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Abstract
In this paper, an unsupervised multi-manifold Isomap algorithm, which is named UMD-Isomap, is proposed for the purpose 
of dimensionality reduction and clustering of multi-manifold data. First, the global pairwise constraints are constructed by 
training m mixtures of probabilistic principal component analyzers (MPPCA) and propagating their local tangent subspaces. 
At the same time, the sub-manifolds are also clustered, and their classes information are recorded in the pairwise constraints. 
If the number of sub-manifolds is known, a new pairwise constraints is computed by using a cluster ensemble algorithm, 
which creates a similarity matrix by accumulating c sets of pairwise constraints. Subsequently, a new objective function 
with pairwise constraints and two supervised solutions are proposed to achieve the dimensionality reduction of the multi-
manifolds. The proposed UMD-Isomap algorithm achieved better performance in terms of dimensionality reduction and 
clustering accuracy than other commonly used methods and its effectiveness was verified.

Keywords  Manifold learning · Pairwise constraints · Tangent space propagation · Clustering

1  Introduction

The effective use of high-dimensional data involves a strong 
framework and a flexible methodology to achieve a tight 
connection between information science and the original 
purpose of data analysis of datasets derived from various 
scientific disciplines. A number of manifold learning meth-
ods have been proposed for solving the problem of nonlin-
ear dimensionality reduction (NLDR), e.g., isometric feature 
mapping (ISOMAP) [1], locally linear embedding (LLE) 
[2], and Laplacian eigenmaps (LE) [3]. These methods 
assume that the real-world data are intended for embedding 
into a lower dimensional space while preserving the geo-
metrical structure [4]. If low-dimensional representations of 
the data can be obtained, then clustering, visualization, and 
searching are more convenient and effective. So the manifold 
learning algorithms have been widely exploited in a broad 

range of applications including image classification [5, 6], 
image retrieval [7], activity recognition [8] and biomedical 
information detection [9].

The classical manifold learning algorithms often assume 
that the data resides on a single manifold. However, a mix-
ture of manifolds typically occurs in practice. For instance, 
in handwritten digit recognition, each digit forms its own 
manifold in the feature space; in computer vision, motion 
segmentation is an essential process for many computer 
vision algorithms. These manifolds may intersect or par-
tially overlap, and they may contain different dimensionality, 
orientation, and density.

At present, several multi-manifold learning methods 
have been proposed. K-Manifolds [10] was first proposed 
to classify unorganized data roughly occurring on multiple 
intersecting nonlinear manifolds. Unfortunately, this method 
is limited to deal with intersecting manifolds because the 
estimation of geodesic distances fails when the clusters are 
widely separated. In contrast, the decomposition-composi-
tion (D-C) method [11] and DC-Isomap algorithm [12] can 
only classify well-separated multi-manifolds. Their decom-
position processes classify the multi-manifold to several 
sub-manifolds, and their composition processes also ena-
ble low-dimensional embedding. There are many spectral 
clustering [13–15] and Multi-manifold clustering [16–18] 
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methods capable of clustering multi-manifolds into several 
sub-manifolds, however, these methods are not capable of 
dimensionality reduction for multi-manifolds.

t-SNE [19, 20] and Umap [21] are two dimensionality 
reduction and visualization techniques, which produce sig-
nificantly better visualizations by reducing the tendency 
to crowd points together in the center of the map. In other 
word, they can cluster the high-dimensional data that lie on 
several different, but related, low-dimensional manifolds, 
and then visualize them in 2D or 3D space. But they are 
not suitable for the intersected manifolds, especially in low 
dimensional spaces. The points at the intersection are still 
very similar after mapping, and the “crowding problem” 
still exists. Some supervised or semi-supervised manifold 
learning methods have been proposed to cluster and visual-
ize multi-manifolds. These methods typically fall into one 
of two methods [22]: distance-based and constraint-based. 
The distance-based methods use distance metrics to satisfy 
the objective function. The S-Isomap algorithm [23] utilizes 
class information to form a geodesic distance matrix that 
distorts the topology among multi-manifolds, although this 
method can be applied to a single-manifold with noise. The 
multi-manifold semi-supervised learning (MMSSL) algo-
rithm [24] is a semi-supervised version of Isomap that can-
not be assured to cross the intersection of the manifolds. The 
M-Isomap [25] first introduces local pairwise constraints 
to construct the intrinsic and penalty graphs and then uses 
the graph embedding framework to determine the final opti-
mization criterion. However, M-Isomap only preserves the 
local geodesic distances, thus it only focuses on increas-
ing the distances between the local interclass points but 
not the holistic interclass separation. The multi-manifold 
discriminant Isomap (MMD-Isomap) algorithm [26] is an 
improvement of the M-Isomap method that constructs global 
pairwise constraints and optimizes its objective function. 
M-Isomap and MMD-Isomap are all supervised versions 
of Isomap. The semi-supervised local multi-manifold Iso-
map (SSMM-Isomap) [27] improves these two methods by 
extending the manifold feature learning to a semi-supervised 
scenario, linear extension scenario and local feature learning 
scenario simultaneously. Although these constraint-based 
methods perform well for multi-manifold classifications, it 
is difficult to select the parameters and separate the embed-
ding of the sub-manifolds, especially for more than three 
intersecting manifolds.

Compared to supervised learning methods, learning 
descriptors from unlabeled data is preferable because in 
many cases (e.g., image registration, template matching, or 
object tracking, especially for their applications involving 
images from relatively less commonly used sensors in the 
vision community, such as infrared, SAR, hyperspectral, 
medical images, etc.) collecting labels is expensive and even 

impractical while local image without labels are ubiquitous 
and easy to collect. [28]

In this paper, we propose an unsupervised multi-mani-
fold discriminant Isomap (UMD-Isomap) algorithm, for the 
purpose of nonlinear dimensionality reduction and cluster-
ing of data lying on the multi-manifold. Our UMD-Isomap 
algorithm uses the global pairwise constraints by training 
m mixtures of probabilistic principal component analyzers 
(MPPCA) [29, 30], propagates the local tangent subspaces, 
and optimizes the objective function of MMD-Isomap [26] 
and SSMM-Isomap [27] to dimensionality reduction multi-
manifolds. The pairwise constraints include the information 
of the sub-manifolds, and a priori determination of the num-
ber of classes or sub-manifolds is not required. The sub-
manifolds are dynamically constructed using the process of 
tangent subspaces propagation. If the number of sub-mani-
folds is determined in advance, the pairwise constraints can 
be re-constructed by ensembling c sets of cluster results.It is 
noteworthy to express several aspects that demonstrate the 
contributions of the proposed UMD-Isomap method:

–	 An unsupervised method is used for the dimensional-
ity reduction and clustering of multi-manifold data; this 
approach not only creates the global pairwise constraints 
for clustering the multi-manifold but also establishes a 
more suitable objective function for its dimensionality 
reduction.

