
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2022) 13:1355–1368
https://doi.org/10.1007/s13042-021-01451-0

ORIGINAL ARTICLE

Multi‑task learning for collaborative filtering

Lianjie Long1 · Faliang Huang1,2 · Yunfei Yin1 · Youquan Xu1

Received: 26 September 2020 / Accepted: 9 October 2021 / Published online: 13 November 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
In the recommender system, the user’s historical behavior data is one of the most important sources of the system’s input
data. According to the user’s feedback mechanism, behavior data can be divided into explicit feedback data and implicit
feedback data. However, most recommendation algorithms focus separately on explicit feedback or implicit feedback. How
to combine explicit and implicit feedback for recommendation tasks has always been a research problem. In recent years,
deep learning technology has dominated the research on recommendation algorithms. But even the latest neural network-
based recommendation algorithm cannot exceed classic methods (such as matrix factorization) in most cases. In this work,
we propose a new collaborative filtering framework with neural network architecture. On the one hand, we use both explicit
feedback data and implicit feedback data as input to learn multiple representations of users and items. On the other hand, we
use multi-task learning to optimize our framework and use two relatively simple auxiliary tasks to enhance the generalization
ability of our framework. Extensive experiments on five real-world datasets show significant improvements in our proposed
framework over the state-of-the-art methods and vanilla matrix factorization.

Keywords  Recommender system · Explicit feedback · Implicit feedback · Multi-task learning

 *	 Faliang Huang
	 faliang.huang@gmail.com

 *	 Yunfei Yin
	 yinyunfei@cqu.edu.cn

	 Lianjie Long
	 longlianjie@cqu.edu.cn

	 Youquan Xu
	 xuyouquan@cqu.edu.cn

1	 The College of Computer Science, Chongqing University,
Chongqing 400044, China

2	 The College of Computer and Information Engineering,
Guangxi Key Lab of Human‑machine Interaction
and Intelligent Decision, Nanning Normal University,
Nanning 530001, China

1  Introduction

In the era of information overload, the recommender system
exists as an indispensable tool and is widely used in a variety
of online services, including e-commerce, short videos, and
social networking sites. The key to personalized recommen-
dation is to screen out items that the user may like accord-
ing to their past interactions, which is called collaborative
filtering [1–4]. Collaborative filtering is the most influential
and widely used model in the field of recommender systems.

Among many collaborative filtering models, matrix fac-
torization has the most generalization ability and can deal
with sparse matrices and other characteristics. As shown in
Fig. 1, taking movie recommendation as an example, matrix
factorization [5, 6] projects users and items into a shared
latent space, in which the recommender system predicts a
personalized ranking over a set of items for each user with
the similarities among the users and items. The recom-
mendation task here is to use the user’s history to predict
the ratings of unwatched movies. During the history of the
interactions between the users and the items, there are two
acts, explicit feedback, and implicit feedback. Explicit feed-
back includes the user’s ratings or views on the item, which
can directly show the user’s preferences and can also reflect
the user’s preferences. While implicit feedback includes the
user’s purchase, click, collection, etc., which cannot reflect
the user’s preference directly but can be used to mine the
user’s preferences.

In the past few years, since Deep Neural Networks
(DNNs) are extremely good at representation learning,
deep learning methods have been widely explored and have
shown promising results in various areas such as computer
vision and natural language processing [7–9]. Xue et al. [6]

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-021-01451-0&domain=pdf

1356	 International Journal of Machine Learning and Cybernetics (2022) 13:1355–1368

1 3

proposed a Deep Matrix Factorization (DMF), which uses
a neural network architecture to replace the linear embed-
ding operation used in vanilla matrix factorization. It uses
the rows and columns in the user-item rating matrix as
high-dimensional vector representations of users and items,
and maps them to low-dimensional space through DNNs.
In addition to learning better representation for users and
items, DNNs are very suitable for learning complex interac-
tion functions because they can approximate any continuous
function [10]. NCF [11] was proposed to model the user-item
interactions with a multi-layer feedforward neural network.
it uses the concatenated vectors of user ID embedding and
item ID embedding as input to the multi-layer perceptron
(MLP) model for prediction. Using the high capacity and
nonlinear characteristics of DNNs, we can learn the com-
plex mapping relationship between user-item representations
and predict scores. Recently, Rendle et al. [12] revisited the
experiments in the NCF paper, proving that under the same
experimental settings, the vanilla matrix factorization model
after tuning can be significantly better than MLP in simulat-
ing the interaction between users and items. Obviously, the
above two methods feed the neural network data differently.
In this paper, we call them explicit data and implicit data
respectively. Although some recent advances [13–15] have
applied DNNs to recommendation tasks and shown promis-
ing results, they mostly used DNNs to model auxiliary infor-
mation, such as a textual description of items, audio features
of pieces of music, and visual content of images. However,
they all use auxiliary information to learn the representation
vectors of users and items, and do not consider the difference
between explicit feedback and implicit feedback.

According to the above discussion, we can see that it
seems feasible to learn to represent users and items by con-
sidering explicit data and implicit data. With this assump-
tion, we propose a collaborative filtering framework that
combines two types of feedback and uses multi-task
learning optimization called Multi-task learning for col-
laborative filtering (MTCF). Our proposed framework has
three optimization tasks. We first use these two types of
feedback data to perform vanilla matrix factorization tasks
to obtain predicting scores of items and then cross the

low-dimensional representations of users and items pro-
duced in the two matrix factorization tasks. The specific
method is to cross the explicit user representation and the
implicit user representation to obtain a higher-order inte-
grated user representation, and we use the same method
for items. After obtaining the comprehensive representa-
tion, we then use DNNs to learn the complex mapping
relationship between the two types of feedback features
and the integrated features and finally obtain the predicting
score through user-item interaction. It is worth mentioning
that we are not only outputting the predicting score after
comprehensive crossover but outputting all three modules’
predicting scores as our final main task’s predicting score.

Figure 2 illustrates our key ideas. We take user repre-
sentation as an example. For the representation learning of
single feedback data, there is only one user representation
at the end, but for our model, considering explicit feedback
data and implicit feedback data, there will be at least three
user representations. Multiple user representations reflect
different features of users, which provides more benefits
for our next recommendation task.

The main contributions of this work are as follows.

•	 We propose a new collaborative filtering framework
that can utilize explicit feedback information and
implicit feedback information at the same time, and
mine the cross-features of the two types of feedback
information. It is worth mentioning that the model has
good generalization performance and can be widely
used in most scenarios with explicit feedback and
implicit feedback.

