclusively be 
included in the learning algorithm. In contrast to the mix-
ture models, context [11, 24, 48], literature about feature 
selection integration into the HMM framework is some-
what narrow. Nearly all HMM-based adaptations of feature 
selection were based on what is also known as the concept 
of feature saliency, which has been defined by [48] as a 
metric associated with a given feature, that is the prob-
ability that the said feature is relevant. Zhu et al. [81] are 
among the first to use a jointly embedded estimation and 
feature selection method, where they apply a variational 
Bayesian framework to the end of salient features inference. 
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They use the implemented method to simultaneously infer 
the number of hidden states as well as the models’ param-
eters. The adopted approach showed interesting results, 
however, the use of the variational Bayesian sometimes 
manifested a significant underestimation of the variance for 
the approximate distribution. Adams et al. [1] put forward 
a feature saliency model using hidden Markov models. The 
main idea is to use feature saliency variables to represent 
the probability that a given feature is relevant, by drawing a 
distinction between state-dependent and state-independent 
distributions. The said model operates in the case where the 
number of hidden states is known. For the matter, it pro-
vides a maximum a posteriori based estimation that selects 
the most relevant features using an Expectation-Maximi-
zation (EM) algorithm. This approach takes advantage of 
the already specified number of states to provide maximum 
a posteriori estimates and save the most relevant features 
by applying an Expectation-Maximization algorithm [14]. 
Moreover, Zheng et al. [79] adopted a strategy that com-
bines a hidden Markov model, a localized feature saliency 
measure, and two t Student distributions for the purpose 
of distinguishing between relevant and non-relevant fea-
tures. This strategy made it possible to accurately model 
emission parameters for each hidden state. Similarly to 
[81], the parameter estimation was operated using a vari-
ational Bayes framework. More recently, Fons et al. [30] 
incorporated Adams’ feature saliency HMM (FSHMM) 
[2] into a dynamic asset allocation system. The authors 
applied their HMM-based feature selection method to train 
their systematic trading system by testing its performance 
on real-life data. It showed that even without a financial 
expert involvement, the results reached a decent accuracy 
allowing the model to objectively contribute to portfolio 
construction and to prevent biases in the feature selection 
process. From their side, authors in [12] proposed a feature 
selection algorithm embedded in an HMM applied to gene 
expression time-course data, and they succeeded in reduc-
ing the feature domain by up to 90% leaving only a few but 
relevant features. The notable drawback of the mentioned 
work is that features deemed as irrelevant are eliminated 
and hence can drastically affect the models’ accuracy in 
the case the aforementioned features seem to be relevant 
after treatment.

There is indubitably a significant challenge when ana-
lyzing dense data, that is dealing with the saliency param-
eters besides those imperative for the model itself. As a 
consequence, the parameter estimation can sometimes be 
a sensitive task, not to mention the huge impact that the 
number of needed hidden states has on the said estimation. 
For this particular reason, we need to adapt the model in 
a way that it can handle the modelling of the data using 
a lower number of parameters to come up with the most 
relevant features from the candidate sets.

3  The proposed GID‑FSHMM model

3.1  Feature selection integration in Hidden Markov 
model

In this section, we start by presenting the Hidden Markov 
Model and we recall the feature saliency concept that we 
will embed in the HMM. Then, we

3.1.1  The Hidden Markov model

We consider a HMM with continuous emissions and K 
states. We put y = {y0, y1, ..., yT} the sequence of observed 
data with yt ∈ ℝL , where T designates the time factor and L 
is the number of features. The observation for the l-th feature 
at time t, which is represented by the the l-th component of 
yt , is denoted by ylt.

Let x = {x0, x1, ..., xT} be the sequence of hidden data. 
The transition matrix of the Markov chain associated to this 
sequence is denoted as B = {bij = P(xt = j|xt−1 = i)} and � 
is the initial state probability. Thus the complete data likeli-
hood can be expressed as:

where Λ is the set of model parameters, and cxt (yt) is the 
emission probability given state xt.

In our feature selection hidden Markov model (FSHMM) 
we apply a feature saliency approach over the emission prob-
ability distribution in order to select the relevant features and 
to estimate our parameters [48]

The graphical model of the GID Hidden Markov model 
can be seen in Fig. 1.

(1)p(x, y|Λ) = �x0cx0 (y0)

T∏
t=1

bxt−1,xt cxt (yt)

Fig. 1  The Hidden Markov model: Grey squares represent latent vari-
able, pink circles are observations, and blue circles represent model 
parameters where � and � are GID parameters (colour figure online)
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3.1.2  Feature saliency‑based Hidden Markov model

The feature-saliency based HMM measures the relevancy 
of a certain feature as follows; if the latter’s distribution is 
dependent on the underlying state, the feature is believed to 
be relevant. In the case where its distribution is independent 
of the state, the feature is considered irrelevant [1].

Thus, we put a set of binary variables z = {z1, ..., zL} 
indicating the relevancy of features, that is z1 = 1 if the l-th 
feature is relevant and z1 = 0 if it’s irrelevant. The feature 
saliency �l is the probability that the l-th feature is relevant.

