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Abstract

To estimate the compressive strength of high-strength concrete (HSC), a hybrid model integrating the firefly algorithm
(FFA) and fuzzy c-means (FCM) clustering method into the adaptive neuro fuzzy inference system (ANFIS) was developed
in this paper. The FFA and FCM techniques were utilized to improve the forecasting accuracy of the proposed ANFIS. To
establish the hybrid ANFIS-FFA model, five main constituents of HSC, cement, water, fine and coarse aggregates, and
superplasticizer, are considered the input variables, and the compressive strength of HSC is used as the output variable. A
comparison was conducted among four artificial intelligence models, including the proposed ANFIS-FFA model, the tra-
ditional ANFIS, the back propagation neural network (BPNN) and the extreme learning machine (ELM), in terms of four
statistical indices. In addition, a detailed parametric study was conducted to investigate the influence of each input variable
on the compressive strength of HSC. The results showed that the developed ANFIS-FFA model exhibits greater accuracy
than the other three models, with a higher correlation coefficient (R) and lower root mean squared error (RMSE), mean
absolute error (MAE), and mean absolute percentage error (MAPE) values, and it has great potential to accurately estimate
the compressive strength of HSC.

Keywords Firefly algorithm - Adaptive neuro fuzzy inference system - Compressive strength - Fuzzy c-means clustering
method - High-strength concrete

1 Introduction

Due to its outstanding properties, such as high density and
durability, low impermeability and low shrinkage, high-
strength concrete (HSC) has been extensively used for
concrete structures, buildings and bridges in recent years.
Typically, HSC refers to concrete with a 28-day cylinder
compressive strength greater than 40 MPa. Obviously, HSC
can resist larger loads than normal-strength concrete.
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To better use HSC, we need more mechanical, chemical
and physical knowledge of the constituents of HSC than that
of normal strength concrete. Many efforts have recently been
made to investigate the mechanism, properties and perfor-
mance of HSC [1]. For instance, Min et al. [2] experimen-
tally studied the compressive strength of early-age concrete
and concluded that the compressive strength of concrete
increases with increasing content of hardening accelera-
tors. Sharmila and Dhinakaran [3] studied the durability of
HSC by substituting readymade ultrafine slag for cement.
Samimi et al. [4] experimentally investigated the compres-
sive strength of high-strength self-compacting concrete.
Dvorkin et al. [5] experimentally proposed a mix design
approach for HSC materials and predicted their compres-
sive strength. Baduge et al. [6] studied the failure mechanism
and constitutive relations of HSC.

Compressive strength is one of the most important param-
eters of HSC and is of vital importance for construction and
building [7]; therefore, it is important for engineers to accu-
rately estimate the compressive strength of HSC. Based on
linear or nonlinear regression equations, many empirical
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formulas have recently been proposed by researchers; how-
ever, these empirical formulas are less accurate because
there are many factors that can affect the compressive
strength of HSC, and it is difficult to incorporate these fac-
tors into a formula. In this context, accurate estimation of
the compressive strength of HSC calls for new and innova-
tive machine learning techniques, such as artificial neural
networks (ANNs) [8].

