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Abstract
Graph embedding is one of the most efficient dimensionality reduction methods in machine learning and pattern recognition. 
Many local or global graph embedding methods have been proposed and impressive results have been achieved. However, 
little attention has been paid to the methods that integrate both local and global structural information without constructing 
complex graphs. In this paper, we propose a simple and effective global structure guided neighborhood preserving embedding 
method for dimensionality reduction called GSGNPE. Specifically, instead of constructing global graph, principal component 
analysis (PCA) projection matrix is first introduced to extract the global structural information of the original data, and then 
the induced global information is integrated with local neighborhood preserving structure to generate a discriminant projec-
tion. Moreover, the L2,1-norm regularization is employed in our method to enhance the robustness to occlusion. Finally, we 
propose an iterative optimization algorithm to solve the proposed problem, and its convergence is also theoretically analyzed. 
Extensive experiments on four face and six non-face benchmark data sets demonstrate the competitive performance of our 
proposed method in comparison with the state-of-the-art methods.

Keywords  Dimensionality reduction · Neighborhood preserving embedding · Global structure · Principal component 
analysis · Structured sparsity

1  Introduction

In the era of big data, the tasks to deal with, such as image 
classification, text analysis and gene selection, contain hun-
dred and thousand of features, pose some substantial chal-
lenges for effective and efficient computing and analysis 

[1–7]. Dimensionality reduction can be considered as the 
process of removing irrelevant or redundant information 
from high-dimensional data [8, 9]. Since reducing the 
learning process, improving interpretability, and alleviat-
ing the problem of over-fitting, dimensionality reduction 
has become an important pre-processing step in machine 
learning, pattern recognition, and computer vision [10–12].

In recent decades, many linear dimensionality reduction 
methods [13–16] have been proposed. Among these meth-
ods, principal component analysis (PCA) [13] and linear 
discriminant analysis (LDA) [14] are the classic ones and 
widely used. PCA is an unsupervised dimensionality reduc-
tion method, which aims to find a projection that maximizes 
the overall variance [17]. Unlike PCA, LDA is a supervised 
method, which tries to find a projection that not only makes 
the samples within the same classes compact and also keeps 
the samples from different classes away from each other. In 
practical applications, however, the data does not always 
have an ideal linear structure [18, 19]. In these cases, PCA 
and LDA may not achieve the expected performance since 
they do not take into account the underlying nonlinear 
structure of the original data. To tackle this problem, many 
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kernelized extensions of these linear dimensionality reduc-
tion methods [20–22] have been proposed. Nevertheless, 
due to the difficulty in determining kernel function, these 
methods are limited in practical applications.

The high-dimensional data is always in a low-dimensional 
manifold embedded in the original high-dimensional space 
[23]. Thus, to introduce the low-dimensional manifold of 
high-dimensional data into the low-dimensional space, many 
nonlinear manifold learning methods have been proposed, 
including locally linear embedding (LLE) [24], isometric 
mapping (ISOMAP) [23], and Laplacian eigenmap (LE) 
[25]. Though these manifold learning methods can well pre-
serve the inherent geometric structure of the original data in 
the low-dimensional space [26], they directly obtain the low-
dimensional embedding without the explicit mapping func-
tions resulting in the “out-of-sample” problem. This incon-
venience limits the applications of these methods in practice. 
The key to solving this problem is to obtain an explicit map-
ping function, which can easily obtain the low-dimensional 
embeddings of new samples. In the past few decades, many 
linear manifold learning methods have emerged, including 
locality preserving projections (LPP) [27], neighborhood 
preserving embedding (NPE) [28], neighborhood preserv-
ing projections (NPP) [29], sparsity preserving projections 
(SPP) [30]. Many of these methods are extensions of the 
existing nonlinear manifold learning methods. For example, 
LPP is a linear extension of LE and uses an affinity graph 
to make the projection data retain neighborhood structure; 
NPE is a linear extension of LLE and uses weighted graph to 
minimize the reconstruction error for keeping local structure 
of the original data. These linear manifold learning methods 
can not only retain the local manifold structure of the origi-
nal data but also solve the “out-of-sample” problem.

However, there are still some potential drawbacks in 
nonlinear and linear manifold learning methods mentioned 
above. First, most of these methods neglect the global struc-
ture of the original data which is also useful to identify the 
underlying structural information of the data [31]. Second, 
the local structure graph depends on the pair-wise Euclidean 
distances between samples, which is easily contaminated 
by noise and outlier [32]. To address these problems, many 
graph embedding based methods [33–36] have been pro-
posed, which can hold the global and local structure of the 
original data in low-dimensional space. These methods pre-
serve the structural information by constructing the complex 
structure graphs. For example, Shen et al. [35] constructed 
a global structure graph by calculating the distance between 
all samples, which is combined with the local graph embed-
ding based method to get the low-dimensional embedding. 
In [36], Gou et al. assumed that the samples within the same 
classes will hold the similar sparse reconstructions. By con-
structing the global and local structure graphs, they gave the 
definition of sparsity and geometry preserved scattering and 

employed maximum margin criterion (MMC) [22] to obtain 
the low-dimensional embedding.

Although keeping the global and local structure simul-
taneously in the low-dimensional space can effectively 
improve the performance of dimensionality reduction, the 
construction of structure graphs in the existing methods are 
very complicated. Also, it is difficult to find an appropriate 
method to efficiently and easily combine the global and local 
structural information in practical applications. To deal with 
this problem, we propose a simple and effective dimension-
ality reduction method named GSGNPE (global structure 
guided neighborhood preserving embedding), which can 
simultaneously retain the global and local structure of the 
original data in low-dimensional space. In detail, we use a 
concise and efficient least-square term to obtain the global 
structure information from the PCA projection matrix which 
can retain the global Euclidean structure of the original data. 
On this basis, we modify the NPE loss function so that it can 
hold the global and local structure of the original data con-
currently. In addition, the L2,1-norm regularization is utilized 
in GSGNPE model to make the final projection matrix have 
the sparse structure, promote effective learning of global 
structure information, and reduce the interference of global 
structure information on local structure information, which 
helps to retain essential structural information and makes 
GSGNPE robustness to occlusion and noise. Hence, the per-
formance of GSGNPE can be further improved. The main 
contributions of this work are summarized as follows: 

1)	 A novel unsupervised graph embedding based dimen-
sionality reduction method named GSGNPE is pro-
posed. Instead of constructing the global structure graph, 
GSGNPE introduces the global structural information in 
the projection matrix obtained by PCA into the NPE to 
guide the retention of structural information, which pro-
vides a simple and effective way to extract the features 
with global and local structural information.

2)	 Consider the negative effect of noise and occlusion, 
GSGNPE integrates L2,1-norm regularization into its 
objective function, which could effectively promote the 
retention of essential structural information and enhance 
the robustness to occlusion and noise. The experiments 
on the face data sets show that GSGNPE achieves better 
results under different sizes and positions of occlusion.

3)	 An iterative algorithm is elaborately designed for solv-
ing the resulting optimization problem of the proposed 
GSGNPE, and the corresponding convergence is ana-
lyzed and proved theoretically. Extensive experimental 
results demonstrate the superior performance and fast 
convergence of the proposed GSGNPE.

The rest of this paper is organized as follows. Section 2 
presents some notations and definitions, and gives a brief 
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review of the related works. Section 3 describes the pro-
posed GSGNPE method and the corresponding optimiza-
tion algorithm, and gives the convergence analysis. A series 
of experimental results and analysis are given in Sect. 4. 
Finally, the conclusions are drawn in Sect. 5.

2 � Related works

In this section, we first give some notation and definitions, 
and then briefly review some related methods, including 
PCA, LPP, and NPE.