–	 An effective method is utilized to compute the global 
pairwise constraints for multi-manifolds. First, m 
MPPCA “patches” are trained on the multi-manifold 
dataset. Then their tangent spaces are propagated to 
construct the global pairwise constraints. At the same 
time, the sub-manifolds are created. If the number of 
sub-manifolds is known, the pairwise constraints can be 
re-constructed by ensembling c sets of cluster results.

–	 A suitable objective function is optimized and two effec-
tive methods are used for dimensionality reduction of 
the multi-manifold in the lower dimensional spaces. The 
method not only optimizes MMD-Isomap and SSMM-
Isomap, but it is also easy to determine the parameters 
and fit for more than three intersecting manifolds.

The rest of the paper is organized as follows. Section 2 
reviews the related works. Section 3 describes the proposed 
method with details. Section 4 presents the experimental 
results and discussions. The conclusion is presented in 
Section 5.

2 � Related works and necessary definitions

Suppose that the set of data points X = {x1, ..., xn} is in high 
dimensional space RD and the feature space is Rd.
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2.1 � Mixtures of probabilistic PCA

In the mixtures of probabilistic PCA (MPPCA) model pro-
posed in [29, 30], each d-dimensional data vector xn in the 
i.i.d sample � = {xn}

N
n=1

 is generated with two steps. First, 
a natural number j is generated based on the distribution 
p(j) = �j, j = 1, ...,m under the constraint 

∑m

j=1
�j = 1 . Sec-

ond, given this j, xn is generated from the restricted factor 
analysis model

where � denotes some unit matrix, �j is a d-dimensional 
mean vector, �j is a d × kj factor loading matrix, �nj is an 
independent kj-dimensional latent factor vector and �2

j
 is the 

noise variance associated with component j. Clearly, this is 
a mixture of m probabilistic PCA sub-models with mixture 
proportion �j’s. Unlike the traditional factor analysis model, 
which assumes that �nj has a diagonal covariance, MPPCA 
assumes a scalar covariance.

Let  � = {�j, �j;j = 1, ...,m} ,  �j =

(
�j,�j, �

2

j

)
 ,  and 

�j = �j�
�

j
+ �2

j
� . Under the MPPCA model, the log likeli-

hood of observing the data � is

where p(xn|�j) = (2�)−d∕2|�j|−1∕2 ⋅ exp{− 1

2
(xn − �j)

T�−1
j
(xn − �j)} , 

The maximum likelihood estimate 𝜃̂ is defined as

If the prior p(�) for model parameter � is available, then the 
maximum a posteriori estimate 𝜃̂ can be obtained as

Given the number of components m and the subspace dimen-
sion � = (k1, k2, ..., km) , the parameter � in MPPCA model 
can be estimated by the well known expectation-maximiza-
tion (EM) algorithm. [31].

2.2 � MMD‑Isomap and SSMM‑Isomap

MMD-Isomap is a supervised multi-manifold learning 
method over Isomap [26]. The algorithm uses the global 
pairwise constraints [32–36] to solve the optimization prob-
lem. In the pairwise constraints, some pairs of points are in 
same class and their relationships are recorded in the must-
Link (ML) set. Other pairs of points are in different classes 
and their relationships are recorded in the cannot-Link (CL) 
set. The global pairwise ML and CL sets are defined as:

(1)
xn|j = �j�nj + �j + �nj;

�nj ∼ N(�, �), �nj ∼ N(�, �2
j
�),

(2)L(�|�) = ∑N

n=1
log

[∑m

j=1
�jp(xn|�j)

]
,

(3)𝜃̂ = argmax
𝜃

L(�|𝜃).

(4)𝜃̂ = argmax
𝜃

{L(�|𝜃) + logp(𝜃)}.

where l(xi)�{1, 2, ..., c} is the class label of xi , i = 1, 2, ...,N , 
and c is the number of classes. Then, MMD-Isomap aims to 
preserve the global geometry structures of intra-class data 
and separate the inter-class data by solving the following 
two problems:

where d2(yi, yj) denotes the Euclidean distance between the 
low- dimensional representations yi and yj , and dG(xi, xj) is 
the shortest path distance for approximating the geodesic 
distance. Minimizing Eq. 2) is equivalent to preserving the 
pairwise distance between d(yi, yj) and dG(xi, xj) for the sam-
ple pair (xi, xj)�ML , and maximizing Eq. 3) aims to separate 
all the sample pairs (xi, xj)�CL . Finally, MMD-Isomap solves 
the criterion:

and ��(0, 1) is a weighting parameter for trading-off the 
effects of discrimination over the ML and CL constraints. 
Note that MMD-Isomap solves Eq. 4) using the Scaling by 
MAjorizing a COmplicated Function (SMACOF) [37, 38] 
approach.

SSMM-Isomap is an improvement of MMD-Isomap [27]. 
First, the objective function in MMD-Isomap is optimized. 
Then two solution schemes are presented: SMACOF and 
Eigen-decomposition. The main contribution in SSMM-
Isomap is its objective function:

The first two items in SSMM-Isomap are the same as in 
MMD-Isomap. To enable the proposed model to compute 
low-dimensional local manifold features by using labeled 
and unlabeled data, the third item is added. The recon-
struction weights matrix W of the training samples can be 

(5)ML = {(xi, xj)|i ≠ j, l(xi) = l(xj)},

(6)CL = {(xi, xj)|i ≠ j, l(xi) ≠ l(xj)},

(7)JML = min
Y

∑
(xi,xj)�ML

(d(yi, yj) − dG(xi, xj))
2,

(8)JCL = max
Y

�
(xi,xj)�CL

d2(yi, yj) = ‖yi − yj‖2.

(9)

J =min
Y
�(Y),

�(Y) =
1 − �

|ML|
∑

(xi,xj)�ML

(d(yi, yj) − dG(xi, xj))
2 −

�

|CL|
∑

(xi,xj)�CL

d2(yi, yj),

(10)

J = min
Y ,P

�(Y ,P),

s.t.YYT = I,

�(Y ,P) =
1 − �

�ML�
�

(xi,xj)�ML

(d(yi, yj) − dG(xi, xj))
2 −

�

�CL�
�

(xi,xj)�CL

d2(yi, yj)

+ �

N�
i=1

‖yi −
�

xj∈N(xi)

Wijyj‖22 + �

N�
i=1

‖Pxi − yi‖22,
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computed by minimizing the following LLE-style optimi-
zation problem [2]. To enable the SSMM-Isomap method 
to learn an explicit projection or feature extractor for han-
dling the external new data, a fourth item is included, which 
encodes the mismatch between the embedded features using 
an extractor and the reduced manifold features, so that the 
learnt extractor P can embed the external new data effi-
ciently by projection [27].