In this work we assume that all features are conditionally 
independent given the state. Hence, the conditional distribu-
tion of yt given z and x can be written as follows:

where r(ylt|�il) is the conditional feature distribution for the 
l-th feature with state-dependent parameters �il which later 
will be detailed with depending on the adopted type of mix-
ture, and q(ylt|�l) is the state independent feature distribution 
with parameters �l.

Λ = {�, �, �} is the set of all our FSHMM model param-
eters. The marginal probability of z is:

The joint distribution of yt and z given x can be expressed as:

The marginal distribution for yt given x over all values of 
z is:

The complete data likelihood of the FSHMM can thus be 
written as:

The form of q(.|.) indicates our prior knowledge about the 
distribution of the non-salient features. We put q(.|.) and r(.|.) 
to follow an inverted generalized Dirichlet distribution, as 
this can lead to better results for the reasons explained earlier 
in this paper.

(2)p(y|z, xt = i,Λ) =

L∏
l=1

r(ylt|�il)zlq(ylt|�l)1−zl

(3)p(z|Λ) =
L∏
l=1

�
zl
l
(1 − �l)

1−zl

(4)

p(yt, z|xt = i,Λ) =

L∏
l=1

[�lr(ylt|�il)]zl[(1 − �l)q(ylt|�l)]1−zl

(5)

cxt (yt) = p(yt|xt = i,Λ)

=

L∏
l=1

(
�lr(ylt|�il) + (1 − �l)q(ylt|�l)

)

(6)p(x, y, z|Λ) = �x0p(y0, z|x0,Λ)
T∏
t=1

bxt−1,xt p(yt, z|xt,Λ)

In this work, the state-dependent and the state-independ-
ent distributions are assumed to be GID mixtures. Accord-
ingly, the set of model parameters for the GID-FSHMM is 
Λ = {�,B, �, �, �, �} . Figure 2 shows the feature saliency 
GID-based HMM.

3.2  GID mixtures and integration into the FSHMM 
framework

3.2.1  Generalized Inverted Dirichlet

The choice of GID is backed by the several interesting 
mathematical properties that this distribution has. These 
properties allow for a representation of GID samples in a 
transformed space where features are independent and fol-
low inverted Beta distributions. Adopting this distribution 
lets us take advantage of conditional independence among 
features. This interesting strength is used in this paper to 
develop a statistical model that handles not only positive 
data but also feature selection.

Let �⃗X a D-dimensional positive vector following a GID 
distribution. The joint density function is given by Lingap-
paiah [52] as:

where �⃗𝛼 = [𝛼1, ..., 𝛼D] , �⃗𝛽 = [𝛽1, ..., 𝛽D] . � is defined such that 
�d = �d + �d − �d+1 for d = 0, ...,D with �D+1 = 0.

The GID estimation is made simple thanks to an essen-
tial propriety, that is if there exists a vector �⃗X that follows a 

(7)
p( �⃗X� �⃗𝛼, �⃗𝛽) =

D�
d=1

Γ(𝛼d + 𝛽d)

Γ(𝛼d)Γ(𝛽d)

X
𝛼d−1

d�
1 +

∑d

l=1
Xd

�𝜂d

Fig. 2  The feature saliency GID-based Hidden Markov Model: Grey 
squares represent latent variable, pink circles are observations, and 
blue circles represent model parameters (colour figure online)
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GID distribution, then we can come up with another vector 
���⃗Wn = [���⃗Wn1, ...,

���⃗WnD] where each element follows an inverted 
Beta (IB) distribution following the transformation:

Then, the multivariate extension of the 2-parameters inverted 
Beta distribution is given by:

The mean of IB is given by:

The variance of IB is given by:

3.2.2  GID mixture model

Let us consider a data set X  of N D-dimensional positive 
vectors, X = (���⃗X1,

���⃗X2, ...,
����⃗XN) . We assume that X  is governed 

by a weighted sum of M GID component densities with 
parameters Θ = (���⃗𝜃1, ���⃗𝜃1, ..., ����⃗𝜃M , p1, p2, ..., pM) with ��⃗𝜃j is the 
vector of parameters of the j-th component and pj are the 
mixing weights which are positive and sum to one [4]:

where  p( ��⃗Xi|���⃗Θj) i s  the  GID dist r ibut ion wi th 
Θj = (�j1, �j1, �j2, �j2, ..., �jD, �jD) is the set of parameters 
defining the j-th component. Furthermore, in mixture-based 
clustering, each data point ��⃗Xi can be assigned to all classes 
with different posterior probabilities p(j| ��⃗Xi) . Therefore, 
a factorization of the posterior probability can simply be 
expressed as:

where Xi1 = Yi1 et Xil =
Yil

1+
∑D

l=1
Yil

 for l > 1 , pIBeta(Xil|�jl) is an 

inverted Beta distribution with �jl = (�jl, �jl) , l = 1, ...,D

In this fashion, the clustering structure underlying X  is 
the same as that underlying Y = (���⃗Y1, ..., ����⃗YN) , and it can be 
described by the following mixture model with conditionally 
independent features:

(8)Wnd = f (Xnd) =

{
Xnd, d=1

Xnd

1+Xn1+,...,+Xnd−1

, d=2, ..., D

(9)pIBeta(Wnd|�jd, �jd) =
Γ(�jd + �jd)

Γ(�jd)Γ(�jd)

W
�jd−1

nd

(1 +Wjd)
(�jd+�jd)

(10)E(Wd) =
�d

�d − 1

(11)Var(Wd) =
�d(�d + �d − 1)

(�d − 2)(�d − 1)2

(12)p( ��⃗Xi|Θ) =
M∑
j=1

pjp(
��⃗Xi|���⃗Θj)

(13)p(j| ��⃗Yi) ∝ pj

D∏
l=1

pIBeta(Xil|𝜃jl)

3.2.3  GID mixture‑based FSHMM

As a first attempt in the context of feature saliency-driven 
HMMs, to the extent of our knowledge, we are using a mixture 
of GID as emission probabilities of our FSHMM. Gaussian 
mixtures, in particular, have seldom been tested previously 
and applied successfully [48] [81]. Assuming the relevant 
feature distribution is represented by a mixture of M GID 
distributions, we let Φ = {�1t, ...,�Mt} be the set of variables 
indicating the mixture component, where �m = 1 if observa-
tion t comes from the mth mixture and �mt = 0 otherwise. To 
indicate the probability that the observation comes from the 
mth mixture, given the state, we put �im . In this regard, the 
set of model parameters Λ becomes {�,B, �, �, �, �,�} . The 
idea behind the GID-based FSHMM is to suppose that a given 
feature ylt is generated from a mixture of two univariate distri-
butions. The first one is supposed to generate relevant features 
and is distinct for each cluster. The second is common to all 
clusters in a way that it is independent of class labels, and 
generates irrelevant features. This purpose can be formulated 
as follows.

The marginal probability of �t can be expressed as

In the same manner as in (3), we assume the features are 
conditionally independent given the state. Thus, the condi-
tional distribution of yt given x, y and Φ can be formulated as

The joint distribution of yt , Φ , and z given x is

The marginal distribution for yt given x is obtained by sum-
ming (17) over z and Φ such as

(14)p( �⃗Xi|Θ) =
M∑
j=1

pj

D∏
l=1

pIBeta(Xil|𝜃jl)

(15)p(Φ|Λ) =
M∏

m=1

�
�mt

im

(16)

p(yt|Φ, z, xt = i,Λ) =

L∏
l=1

[
r(ylt|�ilm, �ilm)zlq(ylt|��,ilm, ��,ilm)1−zl

]�mt

(17)

p(yt,Φ,z|xt = i,Λ)

= p(yt|Φ, z, xt = i,Λ)p(Φ|Λ)p(z|Λ)

=

M∏
m=1

[
�im

L∏
l=1

[
�lr(ylt|�ilm, �ilm)zl

]

[
(1 − �l)q(ylt|��,ilm, ��,ilm)1−zl

]�mt

]
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The complete data likelihood for the FSHMM with GID 
emissions is

3.3  Parameter estimation of the GID‑FSHMM

3.3.1  Update equations for FSHMM parameters

In order to perform the estimation of parameters, we opt for 
using the EM algorithm, referred to as Baum-Welch when 
applied in the context of HMMs [8, 62]. We use this algorithm 
to calculate the maximum-likelihood (ML) estimates for the 
model parameters. For the part where we evaluate the features, 
we are bound to place priors on the parameters to compute 
the maximum a posteriori (MAP) estimates [32]. We need 
to go over the two steps of the Baum-Welch algorithm. First, 
in the E-step we need to find the expected value of the com-
plete log-likelihood taking into consideration the data and the 
underlying model parameters. Second, in the M-step we pro-
ceed to maximize the expectation computed in the previous 
step in order to figure the next set of model parameters out. 
The Baum-Welch is iterated until an experimentally deter-
mined stopping threshold is met. The Q function designates 
the expectation of the complete log-likelihood and is given by:

where Λ and Λ� represent the set of model parameters for the 
current iteration and the set of parameters from the previ-
ous iteration respectively. We place priors on the parameters 
and calculate the MAP estimates with an eye toward the 
automatic feature assessment and selection. Hence the Q is 
changed by adding G(Λ) the prior on the model parameters 
such as:

By analogy to the previously explained EM procedure, the 
complete log-likelihood Q is calculated in the E-step (20), 
then the logG(Λ) is added up and equation (21) is maxi-
mized in the M-step. For this matter, several probabilities 
are needed for the FSHMM, the E-step takes in charge the 
computation of the following quantities:

(18)

cxt (yt) = p(yt|xt = i,Λ)

=

M∑
m=1

�im

L∏
l=1

(�lr(ylt|�ilm, �ilm) + (1 − �l)q(ylt|��,ilm, ��,ilm)