In recent years, many researchers have investigated the
potential utilization of ANN techniques to estimate the
compressive strength of concrete. For instance, Al-Shamiri
et al. [9] predicted the compressive strength of HSC using
extreme learning machine (ELM) and back propagation (BP)
methods. They concluded that both the ELM and BP meth-
ods are reliable for predicting the compressive strength of
HSC. Saridemir [10] investigated the compressive strength
of concretes containing metakaolin (MK) and silica fume
(SF) using ANN models. The results showed that the multi-
player feed forward neural network model has great potential
to accurately predict the compressive strength of concretes
containing MK and SF. Chou and Pham [11] developed
an ensemble artificial intelligence approach to predict the
compressive strength of high-performance concrete (HPC).
They confirmed that the ensemble technique has superior
prediction accuracy to individual models. Alshihri et al.
[12] investigated the compressive strength of structural
lightweight concrete (LWC) using neural network models.
It is concluded that neural network models can be used to
predict the compressive strength of LWC mixtures. Chithra
et al. [13] conducted a comparative study on the compressive
strength prediction models for HPC containing nanosilica
and copper slag. They concluded that the ANN model is
more accurate than multiple regression analysis for compres-
sive strength prediction of HPC. Duan et al. [14] predicted
the compressive strength of recycled aggregate concrete
(RAC). The results confirmed that the ANN model has good
potential in predicting the compressive strength of RAC.
Dantas et al. [15] investigated the compressive strength
of concrete containing construction and demolition waste
(CDW) using ANN models. They concluded that the ANN
model has great potential for the prediction of the compres-
sive strength of concrete containing CDW.

Based on previous studies, it has been confirmed that the
prediction performance of ANN techniques is better than
that of existing empirical models; however, the ANN model
may face some issues, such as a slow convergence rate and
reaching a local minimum. Combining neural networks
(NNs) and fuzzy logic systems, the adaptive neuro fuzzy
inference system (ANFIS) has recently become an attrac-
tive modeling technique and has been extensively applied
in many fields [16]. However, similar to that of ANNs, the
training process of an ANFIS may also have some limita-
tions, including slow convergence and overfitting problems.
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The primary purpose of this study is to develop a hybrid
model by integrating the firefly algorithm (FFA) and fuzzy
c-means (FCM) clustering method into an ANFIS to esti-
mate the compressive strength of HSC. The FFA and FCM
techniques were utilized to improve the forecasting accuracy
of the proposed ANFIS. A large amount of experimental
data was used to build the hybrid ANFIS-FFA model. The
five main constituents of HSC and the compressive strength
of HSC were considered the input and output variables,
respectively. Furthermore, a comparison was conducted
among four artificial intelligence models, including the pro-
posed ANFIS-FFA model, the traditional ANFIS, the back
propagation neural network (BPNN) and the extreme learn-
ing machine (ELM), in terms of four statistical indices. In
addition, a detailed parametric analysis was carried out to
investigate the effect of each input variable on the compres-
sive strength of HSC.

2 Data collection

HSC data from 324 samples in Ref. [9] were used in this
study. According to Ref. [9], HSC mix designs were made
by utilizing Type 1 Portland cement, fine aggregate, coarse
aggregate, water, and a polycarboxylate superplasticizer
admixture. The maximum aggregate size of the coarse
aggregate is 20 mm. To compare with the experimental
and predicted results in Ref. [9], 244 out of the 324 data
points were randomly selected for model training, while the
remaining 80 data points were utilized for testing. Five main
constituents of HSC, cement (kg/m3), water (kg/m3), fine
and coarse aggregates (kg/m>), and superplasticizer (kg/m>),
are considered the input variables; meanwhile, the compres-
sive strength of HSC (MPa) is used as the output variable.
The statistical results of the collected data are summarized
in Table 1. The histogram frequencies of these five input
parameters are shown in Fig. 1. Figure 1 illustrates that spe-
cific ranges of values exist for these five parameters, and pre-
dictions of the compressive strength of HSC are meaningful
only in this context.

3 Methodology
3.1 ANFIS

The ANFIS combines the learning capabilities of both the
neural networks and fuzzy logic system. The structure of
the ANFIS (see Fig. 2) is mainly composed of premise parts
and consequence parts [17, 18], and it can be described as
follows [19-22]:

Layer 1: Each node generates membership grades to a
fuzzy set by utilizing the membership functions (MFs):
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Table 1 Statistical results of data collected (data from Ref. [9])

Parameter Water (kg/m?) Cement (kg/m®) Fine aggregate Coarse aggregate  Superplasticizer ~ Exp. compressive
(kg/m®) (kg/m®) (kg/m?) strength (MPa)