3 � Unsupervised multi‑manifold 
discriminant ISOMAP

3.1 � Problem formulation

The proposed UMD-Isomap algorithm can be seen as a 
refinement of MMD-Isomap and SSMM-Isomap. The algo-
rithm not only computes the pairwise constraints ML and 
CL by training MPPCA “patches” and propagating their 
local tangent spaces, but also improves the objective func-
tions of MMD-Isomap and SSMM-Isomap. Furthermore, 
two solutions are proposed to minimize the objective func-
tion and obtain low-dimensional embedding results.

It is difficult to determine whether a connected compo-
nent consists of a single manifold or multiple intersecting 
manifolds, and how many manifolds exists in the connected 
component. Though the data are located globally on or close 
to the multiple smooth nonlinear manifolds, locally, each 
point and its neighbors are located on a linear patch of the 
manifold [2, 39]. Moreover, the local tangent space at each 
point provides a good low-dimensional linear approxima-
tion to the local geometric structure of the manifold. As it 
will become clear shortly, at the intersections of different 
manifolds, points on the same manifold have similar local 
tangent spaces whereas points on different manifolds have 
dissimilar tangent spaces [16].

Generally, the tangent space at each point can be esti-
mated by performing a singular value decomposition (SVD) 
of x1, ...xn [40, 41]. When two points x and y are very close 
to each other their local tangent spaces are very similar even 
if they are from different manifolds. This occurs because 
their local neighborhood based on the Euclidean distance 
have a large overlap, resulting in similar local covariance 

matrices. Therefore, this traditional definition of the local 
tangent space does not work well for intersecting manifolds.

The global nonlinear manifolds can be well-approximated 
locally by a series of local linear manifolds, and principal 
component analyzers can successfully cross the intersecting 
linear manifolds [29]. Moreover, the points approximated by 
the same linear analyzer usually have similar local tangent 
spaces which can also be well-approximated by the principal 
subspace of the local analyzer [16]. Therefore, we can train 
many local linear analyzers to approximate the underlying 
manifolds. Subsequently. the local tangent space of a given 
sample is determined by the principle subspace of its cor-
responding local analyzer. Thus our UMD-Isomap trains 
m MPPCA “patches” first before propagating the points in 
these patches to create the sub-manifolds. At the same time, 
the points in the same sub-manifolds must be linked, and the 
points in the different sub-manifolds can not be linked. That 
is to say, the pairwise constraints ML and CL are created. 
Subsequently, the optimized objective functions is proposed 
based on the pairwise constraints, and the two solutions 
(UMDwithSMACOF and UMDwithEd) represent the final 
embedding results of the multi-manifold.

It is noteworthy that the number of classes created by the 
UMD-Isomap algorithm may be higher than that of the real 
sub-manifolds because the algorithm classifies the dataset 
according to its topological structure with no considera-
tion of the classification. The number of classes does not 
have to be determined in advance in our algorithm because 
it is affected only by the parameter m and �0 in MPPCA 
and the propagation of the tangent subspaces. If the num-
ber of classes is known in advance, the proposed algorithm 
can merge its clustering results using clustering ensemble 
methods. For example, the MNIST dataset contains thou-
sands of handwritten digit images of 10 digits, and the 
Coil20 data set contains 1440 images of 20 objects. After 
running the normal UMD-Isomap algorithm, the number of 
classes(submanifolds) may be higher than 10(or 20). The 
UMD-Isomap algorithm creates c sets of ML and CL and 
accumulates a consensus similarity matrix for a clustering 
ensemble algorithm. The result of the clustering ensemble 
algorithm consists of newer pairwise constraints with a fixed 
number of sub-manifolds. 
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Algorithm 1 (UMD-Isomap): Dimensionality reduction of the multi-
manifold.
Input: X, the original multi-manifold dataset; m, the number of mixture models; α, the

trade-off parameter of the UMDwithSMACOF and UMDwithEd algorithms; θ0, the
threshold of dissimilarity between tangent spaces; β, the adjusting parameter only for
UMDwithEd; γ, the parameter to enlarge the distances between sub-manifolds; l∗, the
number of sub-manifolds; c∗, the times of ensemble.

Output: Y ,the embedding results.
Step 1: Construct the neighborhood for all xi;
Step 2: (Construct the pairwise constraints):
Step 2.1: Train m d-dimensional local linear patches by using MPPCA to approximate
the underlying manifolds;
Step 2.2: Construct ML and CL by propagating the tangent subpaces (in Algorithm 2);
Step 3: Re-construct ML and CL if the parameter l∗ and c∗ exist (in Algorithm 3);
Step 4: (Compute the embedding results):
Step 4.1: Construct the object function;
Step 4.2: Use UMDwithSMACOF(in Algorithm 4) or UMDwithEd(in Algorithm 5) to
compute the embedding results and visualize them.

other and are recorded as �(��, ��) . The pair of points (xi, xj) 
is also recorded as the boundary point pairs. Because the 
points in the “patches” belong to the same sub-manifold, the 
UMD-Isomap can only compute the dissimilarity between 
the boundary point pairs.

Before propagating the tangent subspaces of the points 
in the “patches”, the relationship between these patches is 
defined first:

where v(pi, pj) is the dissimilarity between the tangent sub-
spaces of two patches pi and pj) , and �0 is the threshold 
of the dissimilarity between the tangent spaces of these 
patches.

If Rij = 1 , patches pi and pj are neighbors, and it is pos-
sible that they exist in the same sub-manifold. If Rij = −1 , 
patches pi and pj are neighbors, and it is impossible that they 
exist in the same sub-manifold. That is to say, they exist in 
the intersecting area. If Rij = −1 , the patches pi and pj are 
not neighbors.

The first pair of “patches” to be propagated should be 
located at the point with the minimum local tangent sub-
space. That is to say,

After the first pair of “patches” is determined, the next patch 
is determined as follow:

(12)Rij =

⎧
⎪⎨⎪⎩

1, if �(��, ��) and v(pi, pj) < 𝜃0
−1, if �(��, ��) and v(pi, pj) > 𝜃0
0, otherwise.

(13)
pstart = {(pi, pj)| argmin(vst), vst < 𝜃0, xs ∈ pi, xt ∈ pj,Rij = 1}

(14)
pnext ={pj| argmin(vst), vst < 𝜃0, xs ∈ pi,

xt ∈ pj, pi ∈ Ped, pj ∉ Ped,Rij ≠ −1}.

3.2 � Construct the neighborhood

In the UMD-Isomap algorithm (Algorithm 1), the neigh-
borhood of xi can be computed by the k-nearest neighbor 
(K-NN) or the dynamical neighborhood algorithm [42]. The 
K-NN is simple and efficient, whereas the parameter K is 
not easy to determine, and one global setting may not work 
well for the entire manifold. The selection of the neighbor-
hood should be data-driven and mainly depends on its local 
topological structure. The dynamical neighborhood algo-
rithm represents a more accurate neighborhood relation-
ship because it considers the sampling density and manifold 
curvature. Thus, the neighborhood graph determined by the 
dynamical neighborhood algorithm improves the accuracy 
of propagating the sub-manifolds.

