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Abstract
There is a growing interest in human machine interface and their applications using surface electromyography (sEMG). 
sEMG based gesture recognition plays a crucial role in interfacing with peripheral devices such as prosthetic hands. Give 
the challenges in the state of the art of sEMG based gesture recognition using deep learning, we propose a deformable con-
volutional network (DCN) to optimise the conventional convolution kernels with a goal of achieving better performance 
of sEMG based gesture recognition. The DCN first apply traditional convolutional layer to obtain low-dimensional feature 
maps, then use deformable convolutional layer to get high-dimensional feature maps. Moreover, we propose and compare 
two new image representation methods based on traditional feature extraction, which enable deep learning architectures to 
extract implicit correlations between different channels from the sparse multichannel sEMG signals. The experiments are 
conducted to evaluate the proposed methods on three groups of different types and numbers of gestures on the Ninapro-DB1 
data set, the proposed DCN has an improvement of 1.1%, 2.6%, and 4.9% compared with traditional CNN, respectively. In 
addition, the results of experiments indicate that the DCN shows robustness and feasibility in both feature extraction and 
classification recognition for the sEMG based gesture recognition.
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1 Introduction

Surface electromyography (sEMG) is an electrodiagnostic 
medical technique for evaluating and recording the electri-
cal activity produced by skeletal muscles. The sEMG signal 
detects the electric potential that was generated by muscle 
cells when these cells are activated electrically or neuro-
logically, and the signal can be obtained through electrodes 
attached to the skin surface. According to the difference in 
the muscle area and degree used by different gestures, the 
acquired the sEMG waveforms are also different. On this 
account, researchers can achieve the recognition of different 

gestures. Namely, gesture recognition based on the sEMG 
signal is realized by using the difference between the sEMG 
signal generated by muscles in various gesture scenarios. 
Gesture recognition, which based on the sEMG can realize 
the control of external peripherals [1], such as prostheses 
[2, 3], rehabilitation equipment, etc. Thereby it can bring 
convenience to the lives of the disabled and elder who have 
mobility impairments. In addition, it can provide a novel 
way of human-computer interaction (HCI) [4, 5].

The traditional sEMG based gesture recognition is real-
ized by pattern recognition method, which generally consists 
of the following three steps [6]: signal pre-processing [7], 
feature extraction [8] and model classification [9–11]. Sig-
nal pre-processing generally reserves the effective signal, 
removes or weakens the invalid signal by filtering technol-
ogy, thereby improving the signal recognition. Darak et al. 
[12] shown the effects of different filtering techniques in 
removing electrocardiogram (ECG) interference in the 
sEMG. For example, an event-synchronous interference 
canceller (ESC) obtains a clean sEMG signal, but requires 
an additional input as a reference input. Using independ-
ent component analysis (ICA) has the ability to separate 
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statistically independent source signals from a given set of 
their linear combinations. However, this method requires 
several recordings of the sEMG signals to attain the maxi-
mum possible accuracy. Feature extraction, mainly extracted 
feature vectors from the original signal to reduce the amount 
of calculation, and the features were often divided into time-
domain features, frequency-domain features, and time-fre-
quency domain features. Phinyomark et al. [13] compared 
the effects of some different feature extraction methods and 
their combination under the steady-state of the sEMG sig-
nals. Model classification methods in pattern recognition 
include support vector machines (SVM), linear discrimi-
nant analysis (LDA), etc. Li et al. [14] used onset detection 
method to acquire transient signals for feature extraction, 
and compared its effect with other classification methods. 
In the case when the training window length and the test 
window length are both equal to 150 ms, this paper found the 
decoding accuracy has reached more than 92% with SVM. 
Although various methods are used in gesture recognition, 
the traditional methods are based on hand-crafted features 
and the data comes from the ideal laboratory environment, 
which is not universal in common scenarios, resulting in 
poor robustness and applicability in real scenes.