Maximum 180 600 951 989 2 73.60

Minimum 160 281 552 845 0 375

Mean 170 417.81 767.71 898.51 0.95 51.33

Median 170 411 770 898 1 48.9

Variation coef- 4.81 18.44 11.30 4.88 100 18.19

ficient (%)

O’i = MA]’_‘(xj) j=12,-m; k=12,---,n;, i=nXxXm

(1)
where x; is the input to node j and AJ’.< is the linguistic label
characterized by MF u A In this study, the Gaussian function

is employed as the MF:
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where o; and ¢; are the premise parameters of the MFs.
Layer 2: Each node in this rule layer is labeled [ |. Output
Oé of the second layer can be described as follows:

0y =w =H/4A;(x;) J=12mi=12,.n (3)

where w; denotes the firing strength of a rule.
Layer 3: The normalized firing strength in this layer can
be calculated as follows:

O =w = —*-"_
3 4 Z?:l W, (4)

where w; denotes the firing strength of normalization.
Layer 4: The node function of this layer can be calculated
as follows:

Of‘ =wf; = v_v,-(pf) +p’.1x1 +péx2 + - +pfnxm) i=1,2-.,n
)
where {pf), p’i, ., pin} are often referred to as consequent

parameters.
Layer 5: The overall output of this layer can be calculated
as follows:

L T w
Ol = W ‘f — &=l Y (6)
5 i n
; it Wi
Due to its good capability of learning and excellent perfor-
mance, the ANFIS is adopted in the present study. The pre-
dictive abilities of the ANFIS rely on the optimally selected
Gaussian MF parameters in Eq. (2) (e.g., 0, and ¢;). Therefore,

the FFA and FCM techniques were utilized to optimize the
premise and conclusion parameters of the ANFIS in this study.

3.2 FCM

FCM is currently one of the most important data clustering
methods, and the objective function in the FCM algorithm can
be written as follows [23]:

C n
2
_ m
1= 2 ”xj - Vi” M
i=1 j=1
where c represents the total number of clusters; @, e [0,1]

is the degree of membership; ”xj -V ” denotes the Euclidean

metric from the jth data point x; to the ith cluster center v;;
and m € (1, 00) is a constant.

In the FCM approach, the cluster center v; and the degree
of membership w,;; can be calculated by the following

equations:

_ Z;;l WX

vi= i — =120 ®)
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e

3.3 FFA

The FFA is a new firefly-inspired algorithm and was first pro-
posed by Yang in 2010 [24]. In the FFA, the light intensity
I(r) and the attractiveness of a firefly f§ are the two important
parameters, and they can be defined as follows [24]:

I(r)=1I,e™"" (10)

B =P (11)

@ Springer



International Journal of Machine Learning and Cybernetics (2021) 12:3585-3595

180

3588

(12

T s Hm
7 i g 2
i .
2 Q0 E

E

2.5

1

2.0
k:

1.5

‘ 7 7 %77 L
N /i As
=) = = = o o ox
ey ¥ & =
K]

o
Aduanbair g

n
rij = ||xl +.xj|| = z (xi,k _x]’k)

1.0
Superplasticizer (kg/m?)

0.5

I g
s

175

0. r is the

Kouanbaig

A\

_

o

\

170
Water (kg/m3)
Fine aggregate (kg/m°)

\

165

7

(=4
(=]
—

160

o <

70
60
50
20
10+
0

s o o
© O <

Kouanbaig o

a 120
201
0

0.0
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Fig. 1 Histograms of the input parameters
determined by

As
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Fig.2 Structure of the ANFIS

The position update of firefly i attracted by another
brighter firefly j can be determined by

xl. = xi + ﬂoe_yrfzf (XJ — xi) + a’gi (13)

wherg ag; represents the randomized term and
Poe”""i (x; — x;) is the attraction term. A flowchart of the
FFA is shown in Fig. 3.