2.1 � Notation and definitions

Suppose that � = [�1, �2,… , �n] ∈ ℜd×n is the centralized 
data matrix, and �i ∈ ℜd is the ith sample of � . Let xij be 
the element in the ith row and jth column of the matrix � , 
and �i is the ith row vector of data matrix � . Then, the L2,1
-norm of data matrix � is defined as follows:

The goal of the linear dimensionality reduction methods 
is to learn a projection matrix � ∈ ℜd×c that can project a 
high-dimensional sample �i to a low-dimensional one with 
�i = �T�i , where c ≪ d.

2.2 � PCA

PCA is one of the most commonly used dimensional-
ity reduction methods in pattern recognition and machine 
learning. The basic idea of PCA is to maximize the overall 
variance of the samples, and the projection data preserves 
the global Euclidean structure of the original data [37]. The 
objective function of PCA is defined as:

where � ∈ ℜd×c is the projection matrix, and � = ��T is 
the covariance matrix of the samples. The optimal solution 
� consists of the eigenvectors corresponding to the first c 
largest eigenvalues of the covariance matrix �.

2.3 � LPP

Unlike PCA, LPP is a local graph embedding-based method 
which aims to find a low-dimensional space retaining the 
local structure of the original data. The objective function 
is defined as follows:

(1)||�||2,1 =
d∑

i=1

√√√√
n∑

j=1

x2
ij
=

d∑

i=1

||�i||2,

(2)max
�

n∑

i=1

||�T�i||22 = tr(�T��), s.t. �T� = I,

where � ∈ ℜd×c is the projection matrix, and wij is an entry 
of � ∈ ℜn×n that describes the similarity between �i and 
�j , defined as:

With the constraint of �T���T� = �c , where �c is a c × c 
identity matrix, the objective function (3) can be written as:

where � ∈ ℜn×n is a diagonal matrix with �ii = �jwij , and 
� = � −� is the graph Laplacian matrix. The objective 
function (5) can be converted to the following eigenvalue 
problem:

where � is the eigenvalue matrix. LPP could keep the neigh-
boring high-dimensional samples adjacent to each other in 
the low-dimensional space.

2.4 � NPE

NPE is a linear approximation extension of LLE. Unlike 
LPP, NPE finds a low-dimensional embedding by minimiz-
ing the local reconstruction error between the samples and 
their neighbors [30]. The calculation process of the weight 
matrix � in NPE is similar to that of LLE, which is defined 
as:

where �j is one of the k neighbors of �i , and the KNN algo-
rithm is often used to determine the neighbors of �i . The 
objective function of NPE is defined as follows:

where � ∈ ℜd×c is the projection matrix, and �c is a c × c 
identity matrix. The objective function (8) can be written as:

where � is a symmetric matrix and � = (� −�)T (� −�) . 
The minimization problem (9) can be converted to the fol-
lowing eigenvalue problem:

(3)min
�

∑

ij

||�T�i − �T�j||22wij,

(4)

wij =

{
exp(−||�i − �j||2∕t), if nodes i and j are adjacent,

0, otherwise.

(5)min
�

tr(�T���T�), s.t. �T���T� = �c

(6)���T� = ���T��,

(7)min
�

n∑

i

‖‖‖‖‖‖
�i −

∑

j

wij�j

‖‖‖‖‖‖

2

2

, s.t.
∑

j

wij = 1,

(8)min
�

n∑

i

‖‖‖‖‖‖
�T�i −

k∑

j

wij�
T�j

‖‖‖‖‖‖

2

2

, s.t. �T��T� = �c,

(9)min
�

tr(�T���T�), s.t. �T��T� = �c,
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where � is the eigenvalue matrix.

3 � The proposed method

In this section, we propose a simple and effective unsuper-
vised graph embedding based method for dimensionality 
reduction, which can maintain the global and local struc-
tural information of the original data in low-dimensional 
space. We first introduce the motivation of our proposed 
method. After that we will detailedly describe the proposed 
method and optimization algorithm. Finally, the convergence 
analysis is given.

3.1 � Motivation

Many graph embedding based subspace learning methods 
are implemented by finding the low-dimensional embed-
ding that preserves the local structure of the original data. 
Among these methods, LLE and its extension methods get 
the low-dimensional manifold embedding by reconstruct-
ing the linear relationship between the samples and their 
neighborhoods in the low-dimensional space. Neighborhood 
relations in these methods represent the similarity of sam-
ples, which can gather together similar samples [38]. Most 
of these graph embedding based methods can be expressed 
by [35]:

where �i is the column vector of projection matrix 
� = {�1, �2,… , �c} ∈ ℜd×c , � ∈ ℜn×n is an affinity graph 
which represents the local neighborhood structure of sam-
ples, and � is the discriminate matrix. The difference 
between these graph embedding based methods lies in the 
way of the construction of affinity graph � . However, these 
methods do not take into account the global structure of 
the original data, the obtained projection matrix � cannot 
retain the global structure in the low-dimensional space. 
When the overall structure of the data is relatively scattered, 
the local graph embedding based methods may not achieve 
good performance. Therefore, it is worthwhile to investi-
gate the dimensionality reduction method preserving both 
the global and local structure of the original data in the low-
dimensional space, simultaneously. By constructing a global 
graph, the global structural information of the original data 
could be captured. However, it is not easy to construct a 
suitable global structure graph for dimensionality reduction, 
and the effectiveness of the constructed graph may not be 
guaranteed. While some classic linear dimensionality reduc-
tion methods, such as PCA, can hold the global structure of 

(10)���T� = ��T��,

(11)min
�i

�T
i
���T�i, s.t. �T

i
���T�i = 1,

the original data, and the effectiveness of these methods has 
been widely confirmed [39]. Inspired by this, we propose a 
simple and effective method to preserve the global and local 
graph structural information of the original data in the low-
dimensional space, which avoids the construction of global 
structure graph and ensures the effectiveness.

3.2 � The objective function of GSGNPE

Let � = {�1, �2,… , �c} ∈ ℜd×c be the projection matrix of 
PCA, �i ∈ ℜd is the column vector of � , and � ∈ ℜd×d is 
an orthogonal square matrix with �T� = ��T = � . Consider 
the following optimization problem:

where � = {�1, �2,… , �c} ∈ ℜd×c , �i ∈ ℜd is the column 
vector of � . When � is fixed, we have:

Optimization problem (12) aims to project �i into �i , which 
passes the information of �i to �i . And this conclusion can 
also be drawn from (13). The projection matrix � obtained 
by PCA maximizes the overall variance, which also keeps 
the global Euclidean structure of the original data [37]. 
Naturally, in the process of dynamically fitting �i , �i effi-
ciently gains the global Euclidean structural information in 
�i . Inspired by (12), we modify the model of NPE so that it 
can retain the global and local structural information of the 
original data in the low-dimensional space. Take the follow-
ing optimization problem into consideration:

where � is the projection matrix, wij is an entry of � ∈ ℜn×n 
which can be computed by function (7), and � is a regulation 
parameter to control the trade-off between the global and 
local structural information. The first term of (14) captures 
the local structural information of the original data for � but 
lacks the global structural information, and the second term 
of (14) introduces the global Euclidean structural informa-
tion to � . Finally, the projection matrix � can obtain the 
global and local structural information of the original data. 
Figure 1 illustrates the main idea of the proposed method.

However, the projection matrix � obtained by (14) is 
dense and has poor interpretability. To overcome this prob-
lem, we employ the L2,1-norm penalty. The main reason is 
that L2,1-norm has the property of structured sparsity which 
helps select the important features of the high-dimensional 

(12)min
�,�

c∑

i=1

‖‖‖�i − �T�i
‖‖‖
2

2
, s.t. �T� = �,

(13)�i = (��T )−1��i = ��i.