3.3 � Construct the pairwise constraints

It is difficult to determine whether the points are in the same 
manifold or not by using only local geometric information. 
Intuitively, for two points in the same local area, if (a) they 
are close to each other and (b) have similar tangent spaces, 
then there is a high probability that they occur on the same 
manifold. And if they have different local tangent spaces, 
they are very likely to come from different manifolds [16].

UMD-Isomap defines the dissimilarity between the tan-
gent spaces �i and �j as:

where Ui and Uj are the basis of the tangent subspace �i and 
�z , and � is the minimum singular value of UT

i
Uj.

After m patches are trained by MPPCA, if there is a pair 
of points (xi, xj) that are neighbors and exist in different 
patches pi and pj , the patches pi and pj are adjacent to each 

(11)vij =

√
1 − �2(UT

i
Uj),
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where Ped is the set of “patches” that had been propagated.
If pnext is empty, the propagated points in Ped must be 

linked, because they are in the same sub-manifold. Thus 
MLPed,Ped = 1 . These points cannot be linked to other 
points, because they are in different sub-manifolds. Thus, 
CLPed,nPed = 1 , where nPed is the set of “patches” that are 
not propagated this time. These “patches” cannot be propa-
gated the next time therefore, their relationships with other 
“patches” is Rij = −1 . 

interclass data points ensuring that the distance between 
them is as large as possible. However, a question remains: 
how large are the distances between the interclass data 
points? The item 

∑
(xi,xj)�CL

d2(yi, yj) maybe very large due to 

the dimension of  the dataset ,  but  the i tem ∑
(xi,xj)�ML

(d(yi, yj) − dG(xi, xj))
2 maybe controllable. Therefore, 

it is difficult to set the threshold of �(Y) and to select a 

Algorithm 2 (ConstructPC): construct the pairwise constraints.
Input: X, the original dataset; m, the number of mixture models; θ0, the threshold of

dissimilarity between tangent spaces;
Output: ML, the must-link sets; CL, the cannot-link sets;

Step 1: Compute the dissimilarity between the boundary point pairs using Eq.(11) and
construct the patches relationship matrix using Eq.(12).
Step 2: Determine the start patch using Eq.(13);
Step 3: Select the next patch using Eq.(14);
Step 4: Repeat Step 3 until pnext = φ, then the points in the current propagated “patches”
creates a sub-manifold. Set MLPed,Ped = 1 , CLPed,nPed = 1 and Rped,nPed = −1.
Step 5: Repeat Step 2 until all patches are propagated, then the propagation process is
ended.

3.4 � Re‑construct the pairwise constraints

The sij ∈ ML indicates whether the pair of points xi and 
xj is in the same class or not. After running MPPCA and 
ConstructPC algorithms c∗ times, the consensus similarity 
matrix M is constructed by accumulating c∗ sets of ML. The 
mij ∈ M denotes the number of the pair of points xi and xj in 
the same class. The ensemble clustering can be derived from 
M to obtain l∗ classes in a number of ways, such as using 
hierarchical clustering or spectral clustering algorithms. 
Then the new pairwise constraints are re-constructed accord-
ing to the l∗ new classes. 

Algorithm 3 (ReConstructPC): reconstruct the pairwise constraints.
Input: X, the original dataset; m, the number of mixture models; θ0, the threshold of

dissimilarity between tangent spaces; l∗, the number of sub-manifolds; c∗, the times of
ensemble.

Output: ML, the must-link sets; CL, the cannot-link sets;
Step 1: Run MPPCA and ConstructPC algorithms c∗ times;
Step 2: Accumulate c∗ sets of ML to compute a consensus similarity matrix M ;
Step 3: Form the ensemble clustering based on the similarity matrix M , and the number
of classes is l∗;
Step 4: Re-construct the pairwise constraints ML and CL according to the new classes.

3.5 � Compute the Embedding Results

In order to tackle the dimensionality reduction of multi-
manifold, MMD-Isomap defines the objective function as 
expressed in Eq. 4). The objective function attempts to pre-
serve the global geometrical structures of the intra-class data 
points, therefore d(yi, yj) is as close as possible to dG(xi, xj) . 
Meanwhile, the objective function aims to separate the 

suitable parameter � . To accommodate this uncertainty, our 
proposed UMD-Isomap defines the following objective 
function:

(15)

J = min
Y
�(Y),

�(Y) =
1 − �

|ML|
∑

(xi,xj)�ML

(d(yi, yj) − dG(xi, xj))
2

−
�

|CL|
∑

(xi,xj)�CL

(d(yi, yj) − C)2.

where C = � ∗ max(dG(xi, xj)) , max(dG(xi, xj)) represents the 
maximum distance in sub-manifolds and � is an adjustment 
parameter to increase the distances between sub-manifolds. 
Thus, c is a constant that determines the distances between 
the interclass data points. Then, we can scale by majorizing 
a convex function (SMACOF) and eigen-decomposition 
techniques respectively to solve the above-mentioned 
problem.
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3.5.1 � Effective solution using SMACOF

Despite the slow convergence of the SMACOF algorithm, 
a large number of iterations may be required for achieving 
high-accuracy, depending on the size of the data set and the 
used metric [26].

where

Let

then Eq. 18) can be rewritten as
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F
ij
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Now, consider Eq. 20). Let

Then we have

If we define

the Cauchy–Schwartz inequality implies that for all pairs of 
configurations Y and Z, we have �(Y) ≥ tr(YB(Z)Z) . Then 
Eq. (16) can be rewritten as

If we define �(Y , Z) = �2
con

+ tr(YVYT ) − 2tr(YB(Z)ZT ) , 
then �(Y , Z) is an auxiliary function of �(Y) . The Y value for 
�(Y , Z) attaining its minimum, can be calculated by setting 
the partial derivative equal to zero. So that Y = ZB(Z)V−1.