(19)

p(x, y, z,Φ|Λ) = �x1pIBeta(y1,Φ, z|x1,Λ)
T∏
t=2

bxt−1,xt pIBeta(yt,Φ, z|xt,Λ)

(20)
Q(Λ,Λ�) = �

[
logp(x, y, z,Φ|Λ)|y,Λ�

]

=
∑
x,z,Φ

log(p(x, y, z,Φ|Λ)|Λ�)p(x, z,Φ|y,Λ�)

(21)Q(Λ,Λ�) + logG(Λ)

where �t(i) et �t(i, j) are respectively the conditional state 
probabilities and the conditional transition probabilities. 
These quantities are calculated using the forward-backward 
algorithm. As a result, the following quantities are what the 
E-step probabilities turn out to be after iterating the forward-
backward algorithm

and

The Q function is expanded into a sum of terms where 
each term can be maximized independently. These terms 
are the Q function applied to the initial state � , the state-
transition b, and the parameters for the emission distribution 
� = {�, �, �, �} . Consequently, for all parameters, except for 
the GID distribution ones, the maximization step gives, as a 
result, the following parameters and their updates

(22)�t(i) =ℙ(xt = i|y,Λ),

(23)�t(i, j) =ℙ(xt = i, xt+1 = j|y,Λ)

(24)
�ilmt = p(ylt, zl = 1|�mt = 1, xt = i,Λ�)

= �lp(ylt|�ilm, �ilm),

(25)
�ilmt = p(ylt, zl = 0|�mt = 1, xt = i,Λ�)

= (1 − �l)q(ylt|��,ilm, ��,ilm),

(26)
�ilmt = p(ylt|�mt = 1, xt = i,Λ�)

= �ilmt + �ilmt,

(27)

uilmt = p(zl = 1, xt = i,�mt = 1�y,Λ�)

= �t(i)

�
�ilmt

�ilmt

��
�im

∏L

l=1
�ilmt∑M

m
�im

∏L

l=1
�ilmt

�
,

(28)

vilmt = ℙ(zl = 0, xt = i,�mt = 1�y,Λ�)

= �t(i)

�
�ilmt

�ilmt

��
�im

∏L

l=1
�ilmt∑M

m
�im

∏L

l=1
�ilmt

�
,

(29)�̂�i = 𝜁t(i),

(30)b̂ij =

∑T−1

t=1
𝜉t(i, j)∑T−1

t=1
𝜁t(i)

,

(31)𝜔im =

∑T−1

t=1

∑L

l=1
uilmt∑T−1

t=1

∑L

l=1

∑M

m=1
uilmt



2372 International Journal of Machine Learning and Cybernetics (2022) 13:2365–2381

1 3

Complete estimation of GID parameters, as well as the MAP 
estimation, can be consulted respectively in Appendix sec-
tions A and B.

4  Experiments and results

In this section, extensive experiments are conducted and we 
have implemented several real-world topical yet challenging 
applications using the FSHMM with GID emission prob-
abilities. We are mainly comparing our new approach to its 
classical FSHMM competitors and other new adaptations 
that we executed for the sake of comparison and testing, 
e.g., inverted Dirichlet-based FSHMM (ID-FSHMM) and 
Dirichlet-based FSHMM (Dir-FSHMM), not to mention the 
widely used GMM-FSHMM. It is noteworthy that the learn-
ing of the mentioned adaptations has been based on the same 
methodology described in the previous section to learn the 
GID mixture-based FSHMM. Two real-world applications, 
facial expressions recognition, and scene categorization are 
here tested and explained. Experimentation and results pre-
sented in this section have been yielded on a macOS envi-
ronment over a 2.3 GHz Dual-Core Intel Core i5 MacBook 
Pro, using Python.

4.1  Facial expressions recognition

Facial expression recognition is a powerful process that usu-
ally commends the way we interact with other people. It is 
one of the non-verbal communication media that humans 
naturally use in everyday interactions. Besides its role in 
supporting humans’ understanding of people’s intentions 
and feelings, facial expression recognition plays a major 
role in making decisions about relationships or situations. 
For all these reasons, substantial efforts have been devoted 
to automating this recognition [19, 23] and using it as a 
fundamental step within multiple decision-making systems. 
A human being is naturally empowered to interpret these 
expressions and make his decisions in a real-time matter. 
Nonetheless, this task is still approached as a complex and 
challenging process in the field of machine learning [27, 
38]. Facial Expression Recognition is applied in a wide 
range of contexts and is used in numerous applications 
such as Human-Computer Interaction [65], student auto-
matic E-learning [54], Behavioural Science [46], psycho-
logical studies [50], image understanding, and synthetic face 

(32)
�̂�l =

∑T−1

t=1

∑L

l=1

∑M

m=1
uilmt∑T−1

t=1

∑L

l=1

∑M

m=1
uilmt +

∑T−1

t=1

∑L

l=1

∑M

m=1
vilmt

=

∑T−1

t=1

∑L

l=1

∑M

m=1
uilmt

T

animation. The principal purpose of researchers working on 
these applications is to produce automated systems capable 
of automatically recognizing the emotional state of a person 
and further draw an analysis or take a decision based on a 
specific context [16].