3.4 Hybrid model based on ANFIS-FFA

This section introduces the developed ANFIS-FFA model in
detail. In the proposed ANFIS-FFA model, the ANFIS param-
eters will be optimally obtained by the FFA. Similar to the
traditional ANFIS model, the proposed ANFIS-FFA model
has five layers. The nodes of the first layer represent the five
input variables (e.g., water, cement, fine aggregate, coarse
aggregate, and superplasticizer). The nodes of the second and
third layers represent the MFs of input variables and fuzzy
logic rules, respectively. The fourth layer is the defuzzification
layer, and the nodes in this layer use the consequent part of the
Sugeno fuzzy model. The fifth layer’s output is the compres-
sive strength of HSC. The FFA is mainly used to determine
the best weights between layers 4 and 5, as well as to train the
MFs according to the input variables. The proposed ANFIS-
FFA model begins by dividing the whole dataset into two
parts: training datasets and testing datasets. In the next step,
the FCM clustering approach is used to generate clusters, and
the ANFIS model is subsequently constructed based on the
FCM results. Then, the premise and conclusion parameters of
the ANFIS are initialized randomly, and consequently, these
parameters are updated in each iteration by utilizing the FFA.
This step will be repeated until the stop criteria (e.g., the maxi-
mum number of iterations) are satisfied. The optimal solution

Initialize fireflies X; (=1,2,***,n)

:

Evaluate the fitness function

:

Rank the fireflies and find the current best

A4

Fori=1ton

forj=1toi
If fitness (X)) > fitness (X))

Update the X; position according to Eq. (13)

:

Calculate fitness, update best <

Iteration < MaxGeneration

Fig.3 Flowchart of the FFA

is then transferred to the ANFIS model. Figure 4 illustrates the
flowchart of the developed ANFIS-FFA model.

3.5 Performance evaluation criteria

To evaluate the performances of the proposed ANFIS-FFA
method, the traditional ANFIS, the back propagation neural
network (BPNN) and the extreme learning machine (ELM),
four statistical benchmark indices, including the root mean
squared error (RMSE), the correlation coefficient (R), the
mean absolute error (MAE), and the mean absolute percentage
error (MAPE), were adopted in this study and were expressed
as follows [25, 26]:

Eﬁ'zl ()’i _5’i>2 (14)

n

RMSE =
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| Table 2 Different parameter types and their values used to train the

Firefly Algorithm(FFA)

i
{ : ANFIS
I I
: : ANFIS parameter type ANFIS-FFA
I I
I I Number of nodes 440
I
{ | Number of linear parameters 216
{ : Number of nonlinear parameters 360
: : Total number of parameters 576
: i el B et O : Number of training data pairs 244
: Wa Z : Number of checking data pairs 80
: Cement : N : Number of fuzzy rules 36
: Finc aggregate : ) . e (’mup.mnuumgm:
I : 2 |
| Coarse aggregate : |
I / I _
Superplasticizer n —_ ~ A
[ : X (i —yi)<yl~ —yi>
e R ' R= - — (15)
n - n A A
\/Z,-=1 (Yi - }’i) 2l ()’i - yi)
Initialize data n -3
| iz dats | L5
* MAE = M (16)
n

Split data into the training
set and testing set

n Yi—di
MAPE = 2o 'y_) 17
Stenl

where y; and J; are the actual and predicted compressive

Y Apply the FCM clustering R _ —~
@@ approach strengths of HSC, respectl\/.ely. y; and ), e%re the average
results of the actual and predicted compressive strengths of
Update the ANFIS parameters HSC, respectively. n is the whole number of data samples.
by using FFA algorithm
Fivaliste tthNF,S_FF i 4 Results and discussion

model

4.1 Evaluation of the proposed models

Is a stop criterion met?