•	 We use multi-task learning to train our model, give full
play to the generalization ability of the model, accel-
erate the convergence of the model, and improve the
effectiveness of the model. As far as we know, we are
the first to use multi-task learning for collaborative fil-
tering that combines implicit and explicit feedback.

•	 We perform extensive experiments on 5 real-world
datasets to demonstrate the effectiveness and rational-
ity of the proposed MTCF framework.

Fig. 1   Collaborative filtering for recommender sytem. RM×N represents M users’ rating matrix for N movies, and UM×K and IK×N are low-dimen-
sional representations of users and movies, respectively

1357International Journal of Machine Learning and Cybernetics (2022) 13:1355–1368	

1 3

2 � Related work

2.1 � Collaborative filtering

In the recommender system, the historical interaction infor-
mation between the user and the item is the key to collabo-
rative filtering, and the user’s explicit feedback just reflects
the user’s preference. Collaborative filtering with explicit
data uses the users’ direct ratings or comments on items to
perform scoring prediction tasks. Singular Value Decompo-
sition (SVD) [16] is an early model for the matrix factoriza-
tion method, which predicts user ratings on items by decom-
posing the rating matrix into two small matrices. After, Lee
et al. [17] proposed a non-negative matrix method, which
enhanced the interpretability after matrix factorization. The
success of the Netflix Prize has set off a wave of research
on recommendation algorithms. Salakhutdinov et al. [18]
applied the restricted Boltzmann machine to the Netflix data-
set with great success, and then the model was extended
to the item order scoring task. Immediately after, Georgiev
et al. [19] proposed a hybrid RBM framework that used both
user-based and item-based RBM frameworks, used the rat-
ing matrix as input to learn the hidden layer distribution,
and tried to reconstruct the rating matrix. Recently, DMF
was [6] proposed to use a bidirectional path neural network
architecture to replace the linear embedding used in matrix
factorization, and design a new loss function to optimize the
model. This direct use of the rating matrix as an input only
makes use of explicit feedback data.

Since most users do not tend to rate items, it is often dif-
ficult to collect explicit feedback data. ALS [8] and SVD++
[20] are two early effective tasks that use implicit feedback

for recommendation tasks. Both models ignore the rating
value and use binarized implicit feedback for the recom-
mendation. NCF [11] was proposed to use element prod-
uct to replace the inner product operation in traditional
matrix factorization, and interprets the matrix factorization
method as a special case of the NCF method. Further, NCF
has two modules Generalized Matrix Factorization (GMF)
and Multi-Layer Perceptron (MLP) to learn the relationship
between linear and non-linear. Using linear fusion to fuse the
two models to improve model performance. Bai et al. [21]
proposed a new Neighbor-based Neural Collaborative Fil-
tering (NNCF) model. For the first time, the neighborhood
model was integrated into neural collaborative filtering. This
method improves the NCF model performance by construct-
ing user-item neighborhoods as input. In the collaborative
filtering model based on deep learning, Zhang et al. [18, 22]
introduced the attention mechanism into the recommender
system to learn the relative weight of each user-item interac-
tion to better learn the user’s instantaneous interests. How-
ever, they only resort to implicit data when building a model.

Some studies have found that there is a complementary
relationship between explicit feedback and implicit feed-
back [23–25], and applying both of them at the same time
is likely to improve the recommendation effect. Robert M.
Bell and Yehuda Koren [26] cut in from the perspective of
combining explicit feedback and implicit feedback, mining
explicit implicit feedback data from movie recommenda-
tions, using score data as explicit feedback, and factoring
and based on the neighborhood model fuse these two types
of feedback data for recommendation tasks. Weike Pan [27]
first clusters the user set and item set through K-means and
proposes a factorization machine model that incorporates

Fig. 2   User representation
learning with single feedback
data and user representation of
our model

1358	 International Journal of Machine Learning and Cybernetics (2022) 13:1355–1368

1 3

explicit implicit feedback based on transfer learning. Gai Li
[28] combines the advantages of xCLiMF [25] and SVD++
[20] for recommendation tasks while combining explicit and
implicit feedback, and proposes a new evaluation method
ERR (Expected Reciprocal Rank) to evaluate the recommen-
dation quality of the algorithm. Chen et al [29]. performed
weighted low-rank processing on implicit feedback data to
better leverage the ability of implicit feedback data to reflect
users’ hidden preferences. Liu et al. [24] considered the het-
erogeneity of explicit implicit feedback, that is, explicit feed-
back is mostly numerical, and implicit feedback is mostly
binary, to eliminate the numerical difference between the
two, both Convert to a value between 0-1 and set differ-
ent weights for them respectively. However, through this
approach, the ability of explicit feedback data to reflect the
user’s preference is weakened, and the important characteris-
tics of explicit feedback data have not been considered. What
is different from the above work is that we retain the respec-
tive characteristics of explicit data and implicit data, and
mine the deep data comprehensive characteristics through
neural networks, and use appropriate methods for training.
We make full use of implicit feedback data to reflect users’
hidden preferences and explicit feedback data to reflect user
degree of preference. In Table 1, we summarize all the per-
tinent characteristics of implicit and explicit feedback.

2.2 � Multi‑task learning

Multi-task learning [30] is a derivation transfer learning
method. The main task uses the domain-related information
possessed by the training signals of the related tasks as a der-
ivation bias to improve the generalization effect of the main
task. In recent years, multi-task learning has become more
and more popular, because the success of machine learning
and deep learning is mainly due to the model’s better access
to data representation and the ability to mine the required
information from the data. Multi-task learning can obtain
more comprehensive and changeable information from the
data. The features extracted by the single task model are only
valid for the single task, and a single feature cannot describe
a sample well. When the amount of tasks is large and the
learned features are required to serve each task, that is, the

features are required to have a certain generality, multi-task
learning is more suitable. Multi-task learning is generally
divided into two types, one is divided into one main task
and auxiliary tasks, the auxiliary tasks are to help the main
task to train. The other is multiple Equal tasks, there is no
major or minor. The former is used in our work. Choosing
appropriate auxiliary tasks is the key to the success of the
multi-task learning framework [31].