The solution using SMACOF is described in the UMD-
withSMACOF algorithm. 
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Algorithm 4 (UMDwithSMACOF): dimensionality reduction using SMA-
COF.
Input: X, the original dataset; ML, the Must-Link matrix; CL, the Cannot-Link matrix;
Output: Y ,the embedding result;

Step 1: Compute the geodesic distances dG(xi, xj) where MLij = 1;
Step 2: Construct matrix V using Eq.(22) and compute V −1;
Step 3: Produce a random matrix y0, initialize Z = Y 0, then calculate σ(Y 0) by Eq.(16)
and set step t = 0;
Step 4: Compute B(Z) using Eq.(26), then set Y t+1 = ZBV −1;
Step 5: Compute σ(Y t+1) using Eq.(16), if σ(Y t) − σ(Y t+1) < ξ, then stop; else Z =
Y t+1, t = t+ 1 and go to Step 4.

addition, the iteration process 
∑

(xi,xj)∈ML

(d(yi, yj) − dG(xi, xj))
2 

in the solution using the SMACOF algorithm results in the 
sub-manifolds with better low-dimensional embedding. In 
order to optimize the solution with the eigen-decomposition 
and obtain accurate embedding results, the LLE-style item 

described in [2, 13] is added to the proposed objective 
function:

where � is a trade-off parameter, and M = �(I −W)(I −W)T 
describes the pairwise local weighting relationships. Sub-
sequently, the new objective function expressed in Eq. (16) 
can be rewritten as

Letting

w e  c a n  o b t a i n  t h e  e m b e d d i n g  r e s u l t s 
Y = [

√
�1v1,

√
�2v2, ...,

√
�dvd]

T  , where vi, i = 1, 2, ..., d  , 
are the standard eigenvectors corresponding to first d lead-
ing eigenvalues of the matrix V. 
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(34)�(Y) = tr(Y(RML − RCL +M)YT ).

(35)V = RML − RCL +M,

3.5.2 � Effective Solution using Eigen‑decomposition

It is also feasible to solve the objective function in Eq. (16) 
using the eigen-decomposition technique. To facilitate the 
optimization, we first transform Eq. (16) into the following 
trace form-based expressions:

where

and H = I − ��T∕N is a centering matrix, � denotes a vector 
of all ones.

It should be noted that HQH is used to solve the objective 
function E =

∑
((d(yi, yj) − dG(xi, xj))

2) in MDS [43] and 
Isomap [1]. Therefore, a solution using the eigen-decompo-
sition of �(Y) only reflects the distances between the sub-
manifolds but does not reflect their topological structure. In 
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Algorithm 5 (UMDwithED): dimensionality reduction using eigen-
decomposition.
Input: X, the original dataset; { 1 n}, the set of labels which are the classification result

of the classifyMtoS algorithm(Algorithm 1);
Output: Y ,the embedding result;

Step 1: Compute the geodesic distances dG(xi, xj) where MLij = 1;
Step 2: Construct matrix V = RML −RCL +M by Eq.(35);
step 3: Eigen-decompose V ;
Step 4: Obtain Y = [

√
λ1v1,

√
λ2v2, ...,

√
λdvd]T , i = 1, 2, ..., d;

analyzed using four artificial datasets and three real data-
sets. Because the pairwise constraints reflect the cluster-
ing results of the sub-manifolds, the clustering accuracy is 
used as the evaluation criterion to assess the performance 
of computing the pairwise constraints. Subsequently, two 
approaches for dimensionality reduction (i.e., UMDwithEd 
and UMDwithSMACOF) in the proposed UMD-Isomap are 
evaluated using two artificial datasets and three real datasets. 
The two-dimensional(2D) embedding results are visualized 
to assess the quality. After that, the influence of the param-
eters and the results of the time complexity analysis are also 
discussed.

All of the experiments were performed on a PC with an 
Intel Core based system with 3.6 GHz CPU and 8 GB RAM 
and using the Matlab platform.

4.1 � Clustering analysis

Clearly, the higher the classification accuracy is, the better 
the algorithm performance is. In experiments, we evaluate 
the clustering performance with two standard clustering 
evaluation metrics, i.e. Clustering Accuracy (ACC) and Nor-
malized Mutual Information (NMI). The clustering accuracy 
is defined as the maximum classification accuracy among all 
possible alignments:

where ti is the true label, li is the obtained label of xi , and �(⋅) 
is the delta function. And the Normalized Mutual Informa-
tion measures the similarity between the clustering results 
and the true classes:

where l∗ is the number of sub-manifolds (or classes), pi is 
the probabilities that the sample belongs to the ith cluster, 
and pij is the joint probability that the sample belongs to the 
both the ith cluster and the jth cluster.

(36)ACC = max
align

∑N

i=1
�(ti = li)∕N,

(37)NMI =

∑l∗

i=1

∑l∗

j=1
pijlog(

pij

pipj
)

�∑l∗

i=1
pilogpi

∑l∗

j=1
pjlogpj

,

3.6 � Complexity analysis

In the proposed UMD-Isomap algorithm, the process to com-
pute the pairwise constraints is achieved by MPPCA and Con-
structPC (in Algorithm 2), and the process to dimensionality 
reduction is achieved by two algorithms: UMDwithSMACOF 
(in Algorithm 4) or UMDwithEd (in Algorithm 5).

The complexity of MPPCA is O(mNDdt1) , where m 
denotes the number of “patches” trained by MPPCA, and t1 
represents the number of iterations. The complexity of Con-
structPC is O(

∑m

i=1
ti) , where ti denotes only the time required 

to compute the dissimilarity of tangent subspaces between the 
points in “Ped” set and their neighbors in “nPed” set. Com-
pared with O(mNDdt1) , the time complexity of ConstructPC 
is smaller. Hence, the complexity of computing the pairwise 
constraints can be approximated as O(mNDdt1).

In the dimensionality reduction process, the geodesic dis-
tances between each pair of points in the ML set are com-
puted by using Dijkstra’s algorithm. Then the embedding 
results of the original samples are computed using SMACOF 
(in Algorithm 4) or eigen-decomposition (in Algorithm 5), 
respectively. The complexity of Dijkstra’s algorithm is 
O(N2) . therefore, the complexity of computing the geodesic 
distances matrix is O(

∑
sMi

N2
sMi

) , where sMi represents the 
sub-manifolds determined by the pairwise constraints ML 
and CL. The complexity of SMACOF is O(t2dN2) , where t2 
is the number of iterations. Compared to the computation 
the geodesic distances matrix and the iterative calculation 
of the embedding results using SMACOF, the complexity of 
creating the pairwise constraints and he iterative calculation 
of the embedding using the eigen-decomposition is very 
small. Therefore, the complexities of Algorithm 4 and Algo-
rithm  5 are approximately O(

∑
sMi

N2
sMi

+ t2dN
2) and 

O(
∑

sMi
N2
sMi

) , respectively.

4 � Experiments

In this section, the performance of the proposed UMD-Iso-
map is assessed using a series of synthetic and real-world 
datasets. First, computation of the pairwise constraints is 
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Fig. 1   The classification results of Isomap, K-manifolds, Ncut, t-SNE, Umap, SMMC and two versions of UMD-Isomap on four artificial data 
sets, the different colors represent the different sub-manifolds. a $ data; b Hybrid data; c three planes; d two spirals
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In this subsection, the computation results of the pairwise 
constraints in our UMD-Isomap are compared with those of 
several other methods, (i.e., the k-means on Isomap, K-man-
ifolds [10], Ncut [14], t-SNE [19], Umap [20]1 and spctral 

multi-manifold clustering (SMMC) [16]). Neither Isomap 
nor K-manifolds performs well on intersecting nonlinear 
manifolds. However, since these methods are quite well-
known, and in order to confirm that the proposed algorithm 
outperforms them, these two methods were included in the 
comparison.