Note that the selection of FFA parameters has an important
influence on the convergence rate and forecasting accuracy.
For this purpose, the optimal parameters of the FFA were
Obtain output data determined by the trial and error approach, and they are
given as follows: y = 1.0, f; = 2.0, and « = 0.2. Table 2 lists
different parameter types and their values used to train the
ANFIS.

Figure 5 plots the MFs of the five main constituents of
HSC. Figure 6 compares the results of the actual and pre-
dicted compressive strengths of HSC for the training data
samples and testing data samples. Figure 7 plots the fitting
relationship between the actual and predicted compressive
strengths of HSC for all the data samples. Figure 7 shows
that the correlation coefficient R =0.9999. Obviously, the
predicted compressive strength agrees well with the actual
compressive strength of HSC.

Figure 8 plots the three-dimensional graphs of the pre-
dicted compressive strength vs. the five main constituents

Fig.4 Flowchart of the ANFIS-FFA
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Fig.5 MFs of the five main constituents of HSC: a water; b cement;
c fine aggregate; d coarse aggregate; and e superplasticizer

of HSC. We can choose the region from Fig. 8 if we want
to obtain the desired compressive strength values of HSC.

4.2 Comparison of the applied models

Figure 9 and Table 3 show the forecasting performances of
the proposed ANFIS-FFA method, the traditional ANFIS

model, the back propagation neural network (BPNN)
model [9] and the extreme learning machine (ELM) model
[9] in terms of four statistical indices. According to Fig. 9
and Table 3, for the training data samples, the R, MAE,
RMSE and MAPE values of the developed ANFIS-FFA
method are 1, 0 MPa, 0 MPa and O, respectively, while
the R, MAE, RMSE and MAPE values are 1, 0 MPa,
0 MPa and O for the traditional ANFIS method, 0.9952,
0.7292 MPa, 0.9197 MPa and 1.467% for the BP model,
and 0.9976, 0.5014 MPa, 0.6538 MPa and 1.0198% for
the ELM model, respectively; for the testing data samples,
the R, MAE, RMSE and MAPE values of the developed
ANFIS-FFA method are 0.9965, 0.086 MPa, 0.1673 MPa
and 0.2%, respectively, while the R, MAE, RMSE and
MAPE values are 0.8788, 0.7315 MPa, 1.0148 MPa
and 1.78% for the traditional ANFIS method, 0.9938.
0.7888 MPa, 1.0507 MPa and 1.543% for the BP model,
and 0.9937, 0.9205 MPa, 1.1344 MPa and 1.8178% for
the ELM model, respectively. For all the data samples,
the R, MAE, RMSE and MAPE values of the developed
ANFIS-FFA method are 0.9999, 0.0212 MPa, 0.0831 MPa
and 0.05%, respectively, while the R, MAE, RMSE and
MAPE values are 0.9987, 0.1806 MPa, 0.5042 MPa
and 0.44% for the traditional ANFIS method, 0.9949,
0.7372 MPa, 0.9498 MPa and 1.4704% for the BP model
and 0.9965, 0.6049 MPa, 0.7998 MPa and 1.2169% for
the ELM model, respectively. The results show that both
the ANFIS and ANFIS-FFA models are able to predict
the compressive strength of HSC quite accurately; how-
ever, the ANFIS-FFA model exhibits greater accuracy than
the nonoptimized ANFIS model, with higher values of R
and lower values of MAE, RMSE and MAPE. The reason
behind this may lie in the robustness of the FFA, which
is linked to the ANFIS model and contributed to the opti-
mization of the membership function parameters. Similar
results have also been reported in previous studies. For
example, Yaseen et al. [27, 28] conducted streamflow fore-
casting using a hybrid ANFIS-FFA model and concluded
that the ANFIS-FFA model was not only superior to the
ANFIS model but also behaved like a parsimonious model
for streamflow prediction; thus, the rationality of the simu-
lation results obtained by this paper is proven.