Multi-task learning has many advantages in recom-
mending tasks [32]. For example, multiple tasks can share
a part of the network structure as Fig. 3, and the learned
user and item vector representations can be easily migrated
to other tasks. Besides, the correlation between different
tasks has a greater impact on the multi-task learning effect.
In our work, the auxiliary task we use is part of our model,
so it has a high correlation with the main task. Recently,
multi-task learning is used to solve multiple problems
simultaneously in the recommender system. Based on
the user’s decision-making process, Hadash et al [33].
divided the recommendation task into a ranking task and
a scoring task, and proposed a multi-task framework to
jointly train these two tasks. This is the first work to apply
multi-task learning to collaborative filtering. Lu et al [34].
proposed a multi-task learning framework that combines
probabilistic matrix factorization (PMF) and adversarial
Seq2Seq model. The matrix factorization model can be
used to obtain user ratings for items. The Seq2Seq model
can generate user comments on items and improve recom-
mendations. While predicting the accuracy, it can solve
the difficulty of providing interpretable recommendation
results in the recommendation system to a certain extent.
Based on the idea of Multi-Task Learning, Ma et al [35].
proposed a new CVR estimation model—ESMM, which
effectively solved the two key problems of data sparseness
and sample selection bias faced by CVR estimation in real
scenes. With the background of Taobao search and recom-
mendation scenarios, Ni et al [36]. used a multi-task model

Table 1   Characteristics of explicit and implicit feedback

Explicit feedback Implicit feedback

Accuracy High Low
Abundance Low High
Context-sensitive Yes Yes
Expressivity of user prefer-

ence
Positive and negative Positive

Measurement reference Absolute Relative

Fig. 3   General multi-task learning model framework. The Shared-
Bottom network is usually at the bottom, denoted as f, and multiple
tasks share this layer. Up, the K subtasks correspond to a tower net-
work, denoted as hK , and the output of each subtask is yK = hK(f (x))

1359International Journal of Machine Learning and Cybernetics (2022) 13:1355–1368	

1 3

to learn the general representation of users, and compared
some experimental effects of the multi-task model and the
single-task model. Zhao et al [37]. used multi-task learn-
ing to predict the two key tasks of video recommendation
scenarios, including whether the user would click on the
video and the user’s feedback after watching the video.
The above two key tasks can be used as implicit feedback
tasks and explicit feedback tasks respectively. Inspired by
the video recommendation work, we further use multi-
task learning for collaborative filtering, using two types of
feedback data to construct different collaborative filtering
tasks.

3 � Preliminaries

Suppose there are M users U = {u1, ..., uM} , N items
I = {i1, ..., iN} . Each item can be a book, a movie, or a web
page. In the explicit feedback data, let R ∈ RM×N denote
the rating matrix, where Rui is the rating of user u on item
i.

In the implicit feedback data, let A ∈ AM×N denote the inter-
act matrix, where Aui may be click, favorite, browse, etc.

In particular, for two types of feedback information, yui = 0
does not mean user u does not like i. In fact, there are too
many items in a system, and user u may have never observed
item i. The recommendation problem with explicit feedback
is usually formulated as a rating prediction problem that
estimates the missing values in the rating matrix R. Finally,
we select top-k items to recommend to users by sorting the
predicted scores of the items. Similarly, to settle the recom-
mendation problem with implicit feedback, we can formulate
it as an interaction prediction problem that estimates the
missing values in the interaction matrix [38]. It should be
emphasized that in order to eliminate the difference between
the predicted values of the two types of recommendation
problems, we convert them into values between 0–1. Model-
based approaches [20, 39] assume that there is an underlying
model which can generate all ratings as follows.

Where ŷui denotes the predicted score of interaction matrix
between user u and item i,� denotes the model parameters,
and f denotes the function that maps the model parameters to

(1)yui =

{
Rui, if Rui is observed

0, otherwise

(2)yui =

{
1, if interaction (u, i) is observed

0, otherwise

(3)ŷui = f (u, i ∣ 𝛩)

the predicted scores. The key to the problem is how to define
such a function f. Let pu and qi denote the latent representa-
tions of u and i, respectively. Latent Factor Model (LFM)
[40] simply applied the dot product of pu , qi to predict the
ŷui as follows.

where K denotes the dimension of the latent space,
K ≪ min(M,N) . In addition, based on the calculation of
the similarity between the user and the item to reflect the
predicted score, we can use cosine similarity to predict ŷui
as follows.

Both dot product and cosine similarity are used in our work.
In general matrix factorization using implicit feedback data
[6, 11, 12, 40], the dot product is often used to calculate
the similarity between users and items due to its excellent
performance. But unlike the binary implicit feedback, the
explicit feedback is mostly numeric, and its value reflects
the user’s degree of interest. In order to choose a suitable
similarity measure for explicit feedback data, we conduct
some preliminary experiments and find that cosine similarity
stands out among many similarity calculation methods. So
we use dot product for implicit feedback and cosine similar-
ity for explicit feedback. Neural collaborative filtering pro-
poses to use MLP to automatically learn f. Their motivation
is to learn the nonlinear interaction between users and items.
We did not follow neural collaborative filtering, because we
tried to learn the explicit and implicit higher-order features
of users and items through a deep representation learning
framework to obtain users’ comprehensive interests.

Now, the next question is how to learn model parameters,
and many of the existing works generally estimate parame-
ters through optimizing an objective function. Recommender
systems are often abstracted into learning to rank or predict-
ing rating, often using two types of objective functions, pair-
wise loss, and point-wise loss. In this paper, we predict the
user’s rating of items based on the user’s explicit feedback
information. Point-wise loss is widely used in collaborative
filtering regression models based on explicit feedback [41].
For our regression prediction object, we use the most com-
monly used point-wise loss which is the squared loss to learn
the parameters by minimizing the squared error between yui
and ŷui.

(4)ŷui = f (u, i ∣ 𝛩) = pT
u
qi =

K∑

k=1

pukqik

(5)ŷui = f (u, i ∣ 𝛩) = cosine
(
pu, qi

)
=

pT
u
qi

‖‖pu‖‖‖‖qi‖‖

(6)Lsqr =
�

(u,i)∈y+∪y−

wui

�
yui − ŷui

�2
+ 𝜆‖𝜃‖2

2

1360	 International Journal of Machine Learning and Cybernetics (2022) 13:1355–1368

1 3

Where y+ denotes all the observed interactions and y−
denotes the sampled unobserved interactions, and wui
denotes the weight of training instance (u, i). � denotes all
trainable model parameters and � controls the L2 regulariza-
tion strength to prevent overfitting. we adopt the Adaptive
Moment Estimation (Adam) [42], which adapts the learn-
ing rate for each parameter by performing smaller updates
for frequent and larger updates for infrequent parameters.
The Adam method yields faster convergence than Stochastic
Gradient Descent (SGD) and gets out of trouble of tuning
the learning rate. In summary, our recommendation task can
be described as a problem of predicting scores, through the
vector representation of users and items to interact with each
other to obtain the predicting scores of items. Finally, the
model is optimized by minimizing the squared loss.