Table 1   The Classification accuracy and Normal Mutual Information (mean ± std

Followed by the highest values) for different methods using four data sets
Optimal experimental results and our experimental results are given in bold

$ data Hybrid data Three-planes Two-spirals

ACC​ NMI ACC​ NMI ACC​ NMI ACC​ NMI

ISOMAP 0.667±0.0 0.0±0.0 0.800±0.0 0.799±0.0 0.438±0.0 0.125±0.0 0.627±0.0 0.191±0.0
(0.667) (0.0) (0.800) (0.799) (0.438) (0.125) (0.627) (0.191)

K-manifolds 0.667±0.0 0.0±0.0 0.559±0.021 0.214±0.027 0.351±0.076 0.017±0.0 0.524±0.013 0.002±0.0
(0.667) (0.0) (0.568) (0.223) (0.353) (0.0176) (0.525) (0.002)

Ncut 0.632±0.132 0.0±0.0 0.461±0.071 0.799±0.003 0.466±0.053 0.085±0.002 0.696±0.044 0.192±0.013
(0.667) (0.0) (0.523) (0.801 (0.498) (0.087) (0.743) (0.195)

t-SNE 0.667±0.0 0.0±0.0 0.655±0.0 0.395±0.0 0.433±0.0 0.085±0.0 0.881±0.0 0.003±0.0
(0.667) (0.0) (0.655) (0.395) (0.433) (0.085) (0.881) (0.003)

Umap 0.654±0.0 0.0±0.0 0.691±0.0 0.402±0.0 0.441±0.0 0.087±0.0 0.764±0.0 0.002±0.0
(0.654) (0.0) (0.691) (0.402) (0.441) (0.087) (0.764) (0.002)

SMMC 0.978±0.044 0.986±0.0 0.92±0.081 0.892±0.015 0.804±0.017 0.639±0.021 0.739±0.020 0.325±0.014
(1.0) (0.986) (0.925) (0.901) (0.867) (0.654) (0.829) (0.336)

ConstructPC 0.998±0.001 0.980±0.0 0.959±0.079 1.0±0.0 0.868±0.028 0.875±0.0 0.991±0.039 0.943±0.0
(1.0) (1.0) (1.0) (1.0) (0.984) (0.875) (0.992) (0.943)

ReConstructPC 1.0±0.0 0.986±0.061 0.987±0.061 1.0±0.0 0.978±0.311 0.885±0.0 0.993±0.012 0.930±0.0
(c∗=5) (1.0) (1.0) (1.0) (1.0) (0.983) (0.885) (0.994) (0.855)

Table 2   Classification 
accuracies (mean ± std. 
Followed by the highest 
accuracy) and computation 
time(s) for different methods 
using three data sets

Optimal experimental results and our experimental results are given in bold

Coil20(1440×1024) Mnist(10000×784) USPS(9289×256)

ACC​ NMI ACC​ NMI ACC​ NMI

ISOMAP 0.523±0.014 0.613±0.004 0.494±0.021 0.445±0.007 0.647±0.005 0.578±0.0
(0.528) (0.618) (0.504) (0.447) (0.698) (0.578)

K-manifolds 0.276±0.027 0.491±0.016 0.208±0.076 0.202±0.011 0.294±0.065 0.269±0.012
(0.303) (0.506) (0.249) (0.214) (0.317) (0.271)

Ncut 0.874±0.044 0.934±0.052 0.756±0.013 0.752±0.032 0.312±0.004 0.479±0.063
(0.882) (0.957) (0.769) (0.777) (0.357) (0.503)

t-SNE 0.798±0.0 0.889±0.0 0.819±0.0 0.776±0.0 0.873±0.0 0.893±0.0
(0.798) (0.889) (0.819) (0.776) (0.873) (0.893)

Umap 0.815±0.0 0.879±0.0 0.793±0.0 0.811±0.0 0.914±0.0 0.903±0.0
(0.815) (0.879) (0.793) (0.811) (0.914) (0.903)

SMMC 0.292±0.036 0.418±0.031 0.171±0.011 0.166±0.011 0.226±0.187 0.129±0.011
(0.344) (0.433) (0.186) (0.184) (0.2276) (0.138)

ConstructPC 0.872±0.007 0.887±0.012 0.819±0.017 0.746±0.031 0.875±0.012 0.794±0.026
(0.882) (0.892) (0.836) (0.753) (0.894) (0.811)

ReConstructPC 0.788±0.013 0.750±0.014 0.762±0.011 0.641±0.007 0.844±0.019 0.784±0.022
(c∗=5) (0.791) (0.774) (0.787) (0.657) (0.869) (0.798)

1  The experiment is carried out with the python version of Umap 
algorithm, and its results in figures are displayed by MATLAB.
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Note that the clustering performance of UMD-Isomap 
is represented by the results of the ConstructPC or ReCon-
structPC algorithms, without considering the clustering 
results of the low-dimensional embedding for the proposed 
UMD-Isomap. Some supervised and semi-supervised algo-
rithms always use k-means to test the clustering or classifi-
cation results of the low-dimensional embedding. Although 
the accuracy of clustering is high, the result only reflects 
dimensionality reduction performance but not the clustering 
performances because the supervised and semi-supervised 
algorithms use a large number of labels and cannot classify 
the multi-manifold themselves.

Four artificial datasets with different characteristics and 
complexities are selected and the clustering results are 
shown in Fig. 1 and Table 1. As illustrated in Fig. 1, the dif-
ferent colors denote different classes. In Table 1, the average 
clustering accuracy (ACC) and Normalized Mutual Infor-
mation (NMI) of 10 independent runs the standard devia-
tions, and the maximum values for the different methods 
are tabulated.

