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Abstract
In the recommender system, the user’s historical behavior data is one of the most important sources of the system’s input 
data. According to the user’s feedback mechanism, behavior data can be divided into explicit feedback data and implicit 
feedback data. However, most recommendation algorithms focus separately on explicit feedback or implicit feedback. How 
to combine explicit and implicit feedback for recommendation tasks has always been a research problem. In recent years, 
deep learning technology has dominated the research on recommendation algorithms. But even the latest neural network-
based recommendation algorithm cannot exceed classic methods (such as matrix factorization) in most cases. In this work, 
we propose a new collaborative filtering framework with neural network architecture. On the one hand, we use both explicit 
feedback data and implicit feedback data as input to learn multiple representations of users and items. On the other hand, we 
use multi-task learning to optimize our framework and use two relatively simple auxiliary tasks to enhance the generalization 
ability of our framework. Extensive experiments on five real-world datasets show significant improvements in our proposed 
framework over the state-of-the-art methods and vanilla matrix factorization.
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1  Introduction

In the era of information overload, the recommender system 
exists as an indispensable tool and is widely used in a variety 
of online services, including e-commerce, short videos, and 
social networking sites. The key to personalized recommen-
dation is to screen out items that the user may like accord-
ing to their past interactions, which is called collaborative 
filtering [1–4]. Collaborative filtering is the most influential 
and widely used model in the field of recommender systems. 

Among many collaborative filtering models, matrix fac-
torization has the most generalization ability and can deal 
with sparse matrices and other characteristics. As shown in 
Fig. 1, taking movie recommendation as an example, matrix 
factorization [5, 6] projects users and items into a shared 
latent space, in which the recommender system predicts a 
personalized ranking over a set of items for each user with 
the similarities among the users and items. The recom-
mendation task here is to use the user’s history to predict 
the ratings of unwatched movies. During the history of the 
interactions between the users and the items, there are two 
acts, explicit feedback, and implicit feedback. Explicit feed-
back includes the user’s ratings or views on the item, which 
can directly show the user’s preferences and can also reflect 
the user’s preferences. While implicit feedback includes the 
user’s purchase, click, collection, etc., which cannot reflect 
the user’s preference directly but can be used to mine the 
user’s preferences.

In the past few years, since Deep Neural Networks 
(DNNs) are extremely good at representation learning, 
deep learning methods have been widely explored and have 
shown promising results in various areas such as computer 
vision and natural language processing [7–9]. Xue et al. [6] 

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-021-01451-0&domain=pdf


1356	 International Journal of Machine Learning and Cybernetics (2022) 13:1355–1368

1 3

proposed a Deep Matrix Factorization (DMF), which uses 
a neural network architecture to replace the linear embed-
ding operation used in vanilla matrix factorization. It uses 
the rows and columns in the user-item rating matrix as 
high-dimensional vector representations of users and items, 
and maps them to low-dimensional space through DNNs. 
In addition to learning better representation for users and 
items, DNNs are very suitable for learning complex interac-
tion functions because they can approximate any continuous 
function [10]. NCF [11] was proposed to model the user-item 
interactions with a multi-layer feedforward neural network. 
it uses the concatenated vectors of user ID embedding and 
item ID embedding as input to the multi-layer perceptron 
(MLP) model for prediction. Using the high capacity and 
nonlinear characteristics of DNNs, we can learn the com-
plex mapping relationship between user-item representations 
and predict scores. Recently, Rendle et al. [12] revisited the 
experiments in the NCF paper, proving that under the same 
experimental settings, the vanilla matrix factorization model 
after tuning can be significantly better than MLP in simulat-
ing the interaction between users and items. Obviously, the 
above two methods feed the neural network data differently. 
In this paper, we call them explicit data and implicit data 
respectively. Although some recent advances [13–15] have 
applied DNNs to recommendation tasks and shown promis-
ing results, they mostly used DNNs to model auxiliary infor-
mation, such as a textual description of items, audio features 
of pieces of music, and visual content of images. However, 
they all use auxiliary information to learn the representation 
vectors of users and items, and do not consider the difference 
between explicit feedback and implicit feedback.

According to the above discussion, we can see that it 
seems feasible to learn to represent users and items by con-
sidering explicit data and implicit data. With this assump-
tion, we propose a collaborative filtering framework that 
combines two types of feedback and uses multi-task 
learning optimization called Multi-task learning for col-
laborative filtering (MTCF). Our proposed framework has 
three optimization tasks. We first use these two types of 
feedback data to perform vanilla matrix factorization tasks 
to obtain predicting scores of items and then cross the 

low-dimensional representations of users and items pro-
duced in the two matrix factorization tasks. The specific 
method is to cross the explicit user representation and the 
implicit user representation to obtain a higher-order inte-
grated user representation, and we use the same method 
for items. After obtaining the comprehensive representa-
tion, we then use DNNs to learn the complex mapping 
relationship between the two types of feedback features 
and the integrated features and finally obtain the predicting 
score through user-item interaction. It is worth mentioning 
that we are not only outputting the predicting score after 
comprehensive crossover but outputting all three modules’ 
predicting scores as our final main task’s predicting score.