4 � The proposed framework

Our framework aims to make full use of explicit feedback
data and implicit feedback data, and considering the gen-
eralization of the model, our framework has three tasks,
two auxiliary tasks, and one main task. Figure 4 illustrates
our proposed architecture. The green and orange parts are
extracted separately as our two auxiliary tasks, the col-
laborative filtering task with implicit data (ICF) and the

collaborative filtering task with explicit data (ECF). The
entire framework is the main task of our training.

In particular, for the conversion of explicit feedback data
to implicit feedback data, we take the MovieLens dataset as
an example. Movie ratings include 1, 2, 3, 4, 5 (observed),
and missing value (unobserved). There are three main ways
to convert explicit feedback to implicit feedback:

(a)	 rating ≥ 3, r = 1(observed, positive sample);
	  otherwise, r = 0(unobserved, negative sample);
(b)	 rating ≠ �, r = 1(observed, positive sample);
	  otherwise, r = 0(unobserved, treat all missing items

as negative samples);
(c)	 rating ≠ �, r = 1(observed, positive sample);
	  otherwise, r = 0(unobserved, sample all missing

items and select some as negative samples);

Where ∅ means there are no ratings. The third processing
method is adopted in our work.

In real scenarios, user behaviors often contain differ-
ent implicit feedbacks such as click, favorite, and browse,
and these different feedbacks may reflect user interests.
Taking different implicit feedbacks into consideration may
improve recommendation performance to some certain.
Owing to the unavailability of data containing different
implicit feedbacks and the limited computing resource,
all the different feedbacks are not treated differently in

Fig. 4   The architecture of Multi-task learning for collaborative filtering Models. The orange and green parts are two auxiliary tasks that use
implicit data and explicit data, respectively

1361International Journal of Machine Learning and Cybernetics (2022) 13:1355–1368	

1 3

this paper. In fact, the proposed model in the article is
easily extended to utilizing different implicit feedbacks
for the recommendation, and this is also the focus of our
future work.

4.1 � Collaborative filtering task with explicit data
and implicit data

In the orange part, we use the one-hot encoding of the user
(item) ID as the input and let VU

u
(VI

i
) denotes the one-hot

encoding of the user (item) ID. Let user latent vector pu
and item latent vector qi be represented as follows.

We use Eq.(4) to predict item scores. From this, the output
of collaborative filtering task with implicit data (ICF) can
be defined as follows.

Where aout denotes the activation function, using
sigmoid (x) = 1∕(1 + e−x) to map our output value between
[0,1]

In the green part, we use the interact matrix yM×N as
input, and Each row yu∗ and each column y∗i in y represent
a user and an item, respectively. Since the initial input is a
high-dimensional vector with two different dimensions, we
must map it to a low-dimensional space of the same dimen-
sion to facilitate our subsequent operations. We simply use a
linear regression function to complete this mapping, and the
latent vectors of users and items can be defined as follows.

where W∗ and b∗ denote the weight matrix and bias vector,
respectively. Here we use Eq.(5) to predict item scores. From
this, the output of collaborative filtering task with explicit
data (ECF) can be defined as follows.

Similarly, where aout denotes the activation function, using
sigmoid (x) = 1∕(1 + e−x) as aout to map our output value
between [0,1].

In the previous two parts, we got the user and item rep-
resentations under two types of feedback data. Then we
cross the two representations to obtain a more complex
representation. Here we use the product of elements ( ⊙ )
to complete the cross-features. The latent vectors of new
users and items are represented as follows.

(7)
pu = PTVU

u

qi = QTVI
i

(8)ŷICF
ui

= aout
(
pT
u
qi
)

(9)
pu = yu∗Wu + bu

qi = y∗iWi + bi

(10)ŷECF
ui

= aout
(
cosine

(
pu, qi

))

Next, we use MLP to further learn the comprehensive latent
representation of users and items. Therefore, the user’s rep-
resentation learning part can be defined as follows.

where Wx , bx , and ax denote the weight matrix, bias vec-
tor, and activation function for the x-th layer’s perceptron,
respectively. In this paper, we use Rectifier (ReLU) as the
activation function. The same method can be used to obtain
the comprehensive potential representation of the item qi .
Finally, we also use cosine similarity to predict item scores.
From this, the IECF output can be defined as follows.

Finally, we can get the final output of the main task as
follows.

4.2 � Multi‑tasks

To effectively learn parameters for the recommendation, as
well as preserve the generalization ability of the framework,
we use ICF and ECF as independent auxiliary tasks and our
entire model as the main task. Compared with the main task,
the two auxiliary tasks are relatively simple, so the multi-
task learning strategy we adopt is to combine simple tasks
and complex tasks. When training on three tasks, our train-
ing set is the same, and all the parameters of the model are
shared, which achieves the effect of knowledge transfer and
can accelerate the model convergence. For the optimization
of the three tasks, we use the square error loss function of
Eq.(6).

For the convenience of calculation, we map our output value
ŷui between [0,1]. So, here all yui comes from Eq.(2).

(11)
pu = pICF

u
⊙ pECF

u

qi = qICF
i

⊙ qECF
i

(12)

a0 = WT
0
pu

a1 = a
(
WT

1
a0 + b1

)

⋯⋯

pu = ax = a
(
WT

x
ax−1 + bx

)

(13)ŷIECF
ui

= cosine
(
pu, qi

)

(14)ŷmain
ui

= sigmoid
(
ŷICF
ui

+ ŷIECF
ui

+ ŷECF
ui

)

(15)

Lmain =
∑

(u,i)∈y+∪y−

wui

(
yui − ŷmain

ui

)2

LICF =
∑

(u,i)∈y+∪y−

wui

(
yui − ŷICF

ui

)2

LECF =
∑

(u,i)∈y+∪y−

wui

(
yui − ŷECF

ui

)2

1362	 International Journal of Machine Learning and Cybernetics (2022) 13:1355–1368

1 3

Generally, there are two training methods for multi-task
learning, one is alternating training and the other is joint
training. Alternate training means that in iterative training
we alternately perform loss learning for each task, and joint
training means that we train all tasks in each epoch and then
integrate their respective losses. Wang et al. [43] also use
multi-task learning when they use knowledge graphs to
complete recommended tasks. They alternately train recom-
mendation tasks and knowledge graph embedding tasks. As
can be seen from their code, for every 5 epochs, 4 of them
are in the training recommendation task, and the remaining
one is in the training knowledge graph embedding task. Xin
et al. [44] divided recommendation tasks into the user-item
preference modeling task and the item-item relationship
modeling task. They jointly trained the two tasks to obtain
a total objective function. In our work, we adopt the latter.