The following is observed: (1) The Isomap, K-mani-
folds, Ncut, t-SNE and Umap methods did not perform 
well on intersecting multi-manifolds. (2) The SMMC not 
only resulted in satisfactory performance for grouping 

Table 3   The running time(s) for different methods on seven data sets

Optimal experimental results and our experimental results are given in bold

$ data Hybrid data Three-planes Two-spirals Coil20 Mnist USPS

ISOMAP 26.862 122.695 14.422 7.722 23.802 8.157e+3 6.968e+3
K-manifolds 82.815 2.216e+3 41.385 25.946 122.227 1.629e+4 1.490e+4
Ncut 4.454 4.467 1.779 0.933 5.226 1.155e+3 867.997
t-SNE 55.181 161.486 32.066 20.357 47.651 2.405e+3 2.401e+3
Umap — — — — — — —
SMMC 4.005 4.212 3.863 1.866 596.833 3.613e+3 1.725e+3
ConstructPC 1.648 1.816 1.162 0.399 329.929 735.562 169.073
ReConstructPC(c∗=5) 5.825 10.596 5.396 2.398 2.112e+3 4.026e+3 1.128e+3

Fig. 2   The 2D embedding results obtained by each method on the $ dataset



1329International Journal of Machine Learning and Cybernetics (2022) 13:1317–1336	

1 3

samples generated from intersecting manifolds, but also 
performed well on the more general hybrid nonlinear mani-
fold clustering problems. However, its results were not suf-
ficiently robust because of the unstable results determined 
by MPPCA. (3) Both versions of UMD-Isomap resulted in 
excellent clustering accuracy and normal mutual informa-
tion. However, the ConstructPC (in UMD-Isomap) algo-
rithm is also not sufficiently robust for the same reason as 
the SMMC, and the number of its classes are created more 
than the real one(see the pictures of the sixth line in Fig. 1). 
(5) The results of the ReConstructPC (in UMD-Isomap) 
algorithm are more robust because it ensembles c∗ = 5 sets 
of ML and computes the new clustering results with the 
parameter l∗.

Three widely-known real-world datasets are also selected 
to evaluate the efficiency and accuracy of the different algo-
rithms. The first one is the Coil20 dataset, which consists 
of 1440 images of 20 objects, and each object is viewed 
under a full 360◦ of rotation. The MNIST dataset contains 
10000 handwritten digit images (’0’ to ’9’). The USPS data 
set consists of 9289 handwritten digit images(’0’ to ’9’). 
The clustering results of the real-world datasets cannot be 
visualized in R2 or R3 spaces. Hence, we only compared 
the clustering accuracies (ACC) and Normalized Mutual 

Information (NMI) for the seven algorithms on the Coil20, 
MNIST, and USPS datasets (in Table 2).

The experimental results revealed a number of significant 
achievements: (1) The clustering results of t-SNE and Umap 
on three real-world datasets are desirable, which proves the 
“crowding problems” in high-dimensional space is not as 
serious as that in low-dimensional space. And the cluster-
ing results of Umap on USPS is best in seven algorithms; 
(2) The clustering results of Ncut on Coil20 is best in seven 
algorithms, because the sub-manifolds in Coil20 are hardly 
intersect. But its clustering results on USPS is worse than 
those of t-SNE and our two algorithms, because the USPS 
dataset has more samples and lower dimensions than other 
two real-world datasets; (3) The SMMC algorithm is not 
appropriate for real-world datasets because its accuracy 
are even lower than those of the Isomap, k-manifolds and 
Ncut algorithms. (4) The clustering accuracy is higher for 
ConstructPC than for ReConstructPC because the number 
of classes created by the ConstructPC algorithm is more 
than the real one. The influence of the classed number on 
the clustering accuracy will be discussed in Sect. 4.3.1. (5) 
the clustering results are better for the two algorithms in 
our proposed UMD-Isomap than for the other algorithms, 
demonstrating the effectiveness of the proposed algorithm.

Fig. 3   The 2D embedding results obtained by each method on the Hybrid dataset
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In addition, the average computation times are shown in 
Table 3, demonstrating a rough indication of their time com-
plexity. (1)The running time of the ConstructPC algorithm 
in the UMD-Isomap is less than those of other algorithms. 
However, it is still a little higher than that of the Ncut algo-
rithm for the Coil20 data set because the time complexity of 
the ConstructPC algorithm is not only related to the number 
of samples but also the dimensionality of the datasets; (2) 
The running time of the ReConstructPC algorithm is larger 
because it computes the similarity matrix by running c∗ sets 
of ConstructPC algorithm; (3) The proposed method is more 
efficient than the other method, which is also confirmed by 
the time complexity results.

In brief, the experiments on both the artificial datasets 
and the real-world datasets verify the effectiveness of the 
proposed algorithm.

4.2 � Dimensionality reduction and visualization

Herein, two solutions for dimensionality reduction process 
(i.e., UMDwithEd and UMDwithSMACOF) in the proposed 
UMD-Isomap are compared with Isomap [1], t-SNE [19], 
Umap [20], MMD-Isomap [26], SSMM-Isomap [27] algo-
rithms and S-Isomap [23].

The 2D embedding results of $ and Hybrid datasets are 
visualized in Figs. 2 and  3, and those of Coil20, Mnist and 
USPS datasets are displayed in Figs. 4,  5 and  6. It was 
revealed that (1) Isomap cannot be applied to multi-mani-
folds, and the embeddings of sub-manifolds mix together; 
(2) t-SNE and Umap can construct better embedding for 
each sub-manifold for the high-dimension real-world mani-
folds, but it is not suitable for low-dimension intersect mani-
folds; (3) MMD-Isomap and SSMM-Isomap-2 can compute 
accurate embeddings for each sub-manifold. However, these 
embeddings overlap together; (4) S-Isomap can compute 
low-dimensional embeddings of multi-manifolds and visu-
alize them as well, but the embedding for each sub-manifold 
is not accurate; (5) the proposed UMDwithEd algorithm 
achieves similar results with SSMM-Isomap-1, although 
they have different objective functions, which reflects that 
the solution based on an eigen-decomposition technique 
maybe not proper for multi-manifolds datasets; (6) the pro-
posed UMDwithSMACOF algorithm not only indicates the 
most accurate embedding results, but also visualizes sub-
manifolds separately. For example, Fig. 4(i) shows a two 
dimensional representation of Coil20 dataset discovered by 
UMDwithSMACOF, and the embedding of each object is 

Fig. 4   The 2D embedding results obtained by each method on the Coil20 dataset
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visualized in a circle, which reflects the underlying rotational 
degree of freedom.

The time of running eight algorithms on five data sets is 
shown in Table 4. Based on the results it can be concluded 
that: (1)the running times of UMDwithSMACOF, SSMM-
Isomap2 and MMD-Isomap algorithms are longer, because 
these algorithms all depend on iterations to reach objective 
functions; (2)the UMDwithEd algorithm has a better time 
complexity than other algorithms, although UMDwithSMA-
COF can achieve a more accurate embedding. Also, the run-
ning time on three real-world datasets in UMDwithEd is less 
than others obviously, because these datasets have more sub-
manifolds and there is a smaller number of samples in each 
sub-manifold, which verifies the analysis of time complexity.