Figure 2 illustrates our key ideas. We take user repre-
sentation as an example. For the representation learning of 
single feedback data, there is only one user representation 
at the end, but for our model, considering explicit feedback 
data and implicit feedback data, there will be at least three 
user representations. Multiple user representations reflect 
different features of users, which provides more benefits 
for our next recommendation task.

The main contributions of this work are as follows.

•	 We propose a new collaborative filtering framework 
that can utilize explicit feedback information and 
implicit feedback information at the same time, and 
mine the cross-features of the two types of feedback 
information. It is worth mentioning that the model has 
good generalization performance and can be widely 
used in most scenarios with explicit feedback and 
implicit feedback.

•	 We use multi-task learning to train our model, give full 
play to the generalization ability of the model, accel-
erate the convergence of the model, and improve the 
effectiveness of the model. As far as we know, we are 
the first to use multi-task learning for collaborative fil-
tering that combines implicit and explicit feedback.

•	 We perform extensive experiments on 5 real-world 
datasets to demonstrate the effectiveness and rational-
ity of the proposed MTCF framework.

Fig. 1   Collaborative filtering for recommender sytem. RM×N represents M users’ rating matrix for N movies, and UM×K and IK×N are low-dimen-
sional representations of users and movies, respectively
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2 � Related work

2.1 � Collaborative filtering

In the recommender system, the historical interaction infor-
mation between the user and the item is the key to collabo-
rative filtering, and the user’s explicit feedback just reflects 
the user’s preference. Collaborative filtering with explicit 
data uses the users’ direct ratings or comments on items to 
perform scoring prediction tasks. Singular Value Decompo-
sition (SVD) [16] is an early model for the matrix factoriza-
tion method, which predicts user ratings on items by decom-
posing the rating matrix into two small matrices. After, Lee 
et al. [17] proposed a non-negative matrix method, which 
enhanced the interpretability after matrix factorization. The 
success of the Netflix Prize has set off a wave of research 
on recommendation algorithms. Salakhutdinov et al. [18] 
applied the restricted Boltzmann machine to the Netflix data-
set with great success, and then the model was extended 
to the item order scoring task. Immediately after, Georgiev 
et al. [19] proposed a hybrid RBM framework that used both 
user-based and item-based RBM frameworks, used the rat-
ing matrix as input to learn the hidden layer distribution, 
and tried to reconstruct the rating matrix. Recently, DMF 
was [6] proposed to use a bidirectional path neural network 
architecture to replace the linear embedding used in matrix 
factorization, and design a new loss function to optimize the 
model. This direct use of the rating matrix as an input only 
makes use of explicit feedback data.

Since most users do not tend to rate items, it is often dif-
ficult to collect explicit feedback data. ALS [8] and SVD++ 
[20] are two early effective tasks that use implicit feedback 

for recommendation tasks. Both models ignore the rating 
value and use binarized implicit feedback for the recom-
mendation. NCF [11] was proposed to use element prod-
uct to replace the inner product operation in traditional 
matrix factorization, and interprets the matrix factorization 
method as a special case of the NCF method. Further, NCF 
has two modules Generalized Matrix Factorization (GMF) 
and Multi-Layer Perceptron (MLP) to learn the relationship 
between linear and non-linear. Using linear fusion to fuse the 
two models to improve model performance. Bai et al. [21] 
proposed a new Neighbor-based Neural Collaborative Fil-
tering (NNCF) model. For the first time, the neighborhood 
model was integrated into neural collaborative filtering. This 
method improves the NCF model performance by construct-
ing user-item neighborhoods as input. In the collaborative 
filtering model based on deep learning, Zhang et al. [18, 22] 
introduced the attention mechanism into the recommender 
system to learn the relative weight of each user-item interac-
tion to better learn the user’s instantaneous interests. How-
ever, they only resort to implicit data when building a model.

Some studies have found that there is a complementary 
relationship between explicit feedback and implicit feed-
back [23–25], and applying both of them at the same time 
is likely to improve the recommendation effect. Robert M. 
Bell and Yehuda Koren [26] cut in from the perspective of 
combining explicit feedback and implicit feedback, mining 
explicit implicit feedback data from movie recommenda-
tions, using score data as explicit feedback, and factoring 
and based on the neighborhood model fuse these two types 
of feedback data for recommendation tasks. Weike Pan [27] 
first clusters the user set and item set through K-means and 
proposes a factorization machine model that incorporates 

Fig. 2   User representation 
learning with single feedback 
data and user representation of 
our model
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explicit implicit feedback based on transfer learning. Gai Li 
[28] combines the advantages of xCLiMF [25] and SVD++ 
[20] for recommendation tasks while combining explicit and 
implicit feedback, and proposes a new evaluation method 
ERR (Expected Reciprocal Rank) to evaluate the recommen-
dation quality of the algorithm. Chen et al [29]. performed 
weighted low-rank processing on implicit feedback data to 
better leverage the ability of implicit feedback data to reflect 
users’ hidden preferences. Liu et al. [24] considered the het-
erogeneity of explicit implicit feedback, that is, explicit feed-
back is mostly numerical, and implicit feedback is mostly 
binary, to eliminate the numerical difference between the 
two, both Convert to a value between 0-1 and set differ-
ent weights for them respectively. However, through this 
approach, the ability of explicit feedback data to reflect the 
user’s preference is weakened, and the important characteris-
tics of explicit feedback data have not been considered. What 
is different from the above work is that we retain the respec-
tive characteristics of explicit data and implicit data, and 
mine the deep data comprehensive characteristics through 
neural networks, and use appropriate methods for training. 
We make full use of implicit feedback data to reflect users’ 
hidden preferences and explicit feedback data to reflect user 
degree of preference. In Table 1, we summarize all the per-
tinent characteristics of implicit and explicit feedback.