(14)
min
�,�

n∑

i

‖‖‖‖‖‖
�T�i −

∑

j

wij�
T�j

‖‖‖‖‖‖

2

F

+ �

c∑

i=1

||�i − �T�i||22,

s.t. �T� = �,
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data. Hence, the L2,1-norm penalty can effectively pro-
mote the retention of essential structural information and 
improve the robustness of our model. Finally, the objective 
function of GSGNPE is defined as follows:

where � is the parameter used to adjust the penalty. Com-
pared with other dimensionality reduction methods [33–36] 
that combine the global and local structure graphs, we adopt 
a simpler and more effective way to combine global and 
local structural information instead of constructing complex 
structure graphs. Our method can also avoid the “out-of-
sample” problem. A new sample �̃ can be explicitly mapped 
to the low-dimensional space through the projection matrix 
� to obtain the low-dimensional representation �T �̃ , then 
using the nearest neighbor classifier to determine the near-
est neighbor, and finally we can get the label result based on 
the nearest neighbor’s label. More importantly, the objective 
function of GSGNPE is concise and easy to optimize.

3.3 � Optimization

There are two variables � and � in the objective function 
of GSGNPE, which are difficult to solve directly. We adopt 
an iterative algorithm to obtain � and �.

(15)
min
�,�

n∑

i

‖‖‖‖‖‖
�T�i −

∑

j

wij�
T�j

‖‖‖‖‖‖

2

F

+ �

c∑

i=1

||�i − �T�i||22 + �||�||2,1, s.t. �T� = �,

•	 Update � by keeping � fixed

When � is fixed, the loss function (15) can be written as:

where � = �(� −�)T (� −�)�T  . Take the derivative of 
(16) with respect to � and set it to zero, we have:

where � is a diagonal matrix with �ii =
1

||�i||2
 and �i is the 

ith row vector of � . Denote (� +�T ) by � and we have:

•	 Update � by keeping � fixed

The objective function (15) can be written as:

If � is an orthogonal square matrix with �T� = ��T = � , 
the above equation can be converted to:

(16)

min
�

n∑

i

‖‖‖‖‖‖
�T�i −

k∑

j

�ij�
T�j

‖‖‖‖‖‖

2

F

+ �||� − �T�||2
F
+ �||�||2,1

= min
�

tr(�T�(� −�)T (� −�)�T�)

+ �||� − �T�||2
F
+ �||�||2,1

= min
�

tr(�T��) + �||� − �T�||2
F
+ �||�||2,1,

(17)(� +�T )� + �(−2�� + 2��T�) + ��� = 0,

(18)� = 2�(� + 2���T + ��)−1��

(19)

min
�

c∑

i=1

||�i − �T�i||22 = min
�

||�T − �T�||2
F
, s.t. �T� = �.

Fig. 1   The illustration of the 
idea of GSGNPE PCA

Local graph embedding
Global structure information transmission
Output final feature space

Class 1

Class 2

Class 3

Mean vector of all samples

Original feature space Local graph embedding 
feature space Final feature space

PCA feature space
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Thus, (19) is equivalent to the following problem:

Therefore, (19) can be converted into an orthogonal Pro-
crustes problem, by using the conclusion in [40], we per-
form the singular value decomposition of ��T  , that is, 
��T = ���T . Then we have:

The detailed optimization procedure of GSGNPE is shown 
in Table 1.

3.4 � Convergence analysis

In this section we will give the convergence analysis of the 
iterative algorithm in Table 1. Formally, the L2,1 norm of the 
projection matrix � can be rewritten as:

where � is a diagonal matrix and the ith diagonal element 
is denoted as:

where �i is the ith row vector of matrix � . The objective 
function of GSGNPE can be rewritten as

(20)

min
�

||�T − �T�||2
F

= min
�

tr(�T� − 2�T��T + �T��T�T )

= min
�

||�T ||2
F
+ ||�T�||2

F
− 2tr(�T��T )

= min
�

||�T ||2
F
+ ||�T ||2

F
− 2tr(�T��T ).

(21)max
�T�=�

tr(�T��T ).

(22)� = ��T .

(23)||�||2,1 = 2tr(�T��),

(24)�ii =
1

2||�i||2
,

(25)
min
�,�

tr(�T��) + �||� − �T�||2
F
+ �

�

tr(�T��), s.t. �T� = �,

where ��

= 2� . In order to prove the convergence of the 
iterative algorithm, we use the following Lemma.

Lemma 1  [41] For any nonzero vector a and b, the following 
inequality holds:

Let �k+1 and �k denote the projection matrices in the 
(k + 1) th and kth iteration, respectively. By using Lemma 1, 
we can get the following inequality:

where �i
k+1

 and �i
k
 are the ith row vectors of �k+1 and �k , 

respectively.

Proposition 1  The iterative algorithm in Table 1 decreases 
the value of the objective function of GSGNPE in each 
iteration.

Proof  For simplicity, we denote the value of the objective 
function in the kth iteration as J(�k, �k,�k) . Now suppose 
that �k , �k , and �k are given. Since �k+1 is updated by (18), 
the following inequality holds:

According to (25), we can rewrite (28) as:

Based on the definition of L2,1-norm, we can get the follow-
ing inequality:

(26)||a||2 −
||a||2

2

2||b||2
≤ ||b||2 −

||b||2
2

2||b||2
.

(27)||�i
k+1

||2 −
||�i

k+1
||2
2

2||�i
k
||2

≤ ||�i
k
||2 −

||�i
k
||2
2

2||�i
k
||2

,

(28)J(�k+1, �k,�k) ≤ J(�k, �k,�k),

(29)

tr(�T
k+1

��k+1) + �||� − �T
k
�k+1||2F + �

�

tr(�T
k+1

�k�k+1)

≤ tr(�T
k
��k) + �||� − �T

k
�k||2F + �

�

tr(�T
k
�k�k).

Table 1   The optimization procedure of GSGNPE

Input: Training set � = [x1, x2,… , x
n
] ∈ ℜd×n,the number of neighbors k, the parameters � and � , the number of iterations Iter.

Step 1: Obtain � by (2);
Step 2: Initialize � with �;

            Initialize � with the weight matrix by (7);
Step 3: Initialize � via (22);
Step 4: For i = 1 ∶ Iter

                  Update � via (18);
                  Update � via (22);
            End

Output: Projection matrix � , orthogonal matrix �.
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The above inequality can be further transformed into the 
following inequality:

It is equivalent to the following inequality:

By using (27), the following inequality holds:

According to the definition of L2,1-norm and (23), we have 
the following inequality:

The above inequality is equivalent to

Since the optimization of �k is an orthogonal Procrustes 
problem, the following inequality holds:

	�  ◻

(30)

tr(�T

k+1
��

k+1) + �||� − �T

k
�
k+1||2F + �

�

d∑

i=1

||�i
k+1

||2
2

2||�i
k
||2

≤ tr(�T

k
��

k
) + �||� − �T

k
�
k
||2
F
+ �

�

d∑

i=1

||�i
k
||2
2

2||�i
k
||2

(31)

tr(�T
k+1

��k+1) + �||� − �T
k
�k+1||2F

+ �
�

d∑

i=1

||�i
k+1

||2 −
(
�

�

d∑

i=1

||�i
k+1

||2 − �
�

d∑

i=1

||�i
k+1

||2
2

2||�i
k
||2

)

≤ tr(�T
k
��k) + �||� − �T
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(35)J(�k+1, �k+1,�k) ≤ J(�k, �k,�k).

(36)J(�k+1, �k+1,�k+1) ≤ J(�k, �k,�k).