In recent years, convolutional neural networks (CNN) 
have become popular in classification and recognition algo-
rithms. Because of avoiding hand-crafted feature generation, 
it also helps to improve accuracy and achieve even better 
recognition results. The three most critical elements of CNN 
are local receptive fields, weight sharing, and downsampling 
in the pooling layer. CNN was initially used in computer 
vision, natural language processing, and other fields, but was 
also used in the field of the sEMG signals, and achieved 
good results. Tsinganos et al. [15] used Ninapro DB-1 [16] 
as a data set, and adjusted the structural parameters of the 
CNN to improve 3% compared with the basic model. Pin-
zón-Arenas et al. [17] also achieved better results in classify-
ing and recognizing six gestures by using the power spectral 
density map of the sEMG signal as the input of the CNN. 
Jia et al. [18] proposed a deep learning model that combined 
convolutional auto-encoder (CAE) and CNN to classify an 
sEMG dataset consisting of ten classes of hand gestures. The 
result achieved the best performance, strongest robustness, 
and statistical properties compared to other classifiers. Yang 
et al. [19] used CNN to predict the multi-degree-of-freedom 
(multi-DOF) of wrist movements based on the sEMG. Chen 
et al. [20] used the transfer learning method to improve the 
performance of CNN in the sEMG based gesture recogni-
tion. Yang et al. [21] applied large-size window as the input 
of CNN to improve the classification accuracy in two sEMG 
public datasets.

Although the CNN method has achieved good results in 
the sEMG based on gesture recognition, the direct applica-
tion of the CNN method in this field still has shortcomings. 

The traditional CNN and the sEMG signal are both required 
to be adjusted to meet the requirements of other’s charac-
teristics. For example, CNN was originally designed for 
images, where the input is a two-dimensional image, but 
the sEMG is a one-dimensional signal. So Hu et al. [22] 
proposed a new image representation of traditional features, 
and get 86.3% accuracy by employing GengNet [23]. CNN 
extracts common features from a large amount of data, image 
public datasets such as imageNet can realize big data. But 
the sEMG data vary from person to person, and the amount 
of data is limited. So Jiang et al. [24] proposed the signal 
image (SI) method to expand signal sequences. In addition, 
the convolution kernel is another very important element in 
CNN, because the features are extracted through the con-
tinuous movement of the convolution kernel to the image. 
Therefore, there are a lot of improvements that are focused 
on convolution kernels for CNN, Yu et al. [25] improved the 
accuracy of image classification on VOC-2012 [26] through 
dilating receptive fields, Dai et al. [27] improved the accu-
racy of target recognition in images by offsetting convolu-
tion kernels and regions of interest. The feature extraction 
also has tremendous influences on hand gesture recognition 
based on the sEMG, so the convolution kernel needs to be 
adjusted to meet the requirements of the characteristics of 
the sEMG. Thereby we employ a novel network structure—
deformable convolutional network to extract features in 
this paper. First, we use a traditional convolutional layer to 
extract the sEMG signal to obtain low-dimensional feature 
maps, then a deformable convolutional layer was used to 
deformably convolve the low-dimensional feature maps to 
get high-dimensional feature maps.

The structure of this paper is as follows. Section 2 has 
three parts in total, the first two parts briefly introduce the 
data and our preprocessing methods, and the third part illus-
trate the CNN, DCN, and the whole network structure. Sec-
tion 3 presents the results and the analysis are shown. Sec-
tion 4 makes the conclusions and future work.

2  Materials and methods

2.1  Data

Ninapro-DB1 is a public and widely used dataset for the 
sEMG based gesture recognition. The data set is obtained by 
positioning ten electrodes distributed sparely on the upper 
arm, and the sEMG signals are recorded at a sampling rate 
of 100 Hz. After data collection, Ninapro-DB1 dataset con-
sists of 52 gestures from 27 intact subjects, and each sub-
ject repeated 10 times for each gesture. The 52 gestures are 
divided into four main classes, including 12 finger move-
ments, 8 hand postures, 9 wrist movements, and 23 grasping 
and functional movements.
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This paper uses the part of Ninapro-DB1 to conduct 
experiments. This part of the data contains three classes: 
finger movements, hand postures, and wrist movements [28], 
a total of 29 gestures, as shown in Fig. 1. For more informa-
tion about the dataset, see [16, 24, 28].

2.2  Pre‑processing

To adapt the input data to the neural network, we first 
preprocess the data by employing the SI algorithm. On the 
one hand, the input data are expanded, and on the other 
hand, the relationship between different channels can be 
learned by the network. For pre-processing, we convert 
the original signal into SI [24] to expand its channels. The 
raw signal is stacked row-by-row into the SI. In this way, 
every channel has the chance to be adjacent to other chan-
nels and only adjacent once, which enables the network to 
extract hidden correlations between neighboring channels. 
In short, the implementation is to number the channels 
first, and then circulates to make channel i adjacent to 
channel j if channel i and j are not adjacent. And it keeps 
circulating until all channels are adjacent to other channels 

and only adjacent once. After processing, the original 10 
channels of data will be expanded to 42 channels. The SI 
algorithm is shown in Table 1. The original signal and its 
expanded result are shown in Fig. 2.