2.2 � Multi‑task learning

Multi-task learning [30] is a derivation transfer learning 
method. The main task uses the domain-related information 
possessed by the training signals of the related tasks as a der-
ivation bias to improve the generalization effect of the main 
task. In recent years, multi-task learning has become more 
and more popular, because the success of machine learning 
and deep learning is mainly due to the model’s better access 
to data representation and the ability to mine the required 
information from the data. Multi-task learning can obtain 
more comprehensive and changeable information from the 
data. The features extracted by the single task model are only 
valid for the single task, and a single feature cannot describe 
a sample well. When the amount of tasks is large and the 
learned features are required to serve each task, that is, the 

features are required to have a certain generality, multi-task 
learning is more suitable. Multi-task learning is generally 
divided into two types, one is divided into one main task 
and auxiliary tasks, the auxiliary tasks are to help the main 
task to train. The other is multiple Equal tasks, there is no 
major or minor. The former is used in our work. Choosing 
appropriate auxiliary tasks is the key to the success of the 
multi-task learning framework [31].

Multi-task learning has many advantages in recom-
mending tasks [32]. For example, multiple tasks can share 
a part of the network structure as Fig. 3, and the learned 
user and item vector representations can be easily migrated 
to other tasks. Besides, the correlation between different 
tasks has a greater impact on the multi-task learning effect. 
In our work, the auxiliary task we use is part of our model, 
so it has a high correlation with the main task. Recently, 
multi-task learning is used to solve multiple problems 
simultaneously in the recommender system. Based on 
the user’s decision-making process, Hadash et al [33]. 
divided the recommendation task into a ranking task and 
a scoring task, and proposed a multi-task framework to 
jointly train these two tasks. This is the first work to apply 
multi-task learning to collaborative filtering. Lu et al [34]. 
proposed a multi-task learning framework that combines 
probabilistic matrix factorization (PMF) and adversarial 
Seq2Seq model. The matrix factorization model can be 
used to obtain user ratings for items. The Seq2Seq model 
can generate user comments on items and improve recom-
mendations. While predicting the accuracy, it can solve 
the difficulty of providing interpretable recommendation 
results in the recommendation system to a certain extent. 
Based on the idea of Multi-Task Learning, Ma et al [35]. 
proposed a new CVR estimation model—ESMM, which 
effectively solved the two key problems of data sparseness 
and sample selection bias faced by CVR estimation in real 
scenes. With the background of Taobao search and recom-
mendation scenarios, Ni et al [36]. used a multi-task model 

Table 1   Characteristics of explicit and implicit feedback

Explicit feedback Implicit feedback

Accuracy High Low
Abundance Low High
Context-sensitive Yes Yes
Expressivity of user prefer-

ence
Positive and negative Positive

Measurement reference Absolute Relative

Fig. 3   General multi-task learning model framework. The Shared-
Bottom network is usually at the bottom, denoted as f, and multiple 
tasks share this layer. Up, the K subtasks correspond to a tower net-
work, denoted as hK , and the output of each subtask is yK = hK(f (x))
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to learn the general representation of users, and compared 
some experimental effects of the multi-task model and the 
single-task model. Zhao et al [37]. used multi-task learn-
ing to predict the two key tasks of video recommendation 
scenarios, including whether the user would click on the 
video and the user’s feedback after watching the video. 
The above two key tasks can be used as implicit feedback 
tasks and explicit feedback tasks respectively. Inspired by 
the video recommendation work, we further use multi-
task learning for collaborative filtering, using two types of 
feedback data to construct different collaborative filtering 
tasks.

3 � Preliminaries

Suppose there are M users U = {u1, ..., uM} , N items 
I = {i1, ..., iN} . Each item can be a book, a movie, or a web 
page. In the explicit feedback data, let R ∈ RM×N denote 
the rating matrix, where Rui is the rating of user u on item 
i.

In the implicit feedback data, let A ∈ AM×N denote the inter-
act matrix, where Aui may be click, favorite, browse, etc.

In particular, for two types of feedback information, yui = 0 
does not mean user u does not like i. In fact, there are too 
many items in a system, and user u may have never observed 
item i. The recommendation problem with explicit feedback 
is usually formulated as a rating prediction problem that 
estimates the missing values in the rating matrix R. Finally, 
we select top-k items to recommend to users by sorting the 
predicted scores of the items. Similarly, to settle the recom-
mendation problem with implicit feedback, we can formulate 
it as an interaction prediction problem that estimates the 
missing values in the interaction matrix [38]. It should be 
emphasized that in order to eliminate the difference between 
the predicted values of the two types of recommendation 
problems, we convert them into values between 0–1. Model-
based approaches [20, 39] assume that there is an underlying 
model which can generate all ratings as follows.