Proposition  1 shows that the objective function of 
GSGNPE monotonically decreases in each iteration, and the 
convergence of our proposed algorithm is thus guaranteed.

4 � Experiments

In this section, to demonstrate the effectiveness of our pro-
posed method, GSGNPE is compared with the state-of-the-
art methods including PCA, LPP, NPE, UDFS [42], RDR 
[43], LRPPGRR [44], SOGFS [45], and GLSRGE [35]. The 
comparison experiments are conducted on ten well-known 
data sets that are FERET [46], AR [47], CMU PIE [48], 
extended YaleB [49], The PolyU FKP,1 binary,2 and four real 
benchmark data sets of UCI.3 For all experiments, we use 
MATLAB R2020a to run the codes on the machine with an 
Intel(R) Core(TM)i5-6500 CPU 3.20 GHz and 16 GB RAM.

4.1 � Data sets

FERET data set contains 13,539 face images of 1565 indi-
viduals, and there is only one individual in each image. Each 
individual in the images has different illumination, facial 
expressions, and face orientations. We select a subset from 
FERET data set, which contains 1400 images of 200 indi-
viduals, and each individual has 7 images. All images in the 
subset are resized to 40 × 40 pixels.

AR data set consists of 4000 face images of 126 individu-
als. We selected a subset of 2400 images of 120 individuals 
from the original data set. The images in selected subset are 
under different illumination, facial expressions and occlu-
sions. These images are resized to 50 × 40 pixels.

CMU PIE data set contains 41,368 face images consist-
ing of 68 individuals under different lighting conditions and 
facial expressions. Our experiments usea selected subset 
contains 1632 images of 68 individuals, and each individ-
ual has 24 images. All images used in our experiments are 
resized to 32 × 32 pixels.

Extended YaleB data set used in the experiment contains 
2414 frontal cropped facial images of 38 individuals under 
different illumination and facial expressions. All images of 
the data set are resized to 32 × 32 pixels.

The PolyU FKP contains 7920 pictures of fingers of 165 
volunteers (125 males and 40 females). We select a sub-
set from PolyU FKP data set, which contains 1980 images 
of 165 individuals, and each individual has 12 images. All 

1  http://​www.​comp.​polyu.​edu.​hk/​~biome​trics/​FKP.​htm.
2  http://​www.​cs.​nyu.​edu/​roweis/​data.​html.
3  http://​archi​ve.​ics.​uci.​edu/​ml.

http://www.comp.polyu.edu.hk/%7ebiometrics/FKP.htm
http://www.cs.nyu.edu/roweis/data.html
http://archive.ics.uci.edu/ml
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PolyU FKP images used in our experiments are resized to 
28 × 55 pixels.

Binary alpha character data set contains 1404 handwrit-
ing images of 26 letters (A–Z) and 10 numbers (0–9). Each 
subject has 39 images with different handwriting. All images 
in our experiments are resized to 46 × 46 pixels.

Four real benchmark data sets of UCI including synthetic 
control chart time series (SCCTS), image segmentation (IS), 
a subset of ISOLET (Isolet), and dermatology data sets. The 
detailed information of the data sets is described in Table 2.

Figure 2 shows some images from the data sets used in 
the experiments. Note that we added the occlusion blocks 
with different sizes to the four face data sets.

4.2 � Experimental settings

All data sets used in the experiments are divided into two 
parts: training set and test set. For each data set, we ran-
domly selected l images from each class to form the train-
ing sets, and the rest r images in each class form the test 
sets. The detailed settings of all data sets are shown in 
Table 2. To verify the robustness of GSGNPE, we ran-
domly added some black occlusion blocks with different 
sizes to each image of the four face data sets including 
FERET, AR, CMU PIE, and extended YaleB, as shown 
in Fig. 2a–d. In order to reduce the consumption of com-
puting resources and avoid the problem of small samples 
caused by high dimensional features, PCA is employed to 
reduce the dimensions of the original data. More specifi-
cally, we selected the first 200 principal components for 
FERET, AR, CMU PIE, extended YaleB, PolyU FKP, and 
Isolet. For binary, we only picked the first 50 principal 
components which could retain most of its information. 
We do not perform dimensionality reduction on SCCTS, 
IS, and Dermatology data sets because of their low 

Table 2   The divisions of all databases

Database Dimensions Samples Classes l r

FERET 1600 1400 200 4 3
AR 2000 2400 120 4 16
CMU PIE 1024 1632 68 8 16
Extended YaleB 1024 2414 38 20 34
PolyU FKP 1540 1980 165 4 8
Binary 2116 1404 36 15 14
SCCTS 60 600 6 20 80
IS 19 2310 7 19 311
Isolet 617 1560 2 200 580
Dermatology 34 366 6 15 5–97

Fig. 2   Some images from the 
selected data sets. a FERET 
(from top to bottom, occlusion 
block size: 0 × 0 , 5 × 5 , 10 × 10 , 
15 × 15 , 20 × 20 ), b AR (from 
top to bottom, occlusion block 
size: 0 × 0 , 5 × 5 , 10 × 10 , 
15 × 15 , 20 × 20 ), c PIE (from 
top to bottom, occlusion block 
size: 0 × 0 , 5 × 5 , 10 × 10 , 
15 × 15 , 20 × 20 ), d extended 
YaleB (from top to bottom, 
occlusion block size: 0 × 0 , 
5 × 5 , 10 × 10 , 15 × 15 ), e FKP, 
f binary
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dimensionality. The GSGNPE method uses the function 
(7) to generate the weight matrix W. In order to maintain 
the consistency of the experiments, the manifold graph 
matrix in GLSRGE is also constructed by function (7). 
GSGNPE uses k-nearest neighbor to construct the adja-
cent graphs, and the effect of the different values of k on 
the performance of GSGNPE is given in Sect. 4.6. In our 
experiments, k is set to the number of samples in each 
class. On each data set, we conducted 10 independent 
experiments using the nearest neighbor classifier, and their 
results are averaged.

4.3 � Experimental results and analysis

We first conducted the experiments on four face data sets 
including FERET, AR, CMU PIE, and extended YaleB. 
Tables 3, 4, 5 and 6 give the average classification accuracy, 
standard deviation, and corresponding dimensions under the 
occlusion blocks with different sizes in first 100 dimensions. 
After that, the experiments were performed on 6 non-face 
data sets including PolyU FKP, binary, and four UCI data 
sets, and the results are reported in Table 7. We performed 

Table 3   Best recognition accuracy (%), standard deviation, and dimensions of the comparison methods on FERET

Bold values indicate the highest experimental results in the corresponding experiments

Block size PCA LPP NPE UDFS RDR SOGFS LRPPGRR​ GLSRGE Our method

0 × 0 82.75 79.13 79.83 83.22 82.33 83.25 82.72 83.77 86.78
± 15.00 ± 18.00 ± 18.00 ± 15.00 ± 16.00 ± 15.00 ± 15.00 ± 14.00 ± 12.00
97 94 99 94 99 97 100 40 99

5 × 5 79.42 73.92 74.57 78.63 79.52 70.70 79.82 77.25 80.88
± 18.00 ± 21.00 ± 21.00 ± 18.00 ± 17.00 ± 23.00 ± 17.00 ± 19.00 ± 16.00
96 87 87 100 97 100 93 26 42

10 × 10 67.32 64.84 64.93 67.17 66.70 66.02 67.32 67.43 67.45
± 26.00 ± 28.00 ± 28.00 ± 26.00 ± 26.00 ± 27.00 ± 26.00 ± 26.00 ± 26.00
94 100 95 82 96 100 98 57 78