The next key question is how to integrate multiple losses,
and the first method we tried was to simply add up the different
losses. Soon we found that the scale of the loss of different tasks
is very different, resulting in the overall loss being dominated by
a certain task, and ultimately leading to the loss of other tasks that

cannot affect the learning process of the network shared layer.
Moreover, when the loss of the main task is very small, we do
not want the auxiliary task to change the model parameters sig-
nificantly, so we designed a total objective function as follows.

Where � and � are relative weights of auxiliary tasks.
Before the experiment, to explore the relative weights �
and � , we conduct some preliminary experiments. From
Fig. 5, taking ML100K dataset as an example, we can see
that the ECF training doesn’t take long before the loss is
almost fixed, while the loss of ICF continues to decline.
The convergence speed of ECF is faster than ICF, and we
hope that ICF will be fully trained. When the ICF converges
quickly, the loss of the two auxiliary tasks is about 4 times
the relationship. In Eq.(15), so we try to increase the rela-
tive weight of the loss of ICF. In our work, for ML100K
dataset, we simply set � = 4 , � = 1 . In the future, we will
deeply explore the relationship between auxiliary tasks. The
training procedure for MTCF is illustrated in Algorithm 1.

(16)min
�

L = Lmain + Lmain

(
�LICF + �LECF

)

Fig. 5   The loss of two auxiliary tasks training alone

1363International Journal of Machine Learning and Cybernetics (2022) 13:1355–1368	

1 3

5 � Experiments

In this section, we prove the effectiveness of our pro-
posed framework through experiments and perform a
series of extensive experiments to compare the perfor-
mance of different experimental settings, such as the
number of negative samples and the number of network
layers.

5.1 � Experimental settings

5.1.1 � Datasets

We evaluate our proposed framework on five benchmark
datasets: MovieLens 100K (ML100k), MovieLens 1M
(ML1M), LastFM, Amazon music (AMusic), Amazon toy
(AToy). The MovieLens datasets have been preprocessed by
the provider. Each user has at least 20 ratings and each item
has been rated by at least 5 users. For the LastFM dataset,
we do not filter any users and ratings, and use this version of
the dataset directly. For the other 3 datasets, we use the same
method as MovieLens. The statistics of these five datasets
are summarized in Table 2.

5.1.2 � Evaluation for recommendation

To evaluate the performance of item recommendation,
we adopted the leave-one-out evaluation, which has been
widely used in the literature [5, 11, 12, 45]. The latest
interaction of each user is used for testing and the remain-
ing dataset for training. Since ranking all items is time-
consuming, we randomly sample 99 unobserved interac-
tions for each user. We then rank the 100 items according
to the prediction. The performance of a ranked list is often
measured by Hit Ratio (HR) and Normalized Discounted
Cumulative Gain (NDCG) [46]. In our experiments, we
truncated the ranked list at 10 for both metrics. Intuitively,
the HR measures whether the test item is present on the
top-10 list or not, and the NDCG measures the ranking
quality which assigns higher scores to hit at top position
ranks.

Table 2   Statistics of the evaluation datasets

Datasets Interactions Items Users Density (%)

ML100K 100000 1683 944 6.29
ML1M 1000209 3706 6040 4.47
LastFM 69149 2665 1741 1.49
Amusic 46087 12929 1776 0.20
Atoy 40926 3393 3317 0.07

5.1.3 � Adapting to temporal changes

A key assumption of most machine learning models is that
the input is independent and identically distributed. This
is not strictly true in the field of recommendation since
the user’s behavioral preferences change with time, recent
behaviors can better represent the current user’s preferences.
In addition, the recommender system task is to predict the
user’s next click. Therefore [47], learning a recommendation
model on the entire dataset may lead to worse performance
because the model ends up focusing on some out-of-date
properties. One way to deal with this is to discard early data,
but this will reduce the amount of our training data. We
propose a simple solution to get the best of both worlds via
pre-training. We first use the entire dataset to pre-train a
model, and then further train the model using only a sub-
set of recent data, e.g. the last week worth of data out of a
month of interactions.

5.2 � Performance comparison

We compared our proposed MTCF method with the follow-
ing methods. Since the proposed models focus on modeling
the relationship between users and items, we mainly com-
pare with user-item models.

•	 ItemPop [19] is a non-personalized method that is often
used as a benchmark for recommendation tasks. It ranked
the items by their popularity judged by the number of
interactions.

•	 ItemKNN [3] is the standard item-based collaborative
filtering method.

•	 eALS [5] is a state-of-the-art MF method for recommen-
dation with square loss. It used all unobserved interac-
tions as negative instances and weighted them non-uni-
formly by the item popularity.

•	 MF is the standard matrix factorization that models the
user preference with the inner product between user and
item embeddings.

•	 NeuMF [11] is a state-of-the-art representation learning-
based MF method which performs deep matrix factoriza-
tion with normalized cross-entropy loss as the loss func-
tion.

•	 DMF [6] is a state-of-the-art representation learning-
based MF method which performs deep matrix factori-
zation with normalized cross-entropy loss as the loss
function.

•	 DeepCF [38] is an improved algorithm based on rep-
resentation learning and matching learning, which
combines the advantages of the two models and uses a
high-dimensional vector of user-item explicit feedback
as input for users and items.

1364	 International Journal of Machine Learning and Cybernetics (2022) 13:1355–1368

1 3

•	 EIFCF [29] is a collaborative filtering algorithm that
integrates implicit feedback and explicit feedback in
stages.

We use the Pytorch framework to implement our proposed
method. All MTCF tasks are learned by optimizing the
squared loss of Eq.(6), where we use uniformly a two-layer
neural network. It is worth noting that for the neural net-
work, we randomly initialize the training parameters to a
Gaussian distribution (with a mean of 0 and standard devia-
tion of 0.01), and Use the mini-batch Adam optimization
model. We set the batch size to 512 and the learning rate of
[0.0005,0.0001,0.00005].

The results of the comparison are summarized in Table 3.
The best and the second best scores are shown in bold.
According to the table, we have the following key captures:

•	 Our results prove the feasibility of neural networks in the
recommendation problem. Although the MF performs
better than state-of-the-art representation learning-based
methods on high-density ( density > 1% ) datasets, the lat-
ter are better on sparse datasets. However, as for pro-
posed architecture, on all datasets, our models achieve
the best performance in both metrics of NDCG and HR,
compared to other methods.

•	 In particular, on sparse datasets, compared to state-
of-the-art representation learning-based methods, our

model obtain 21.3-24.4% (22.9% average) and 21.3-
22.5% (21.9% average) relative improvements in NDCG
and HR metrics, respectively. Even compared to the MF
on high-density datasets, our model also gets 0.7-1.5%
(1.1% average) and 0.4-2.3% (1.4% average) relative
improvements in NDCG and HR metrics, respectively.