4.1.1  HMM‑based facial expression recognition

Classification is the most significant part of a facial expres-
sion recognition system [69]. Methods applied to clas-
sify this type of images are generally sorted into static or 
dynamic [77]. Static methods are based on the information 
acquired from the input image, they take benefit from the 
use of support vector machine, neural network, Bayesian 
network to perform the assigned task. HMMs are dynamic 
classifiers that exploit temporal records to analyze facial 
expressions. Hence, they are highly recommended by psy-
chological experiments carried out as indicated in [5].

As early as 1990, [66] used HMMs to come up with a 
solution for the challenging task of automating facial expres-
sions recognition. Authors in [66], used an HMM along 
with the integration of a priori structural knowledge with 
statistical information. HMMs offer a perfect analogous 
representation to the experience of observing a particular 
feeling through the way they statistically handle the behav-
iour of an observable symbol sequence. These models pro-
vide a specification of the probability distribution over all 
hidden events that are behind a certain symbol sequence. 
The performances of HMMs when dealing with such chal-
lenges are promising, especially in the case when they learn 
through an entire sequence of images describing a group of 
actions taken by a person when undergoing a certain feel-
ing. The learning process is conducted in a much smoother 
way thanks to HMMs capability of handling the Spatio-
temporal nature of the debated application. In fact, there is 
a metaphorical resemblance between human performance 
when naturally processing the recognition task, and the sto-
chastic nature of the HMM process inasmuch as it analyses 
the measurable (observable) actions in order to infer the 
immeasurable (hidden) feelings of the person.

In this particular context, we choose to apply our model 
on the challenging Dollar facial expression database [17] 
3. This application is unprecedented as it uses for the first 
time and embedded model-based feature selection into the 
HMM structure.

4.1.2  Experimental trials and results

The Dollar database is composed of 192 sequences performed 
by 2 individuals, each expressing 6 different basic emotions 
8 times under 2 lighting setups. Each subject starts with a 
neutral expression, then expresses emotion, and returns to a 
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neutral expression. For our simulations, we follow the exper-
imental setting considered in [58], which consists of using 
three peak frames of each sequence for 6-class expression 
recognition (576 images: anger, disgust, fear, joy, sadness, 
and surprise). The pre-processing steps are also the same and 
consist of extracting features from the whole face region by 
cropping original face images into 110×150 pixels, keeping 
only the central part of facial extraction. A Local Binary Pat-
tern (LBP) descriptor [60], is used for feature extraction. More 
specifically, each cropped face image is first divided into small 
regions from which LBP histograms are extracted and then 
concatenated altogether into a single feature histogram repre-
senting the face image. We use a 59-bin LBP operator in the 
(8, 2) neighbourhood. This means 8 sampling points on a cir-
cle of radius 2, then we divide each image (110 × 150) into 18 
× 21 pixels regions. Therefore, each face image is divided into 
42 (6 × 7) regions and is then represented by LBP histograms 
with a length of 2478 (59 × 42). After that, these histograms 
are normalized. The procedure is applied as the one originally 
used in [67]. We figured that if we reduce the feature vector 
the algorithm tends to early diverge, however since features 
will later be reduced by the model itself, and in order to give 
the algorithm the time to learn we will not reduce the feature 
vector ourselves and will leave it as it is. The obtained fea-
ture vector is actually handled with our GIDHMM where the 
feature saliency is considered. Hence, recognition is carried 
out via a single HMM recognizer. A collection of HMMs 
each representing a different subject is matched against the 
test image and the highest match is selected as explained 

in figure 4. For the sake of comparison, we conduct several 
experiments with different used models, with and without tak-
ing into consideration of feature relevancy, then we report the 
results including features relevancies and the confusion matrix 
for each experiment.

In order to evince the advantages of the proposed 
approach and most importantly underline the crucial role of 
feature selection integration in improving results, we com-
pare the latter with other emotion recognition approaches 
that are mainly based on mixture models. These approaches, 
have been personally implemented, and include inverted 
Dirichlet-based HMM without feature selection (IDHMM) 
[58], inverted Dirichlet-based HMM with feature selec-
tion (ID-FSHMM), generalized inverted Dirichlet-based 
HMM without feature selection (GIDHMM), and general-
ized inverted Dirichlet-based HMM with feature selection 
(GID-FSHMM). On top of that, we put a special emphasis 
on the improvements noticed from the use of GID mixtures 
measured against the Gaussian mixtures-based HMM with 
feature selection (GM-FSHMM). Results obtained are dis-
played in Fig. 5, where we present the average recognition 
rates for the different used methods.