15 × 15 66.40 64.55 64.52 66.28 66.08 65.80 66.37 66.78 66.98
± 27.00 ± 28.00 ± 28.00 ± 27.00 ± 27.00 ± 27.00 ± 27.00 ± 26.00 ± 26.00
81 79 96 99 68 100 75 37 47

20 × 20 65.50 63.95 63.93 65.57 65.33 65.33 65.45 65.97 66.02
± 27.00 ± 29.00 ± 29.00 ± 27.00 ± 28.00 ± 28.00 ± 27.00 ± 27.00 ± 27.00
57 73 98 74 99 100 88 28 44

Table 4   Best recognition 
accuracy (%), standard 
deviation, and dimensions of the 
selected methods on AR

Bold values indicate the highest experimental results in the corresponding experiments

Block size PCA LPP NPE UDFS RDR SOGFS LRPPGRR​ GLSRGE Our method

0 × 0 81.25 76.9 80.36 78.67 80.34 85.99 81.02 88.10 89.87
± 4.70 ± 8.60 ± 7.70 ± 11.00 ± 4.50 ± 5.70 ± 4.60 ± 7.90 ± 6.60
99 100 100 99 100 72 99 69 96

5 × 5 79.27 73.09 78.16 79.94 78.92 83.15 79.39 83.3 86.91
± 5.30 ± 8.20 ± 7.10 ± 6.90 ± 5.40 ± 5.00 ± 5.20 ± 7.40 ± 6.50
99 100 97 92 100 59 100 58 91

10 × 10 64.97 65.56 69.78 63.03 66.47 72.33 65.04 70.83 73.26
± 5.20 ± 7.20 ± 7.60 ± 4.90 ± 5.90 ± 5.50 ± 5.10 ± 7.20 ± 6.50
100 100 99 100 100 54 100 90 95

15 × 15 47.81 46.32 49.42 53.11 46.88 59.05 47.42 63.47 65.41
± 4.50 ± 6.10 ± 6.20 ± 8.20 ± 4.30 ± 7.70 ± 4.50 ± 5.70 ± 5.80
100 100 100 100 100 87 100 93 100

20 × 20 43.98 39.96 41.95 48.56 43.01 48.32 43.52 57.7 58.49
± 4.60 ± 5.30 ± 5.50 ± 6.30 ± 4.50 ± 6.90 ± 4.60 ± 5.50 ± 5.10
100 100 100 99 100 100 100 100 100
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the selected methods on different number of dimensions and 
repeated the independent experiment 10 times, and the aver-
age value of these 10 experiment results was used as the 
verification result with respect to each dimension. The high-
est average result of different dimensions in 10 independ-
ent repeated experiments was selected as the final evalu-
ation result. The average classification accuracy reported 
in Tables 3, 4, 5, 6 and 7 is the highest average result over 
different dimensions. All data sets will be reduced to differ-
ent dimensions by selected methods. Specifically, the dimen-
sions of four face data sets, FKP and ISO are reduced to 100 
dimensions, and the dimension of binary is reduced to 50. 
Due to the low dimension, SCCTC, IS and Dermatology are 
respectively projected into the new spaces whose dimen-
sions are the same as the original dimensions. In order to 
further explore the overall performance of GSGNPE among 
different dimensions, Tables 8, 9, 10, 11 and 12 report the 

average performance of all selected methods among differ-
ent reduced dimensions. The best results among the selected 
methods are boldfaced in each table. Note that all standard 
deviations in the tables are calculated for ten classifica-
tion accuracy under the dimensions corresponding to best 
average classification accuracy. The standard deviation in 
Table 3 is relatively large, the possible cause comes from 
the fact that each class of FERET has a small number of 
samples but with different characteristics. Each randomly 
divided training set has different characteristics of samples, 
hence the standard deviation for the classification accuracy 
of 10 repeated experiments is relatively large. Figures 3, 4, 
5, 6 and 7 show the performance of different methods in dif-
ferent dimensions. Based on the above experimental results, 
we can draw the following conclusions.

First, in the case of no occlusion, our method achieves 
the best results on face and non-face data sets, and could 

Table 5   Best classification 
accuracy (%), standard 
deviation, and dimensions of the 
selected methods on CMU PIE

Bold values indicate the highest experimental results in the corresponding experiments

Block size PCA LPP NPE UDFS RDR SOGFS LRPPGRR​ GLSRGE Our method

0 × 0 86.21 89.29 89.36 89.07 88.53 87.52 85.83 93.38 93.94
± 5.60 ± 4.20 ± 4.60 ± 3.70 ± 4.10 ± 6.10 ± 5.70 ± 3.60 ± 3.70
100 98 100 99 100 98 100 56 97

5 × 5 80.29 81.44 84.86 81.03 79.36 83.68 80.32 81.66 87.19
± 5.50 ± 5.10 ± 5.20 ± 2.80 ± 4.40 ± 6.20 ± 5.50 ± 2.70 ± 2.60
100 99 100 86 100 100 99 81 99

10 × 10 53.42 55.33 57.31 61.78 52.20 58.37 53.06 64.98 66.04
± 5.70 ± 3.90 ± 5.10 ± 5.80 ± 5.60 ± 6.2 ± 5.70 ± 4.50 ± 4.10
100 100 100 100 99 48 100 100 99

15 × 15 45.71 45.25 44.58 49.05 44.27 45.74 45.58 53.26 54.03
± 5.30 ± 5.70 ± 5.50 ± 5.60 ± 5.40 ± 5.50 ± 5.40 ± 5.20 ± 5.20
99 100 100 97 100 99 100 100 100

20 × 20 44.08 42.26 41.37 46.73 41.84 44.11 43.86 51.99 52.38
± 5.60 ± 5.50 ± 5.60 ± 6.20 ± 5.60 ± 5.50 ± 5.50 ± 5.30 ± 4.90
99 100 100 99 99 100 99 100 99

Table 6   Best classification 
accuracy (%), standard 
deviation, and dimensions of the 
selected methods on extended 
YaleB

Bold values indicate the highest experimental results in the corresponding experiments

Block size PCA LPP NPE UDFS RDR SOGFS LRPPGRR​ GLSRGE Our method

0 × 0 64.38 77.88 66.56 77.99 68.54 67.47 63.22 85.91 86.23
± 3.50 ± 2.60 ± 3.10 ± 2.50 ± 3.90 ± 3.70 ± 3.30 ± 2.90 ± 2.80
100 100 100 100 100 98 100 98 100

5 × 5 57.48 66.11 60.62 71.30 56.03 61.19 56.75 75.11 78.71
± 3.30 ± 2.90 ± 2.80 ± 3.70 ± 2.90 ± 4.40 ± 3.30 ± 2.90 ± 3.2
100 100 100 100 100 99 100 63 100

10 × 10 28.22 35.49 29.53 36.68 26.64 30.64 27.39 50.27 53.94
± 1.50 ± 2.60 ± 1.40 ± 4.30 ± 1.90 ± 2.50 ± 1.50 ± 2.50 ± 2.20
100 100 100 100 100 92 100 99 100

15 × 15 18.23 18.98 15.21 29.55 15.46 19.30 17.80 29.41 31.72
± 0.97 ± 0.91 ± 0.91 ± 2.80 ± 0.83 ± 1.20 ± 0.93 ± 1.90 ± 1.70
100 100 100 100 100 100 100 93 83
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Table 7   Best classification accuracy (%), standard deviation, and dimensions of the selected methods on FKP, binary, and four UCI data sets

Bold values indicate the highest experimental results in the corresponding experiments

Non-face data sets PCA LPP NPE UDFS RDR SOGFS LRPPGRR​ GLSRGE Our method

FKP 90.60 83.02 86.73 85.83 88.61 89.95 90.30 93.42 94.42
± 3.00 ± 4.90 ± 4.20 ± 5.10 ± 3.30 ± 3.00 ± 3.10 ± 2.30 ± 2.10
97 51 76 96 87 100 99 26 32