Traditional feature extraction methods are also effec-
tive ways to form features, especially to form temporal 
features. And it can be used as a supplement to the CNN 
that mainly extracts spatial features. So we combine some 
traditional feature extraction methods with the above 
expansion method as a new input to the network. In this 
paper, we use the mean absolute value (MAV), waveform 
length (WL), root mean square (RMS) methods to extract 
features.

For traditional feature extraction methods, the window 
is 100 ms and the sliding window is set to 50 ms. There 
are two methods to combine the process of SI expanding 
and feature extractions. One method is to first expand the 
channels in SI thus to get 42 channel data, then we con-
duct different feature extraction methods to get 42 chan-
nels features. In this paper, we used three methods and 
concatenate to 126 channels features. The other method is 
to conduct feature extraction firstly, by which we get ten 

Fig. 1  Gestures of three classes [28]
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channels features and concatenated them as a map. This 
map contained 30 channels and was expanded to 422 chan-
nels features. These two methods were called feature-back 
and feature-for, respectively.

2.3  The deformable convolutional network system

2.3.1  Traditional convolutional network

With the rapid development of deep learning, CNN has been 
widely used in the field of classification and recognition, 
especially in computer vision and natural language process-
ing. CNN is a very basic network structure in deep learning, 
and many well-known and effective networks are improved 
based on it. CNN can automatically extract effective features 
during training to realize the end-to-end training process 
without separating the two steps of feature extraction and 
classification training like traditional algorithms.

The three most critical elements of CNN are local 
receptive fields, weight sharing, and downsampling in the 
pooling layer. The concept of the local receptive field is 

inspired by the structure of the visual system in neuro-
science. Neurons in the visual cortex receive information 
locally (that is, these neurons only receive signals from a 
small area). Each neuron does not need to receive all the 
pixel information of the image, but only needs to perceive 
the local area, and then we integrate the local information 
received by these neurons at a higher layer to obtain the 
global information. Weight sharing can be seen as a fea-
ture extraction method. In other words, the convolutional 
layer has multiple convolution kernels, also called filters, 
and each convolution kernel corresponds to a feature map 
after filtering. All pixels in the same feature map come 
from the same convolution kernel. In the pooling layer, 
researchers conducted a down-sampling to aggregate the 
features in different areas of the feature maps, for example, 
the average value or max value of several features in a cer-
tain area could be obtained. These statistical features don’t 
only have a much lower dimensionality, but also enhance 
the robustness of the features. This kind of aggregation 
operation is called pooling, and it is usually common to 
use average pooling or maximum pooling.

Table 1  SI Algorithm [24]

Fig. 2  Original signal and 
signal image
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2.3.2  Deformable convolutional layer

Deformable convolution is developed based on traditional con-
volution. The core of DCN lies in offsetting the convolution 
kernel. The offset acquisition process is shown in Fig. 3. The 
implementation is to insert an intermediate output layer, and 
the output results are the convolution kernel offsets.

The traditional 2D convolution is formed from two steps: 
(1) sampling using a regular grid R over the input feature map 
x; (2) summation of sampled values weighted by w. The grid 
R defines the receptive field size. For example, using a 3 × 3 
convolution kernel,

And the traditional 2D convolution process for each point p0 
on the output feature map y can be expressed as:

The DCN convolution process for each point p0 can be 
expressed as:

(1)R = {(−1,−1), (−1, 0),… , (0, 1), (1, 1)}

(2)y(p0) =
∑

pn∈R

w(pn) ⋅ x(p0 + pn)

where the R represented augmented with offsets 
{�pn|n = 1,… ,N} , and N = |R|.

Since the introduction of offset may get the point beyond 
the original image, so bilinear interpolation is used for this as:

where x(q) represents the point existing in the original 
image, q enumerates all integral spatial locations in the 
input feature map x, and x(p) is an arbitrary point obtained 
by the offsets, namely p = p0 + pn + �pn . In addition, the 
G(⋅, ⋅) represents the bilinear interpolation kernel, it can be 
separated into two one dimensional kernels as

where g(a, b) = max(0, 1 − |a − b|).
The final offsets can be obtained by back propagation 

through the above formula. For more information about 
DCN, see [27].