Where ŷui denotes the predicted score of interaction matrix 
between user u and item i,� denotes the model parameters, 
and f denotes the function that maps the model parameters to 

(1)yui =

{
Rui, if Rui is observed

0, otherwise

(2)yui =

{
1, if interaction (u, i) is observed

0, otherwise

(3)ŷui = f (u, i ∣ 𝛩)

the predicted scores. The key to the problem is how to define 
such a function f. Let pu and qi denote the latent representa-
tions of u and i, respectively. Latent Factor Model (LFM) 
[40] simply applied the dot product of pu , qi to predict the 
ŷui as follows.

where K denotes the dimension of the latent space, 
K ≪ min(M,N) . In addition, based on the calculation of 
the similarity between the user and the item to reflect the 
predicted score, we can use cosine similarity to predict ŷui 
as follows.

Both dot product and cosine similarity are used in our work. 
In general matrix factorization using implicit feedback data 
[6, 11, 12, 40], the dot product is often used to calculate 
the similarity between users and items due to its excellent 
performance. But unlike the binary implicit feedback, the 
explicit feedback is mostly numeric, and its value reflects 
the user’s degree of interest. In order to choose a suitable 
similarity measure for explicit feedback data, we conduct 
some preliminary experiments and find that cosine similarity 
stands out among many similarity calculation methods. So 
we use dot product for implicit feedback and cosine similar-
ity for explicit feedback. Neural collaborative filtering pro-
poses to use MLP to automatically learn f. Their motivation 
is to learn the nonlinear interaction between users and items. 
We did not follow neural collaborative filtering, because we 
tried to learn the explicit and implicit higher-order features 
of users and items through a deep representation learning 
framework to obtain users’ comprehensive interests.

Now, the next question is how to learn model parameters, 
and many of the existing works generally estimate parame-
ters through optimizing an objective function. Recommender 
systems are often abstracted into learning to rank or predict-
ing rating, often using two types of objective functions, pair-
wise loss, and point-wise loss. In this paper, we predict the 
user’s rating of items based on the user’s explicit feedback 
information. Point-wise loss is widely used in collaborative 
filtering regression models based on explicit feedback [41]. 
For our regression prediction object, we use the most com-
monly used point-wise loss which is the squared loss to learn 
the parameters by minimizing the squared error between yui 
and ŷui.

(4)ŷui = f (u, i ∣ 𝛩) = pT
u
qi =

K∑

k=1

pukqik

(5)ŷui = f (u, i ∣ 𝛩) = cosine
(
pu, qi

)
=

pT
u
qi

‖‖pu‖‖‖‖qi‖‖

(6)Lsqr =
�

(u,i)∈y+∪y−

wui

�
yui − ŷui

�2
+ 𝜆‖𝜃‖2

2
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Where y+ denotes all the observed interactions and y− 
denotes the sampled unobserved interactions, and wui 
denotes the weight of training instance (u, i). � denotes all 
trainable model parameters and � controls the L2 regulariza-
tion strength to prevent overfitting. we adopt the Adaptive 
Moment Estimation (Adam) [42], which adapts the learn-
ing rate for each parameter by performing smaller updates 
for frequent and larger updates for infrequent parameters. 
The Adam method yields faster convergence than Stochastic 
Gradient Descent (SGD) and gets out of trouble of tuning 
the learning rate. In summary, our recommendation task can 
be described as a problem of predicting scores, through the 
vector representation of users and items to interact with each 
other to obtain the predicting scores of items. Finally, the 
model is optimized by minimizing the squared loss.

4 � The proposed framework

Our framework aims to make full use of explicit feedback 
data and implicit feedback data, and considering the gen-
eralization of the model, our framework has three tasks, 
two auxiliary tasks, and one main task. Figure 4 illustrates 
our proposed architecture. The green and orange parts are 
extracted separately as our two auxiliary tasks, the col-
laborative filtering task with implicit data (ICF) and the 

collaborative filtering task with explicit data (ECF). The 
entire framework is the main task of our training.

In particular, for the conversion of explicit feedback data 
to implicit feedback data, we take the MovieLens dataset as 
an example. Movie ratings include 1, 2, 3, 4, 5 (observed), 
and missing value (unobserved). There are three main ways 
to convert explicit feedback to implicit feedback: 

(a)	 rating ≥ 3, r = 1(observed, positive sample);
	   otherwise, r = 0(unobserved, negative sample);
(b)	 rating ≠ �, r = 1(observed, positive sample);
	   otherwise, r = 0(unobserved, treat all missing items 

as negative samples);
(c)	 rating ≠ �, r = 1(observed, positive sample);
	   otherwise, r = 0(unobserved, sample all missing 

items and select some as negative samples);

Where ∅ means there are no ratings. The third processing 
method is adopted in our work.