Binary 78.43 77.65 77.99 78.18 78.22 78.00 78.43 76.74 78.96
± 1.80 ± 1.60 ± 1.70 ± 2.00 ± 1.60 ± 1.50 ± 1.80 ± 1.60 ± 1.40
28 36 35 47 33 50 28 17 43

SCCTS 96.83 82.92 94.85 95.40 96.79 95.25 96.83 93.60 97.12
± 1.70 ± 2.20 ± 2.50 ± 1.80 ± 1.80 ± 2.10 ± 1.70 ± 1.50 ± 1.70
8 10 7 57 12 60 8 8 9

IS 85.31 83.27 84.11 85.31 85.82 86.50 85.31 83.31 87.46
± 1.70 ± 2.40 ± 2.50 ± 1.70 ± 1.90 ± 1.70 ± 1.70 ± 2.80 ± 2.20
13 13 13 19 12 17 13 13 13

Isolet 88.25 81.59 83.01 82.42 86.97 84.17 87.88 86.89 88.43
± 1.20 ± 1.70 ± 1.50 ± 5.40 ± 1.20 ± 2.10 ± 1.40 ± 1.20 ± 1.10
100 94 96 98 98 100 95 29 76

Dermatology 93.33 93.66 92.93 93.26 94.49 93.80 93.33 91.09 95.14
± 0.71 ± 1.50 ± 2.00 ± 1.30 ± 1.00 ± 1.60 ± 0.71 ± 1.30 ± 1.40
14 19 8 34 19 31 14 7 23
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Fig. 3   Average classification accuracy on FERET a no occlusion, b 5 × 5 occlusion block, and c 20 × 20 occlusion block
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Fig. 4   Average classification accuracy on AR a no occlusion, b 5 × 5 occlusion block, and c 15 × 15 occlusion block
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obtain stable performance in the subspace with higher 
dimensions. The potential reason is that preserving the 
global and local structure of the original data in the low-
dimensional space is necessary for dimensionality reduc-
tion. The way of combining global and local structure in 
GSGNPE is more efficient than that in the selected com-
parison methods.

Second, as the size of occlusion blocks increases, the 
classification accuracy of all methods decreases gradually, 
GSGNPE still performs better than comparison methods. 
GSGNPE integrates global information and L2,1-norm, 
which could alleviate the impact of occlusion blocks.

Third, compared with GSGNPE, GLSRGE has the 
next-best performance on the four face data sets under the 

Table 8   Average classification 
accuracy (%) and standard 
deviation among different 
dimensions of the selected 
methods on FERET

Bold values indicate the highest experimental results in the corresponding experiments

Block size PCA LPP NPE UDFS RDR SOGFS LRPPGRR​ GLSRGE Our method

0 × 0 80.64 75.91 76.58 78.84 80.04 80.16 80.61 80.89 84.12
± 3.83 ± 3.48 ± 3.46 ± 5.8 ± 3.83 ± 4.34 ± 3.82 ± 4.06 ± 5.16

5 × 5 77.83 72.65 73.05 74.75 77.74 66.34 77.96 73.76 79.23
± 3.16 ± 2.14 ± 2.25 ± 4.56 ± 3.3 ± 1.86 ± 3.22 ± 2.62 ± 3.57

10 × 10 66.83 64.53 64.55 66.17 66.15 64.72 66.84 66.61 66.89
± 0.61 ± 0.27 ± 0.26 ± 1.05 ± 0.56 ± 0.61 ± 0.62 ± 0.82 ± 0.69

15 × 15 66.04 64.36 64.28 65.66 65.7 64.7 66.02 66.17 66.43
± 0.56 ± 0.17 ± 0.17 ± 0.69 ± 0.5 ± 0.49 ± 0.55 ± 0.68 ± 0.72

20 × 20 65.28 63.83 63.83 65.07 65.04 64.18 65.26 65.31 65.52
± 0.38 ± 0.09 ± 0.07 ± 0.58 ± 0.31 ± 0.38 ± 0.37 ± 0.44 ± 0.51

Table 9   Average classification accuracy (%) and standard deviation among different dimensions of the selected methods on AR

Bold values indicate the highest experimental results in the corresponding experiments

Block size PCA LPP NPE UDFS RDR SOGFS LRPPGRR​ GLSRGE Our method

0 × 0 74.87 66.00 69.36 58.96 73.27 80.83 74.73 81.30 83.01
± 10.78 ± 11.51 ± 11.61 ± 18.01 ± 10.75 ± 10.73 ± 10.73 ± 13.3 ± 12.99

5 × 5 73.36 64.02 68.23 67.19 72.56 78.14 73.36 77.28 80.34
± 10.46 ± 10.74 ± 11.26 ± 15.99 ± 10.63 ± 10.74 ± 10.47 ± 12.3 ± 12.58

10 × 10 57.66 56.64 59.36 50.33 58.78 67.05 57.61 60.35 62.36
± 8.48 ± 9.28 ± 10.27 ± 12.34 ± 8.44 ± 9.14 ± 8.45 ± 12.21 ± 12.96

15 × 15 42.79 38.34 40.22 37.86 41.5 54.90 42.58 53.61 54.59
± 5.61 ± 6.19 ± 6.63 ± 9.91 ± 5.26 ± 7.19 ± 5.5 ± 11.73 ± 11.83

20 × 20 39.83 34.02 35.51 35.75 38.73 44.74 39.61 48.61 48.94
± 4.65 ± 4.31 ± 4.71 ± 8.36 ± 4.3 ± 5.26 ± 4.52 ± 9.48 ± 9.45
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Fig. 5   Average classification accuracy on CMU PIE a 5 × 5 occlusion block, b 10 × 10 occlusion block, and c 20 × 20 occlusion block
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occlusion blocks with different sizes, yet it cannot main-
tain the stable performances in higher dimensions. The 
possible explanation is that the information of the global 
structure retained by GSGNPE is more effective than that 
of GLSRGE, yet the latter constructs a complex global 
structure graph. In addition, the structured sparsity of L21
-norm makes GSGNPE more robust than GLSRGE under 
the occlusion situations, and also reduces the impact of 

irrelevant features on retaining global structural informa-
tion of the original data.

Fourth, the average performance of GSGNPE among dif-
ferent dimensions on all face data sets and most non-face 
data sets is still better than selected methods. Although the 
average performance obtained by GSGNPE on AR (with 
10 × 10 and 15 × 15 occlusion blocks), SCCTS, and IS are 
not the best, the corresponding results are still competitive, 
which are almost the second best on these data sets. The 

Table 10   Average classification 
accuracy (%) and standard 
deviation among different 
dimensions of the selected 
methods on CMU PIE

Bold valuesindicate the highest experimental results in the corresponding experiments

Block size PCA LPP NPE UDFS RDR SOGFS LRPPGRR​ GLSRGE Our method

0 × 0 79.29 79.81 80.36 77.54 77.52 83.3 79.11 89.35 89.53
± 9.83 ± 13.51 ± 11.46 ± 14.21 ± 12 ± 8.61 ± 9.77 ± 10.92 ± 11.05

5 × 5 74.00 72.32 75.09 66.25 70.87 77.53 73.96 77.79 81.75
± 8.94 ± 11.46 ± 11.4 ± 14.99 ± 9.73 ± 9.66 ± 8.95 ± 9.17 ± 10.09

10 × 10 49.44 47.99 49.51 53.44 46.59 55.89 49.28 56.95 57.41
± 4.16 ± 5.34 ± 5.6 ± 7.96 ± 4.15 ± 4.7 ± 4.08 ± 8.17 ± 8.27