2.3.3  Network architecture

To make good use of the relationship between the different 
channels of the input, we first use the traditional convolu-
tional layer to extract low-dimensional feature maps, and 
then employ deformable convolution to extract high-dimen-
sional abstract feature maps. The traditional 2D convolution 
is a good feature extraction method, even if the input is a 
one-dimensional signal, such as the sEMG signals, the effect 
is not bad. And DCN uses bilinear interpolation to obtain 
the value of the pixels that do not exist originally, but the 
data we used is a multi-channel sEMG map, which greatly 
deviates the bilinear interpolation relationship between 

(3)y(p0) =
∑

pn∈R

w(pn) ⋅ x(p0 + pn + �pn)

(4)x(p) =
∑

q

G(p, q) ⋅ x(q)

(5)G(p, q) = g(px, qx) ⋅ g(py, qy)

Fig. 3  Illustration of 3 × 3 deformable convolution [27]

Fig. 4  Network architecture
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different channels. Therefore, we first used a traditional con-
volutional layer to extract low-dimensional features of the 
original sEMG signal data or handcrafted feature image to 
obtain the low-dimensional feature maps. And then we used 
deformable convolution to obtain a broader and adaptive 
receptive field on the low-dimensional feature maps. Finally, 
we obtained the better high-dimensional feature maps for 
classification and recognition.

In this paper, we use the deformed CNN–DCN, which is 
divided into six layers in total, the first layer is a traditional 
convolution layer, and its convolution kernel size is 3 × 3 , 
followed by a maximum pooling layer and normalization 
processing, the third layer is the second convolutional layer, 
the convolutional layer is deformable convolution layer, and 
its convolution kernel size is also 3 × 3 , followed by a maxi-
mum pooling layer and normalization processing, the fifth 
layer is a fully connected layer with a dropout rate of 0.5 
[29], and the rest is the output layer with a softmax activa-
tion function. In addition, the ReLU function was used in the 
convolution layer and pooling layer. The network architec-
ture is briefly demonstrated in Fig. 4.

3  Results and discussion

In this experiment, we used the traditional CNN and the 
DCN for comparison, both are based on a deep learning 
framework: MXNET [30]. Firstly, we took the sEMG data 
( 200 × 42 ) directly as the images as the network input, and 

use the stochastic gradient descent (SGD) method during 
training [31]. The training epoch was set to 1000. The 
initialization of the parameters was achieved by a fixed 
random seed, and the learning rate is set to 0.03. Besides, 
we set the batch size to 100 due to the performance of 
memory. And the network is built in the framework of 
MXNET [30]. In addition, the experimental environment 
of CPU core is i5-4200H, and the memory size is 8 GB.

We chose 70% of the data as the training set and 30% of 
the data as the test set. And the data was divided into three 
groups, the first group contains 12 finger movements; the 

Fig. 5  The accuracy in training

Fig. 6  The classification accuracy for different groups



1735International Journal of Machine Learning and Cybernetics (2022) 13:1729–1738 

1 3

second group contains finger movements and hand pos-
tures, including 20 gestures; the third group contains all 
gestures, including 29 gestures.

The accuracy in training is illustrated in Fig. 5. The experi-
mental results are shown in Fig. 6 and Table 2. The confusion 
matrices of group one are shown in Fig. 8, and other groups’ 
results are demonstrated on section Supplementary Materials. 
For all groups, the accuracy of DCN is better than CNN in the 

training set and test set. As the number of gestures increases, 
the overall trends of the classification accuracy of the two net-
works are decreasing. But the accuracy of DCN changes more 
insignificant than CNN as the number of gestures increases. 
That is, the DCN is more robust, and Fig. 7 shows more intui-
tive. Note that the accuracy of the DCN test set in Group three 
is 79.54%, even better than the accuracy of the DCN test set in 
Group two. This shows that as the number of data increases, 
DCN can extract more universal features, thereby improving 
classification accuracy.  