In real scenarios, user behaviors often contain differ-
ent implicit feedbacks such as click, favorite, and browse, 
and these different feedbacks may reflect user interests. 
Taking different implicit feedbacks into consideration may 
improve recommendation performance to some certain. 
Owing to the unavailability of data containing different 
implicit feedbacks and the limited computing resource, 
all the different feedbacks are not treated differently in 

Fig. 4   The architecture of Multi-task learning for collaborative filtering Models. The orange and green parts are two auxiliary tasks that use 
implicit data and explicit data, respectively
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this paper. In fact, the proposed model in the article is 
easily extended to utilizing different implicit feedbacks 
for the recommendation, and this is also the focus of our 
future work.

4.1 � Collaborative filtering task with explicit data 
and implicit data

In the orange part, we use the one-hot encoding of the user 
(item) ID as the input and let VU

u
(VI

i
) denotes the one-hot 

encoding of the user (item) ID. Let user latent vector pu 
and item latent vector qi be represented as follows.

We use Eq.(4) to predict item scores. From this, the output 
of collaborative filtering task with implicit data (ICF) can 
be defined as follows.

Where aout denotes the activation function, using 
sigmoid (x) = 1∕(1 + e−x) to map our output value between 
[0,1]

In the green part, we use the interact matrix yM×N as 
input, and Each row yu∗ and each column y∗i in y represent 
a user and an item, respectively. Since the initial input is a 
high-dimensional vector with two different dimensions, we 
must map it to a low-dimensional space of the same dimen-
sion to facilitate our subsequent operations. We simply use a 
linear regression function to complete this mapping, and the 
latent vectors of users and items can be defined as follows.

where W∗ and b∗ denote the weight matrix and bias vector, 
respectively. Here we use Eq.(5) to predict item scores. From 
this, the output of collaborative filtering task with explicit 
data (ECF) can be defined as follows.

Similarly, where aout denotes the activation function, using 
sigmoid (x) = 1∕(1 + e−x) as aout to map our output value 
between [0,1].

In the previous two parts, we got the user and item rep-
resentations under two types of feedback data. Then we 
cross the two representations to obtain a more complex 
representation. Here we use the product of elements ( ⊙ ) 
to complete the cross-features. The latent vectors of new 
users and items are represented as follows.

(7)
pu = PTVU

u

qi = QTVI
i

(8)ŷICF
ui

= aout
(
pT
u
qi
)

(9)
pu = yu∗Wu + bu

qi = y∗iWi + bi

(10)ŷECF
ui

= aout
(
cosine

(
pu, qi

))

Next, we use MLP to further learn the comprehensive latent 
representation of users and items. Therefore, the user’s rep-
resentation learning part can be defined as follows.

where Wx , bx , and ax denote the weight matrix, bias vec-
tor, and activation function for the x-th layer’s perceptron, 
respectively. In this paper, we use Rectifier (ReLU) as the 
activation function. The same method can be used to obtain 
the comprehensive potential representation of the item qi . 
Finally, we also use cosine similarity to predict item scores. 
From this, the IECF output can be defined as follows.

Finally, we can get the final output of the main task as 
follows.

4.2 � Multi‑tasks

To effectively learn parameters for the recommendation, as 
well as preserve the generalization ability of the framework, 
we use ICF and ECF as independent auxiliary tasks and our 
entire model as the main task. Compared with the main task, 
the two auxiliary tasks are relatively simple, so the multi-
task learning strategy we adopt is to combine simple tasks 
and complex tasks. When training on three tasks, our train-
ing set is the same, and all the parameters of the model are 
shared, which achieves the effect of knowledge transfer and 
can accelerate the model convergence. For the optimization 
of the three tasks, we use the square error loss function of 
Eq.(6).

For the convenience of calculation, we map our output value 
ŷui between [0,1]. So, here all yui comes from Eq.(2).

(11)
pu = pICF

u
⊙ pECF

u

qi = qICF
i

⊙ qECF
i

(12)

a0 = WT
0
pu

a1 = a
(
WT

1
a0 + b1

)

⋯⋯

pu = ax = a
(
WT

x
ax−1 + bx

)

(13)ŷIECF
ui

= cosine
(
pu, qi

)

(14)ŷmain
ui

= sigmoid
(
ŷICF
ui

+ ŷIECF
ui

+ ŷECF
ui

)

(15)

Lmain =
∑

(u,i)∈y+∪y−

wui

(
yui − ŷmain

ui

)2

LICF =
∑

(u,i)∈y+∪y−

wui

(
yui − ŷICF

ui

)2

LECF =
∑

(u,i)∈y+∪y−

wui

(
yui − ŷECF

ui

)2
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Generally, there are two training methods for multi-task 
learning, one is alternating training and the other is joint 
training. Alternate training means that in iterative training 
we alternately perform loss learning for each task, and joint 
training means that we train all tasks in each epoch and then 
integrate their respective losses. Wang et al. [43] also use 
multi-task learning when they use knowledge graphs to 
complete recommended tasks. They alternately train recom-
mendation tasks and knowledge graph embedding tasks. As 
can be seen from their code, for every 5 epochs, 4 of them 
are in the training recommendation task, and the remaining 
one is in the training knowledge graph embedding task. Xin 
et al. [44] divided recommendation tasks into the user-item 
preference modeling task and the item-item relationship 
modeling task. They jointly trained the two tasks to obtain 
a total objective function. In our work, we adopt the latter.