15 × 15 43.55 41.34 41.06 45.54 40.85 42.62 43.43 48.48 48.78
± 2.45 ± 2.8 ± 2.44 ± 4.18 ± 2.24 ± 2.18 ± 2.38 ± 4.8 ± 4.86

20 × 20 42.23 39.5 39.21 43.36 39.57 40.81 42.1 45.69 46.14
± 2.02 ± 1.77 ± 1.49 ± 3.57 ± 1.46 ± 1.91 ± 1.94 ± 4.3 ± 4.36
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Fig. 6   Average classification accuracy on a extended YaleB (5 × 5 occlusion block), b extended YaleB (10 × 10 occlusion block), and c FKP

Table 11   Average classification accuracy (%) and standard deviation among different dimensions of the selected methods on extended YaleB

Bold values indicate the highest experimental results in the corresponding experiments

Block size PCA LPP NPE UDFS RDR SOGFS LRPPGRR​ GLSRGE Our method

0 × 0 51.06 54.53 50.95 56.95 46.67 61.06 50.38 75.95 76.46
± 16.17 ± 23.85 ± 15.93 ± 20.53 ± 18.91 ± 10 ± 15.8 ± 20.02 ± 19.36

5 × 5 45.59 45.12 45.74 45.88 39.24 52.53 45.12 65.78 68.00
± 14.27 ± 19.87 ± 14.95 ± 22.54 ± 15.08 ± 12.63 ± 14.02 ± 18.16 ± 18.27

10 × 10 20.99 21.55 20.36 25.71 17.28 25.17 20.62 37.84 40.67
± 6.91 ± 10.06 ± 7.28 ± 10.1 ± 6.81 ± 6.34 ± 6.67 ± 14.11 ± 14.96

15 × 15 14.3 11.98 11.31 20.35 10.6 12.13 14.08 23.01 24.85
± 3.84 ± 4.66 ± 3.05 ± 7.64 ± 3.36 ± 4.04 ± 3.71 ± 7.57 ± 8.18
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overall performance of GSGNPE among different dimen-
sions is better than the selected methods, which further 
shows the superiority and effectiveness of GSGNPE in keep-
ing the global and local structures in the low-dimensional 
space.

From the above experimental results, we can con-
clude that GSGNPE performs better than the comparison 
methods on both face and non-face data sets. Although 
GSGNPE retains both global and local structural informa-
tion in a simple way, it is very efficient. Compared to other 

Table 12   Average classification 
accuracy (%) and standard 
deviation among different 
dimensions of the selected 
methods on FKP, binary and 
four UCI data sets

Bold values indicate the highest experimental results in the corresponding experiments

Data set PCA LPP NPE UDFS RDR SOGFS LRPPGRR​ GLSRGE Ourmethod

FKP 87.49 79.58 82.63 68.07 85.4 84.85 87.27 84.81 89.95
± 9.24 ± 8.15 ± 8.85 ± 16.17 ± 8.81 ± 10.62 ± 9.18 ± 11.69 ± 10.77

Binary 74.23 73.58 73.88 62.62 73.74 72.41 74.24 71.2 74.82
± 8.59 ± 8.18 ± 8.24 ± 16.67 ± 9.06 ± 8.92 ± 8.59 ± 8.3 ± 8.61

SCCTS 93.76 79.18 92.81 87.98 94.16 72.3 93.76 55.84 93.53
± 6.33 ± 4.77 ± 5.17 ± 12.51 ± 5.17 ± 16.91 ± 6.33 ± 16.24 ± 6.28

IS 80.32 79.15 72.07 74.15 82.23 74.06 80.32 77.47 81.55
± 9.51 ± 6.38 ± 18.38 ± 13.76 ± 8.49 ± 11.5 ± 9.51 ± 11.3 ± 10.28

Isolet 85.67 78.85 80.03 72.69 83.44 77.15 85.51 82.13 85.93
± 5.49 ± 3.98 ± 5.37 ± 9.04 ± 5.65 ± 6.3 ± 5.42 ± 5.06 ± 5.62

Dermatology 90.62 91.35 90.37 80.48 91.52 84.64 90.62 78.77 92.64
± 7.36 ± 6.9 ± 8.19 ± 13.81 ± 8.31 ± 11.76 ± 7.37 ± 8.88 ± 6.39
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Fig. 7   Average classification accuracy on a IS, b isolet, and c dermatology
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Fig. 8   The trend of the value of the objective function with the different numbers of iterations on a PIE (with 20 × 20 occlusion block), b 
SCCTS and c IS
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selected methods, GSGNPE shows better robustness in the 
case of occlusion blocks with different sizes and yields 
better performance under different numbers of dimensions.

To validate the convergence of the proposed iterative 
algorithm, we recorded the values of the objective function 
of GSGNPE during the training iterations on three data sets 
including PIE(with 20 × 20 occlusion block), SCCTS, and 
IS. Figure 8 shows the trends of the values of the objective 
function on three data sets, which indicates that GSGNPE can 
converge quickly within 10 iterations and verifies our previous 
conclusion in Proposition 1.

4.4 � Statistical significance test

Based on the experimental results obtained, statistical signifi-
cance tests are conducted for GSGNPE against the comparison 
methods. We first calculate the average rank of the classifica-
tion accuracy of each method on the unoccluded and occluded 
data sets, and then Friedman tests [50] followed by Nemenyi 
tests [51] are employed. The statistic value FF in Friedman 
tests is obtained by the following equation:

where N and K are the numbers of data sets and methods, 
respectively, and �

�2 is defined as:

where ri is the average rank of the classification accuracy 
of the ith method on N data sets. Generally Nemenyi test 
is adopted to post-hoc tests for Friedman tests. The critical 
value of Nemenyi test is defined as:

where q
�
 is the critical value of the Turkey distribution. There 

are 15 occluded data sets with different sizes of occlusion 
blocks and 10 unoccluded data sets. The number of compari-
son methods in our experiment is 9. We respectively calculate 
the FF values on the unoccluded and occluded data sets, which 
are 5.54 and 20.37. The critical values of F(10, 9) and F(15, 9) 
in Friedman test for the significance level � = 0.05 are 2.07 
and 2.02, which are smaller than 5.54 and 20.37, respectively. 

(37)FF =
(N − 1)�

�2

N(K − 1) − �
�2

,

(38)�
�2 =

12N

K(K + 1)

(
K∑

i=1

r2
i
−

K(K + 1)2

4

)
,

(39)Nv = q
�

√
K(K + 1)

6N
,

This means that the performance differences between these 
methods are statistically significant. The critical value of the 
Turkey distribution q

�
= 3.10 when the significance level 

� = 0.05 and K = 9 . Then we can obtain the critical values 
of Nemenyi tests for the unoccluded and occluded data sets, 
which are 3.80 and 3.10, respectively.

The average rank value of all methods and the critical val-
ues of Nemenyi tests are reported in Table 13. Figure 9 is 
drawn according to Table 13 to show the significant differ-
ences between all compared methods. As shown in Fig. 9a, 
on the unoccluded data sets, there are statistically significant 
between GSGNPE and the selected methods LRPPGRR, 
UDFS, NPE, and LPP. However, there is no statistically 
significant between GSGNPE and the selected methods 
GLSRGE, SOGFS, RDR, and PCA. When there are occlu-
sion blocks in the data sets, as shown in Fig. 9b, there are 
statistically significant between GSGNPE and the selected 
methods LRPPGRR, SOGFS, RDR, NPE, LPP, and PCA, yet, 
not between GSGNPE and the methods GLSRGE and UDFS. 
A possible explanation is that the comparison methods in our 
experiment can retain the structure information when there is 
no occlusion blocks in data sets, hence they have the similar 
performance on some cases, resulting in the overlap between 
their line segments in Friedman test. Nevertheless, compared 
with other comparison methods, GSGNPE can effectively pre-
serve the structure information of the data sets with occlusion 
blocks, which makes it have better performance.