•	 In terms of explicit feedback and implicit feedback, our
method is significantly better than DMF, which only uses
explicit feedback data, and is also better than NeuMF,
DeepCF, etc., which rely only on implicit feedback. In
addition, for EIFCF, which combines explicit feedback
and implicit feedback in stages, our multi-task learning
strategy shows better results.

5.3 � Impact of pre‑training

In our work, we adapt time changes for pre-training as
mentioned earlier. We first use the entire dataset to pre-
train a model, and then further train the model using only
a subset of recent data. In order to show that this train-
ing strategy is not only effective for our model, but also
applicable to other methods, we have performed pre-train-
ing operations on the above methods, and the results are
shown in Table 4. There are two points to note. For one

Table 3   Comparison results of
different methods in terms of
HR@10 and NDCG@10

ML100K ML1M LastFM AMusic AToy

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

ItemPop 0.420 0.235 0.453 0.254 0.591 0.407 0.239 0.125 0.284 0.152
ItemKNN 0.600 0.334 0.638 0.373 0.846 0.766 0.356 0.222 0.343 0.215
eALS 0.623 0.356 0.709 0.426 0.854 0.731 0.371 0.235 0.372 0.243
MF 0.688 0.401 0.714 0.432 0.874 0.790 0.381 0.248 0.419 0.263
NeuMF 0.681 0.388 0.703 0.427 0.870 0.757 0.357 0.225 0.391 0.237
DMF 0.672 0.390 0.712 0.429 0.867 0.759 0.417 0.253 0.426 0.252
DeepCF 0.674 0.386 0.710 0.422 0.867 0.759 0.409 0.252 0.419 0.259
EIFCF 0.687 0.399 0.711 0.428 0.871 0.789 0.408 0.255 0.417 0.256
MTCF 0.695 0.407 0.719 0.442 0.887 0.793 0.506 0.310 0.530 0.319
Improvement 1.0% 1.5% 0.7% 2.3% 1.5% 0.4% 21.3% 22.5% 24.4% 21.3%

Table 4   Comparison results
with pre-training of different
methods in terms of HR@10
and NDCG@10

ML100K ML1M LastFM AMusic AToy

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

MF-pre 0.716 0.437 0.774 0.516 0.875 0.794 0.382 0.249 0.42 0.262
NeuMF-pre 0.684 0.404 0.759 0.498 0.867 0.767 0.355 0.225 0.386 0.225
DMF-pre 0.705 0.431 0.756 0.481 0.872 0.770 0.413 0.249 0.423 0.248
DeepCF-pre 0.691 0.424 0.744 0.471 0.864 0.763 0.409 0.249 0.413 0.251
EIFCF-pre 0.732 0.437 0.754 0.486 0.862 0.761 0.411 0.257 0.423 0.239
MTCF-pre 0.755 0.456 0.777 0.522 0.888 0.797 0.508 0.308 0.542 0.325

1365International Journal of Machine Learning and Cybernetics (2022) 13:1355–1368	

1 3

thing is that we only choose the strongest MF for the non-
deep neural network model, for another is that if there is
an improvement, we show it in bold. From Table 4, we can
observe that almost most methods have improved on most
datasets. Look carefully, the improvement is more obvious
on the high-density dataset, but the improvement is less on
the sparse dataset, and some may even cause performance
degradation due to insufficient training data. However, in
general, our method is better than any baseline method,
especially in MovieLens datasets. Even on sparse datasets,
there is a small improvement.

5.4 � Research on the effectiveness of multi‑task
learning

5.4.1 � Time efficiency

Generally, traditional neural networks with iterative train-
ing mechanisms may cause time-consuming training of the
entire model [48–50], so we discussed the training time of

the model. Figure 6 shows the running time comparison of
MTCF and baseline models and state-of-the-art models on
ML1M. It is worth noting that we use the leave-one-out test
method, so the test time is not much different. The vertical
axis shows the average running time of each epoch of all
models and the hardware settings of all models are consist-
ent. From the figure, we can find that during training, com-
pared with other methods, MTCF has the longest training
time per epoch. However, in each training, our model has
three optimization tasks and compared with other single-task
neural network models, the time is not much. Compared with
other non-neural network models MF and EIFCF, the time of
our proposed model is mainly spent on constructing multiple
representations of user items.

5.4.2 � Ablation Study of multi‑task learning

In order to explore the effectiveness of multi-task learning,
we removed two auxiliary tasks and performed an ablation
experiment on ML1M dataset. The experimental results are
shown in Fig. 7. It can be seen from the figure that the multi-
task model with auxiliary tasks does not perform as well as
the single-task model due to the noise of the multi-task at the
beginning. But after about 30 epochs, the multi-task model
will surpass the single-task model with its own advantages.

5.5 � Sensitivity to hyper‑parameters

Although the time factor pre-training mode has higher per-
formance for high-density datasets, it is not so obvious for
sparse datasets, and may even decline. Therefor, in order to
make the experiment fairer and to explore the sensitivity to
hyper-parameters of the model itself, our experiments in this
section did not use pre-training.

Fig. 6   Efficiency comparison
between MTCF and other base-
line and state-of-the-art models
on average runtime per epoch
on ML1M dataset

(a) (b)

Fig. 7   The effect of multi-task learning strategy on ML1M dataset

1366	 International Journal of Machine Learning and Cybernetics (2022) 13:1355–1368

1 3

5.5.1 � Negative sampling ratio

Compared with the pair-wise objective function, one advan-
tage of point-wise loss is the flexible sampling ratio for neg-
ative instances [51, 52]. To illustrate the impact of negative
sampling for MTCF method, we test different negative sam-
pling ratios, i.e., the number of negative samples per positive
instance, on all the datasets. From the results in Fig. 8, we
can find that the number of sampling instances is also related
to the sparsity of the dataset. The more sparse the dataset,
the fewer the number of negatives. For ML1M dataset, the
optimal negative sampling ratio is around 3 to 5 which is
consistent with the results by previous work [11]. Sampling
more negative instances not only requires more time to train
the model but also reduces the performance of the model.