The next key question is how to integrate multiple losses, 
and the first method we tried was to simply add up the different 
losses. Soon we found that the scale of the loss of different tasks 
is very different, resulting in the overall loss being dominated by 
a certain task, and ultimately leading to the loss of other tasks that 

cannot affect the learning process of the network shared layer. 
Moreover, when the loss of the main task is very small, we do 
not want the auxiliary task to change the model parameters sig-
nificantly, so we designed a total objective function as follows.

Where � and � are relative weights of auxiliary tasks. 
Before the experiment, to explore the relative weights � 
and � , we conduct some preliminary experiments. From 
Fig. 5, taking ML100K dataset as an example, we can see 
that the ECF training doesn’t take long before the loss is 
almost fixed, while the loss of ICF continues to decline. 
The convergence speed of ECF is faster than ICF, and we 
hope that ICF will be fully trained. When the ICF converges 
quickly, the loss of the two auxiliary tasks is about 4 times 
the relationship. In Eq.(15), so we try to increase the rela-
tive weight of the loss of ICF. In our work, for ML100K 
dataset, we simply set � = 4 , � = 1 . In the future, we will 
deeply explore the relationship between auxiliary tasks. The 
training procedure for MTCF is illustrated in Algorithm 1.

(16)min
�

L = Lmain + Lmain

(
�LICF + �LECF

)

Fig. 5   The loss of two auxiliary tasks training alone
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5 � Experiments

In this section, we prove the effectiveness of our pro-
posed framework through experiments and perform a 
series of extensive experiments to compare the perfor-
mance of different experimental settings, such as the 
number of negative samples and the number of network 
layers.

5.1 � Experimental settings

5.1.1 � Datasets

We evaluate our proposed framework on five benchmark 
datasets: MovieLens 100K (ML100k), MovieLens 1M 
(ML1M), LastFM, Amazon music (AMusic), Amazon toy 
(AToy). The MovieLens datasets have been preprocessed by 
the provider. Each user has at least 20 ratings and each item 
has been rated by at least 5 users. For the LastFM dataset, 
we do not filter any users and ratings, and use this version of 
the dataset directly. For the other 3 datasets, we use the same 
method as MovieLens. The statistics of these five datasets 
are summarized in Table 2.

5.1.2 � Evaluation for recommendation

To evaluate the performance of item recommendation, 
we adopted the leave-one-out evaluation, which has been 
widely used in the literature [5, 11, 12, 45]. The latest 
interaction of each user is used for testing and the remain-
ing dataset for training. Since ranking all items is time-
consuming, we randomly sample 99 unobserved interac-
tions for each user. We then rank the 100 items according 
to the prediction. The performance of a ranked list is often 
measured by Hit Ratio (HR) and Normalized Discounted 
Cumulative Gain (NDCG) [46]. In our experiments, we 
truncated the ranked list at 10 for both metrics. Intuitively, 
the HR measures whether the test item is present on the 
top-10 list or not, and the NDCG measures the ranking 
quality which assigns higher scores to hit at top position 
ranks.

Table 2   Statistics of the evaluation datasets

Datasets Interactions Items Users Density (%)

ML100K 100000 1683 944 6.29
ML1M 1000209 3706 6040 4.47
LastFM 69149 2665 1741 1.49
Amusic 46087 12929 1776 0.20
Atoy 40926 3393 3317 0.07

5.1.3 � Adapting to temporal changes

A key assumption of most machine learning models is that 
the input is independent and identically distributed. This 
is not strictly true in the field of recommendation since 
the user’s behavioral preferences change with time, recent 
behaviors can better represent the current user’s preferences. 
In addition, the recommender system task is to predict the 
user’s next click. Therefore [47], learning a recommendation 
model on the entire dataset may lead to worse performance 
because the model ends up focusing on some out-of-date 
properties. One way to deal with this is to discard early data, 
but this will reduce the amount of our training data. We 
propose a simple solution to get the best of both worlds via 
pre-training. We first use the entire dataset to pre-train a 
model, and then further train the model using only a sub-
set of recent data, e.g. the last week worth of data out of a 
month of interactions.

5.2 � Performance comparison

We compared our proposed MTCF method with the follow-
ing methods. Since the proposed models focus on modeling 
the relationship between users and items, we mainly com-
pare with user-item models.

•	 ItemPop [19] is a non-personalized method that is often 
used as a benchmark for recommendation tasks. It ranked 
the items by their popularity judged by the number of 
interactions.

•	 ItemKNN [3] is the standard item-based collaborative 
filtering method.

•	 eALS [5] is a state-of-the-art MF method for recommen-
dation with square loss. It used all unobserved interac-
tions as negative instances and weighted them non-uni-
formly by the item popularity.

•	 MF is the standard matrix factorization that models the 
user preference with the inner product between user and 
item embeddings.