To a certain extent, the behavior of offsetting convolution 
kernel in the DCN can be regarded as an extension of the 
receptive field. Therefore, in the following experiment, the 
receptive field is further expanded by the method of dilated 
convolution. To exam the classification effects of the DCN 
network under the different dilation values. The dilation value 
of the dilated convolution can be simply regarded as the dis-
tance between two adjacent convolution points in the horizon-
tal or vertical direction. The conventional convolution can be 
regarded as the dilated convolution with the dilation value of 
(1,1). The result of transforming from regular convolution to 
dilated convolution with the dilation value of (2,2) is shown 
in Fig. 9. The results are shown in Fig. 10.

Within a certain range, the expansion of the receptive field 
can enhance the network to integrate the information, thereby 

Table 2  The classification 
accuracy for different groups

Group CNN training (%) CNN test (%) DCN training (%) DCN test (%)

One 98.7391 80.7000 99.0000 81.8000
Two 96.7368 76.2941 98.1316 78.9412
Three 90.9455 74.6250 97.3273 79.5417

Fig. 7  The accuracy with different number of gestures

Fig. 8  Confusion matrices of group one with CNN and DCN
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enhancing the feature extraction capabilities. But when the 
receptive field is too large, it will lead to the omission of infor-
mation, which has a great impact on the accuracy of classifica-
tion and recognition. The expansion of the receptive field by 
deformable convolution is learned independently through the 

Fig. 9  Illustration of 3 × 3 
dilated convolution. a Dilation 
value is (1,1). b Dilation value 
is (2,2) [25]

Fig. 10  The classification rate with dilation convolution for different 
groups

Fig. 11  The classification rate with represent methods for different 
groups

Table 3  The classification accuracy with represent methods for differ-
ent groups

Group Feature-back Feature-back Feature-for Feature-for
Training (%) Test (%) Training (%) Test (%)

One 98.7826 83.0000 99.3478 83.1000
Two 97.9211 79.0000 98.2368 79.2941
Three 97.5263 79.9412 98.4474 81.2353

Fig. 12  The accuracy of represent methods with different number of 
gestures
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learning ability of the network in a small range, so the clas-
sification accuracy can be improved.

Thirdly, we took the feature-back data and feature-for data 
as the input to the DCN. Other settings are the same as above 
mentioned experiment. The experimental results are shown in 
Fig. 11 and Table 3. The confusion matrices of group one are 
shown in Fig. 13. The feature-back method only used three 
traditional feature extraction methods, so the input data of 
feature-back ( 39 × 126 ) is even smaller than the original sig-
nal ( 200 × 42 ). And the input data of feature-for ( 39 × 422 ) 
is larger than the original signal and the representation of the 
feature-back. In all test sets, the results of both representation 
methods are better than the DCN. The average accuracy of 
the feature-for representation method is better than that of the 
feature-back representation method. According to the number 
of gestures from small to large, feature-for represent 0.10%, 
0.29%, 1.29% higher average accuracy than feature-back 
respectively. The results are shown in Fig. 12. One possible 
explanation is that the comparison of the number of different 
gesture experiments used in this paper is based on the gesture 
category. That is, the number of gestures is increased by add-
ing the same kind of gestures, while the different kinds of 
gestures have a more complicated spatio-temporal relation-
ship. So the feature-for method enables the convolution kernel 
to extract the implicit relevance between different features in 
different areas, as well as increases the classification accuracy.

4  Conclusions

In this paper, we used DCN to extract features and con-
ducted classification. And the performance of DCN is better 
than traditional CNN in the different numbers of gestures. 

Furthermore, we tested the influence of the receptive field 
in the neural network on the feature extraction of the sEMG 
signal by experimenting with DCN under different dilation 
values. Besides, we compare the performances of two fea-
ture representation methods, which we called feature-back 
and feature-for. The result of feature-for is a little better than 
the feature-back in the experiment.

In the future, we can change the interpolation relation-
ship of DCN to make it more in line with the characteristics 
of the multi-channel sEMG signals, thereby extracting bet-
ter features to improve the classification accuracy. Also, we 
can adjust deformable convolution to make it more suitable 
for the sEMG signal. In this paper, the feature-back method 
only uses three traditional feature extraction methods, so 
the input data of feature-back ( 39 × 126 ) is even smaller 
than the original signal ( 200 × 42 ). Maybe we can use a 
more traditional feature extraction method to improve the 
results of the feature-back representation method. And for 
both feature-back and feature-for methods, we can take some 
ways to mitigate overfitting.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13042- 021- 01482-7.
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