5.5.2 � Depth of layers in network

In our proposed model, we cross explicit feedback and
implicit feedback data to get the complex features of both
through the neural network with multiple hidden layers.
We conduct an extensive experiment on the datasets to
investigate our model with the different number of hid-
den layers. From the results in Fig. 9, the neural network
has indeed achieved a good performance, compared with
the zero-layer. The above performance is particularly evi-
dent on the Amazon datasets (Amusic, Atoy). The deeper
the depth, the better the performance on the Atoy dataset.
While on the Amusic dataset, it is not so stable, and when
the number of layers exceeds three, the performance starts
to decrease. on the two MovieLens datasets, our model
with two layers illustrates the best performance, which is

Fig. 8   The effect of negative sampling ratio on performance

Fig. 9   The performance with different deep layers

1367International Journal of Machine Learning and Cybernetics (2022) 13:1355–1368	

1 3

similar to the results by previous work [6, 11]. In addition,
it seems that it is not obvious for lastFM dataset to add
layers, but it also has certain effects.

6 � Conclusion

In this work, we propose a new collaborative filter-
ing framework. We are the first to mine the relationship
between users and items from a multi-task perspective,
combining user explicit and implicit feedback data. In our
proposed framework, we make full use of both explicit
ratings and implicit feedback in two ways and design a
neural network to cross the explicit and implicit repre-
sentations. We conducted extensive experiments on five
real-world datasets and demonstrated the effectiveness of
our MTCF method. This work responds to some recent
questions about using deep neural networks to complete
recommendation tasks.

As for future work, we will look for some datasets with
a large difference between explicit feedback and implicit
feedback to conduct further experiments and improve our
framework. Because the user’s behavioral preferences
change with time, in our work, we simply use the interac-
tion of the last week to reflect the user’s recent perfor-
mance is not comprehensive. So, we will study time-aware
models to capture the evolution of user preference.

Funding  This research was funded by Natural Science Foundation of
China, Grant nos [61962038, 61962038] and Guangxi Bagui Teams
for Innovation and Research, Grant no [2019].

References

	 1.	 Ebesu T, Shen B, Fang Y (2018) Collaborative memory network
for recommendation systems. In: The 41st International ACM
SIGIR Conference on Research and Development in Information
Retrieval, pp 515–524

	 2.	 Liang D, Krishnan RG, Hoffman MD, Jebara T (2018) Variational
autoencoders for collaborative filtering. In: Proceedings of the
2018 World Wide Web Conference, pp 689–698

	 3.	 Sarwar B, Karypis G, Konstan J, Riedl J (2001) Item-based col-
laborative filtering recommendation algorithms. In: Proceedings
of the 10th International Conference on World Wide Web, pp
285–295

	 4.	 Zhang H, Shen F, Liu W, He X, Luan H, Chua T-S (2016) Discrete
collaborative filtering. In: Proceedings of the 39th International
ACM SIGIR conference on Research and Development in Infor-
mation Retrieval, pp 325–334

	 5.	 He X, Zhang H, Kan M-Y, Chua T-S (2016) Fast matrix factoriza-
tion for online recommendation with implicit feedback. In: Pro-
ceedings of the 39th International ACM SIGIR conference on
Research and Development in Information Retrieval, pp 549–558

	 6.	 Hong-Jian X, Xinyu D, Jianbing Z, Shujian H, Jiajun C (2017)
Deep matrix factorization models for recommender systems.
IJCAI 17:3203–3209

	 7.	 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp 770–778

	 8.	 Serban I, Sordoni A, Bengio Y, Courville A, Pineau J (2016)
Building end-to-end dialogue systems using generative hierarchi-
cal neural network models. In: Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence (AAAI 2016). AAAI Press,
pp 3776–3783

	 9.	 Huang F, Li X, Yuan C, Zhang S, Zhang J, Qiao S (2021) Atten-
tion-emotion-enhanced convolutional lstm for sentiment analysis.
IEEE Trans Neural Netw Learn Syst:1–14

	10.	 Hornik K, Stinchcombe M, White H et al (1989) Multilayer
feedforward networks are universal approximators. Neural Netw
2(5):359–366

	11.	 He X, Liao L, Zhang H, Nie L, Hu X, Chua T-S (2017) Neural
collaborative filtering. In: Proceedings of the 26th International
Conference on World Wide Web, pp 173–182

	12.	 Rendle S, Krichene W, Zhang L, Anderson J (2020) Neural col-
laborative filtering vs. matrix factorization revisited, pp 240–248

	13.	 Van den Oord A, Dieleman S, Schrauwen B (2013) Deep content-
based music recommendation. Advances in neural information
processing systems. Springer, Berlin, pp 2643–2651

	14.	 Wang H, Wang N, Yeung D-Y (2015) Collaborative deep learn-
ing for recommender systems. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp 1235–1244

	15.	 Zhang F, Yuan NJ, Lian D, Xie X, Ma W-Y (2016) Collaborative
knowledge base embedding for recommender systems. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp 353–362

	16.	 Alter O, Brown PO, Botstein D (2000) Singular value decom-
position for genome-wide expression data processing and mod-
eling. Proc Natl Acad Sci 97(18):10101–10106

	17.	 Lee DD, Sebastian Seung H (1999) Learning the parts
of objects by non-negative matrix factorization. Nature
401(6755):788–791

	18.	 Salakhutdinov R, Mnih A, Hinton G (2007) Restricted boltzmann
machines for collaborative filtering. In: Proceedings of the 24th
International Conference on Machine Learning, pp 791–798

	19.	 Georgiev K, Nakov P (2013) A non-iid framework for collabora-
tive filtering with restricted boltzmann machines. In: International
Conference on Machine Learning, pp 1148–1156

	20.	 Koren Y (2008) Factorization meets the neighborhood: a multi-
faceted collaborative filtering model. In: Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pp 426–434

	21.	 Bai T, Wen J-R, Zhang J, Zhao WX (2017) A neural collabo-
rative filtering model with interaction-based neighborhood. In:
Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pp 1979–1982

	22.	 Zhang S, Tay Y, Yao L, Sun A (2018) Next item recommendation
with self-attention. CoRR. arXiv:​1808.​06414

	23.	 Chen S, Peng Y (2018) Matrix factorization for recommenda-
tion with explicit and implicit feedback. Knowl-Based Syst
158:109–117

	24.	 Liu NN, Xiang EW, Zhao M, Yang Q (2010) Unifying explicit
and implicit feedback for collaborative filtering. In: Proceedings
of the 19th ACM International Conference on Information and
Knowledge Management, pp 1445–1448

	25.	 Shi Y, Karatzoglou A, Baltrunas L, Larson M, Hanjalic A (2013)
xclimf: optimizing expected reciprocal rank for data with multiple
levels of relevance. In: Proceedings of the 7th ACM Conference
on Recommender Systems, pp 431–434

https://arXiv.org/abs/1808.06414

1368	 International Journal of Machine Learning and Cybernetics (2022) 13:1355–1368

1 3

	26.	 Bell RM, Koren Y (2007) Scalable collaborative filtering with
jointly derived neighborhood interpolation weights. In: Seventh
IEEE International Conference on Data Mining (ICDM 2007), pp
43–52. IEEE