•	 NeuMF [11] is a state-of-the-art representation learning-
based MF method which performs deep matrix factoriza-
tion with normalized cross-entropy loss as the loss func-
tion.

•	 DMF [6] is a state-of-the-art representation learning-
based MF method which performs deep matrix factori-
zation with normalized cross-entropy loss as the loss 
function.

•	 DeepCF [38] is an improved algorithm based on rep-
resentation learning and matching learning, which 
combines the advantages of the two models and uses a 
high-dimensional vector of user-item explicit feedback 
as input for users and items.
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•	 EIFCF [29] is a collaborative filtering algorithm that 
integrates implicit feedback and explicit feedback in 
stages.

We use the Pytorch framework to implement our proposed 
method. All MTCF tasks are learned by optimizing the 
squared loss of Eq.(6), where we use uniformly a two-layer 
neural network. It is worth noting that for the neural net-
work, we randomly initialize the training parameters to a 
Gaussian distribution (with a mean of 0 and standard devia-
tion of 0.01), and Use the mini-batch Adam optimization 
model. We set the batch size to 512 and the learning rate of 
[0.0005,0.0001,0.00005].

The results of the comparison are summarized in Table 3. 
The best and the second best scores are shown in bold. 
According to the table, we have the following key captures:

•	 Our results prove the feasibility of neural networks in the 
recommendation problem. Although the MF performs 
better than state-of-the-art representation learning-based 
methods on high-density ( density > 1% ) datasets, the lat-
ter are better on sparse datasets. However, as for pro-
posed architecture, on all datasets, our models achieve 
the best performance in both metrics of NDCG and HR, 
compared to other methods.

•	 In particular, on sparse datasets, compared to state-
of-the-art representation learning-based methods, our 

model obtain 21.3-24.4% (22.9% average) and 21.3-
22.5% (21.9% average) relative improvements in NDCG 
and HR metrics, respectively. Even compared to the MF 
on high-density datasets, our model also gets 0.7-1.5% 
(1.1% average) and 0.4-2.3% (1.4% average) relative 
improvements in NDCG and HR metrics, respectively.

•	 In terms of explicit feedback and implicit feedback, our 
method is significantly better than DMF, which only uses 
explicit feedback data, and is also better than NeuMF, 
DeepCF, etc., which rely only on implicit feedback. In 
addition, for EIFCF, which combines explicit feedback 
and implicit feedback in stages, our multi-task learning 
strategy shows better results.

5.3 � Impact of pre‑training

In our work, we adapt time changes for pre-training as 
mentioned earlier. We first use the entire dataset to pre-
train a model, and then further train the model using only 
a subset of recent data. In order to show that this train-
ing strategy is not only effective for our model, but also 
applicable to other methods, we have performed pre-train-
ing operations on the above methods, and the results are 
shown in Table 4. There are two points to note. For one 

Table 3   Comparison results of 
different methods in terms of 
HR@10 and NDCG@10

ML100K ML1M LastFM AMusic AToy

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

ItemPop 0.420 0.235 0.453 0.254 0.591 0.407 0.239 0.125 0.284 0.152
ItemKNN 0.600 0.334 0.638 0.373 0.846 0.766 0.356 0.222 0.343 0.215
eALS 0.623 0.356 0.709 0.426 0.854 0.731 0.371 0.235 0.372 0.243
MF 0.688 0.401 0.714 0.432 0.874 0.790 0.381 0.248 0.419 0.263
NeuMF 0.681 0.388 0.703 0.427 0.870 0.757 0.357 0.225 0.391 0.237
DMF 0.672 0.390 0.712 0.429 0.867 0.759 0.417 0.253 0.426 0.252
DeepCF 0.674 0.386 0.710 0.422 0.867 0.759 0.409 0.252 0.419 0.259
EIFCF 0.687 0.399 0.711 0.428 0.871 0.789 0.408 0.255 0.417 0.256
MTCF 0.695 0.407 0.719 0.442 0.887 0.793 0.506 0.310 0.530 0.319
Improvement 1.0% 1.5% 0.7% 2.3% 1.5% 0.4% 21.3% 22.5% 24.4% 21.3%

Table 4   Comparison results 
with pre-training of different 
methods in terms of HR@10 
and NDCG@10

ML100K ML1M LastFM AMusic AToy

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

MF-pre 0.716 0.437 0.774 0.516 0.875 0.794 0.382 0.249 0.42 0.262
NeuMF-pre 0.684 0.404 0.759 0.498 0.867 0.767 0.355 0.225 0.386 0.225
DMF-pre 0.705 0.431 0.756 0.481 0.872 0.770 0.413 0.249 0.423 0.248
DeepCF-pre 0.691 0.424 0.744 0.471 0.864 0.763 0.409 0.249 0.413 0.251
EIFCF-pre 0.732 0.437 0.754 0.486 0.862 0.761 0.411 0.257 0.423 0.239
MTCF-pre 0.755 0.456 0.777 0.522 0.888 0.797 0.508 0.308 0.542 0.325
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thing is that we only choose the strongest MF for the non-
deep neural network model, for another is that if there is 
an improvement, we show it in bold. From Table 4, we can 
observe that almost most methods have improved on most 
datasets. Look carefully, the improvement is more obvious 
on the high-density dataset, but the improvement is less on 
the sparse dataset, and some may even cause performance 
degradation due to insufficient training data. However, in 
general, our method is better than any baseline method, 
especially in MovieLens datasets. Even on sparse datasets, 
there is a small improvement.