In addition, Table 3 also shows that the performance of
the traditional ANFIS model surpasses that of the BP and
ELM models for all data samples, with higher values of R
and lower values of MAE, RMSE and MAPE. Overall, the
results showed that the forecasting performance rank was
ANFIS-FFA > ANFIS > ELM > BP model. We ascertain
that the proposed ANFIS-FFA method is a prudent mod-
eling approach that could be adopted for the prediction of
the compressive strength of HSC.
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Fig. 6 Comparison between the
actual and predicted compres-
sive strengths of HSC. a Train-
ing data samples and b testing
data samples
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Fig.7 Relationship between the actual and predicted compressive
strengths of HSC for all the data samples

4.3 Parametric analysis

To investigate the influence of each input variable (e.g.,
cement, water, fine aggregate, coarse aggregate and super-
plasticizer) on the compressive strength of HSC, a paramet-
ric study was conducted based on the proposed ANFIS-FFA
model. In each experiment, one of the five input parameters
was excluded, and only four of them were employed in the

@ Springer

270 280

Data Number
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proposed ANFIS-FFA model. The parametric experimental
results are listed in Table 4.

As seen in Table 4, the ANFIS-FFA model with five input
variables has the highest R (0.9987) and the lowest RMSE
(0.5042 MPa), MAE (0.012 MPa) and MAPE (0.05%). For
the other five ANFIS-FFA models, the ANFIS-FFA model
without water has the lowest R (0.8354) and highest RMSE
(3.8875 MPa), MAE (4.225 MPa) and MAPE (8.448%). In
contrast, the ANFIS-FFA model without superplasticizer
has the highest R (0.9822) and lowest RMSE (1.9103 MPa),
MAE (1.583 MPa) and MAPE (3.379%). The results show
that the effect of the five input parameters on the compres-
sive strength of HSC can be ranked in the order water > fine
aggregate > cement > coarse aggregate > superplasticizer.

4.4 Advantages, limitations and future
improvement

This study, which utilized the proposed ANFIS-FFA model
instead of the traditional ANFIS model, was highly success-
ful in improving the prediction accuracy of the compressive
strength of HSC. Although this has verified the better utility
of an ANFIS-FFA model over a traditional ANFIS model,
the case study reported only the data from Ref. [9], and pre-
dictions are meaningful only in this context. For its practical
application, the veracity of the proposed ANFIS-FFA model
should be evaluated by using more experimental data.



International Journal of Machine Learning and Cybernetics (2021) 12:3585-3595 3593

Q

=]
=4

288

B85 88

Predicted compressive strength(MPa)

o &
Z

1000

(2]

@
b4

@ N o
& 3 o

i <. |||

W s

, l“, /””||lf{l:-;"""r~l W ’J
i ,M "’w ml" ”‘m i i il 'M "'W
i Wh m O

h iy
i “( ‘f"
i [l

o
Ll

m

f A\ NH

@
3

i lI[

»}, mm I) g

IS
&

a
=

Predicted compressive strength(MPa)
P
3

n g

(=2

Predicted compressive strength(MPa)

Q

Predicted compressive strength(MPa)

Fig.8 Three-dimensional graphs of the predicted compressive strength vs. the five main constituents of HSC

mm R-Training -+ RMSE-Training
mm R-Testing -+ RMSE-Testing
1.02 7 r 12

Correlation coefficient R
RMSE

ANFIS

ANFIS-FFA  BP ELM
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In this study, the fuzzy concept with MFs [0, 1] was uti-
lized in the ANFIS model; however, in a follow-up study,
the proposed ANFIS-FFA model could be improved by

utilizing an interval-valued fuzzy robust programming
approach [29]. The interval parameters in an interval-val-
ued fuzzy system could be directly optimized by the FFA
[27]. In addition, Bayesian model averaging or ensemble
Kalman filter techniques could also be used to improve the
proposed ANFIS-FFA model [30, 31].