4.5 � Image visualization

To further explore the ability of GSGNPE to preserve the 
global and local graph structure information of the origi-
nal data, we use t-SNE [52] to visualize the distribution of 
CMU PIE and extended YaleB. SOGFS is a graph embed-
ding based method and also adopts the L2,1-norm. Therefore, 
We employ SOGFS for comparison to prove the effective-
ness of our method. Figure 10 indicates the distribution of 
CMU PIE and extended YaleB before and after projection. 
We find that compared with SOGFS, GSGNPE can better 
gather samples with similarities together, which shows that 
GSGNPE can well retain the local structure of the origi-
nal data. Furthermore, GSGNPE better keeps different data 
clusters away from each other in projection space, which 
proves the effectiveness of GSGNPE in combining global 
and local structures.

Table 13   The average order value and Nv on unoccluded and occluded data sets

Data sets PCA LPP NPE UDFS RDR SOGFS LRPPGRR​ GLSRGE Our method Nv

Unoccluded data set 4.30 7.00 6.20 5.40 4.60 4.50 4.90 4.40 1.00 3.80
Occluded data set 5.60 6.80 6.73 4.00 7.20 4.60 5.93 2.53 1.00 3.10
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4.6 � Parameter selection

In this section, we investigate the impacts of the parameters 
related to GSGNPE including the regulation parameter � 
and � , and the number of neighbors k. For all data sets, � 
and � are selected from {10−9, 10−8,… , 108, 109} . Figure 11 

shows the classification accuracy with different � and � on 
AR (no occlusion block), AR (with 5 × 5 occlusion block), 
AR (with 10 × 10 occlusion block), and FKP. As shown in 
Fig. 11a, in the case of face data set with no occlusion block, 
when the values of � and � are in the range of (107, 108] 
and [10−9, 107] or [10−9, 107] and (107, 108] , respectively, 
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Fig. 9   The significant differences between all compared methods on a unoccluded data sets and b occluded data sets
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Fig. 10   The t-SNE visualization of distributions of samples. a The 
original samples in CMU PIE, b the projected samples by SOGFS 
in CMU PIE, c the projected samples by GSGNPE in CMU PIE, d 

the original samples in extended YaleB, e the projected samples by 
SOGFS in extended YaleB, and f the projected samples by GSGNPE 
in extended YaleB
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GSGNPE will perform better. Nevertheless, when there are 
occlusion blocks on the face data sets, as shown in Fig. 11b 
and c, � in the range of [107, 108] and � smaller than � will 
usually enable GSGNPE to have the better performance. 
Moreover, as shown in Fig. 11d, we find that on FKP, the 
optimal values of � and � are around 107 and [10−9, 107) or 
(106, 10−9] and [106, 107] , respectively. Figure 11a–d indicate 
that the model generally performs better when � is smaller 
than � . However, when the value of � is in the range of 
[107, 108] , � smaller than � usually makes the model perform 

well. Based on the above analysis, both � and � tend to take 
the large values to make GSGNPE the better performance.

Figure 12 indicates the classification accuracy with dif-
ferent numbers of k on FERET, FKP, and Dermatology. The 
values of neighbor k in each data set range from 1 to 1.5 
times the sample size in each class. We can find that the 
effectiveness of GSGNPE is not sensitive to k. The possible 
reason is that the global structural information in GSGNPE 
is independent of k, which reduces the influence of k in the 
process of combining local information.

Fig. 11   Classification accuracy 
with different parameters � and 
� on a AR (no occlusion block), 
b AR (with 5 × 5 occlusion 
block), c AR (with 10 × 10 
occlusion block), and d FKP
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Fig. 12   Classification accuracy with different numbers of neighbors k on a FERET, b FKP, and c dermatology
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4.7 � Ablation experiments

We conducted ablation experiments on FERET, AR, PIE, 
YaleB, FKP, and binary, and the results are shown in Table 14. 
It can be seen from the experimental results that although 
the local structure preserving module (LSPM) enables the 
model to retain the local structure of the original data in the 
low-dimensional space, only LSPM cannot make the model 
achieve good performance. However, when the global struc-
ture information learning module (GSILM) is added to the 
model, the performance of the model on the experimental data 
sets has been improved, which indicates that the model can 

effectively learn the global structure information of the origi-
nal data from the existing projection matrix and effectively 
retain the global and local structure in the low-dimensional 
space. By adding the L2,1-norm to the model, the performance 
of the model on the experimental data sets has been further 
improved, which shows that the L2,1-norm can effectively pro-
mote the model to obtain the essential structural information 
of the data, learn effectively global structure information, and 
enhance the robustness of the model. In summary, each part of 
the final model can effectively enhance the performance of the 
model and promote the model to retain the essential structural 
information of the original data in the low-dimensional space.

5 � Conclusions

In this paper, we propose a novel graph embedding based 
method called GSGNPE for unsupervised dimensionality 
reduction, which is simple and effective. In GSGNPE, the 
global and local structure of the original high-dimensional data 
can be effectively retained in the low-dimensional space in a 
novel way. The projection matrix of PCA rather than the com-
plex global structure graph is employed as the global structural 
information since PCA could keep the global Euclidean struc-
ture in low-dimensional space. A concise yet efficient least-
square term is adopted to minimizes the difference between 
rotated projection matrix and the PCA projection matrix, so as 
to obtain the global structural information. By combining the 
objective function of NPE, the global and local structure infor-
mation of original data can be efficiently combined. The L2,1
-term regularization is introduced into GSGNPE to enhance 
the robustness and improve the interpretability of the obtained 
projection matrix. Moreover, an iterative optimization algo-
rithm is developed, which could effectively address the opti-
mization problem of GSGNPE and converge fast. Experi-
mental results on face and non-face data sets demonstrate that 
GSGNPE outperforms the state-of-the-art graph embedding 
based methods. In the future, it could be worth to construct 
different local structure graphs and analyze their effect on the 
performance of GSGNPE. Also, the extended kernel version 
of GSGNPE for nonlinear complex data is worthy of further 
research.
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Table 14   Ablation experiments classification accuracy (%), standard 
deviation, and dimensions

Bold values indicate the highest experimental results in the corre-
sponding experiments

Data set LSPM LSPM + GSILM GSGNPE (LSPM 
+ GSILM + L2,1)

FERET (no block) 80.37 85.02 86.78
± 16.00 ± 12.00 ± 12.00
38 41 99

FERET (5 × 5 block) 74.25 80.12 80.88
± 21.00 ± 16.00 ± 16.00
21 52 42

AR (no block) 84.55 89.04 89.87
± 9.80 ± 7.80 ± 6.60
63 88 96

AR (5 × 5 block) 82.02 85.34 86.91
± 8.80 ± 7.70 ± 6.50
65 87 91

PIE (no block) 91.26 93.43 93.94
± 3.70 ± 3.60 ± 3.70
85 98 97

PIE (5 × 5 block) 83.77 85.61 87.19
± 3.90 ± 2.80 ± 2.60
82 100 99

YaleB (no block) 83.53 85.89 86.23
± 3.10 ± 2.80 ± 2.80
84 100 100

YaleB (5 × 5 block) 74.28 77.22 78.71
± 3.10 ± 3.20 ± 3.20
47 97 100

FKP 89.38 93.47 94.42
± 4.00 ± 2.60 ± 2.10
23 32 32

Binary 77.38 78.34 78.96
± 2.00 ± 1.20 ± 1.40
17 31 43
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