5.4 � Research on the effectiveness of multi‑task 
learning

5.4.1 � Time efficiency

Generally, traditional neural networks with iterative train-
ing mechanisms may cause time-consuming training of the 
entire model [48–50], so we discussed the training time of 

the model. Figure 6 shows the running time comparison of 
MTCF and baseline models and state-of-the-art models on 
ML1M. It is worth noting that we use the leave-one-out test 
method, so the test time is not much different. The vertical 
axis shows the average running time of each epoch of all 
models and the hardware settings of all models are consist-
ent. From the figure, we can find that during training, com-
pared with other methods, MTCF has the longest training 
time per epoch. However, in each training, our model has 
three optimization tasks and compared with other single-task 
neural network models, the time is not much. Compared with 
other non-neural network models MF and EIFCF, the time of 
our proposed model is mainly spent on constructing multiple 
representations of user items.

5.4.2 � Ablation Study of multi‑task learning

In order to explore the effectiveness of multi-task learning, 
we removed two auxiliary tasks and performed an ablation 
experiment on ML1M dataset. The experimental results are 
shown in Fig. 7. It can be seen from the figure that the multi-
task model with auxiliary tasks does not perform as well as 
the single-task model due to the noise of the multi-task at the 
beginning. But after about 30 epochs, the multi-task model 
will surpass the single-task model with its own advantages.

5.5 � Sensitivity to hyper‑parameters

Although the time factor pre-training mode has higher per-
formance for high-density datasets, it is not so obvious for 
sparse datasets, and may even decline. Therefor, in order to 
make the experiment fairer and to explore the sensitivity to 
hyper-parameters of the model itself, our experiments in this 
section did not use pre-training.

Fig. 6   Efficiency comparison 
between MTCF and other base-
line and state-of-the-art models 
on average runtime per epoch 
on ML1M dataset

(a) (b)

Fig. 7   The effect of multi-task learning strategy on ML1M dataset
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5.5.1 � Negative sampling ratio

Compared with the pair-wise objective function, one advan-
tage of point-wise loss is the flexible sampling ratio for neg-
ative instances [51, 52]. To illustrate the impact of negative 
sampling for MTCF method, we test different negative sam-
pling ratios, i.e., the number of negative samples per positive 
instance, on all the datasets. From the results in Fig. 8, we 
can find that the number of sampling instances is also related 
to the sparsity of the dataset. The more sparse the dataset, 
the fewer the number of negatives. For ML1M dataset, the 
optimal negative sampling ratio is around 3 to 5 which is 
consistent with the results by previous work [11]. Sampling 
more negative instances not only requires more time to train 
the model but also reduces the performance of the model.

5.5.2 � Depth of layers in network

In our proposed model, we cross explicit feedback and 
implicit feedback data to get the complex features of both 
through the neural network with multiple hidden layers. 
We conduct an extensive experiment on the datasets to 
investigate our model with the different number of hid-
den layers. From the results in Fig. 9, the neural network 
has indeed achieved a good performance, compared with 
the zero-layer. The above performance is particularly evi-
dent on the Amazon datasets (Amusic, Atoy). The deeper 
the depth, the better the performance on the Atoy dataset. 
While on the Amusic dataset, it is not so stable, and when 
the number of layers exceeds three, the performance starts 
to decrease. on the two MovieLens datasets, our model 
with two layers illustrates the best performance, which is 

Fig. 8   The effect of negative sampling ratio on performance

Fig. 9   The performance with different deep layers
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similar to the results by previous work [6, 11]. In addition, 
it seems that it is not obvious for lastFM dataset to add 
layers, but it also has certain effects.

6 � Conclusion

In this work, we propose a new collaborative filter-
ing framework. We are the first to mine the relationship 
between users and items from a multi-task perspective, 
combining user explicit and implicit feedback data. In our 
proposed framework, we make full use of both explicit 
ratings and implicit feedback in two ways and design a 
neural network to cross the explicit and implicit repre-
sentations. We conducted extensive experiments on five 
real-world datasets and demonstrated the effectiveness of 
our MTCF method. This work responds to some recent 
questions about using deep neural networks to complete 
recommendation tasks.

As for future work, we will look for some datasets with 
a large difference between explicit feedback and implicit 
feedback to conduct further experiments and improve our 
framework. Because the user’s behavioral preferences 
change with time, in our work, we simply use the interac-
tion of the last week to reflect the user’s recent perfor-
mance is not comprehensive. So, we will study time-aware 
models to capture the evolution of user preference.

Funding  This research was funded by Natural Science Foundation of 
China, Grant nos [61962038, 61962038] and Guangxi Bagui Teams 
for Innovation and Research, Grant no [2019].
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