	27.	 Pan W, Liu Z, Ming Z, Zhong H, Wang X, Congfu X (2015)
Compressed knowledge transfer via factorization machine for
heterogeneous collaborative recommendation. Knowl-Based Syst
85:234–244

	28.	 Li G, Chen Q (2016) Exploiting explicit and implicit feedback for
personalized ranking. Math Probl Eng 2016(11):2535329. https://​
doi.​org/​10.​1155/​2016/​25353​29

	29.	 Chen BY, Huang L, Wang CD, Jing LP (2020) Explicit and
implicit feedback based collaborative filtering algorithm. J Softw
3:794–805

	30.	 Caruana R (1997) Multitask learning. Mach Learn 28(1):41–75
	31.	 Xie Z, Cao W, Ming Z (2021) A further study on biologically

inspired feature enhancement in zero-shot learning. Int J Mach
Learn Cybern 12(1):257–269

	32.	 Long L, Yin Y, Huang F (2021) Graph-aware collaborative filter-
ing for top-n recommendation. In: 2021 International Joint Con-
ference on Neural Networks (IJCNN), pp 1–8

	33.	 Hadash G, Sar SO, Osadchy R (2018) Rank and rate: multi-task
learning for recommender systems. In: Proceedings of the 12th
ACM Conference on Recommender Systems, pp 451–454

	34.	 Lu Y, Dong R, Smyth B (2018) Why i like it: multi-task learning
for recommendation and explanation. In: Proceedings of the 12th
ACM Conference on Recommender Systems, pp 4–12

	35.	 Ma X, Zhao L, Huang G, Wang Z, Hu Z, Zhu X, Gai K (2018)
Entire space multi-task model: an effective approach for estimat-
ing post-click conversion rate. In: The 41st International ACM
SIGIR Conference on Research and Development in Information
Retrieval, pp 1137–1140

	36.	 Ni Y, Ou D, Liu S, Li X, Ou W, Zeng A, Si L (2018) Perceive
your users in depth: Learning universal user representations from
multiple e-commerce tasks. In: Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp 596–605

	37.	 Zhao Z, Hong L, Wei L, Chen J, Nath A, Andrews S, Kumthekar
A, Sathiamoorthy M, Yi X, Chi E (2019) Recommending what
video to watch next: a multitask ranking system. In: Proceed-
ings of the 13th ACM Conference on Recommender Systems, pp
43–51

	38.	 Deng Z-H, Huang L, Wang C-D, Lai J-H, Yu PS (2019) Deepcf: a
unified framework of representation learning and matching func-
tion learning in recommender system. Proc AAAI Conf Artif
Intell 33:61–68

	39.	 Mnih A, Salakhutdinov RR (2008) Probabilistic matrix fac-
torization. Advances in neural information processing systems.
Springer, Berlin, pp 1257–1264

	40.	 Koren Y, Bell R, Volinsky C (2009) Matrix factorization tech-
niques for recommender systems. Computer 42(8):30–37

	41.	 Salakhutdinov R, Mnih A (2008) Bayesian probabilistic matrix
factorization using markov chain monte carlo. In: Proceedings
of the 25th International Conference on Machine learning, pp
880–887

	42.	 Kingma DP, Ba J (2014) Adam: A method for stochastic optimi-
zation. In: Proceedings of the 3rd International Conference on
Learning Representations (ICLR). arXiv:​1412.​6980

	43.	 Wang H, Zhang F, Zhao M, Li W, Xie X, Guo M (2019) Multi-
task feature learning for knowledge graph enhanced recommenda-
tion. In: The World Wide Web Conference, pp 2000–2010

	44.	 Xin X, He X, Zhang Y, Zhang Y, Jose J (2019) Relational col-
laborative filtering: Modeling multiple item relations for rec-
ommendation. In: Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Information
Retrieval, pp 125–134

	45.	 Bayer I, He X, Kanagal B, Rendle S (2017) A generic coordinate
descent framework for learning from implicit feedback. In: Pro-
ceedings of the 26th International Conference on World Wide
Web, pp 1341–1350

	46.	 He X, Chen T, Kan M-Y, Chen X (2015) Trirank: Review-aware
explainable recommendation by modeling aspects. In: Proceed-
ings of the 24th ACM International on Conference on Information
and Knowledge Management, pp 1661–1670

	47.	 Tan YK, Xu X, Liu Y (2016) Improved recurrent neural networks
for session-based recommendations. In: Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems, pp
17–22

	48.	 Cao W, Wang X, Ming Z, Gao J (2018) A review on neural net-
works with random weights. Neurocomputing 275:278–287

	49.	 Cao W, Hu L, Gao J, Wang X, Ming Z (2020) A study on the
relationship between the rank of input data and the performance
of random weight neural network. Neural Comput Appl:1–12

	50.	 Wang X, Cao W (2018) Non-iterative approaches in training
feed-forward neural networks and their applications. Soft com-
puting-a fusion of foundations, methodologies and applications
22(11):3473–3476

	51.	 Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L (2009)
Bpr: Bayesian personalized ranking from implicit feedback. In:
Proceedings of the Twenty-Fifth Conference on Uncertainty in
Artificial Intelligence, pp 452–461

	52.	 Socher R, Chen D, Manning CD, Ng A (2013) Reasoning with
neural tensor networks for knowledge base completion. Advances
in neural information processing systems. Springer, Berlin, pp
926–934

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1155/2016/2535329
https://doi.org/10.1155/2016/2535329
https://arXiv.org/abs/1412.6980

	Multi-task learning for collaborative filtering
	Abstract
	1 Introduction
	2 Related work
	2.1 Collaborative filtering
	2.2 Multi-task learning

	3 Preliminaries
	4 The proposed framework
	4.1 Collaborative filtering task with explicit data and implicit data
	4.2 Multi-tasks

	5 Experiments
	5.1 Experimental settings
	5.1.1 Datasets
	5.1.2 Evaluation for recommendation
	5.1.3 Adapting to temporal changes

	5.2 Performance comparison
	5.3 Impact of pre-training
	5.4 Research on the effectiveness of multi-task learning
	5.4.1 Time efficiency
	5.4.2 Ablation Study of multi-task learning

	5.5 Sensitivity to hyper-parameters
	5.5.1 Negative sampling ratio
	5.5.2 Depth of layers in network

	6 Conclusion
	References