There is an interesting observation to make after nailing 
these results, that is the amelioration in average recogni-
tion results after using the GIDHMM as a model. Initially, 
using only the latter allowed for a slight but worth men-
tioning amelioration in the average recognition rate from 
96.11% to 96.16%, this itself shows that the GIDHMM is 
better in modelling our data than the IDHMM. Further, we 

Fig. 3  Samples of facial frames from the Dollar facial expressions dataset

Fig. 4  Block diagram for 
FSHMM-based face recognizer
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noticed when incorporating feature selection into our previ-
ously established IDHMM model, the average recognition 
rate improved from 96.11 to 96.44%. On top of that, we 
plainly succeeded to bear out our theoretically anticipated 
projections regarding recognition rates. In fact, the feature 
selection-based GIDHMM executed the task of recognizing 
each facial expression considerably better than GIDHMM 
without FS. This conclusion comes after several trials on 
each emotion type separately. The individual recognition 

rates per category and confusion matrices for the mentioned 
trials are displayed in Table 1 and Fig. 6. 

As indicated in Fig. 5, average recognition rates for GID-
HMM with and without feature selection integration are 
respectively 97.33% and 96.16% with the corresponding 
average misclassified images of 22.11 and 15.32 per data-
set. There is also a significant variation in the run time when 
using each of the cited methods, 36.4 min for GIDHMM, 
and 41.6 min for GIDHMM-FS.

Fig. 5  Average recognition rates for facial expressions recognition with and without applying feature selection (colour figure online)

Fig. 6  Confusion matrices for facial expressions recognition with and without applying feature selection for GID-FSHMM
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Needless to say, the integration of feature selection in 
our models brought an obvious amelioration to the yielded 
results for all adopted distributions, this shows the important 
role of taking into consideration the feature saliency when 
dealing with image classification tasks. Further investiga-
tions with respect to features relevancy are conducted in the 
following applications to emphasize this role.

4.2  Scene categorization

Recently, there has been an abundance of research works 
and experimental trials aiming to bridge the semantic gap 
between the perceptual ability of human vision and the 
capacity of automated systems when performing the same 
related tasks. This challenge is prompted by the impressive 
trait of the human visual system to rapidly, accurately, and 
comprehensively recognize and understand a complex scene 
[28, 29, 76]. Thus, it would be worthwhile if each image in a 
studied collection could be annotated with semantic descrip-
tions allowing for a better automatic interpretation and hence 
an improved visual recognition ability. In this section, we 
work on a challenging problem related to the mentioned area 
of research, which is recognizing scene categories. Visual 
scenes classification has many applications in robot navi-
gation and robot path planning [70], video analysis [73], 
content-based image retrieval [13].

Inasmuch as this application is complex due to the variety 
of scenes and variations of viewing angles and changing 
backgrounds, choosing efficient features plays a major role 
in the accuracy level of the recognition task.

In this section, we test the effectiveness of our proposed 
feature-selection-based GIDHMM, in categorizing images 
of real-world scenes from the notorious MIT benchmark 

[61].1 The indicated database contains about 2688 diverse 
outdoor scene images in colours from 8 categories: coast 
(360 images), mountain (374 images), forest (328 images), 
open country (410 images), inside city (308 images), street 
(292 images), tall building (356 images) and highways (260 
images). Images come in 256 × 256 pixels resolution. We 
choose to randomly select 200 images from each category 
for training and leave the rest for testing purposes. Figure 7, 
shows example images from the MIT outdoor data set.

A crucial step for the scene categorization task is feature 
extraction. For this matter, we adopt a process where we nor-
malize images which will afterward be represented each by a 
collection of local image patches. These patches are scanned 
and low-level feature vectors are thereafter extracted. We 
then use the bag of words approach (BOW) method, adapted 
likewise by [75] for scene classification, in which Yang et al. 
mapped the key points of an image into visual words. Hence, 
each image could be represented as a “bag of visual words” 
BoVW, and in this instance as a vector of counts of each 
visual word in that image. This will allow for an overall 
representation for each image through a feature vector, upon 
which the task of image classification is built. Following 
[10], and after obtaining the intended histograms, we apply 
a probabilistic Latent Semantic Analysis (pLSA) [40, 41] 
in order to represent each image by a D-dimensional vector 
with D being the number of latent aspects (hidden aspects, 
features, or hidden states in our analogy). Ultimately, our 
objective is to identify the right category for each image by 
applying our previously developed model.

In this work, we use dense SIFT 16 × 16-pixel patches 
calculated over a grid of 8 pixels. Besides, we build a bag of 
words dictionary using a K-means algorithm [41] to cluster 
our descriptors in a V visual words vocabulary. For each 

Table 1  Detailed recognition 
rates in the case of facial 
recognition application with 
and without applying feature 
selection for GIDHMM

Anger Disgust Fear Joy Sadness Surprise

Recognition rates without applying feature selection
 Anger 0.96 0.01 0 0 0.03 0
 Disgust 0 0.97 0.03 0 0 0
 Fear 0.02 0.01 0.94 0 0.03 0
 Joy 0 0.03 0 0.97 0 0
 Sadness 0.02 0.03 0 0 0.95 0
 Surprise 0 0 0 0.02 0 0.98

Recognition rates when feature selection is applied
 Anger 0.97 0 0 0 0.03 0
 Disgust 0 0.98 0.02 0 0 0
 Fear 0.01 0 0.96 0 0.03 0
 Joy 0 0.02 0 0.98 0 0
 Sadness 0.02 0.01 0 0 0.97 0
 Surprise 0 0 0 0.02 0 0.98