To define how each point in the input space is mapped
to a membership value (e.g., degree of membership)
between 0 and 1, Gaussian membership was used to build
the ANFIS model in this study. Although our results
showed good performance, further studies should inves-
tigate several other MFs, such as triangular, trapezoidal,
sigmoidal, z-shaped and generalized bell-shaped MFs,
with different partitioning of training and testing datasets.
Note that each MF in an ANFIS model has its own merits
and drawbacks, and the optimality of any prescribed MF
is expected to rely on the particular modeling problem at
hand; thus, independent research that compares the vari-
ous MFs is needed. Although this is a useful task, it was
beyond the scope of the present study and thus could be
an interesting subject in future work.
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Table 3 Performance comparisons of the traditional ANFIS, proposed ANFIS-FFA, BP and ELM models

Model R MAE (MPa) RMSE (MPa) MAPE (%)

Training Testing All Training Testing All Training Testing All Training Testing All
ANFIS 1 0.8788 0.9987 0 0.7315 0.1806 0 1.0148 05042 0 1.78 0.44
ANFIS-FFA 1 0.9965 0.9999 0 0.086 0.0212 0 0.1673 0.0831 O 0.2 0.05
BP [9] 0.9952 0.9938 0.9949 0.7292 0.7888 0.7372 0.9197 1.0507 0.9498 1.4670 1.5430 1.4704
ELM [9] 0.9976 0.9937  0.9965 0.5014 0.9205 0.6049 0.6538 1.1344  0.7998 1.0198 1.8178  1.2169
Table 4 Parametric analysis of the parameters governing the compressive strength of HSC in the proposed ANFIS-FFA model
Model All data

R RMSE (MPa) MAE (MPa) MAPE (%)
The best ANFIS-FFA model (with water, cement, fine aggregate, 0.9987 0.5042 0.012 0.05
coarse aggregate and superplasticizer as the input variables)

ANFIS-FFA without water 0.8354 3.8875 4.2250 8.448
ANFIS-FFA without cement 0.9353 3.1311 2.7525 5.443
ANFIS-FFA without fine aggregate 0.9224 3.2058 2.9627 5.884
ANFIS-FFA without coarse aggregate 0.9439 2.7823 2.4473 4.845
ANFIS-FFA without superplasticizer 0.9822 1.9103 1.5830 3.379

5 Conclusions

In this study, a hybrid ANFIS-FFA model was proposed
to predict the compressive strength of HSC. To construct
the proposed ANFIS-FFA model, five main constituents of
HSC were considered as the input variables. These param-
eters are (1) cement, (2) water, (3) fine aggregate, (4)
coarse aggregate, and (5) superplasticizer. The proposed
ANFIS-FFA model was assessed using three prediction
models: (1) the traditional ANFIS model, (2) the BPNN
model, and (3) the ELM model. In addition, detailed para-
metric analysis was carried out to investigate the effect of
each input variable on the compressive strength of HSC.
The following conclusions can be drawn from this study:

1. The proposed ANFIS-FFA model provides accurate pre-
diction of the compressive strength of HSC, producing
results that are more accurately fitted to the measured
results than the traditional ANFIS model and two avail-
able models in the literature. The proposed ANFIS-FFA
model has the lowest RMSE, MAE, and MAPE and the
highest R values compared with the other three models.

2. The R of the proposed ANFIS-FFA model is 1 for the
training datasets and 0.9965 for the testing datasets. The
results showed that the forecasting performance rank
was ANFIS-FFA > ANFIS > ELM > BP model.

3. The parametric analysis results show that the effect

of five input parameters on the compressive strength
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of HSC can be ranked in the order water > fine aggre-
gate > cement > coarse aggregate > superplasticizer.
Although the proposed ANFIS-FFA model relative to
the traditional ANFIS model was highly successful in
improving the prediction accuracy of the compressive
strength of HSC, further research should be performed
in future work.
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