4.3 � Discussion on the parameters

In the UMD-Isomap, m and �0 determine the clustering accu-
racy of the ConstructPC and ReConstructPC algorithms and 
the number of classes constructed by ConstructPC. At the 
same time, the classes number also impacts the clustering 
accuracy of the ConstructPC. � is the trade-off parameter 
for the UMDwithSMACOF and UMDwithEd algorithms. � 

is the adjusting parameter only for UMDwithEd, and � is a 
parameter to enlarge the distances between sub-manifolds. 
In the subsection, the influence of m and �0 and the classes 
number on the clustering accuracy will be discussed firstly. 
Then the parameters of � , � , and � will be discussed respec-
tively. Finally, the iteration processes of MPPCA and SMA-
COF will be discussed, because they are the bottleneck of the 
time complexity in ConstructPC and UMDwithSMACOF.

4.3.1 � The Parameters of m and �
0

m is the number of MPPCA “patches”. The propagation 
process propagates the MPPCA “patches” to construct the 
sub-manifolds. So the classes number must be less than m. 
�0 is the threshold of the dissimilarity of tangent subspaces. 
The larger �0 is, the more the classes number is. The smaller 
�0 is, the less the classes number is.

m and �0 determine the clustering accuracy of the Con-
structPC and ReConstructPC algorithms and the number of 
classes constructed by ConstructPC. The number of classed 
and the clustering accuracy constructed by ConstructPC algo-
rithm on $ dataset is shown in Fig. 7. Now we know the real 
classes number of $ dataset is 2. So the number of classed in 

Fig. 5   The 2D embedding results obtained by each method on the Mnist dataset
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Fig. 7(a) should be 2. If the number of classes decomposed by 
ConstructPC algorithm is slightly larger than 2, the value of m 
and �0 can be accepted. So the value of m can be set between 
70 and 120, and the value of �0 can be set between 0.6 and 0.8.

4.3.2 � The Parameters of ̨  , ˇ , and 


Our objective function attempts to preserve the global geo-
metrical structures of the intra-class data points and separate 
the interclass data points. The parameter � plays key role 
in the algorithm, determining the dimensionality reduction 
and visualization results of multi-manifold. The smaller � is, 
the better the global geometrical structures of the intra-class 
points preserves. However, the interclass data points cannot 
be distinguished if the parameter is too small. So a smaller 
value for � less than 0.5 is better, and it is usually set to 0.01. 
The bigger the parameter � is, the larger the interclass dis-
tances become. And it is usually set to 3 or 4. The parameter 
� can adjust the accuracy of single-manifold in UMDwithEd. 
When the parameter � is small, the UMDwithEd algorithm 
only show the distance relationship between point-pairs. 
When the parameter � becomes large, the topological struc-
ture constructed by the weight matrix in LLE-style item is 
demonstrated. And the parameter is usually set to 0.1.

The three parameters are analyzed in Figs. 8,  9 and  10, 
respectively. It can be seen that (1) the UMDwithEd algo-
rithm is not sensitive to � and � , and it is only sensitive to 
� ; (2) the UMDwithSMACOF algorithm is more sensitive 
to � , and it can construct better embedding if the parameter 

Fig. 6   The 2D embedding results obtained by each method on the USPS dataset

Table 4   Comparison of the running time of different algorithms on 
five data sets

Optimal experimental results and our experimental results are given 
in bold

$ data Hybrid data Mnist Coil20 USPS

Isomap 27.114 125.631 64.832 24.252 27.357
t-SNE 56.579 161.133 100.713 50.223 53.222
Umap – – – – –
MMD-Isomap 198.028 356.886 86.309 31.678 56.331
SSMM-Iso-

map1
31.876 20.562 19.511 10.824 12.224

SSMM-Iso-
map2

233.288 438.101 49.873 31.717 53.622

s-Isomap 84.896 203.631 112.841 49.249 61.583
UMDwithEd 32.778 67.815 20.208 9.872 11.872
UMDwithS-

MACOF
297.548 640.308 516.216 269.023 266.363
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� is between 1e-8 and 0.1; (3) the interclass distances in 
UMDwithSMACOF algorithm can be adjusted by � ; (4) our 
algorithms are very robust to the parameters, they nearly can 
be seen parameter-free approaches.

4.3.3 � Convergence analysis

The bottleneck of the time complexity in ConstructPC and 
UMDwithSMACOF is in the iteration process of MPPCA 

Fig. 7   The influence of m and �0 on (a)the number of classes ; (b)the clustering accuracy

Fig. 8   The influence of � on the UMDwithEd and UMDwithSMACOF algorithms
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Fig. 9   The influence of � on the UMDwithEd algorithms

Fig. 10   The influence of � on the UMDwithEd and UMDwithSMACOF algorithms

Fig. 11   The time complexity vs. the iteration process. a The log likelihood and the iteration number in MPPCA; (b)the objective function and 
the iteration number in SMACOF
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and SMACOF. Fortunately, Fig. 11 shows that two algo-
rithms have a rapid convergence rate and use fewer iterations 
to achieve a good performance. It is noted that each set of 
the log likelihood and the objective function subtracts their 
minimum values for better comparison.

5 � Conclusions

In this paper, a novel algorithm is proposed, named UMD-
Isomap, for the purpose of nonlinear dimensionality reduc-
tion and clustering of data lying on the multi-manifold. Dif-
ferent from most existing manifold learning algorithms, the 
proposed algorithm are used for the dimensionality reduc-
tion of multi-manifold. Each sub-manifold can not only get 
its low-dimensional embedding, but also all low-dimensional 
embeddings of multi-manifold do not overlap.

Our proposed algorithm is an unsupervised algorithm, 
which runs ConstructPC (or ReConstructPC) to cluster 
the data lying on the multi-manifolds, and transforms the 
clustering results into the pairwise constraints. Compared 
with the existing manifold clustering and spectral cluster-
ing algorithms, our proposed algorithms achieved better 
performance in terms of clustering accuracy and normal-
ized mutual information. After that, Our proposed algorithm 
runs UMDwithSMACOF or UMDwithEd to construct the 
low-dimensional embeddings for multi-manifold. The UMD-
withSMACOF can represent more accurate embeddings for 
multi-manifolds, however, its time complexity is higher 
because of its iteration process. The UMDwithEd repre-
sents the embedding more effectively, and it separates sub-
manifolds distinctly, as it is not sensitive to the parameter.

Since the pairwise constraints can be transformed into 
label vectors, the ConstructPC and ReConstructPC algo-
rithms can be applied to any supervised learning algorithm 
to construct corresponding unsupervised learning algorithm. 
And the UMDwithSMACOF and UMDwithEd algrithms 
can visualize 2D or 3D embeddings of any clustering results.

In future, there are many directions we need to further 
study. At first, the time complexity of the proposed algo-
rithm is related to the dimension of the dataset, the opti-
mization of solution will be explored in our future work. 
Secondly, the convergence of the model is only proved by 
some experiments in this paper, and the theoretical proof 
will be our next task. Finally, we will also explore other 
applications of UMD-Isomap, such as image recognition, 
scene classification and speech recognition.
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