1 http:// people. csail. mit. edu/ torra lba/ code/ spati alenv elope/

http://people.csail.mit.edu/torralba/code/spatialenvelope/
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SIFT point in a candidate image, the nearest neighbour 
within the vocabulary is computed, and thereby a feature 
vector with dimension V is built. Hence, each image can 
be represented as a frequency histogram over the V visual 
words. As previously explained, in this work we apply pLSA 
to allow for a description through a D-dimensional vector 
where D is the number of aspects. We employ our GID-
HMM to model the set of images designated for training. 
We compute the class-relationship likelihood of each input 
image and classify it to the class that maximizes more its 
likelihood. In our approach, each image class is character-
ized by its own behaviour, therefore each class is described 
by its own HMM. That being the case, for each scenery 
type, a distinct 8-state HMM is trained. Experiments are 

carried out 30 times with the average accuracy reported for 
both feature-saliency-based and non-feature-saliency-based 
methods.

Through these experiments, we aim to evaluate not only 
the effectiveness of GIDHMM measured against IDHMM 
and GHMM but also the effectiveness of embedding the 
process of feature selection in the core of each of the afore-
mentioned models. Experiments are chosen to be conducted 
in the following order: first, we compare the performance of 
GIDHMM, IDHMM, and GHMM without taking into con-
sideration the relevancy of features. Then we reproduce the 
same experiments by taking into account feature relevancy. 
Table 2 presents the confusion matrix when GIDHMM is 
applied without feature selection. According to this table, 

Fig. 7  Sample images from the 8 categories MIT data set: (a) Tall buildings, (b) Mountain, (c) Street, (d) Forest, (e) Open country, (f) Highway, 
(g) Inside city, (h) Coast

Table 2  The confusion matrix 
in the case of MIT scene 
recognition problem when 
applying GIDHMM without 
feature selection

Tall building Mountain Street Forest Open country Highway Inside city Coast

Tall building 0.94 0.02 0 0 0 0 0.04 0
Mountain 0.01 0.92 0 0 0.07 0 0 0
Street 0 0 0.92 0 0 0.06 0.02 0
Forest 0 0.02 0 0.95 0.03 0 0 0
Open country 0 0.03 0 0.01 0.87 0 0 0.09
Highway 0 0.01 0 0 0.03 0.88 0 0.08
Inside city 0.01 0.01 0.05 0 0.03 0 0.90 0
Coast 0 0.01 0.01 0 0.05 0 0 0.93
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we get an average accuracy of 91.37%. On the other hand, 
Table 3 shows the confusion matrix when GIDHMM is 
used along with feature selection: the average accuracy is 
93.12%.

Results of other experimentation on the different used 
models are presented in Table 4 and confirm our pre-
vious assumptions about the role of feature selection in 
improving recognition rates. Our algorithm analyzed all 
extracted features and succeeded to determine their sali-
ency, hence the use of the better features yielded better 
results. Figure 8 shows the feature saliencies obtained by 
our GID-FSHMM.

5  Conclusion

While there are multiple general techniques of applying 
feature selection, and despite the buildup of standardized 
procedures for features and dimensionality reduction, the 
literature reveals time and again that custom methods keep 
outperforming the general methods. Besides there is an over-
whelming need for some sort of supervised data and knowl-
edge when applying general feature selection models. In our 
context, this supervised data can take the form of informa-
tion about the class, a label of each observation, or even a 
piece of knowledge about the latent variable. This additional 

information is often not readily accessible especially in areas 
where mixture models and HMMs are applied, considering 
that those models account for the fact that supervised data is 
unavailable. Therefore, unsupervised feature selection meth-
ods are essentially needed when using HMMs, allowing for 
significantly better performing models compared to those 
based upon general feature selection methods. Further, the 
interest in adopting the GID for modelling our data arose 
from the limitations encountered when inverted Dirichlet is 
adopted, in particular its restraining strictly positive covari-
ance. In this paper, we proposed a framework in which all 
the aforementioned problems are addressed simultane-
ously in the case of automatic recognition. The developed 
approach applies feature selection to a GID-based HMM. 
Parameters are learned via a MAP method adding a huge 
advantage in raising both accuracies of parameter estimates 
and feature saliencies. Experimental results involving chal-
lenging real-life applications such as facial expressions rec-
ognition and natural outdoor scene recognition showed that 
the proposed approach is highly promising. Future works are 
intended to be done in the near future extending this work to 
different flexible distributions and considering online learn-
ing for more precise results.

Estimation of GID parameters

Here, the estimation of the GID parameters is equivalent to 
maximization of the following log-likelihood function

In the E-step, we compute the conditional expectation of 
log-likelihood, which is reduced to the computation of the 
posterior probabilities meaning the probability that a vector 
�⃗Xi is assigned to a cluster j, such as following

(33)

log(p( �⃗Xi|Θ) =
N∑
i=1

M∑
j=1

pj

D∏
l=1

pIBeta(Xil|𝜃jl))

=

N∑
i=1

M∑
j=1

D∑
l=1

(log(pj) + logpIBeta(Xil|𝜃jl))

Table 3  The confusion matrix 
in the case of MIT scene 
recognition problem when 
applying GIDHMM with feature 
selection

Tall building Mountain Street Forest Open country Highway Inside city Coast

Tall building 0.96 0.02 0 0 0 0 0.02 0
Mountain 0.01 0.95 0 0 0.04 0 0 0
Street 0 0 0.93 0 0 0.06 0.01 0
Forest 0 0.02 0 0.96 0.02 0 0 0
Open country 0 0.03 0 0.01 0.90 0 0 0.06
Highway 0 0 0 0 0.02 0.91 0 0.07
Inside city 0.02 0.01 0.05 0 0.03 0 0.89 0
Coast 0 0.01 0.01 0 0.03 0 0 0.95

Table 4  Average recognition rates for different used HMMs in the 
context of natural scenes recognition, with and without feature selec-
tion

Bold values are the values achieved by the model proposed in this 
paper

Method Average recognition rate 
(%)

Integrating 
feature selec-
tion

GHMM 87.60 88.14
DHMM 88.79 89.05
IDHMM 90.01 90.66
GIDHMM 91.37 93.12
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where �⃗pj = (p1, ..., pM), pj > 0 and 
∑M

j=1
pj = 1

Hence, we have

Whence, the conditional expectation of the complete-data 
log likelihood

where Υ is the Lagrange multiplier.
We move forward in maximizing the log-likelihood func-

tion by finding the roots to its derivations with respect to the 
set of parameters. The mixture weights can be easily estimated 
as follows

Regarding the derivatives with respect to �jl and �jl , we have

(34)

p(j� �⃗Xi,Θ, �⃗pj) =
pjp(

�⃗Xi�𝜃j)∑M

j=1
pjp(

�⃗Xi�𝜃j)
=

pj
∏D

l=1
pIBeta(Xil�𝜃jl)∑M

j=1
pj
∏D

l=1
pIBeta(Xil�𝜃jl)

(35)

logp(X|Θ, �⃗pj) =
N∑
i=1

M∑
j=1

D∑
l=1

p(j| ��⃗Xi,Θ, ��⃗pj)(log(pj) + logpIBeta(
��⃗Xi|𝜃jl))

(36)ℚ(X,Θ, �⃗pj,Υ) = logp(X|Θ, �⃗pj) + Υ(1 −

M∑
j=1

pj)

(37)pj =

∑N

i=1
p(j� �⃗Xi,Θ, �⃗pj)

N

(38)

𝜕ℚ

𝜕𝛼jl
=

N∑
i=1

p(j| �⃗Xi,Θ, �⃗pj)
𝜕logpIBeta( �⃗Xi|𝜃jl)

𝜕𝛼jl

=

N∑
i=1

p(j| �⃗Xi,Θ, �⃗pj)(Ψ(𝛼jl + 𝛽jl) − Ψ(𝛼jl) + log(
Xil

1 + Xil

))

where Ψ(.) is the digamma function. We can clearly see that 
a closed form solution to estimate �jl does not exist. There-
fore, we ought to use the Newton-Raphson method [51] such 
as

where Hjl is the Hessian matrix associated with ℚ(X,Θ, �⃗pj,Υ) 

with first derivatives vector Gjl =

(
𝜕ℚ(X,Θ,⃗pj,Υ)

𝜕𝛼jl
,
𝜕ℚ(X,Θ,⃗pj,Υ)

𝜕𝛽jl

)

with the following second and mixed derivatives

(39)

𝜕ℚ

𝜕𝛽jl
=

N∑
i=1

p(j| �⃗Xi,Θ, �⃗pj)
𝜕logpIBeta( �⃗Xi|𝜃jl)

𝜕𝛽jl

=

N∑
i=1

p(j| �⃗Xi,Θ, �⃗pj)(Ψ(𝛼jl + 𝛽jl) − Ψ(𝛽jl) + log(
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Fig. 8  Feature saliencies obtained in the case of fnatural scenes recognition problem when performing feature selection-based GIDHMM (colour 
figure online)
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MAP estimation

A standard choice for the mixing parameters vector �⃗pj is 
the Dirichlet distribution (Dir), given its definition on the 
simplex {(p1, ..., pM) ∶

∑M−1

j=1
pj < 1} [64]. We pick the same 

distribution for both initial and transition probabilities � 
and B as well as for the observation weights such that

where � is the normalizing constant and Ωi is the hyperpa-
rameter vector of the observation weights.

The prior for the mixing parameters vector �⃗pj can be 
written as follows

where ��⃗Δ = {Δ1, ...,ΔM} is the Dirichlet parameters vector.
For the GID parameters, the Gamma (G) function is 

chosen as a prior given its exponential nature under the 
assumption of parameters independence. Thus we have 
the priors

where � , � , � and � are positive hyperparameters.
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