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Abstract
To estimate the compressive strength of high-strength concrete (HSC), a hybrid model integrating the firefly algorithm 
(FFA) and fuzzy c-means (FCM) clustering method into the adaptive neuro fuzzy inference system (ANFIS) was developed 
in this paper. The FFA and FCM techniques were utilized to improve the forecasting accuracy of the proposed ANFIS. To 
establish the hybrid ANFIS-FFA model, five main constituents of HSC, cement, water, fine and coarse aggregates, and 
superplasticizer, are considered the input variables, and the compressive strength of HSC is used as the output variable. A 
comparison was conducted among four artificial intelligence models, including the proposed ANFIS-FFA model, the tra-
ditional ANFIS, the back propagation neural network (BPNN) and the extreme learning machine (ELM), in terms of four 
statistical indices. In addition, a detailed parametric study was conducted to investigate the influence of each input variable 
on the compressive strength of HSC. The results showed that the developed ANFIS-FFA model exhibits greater accuracy 
than the other three models, with a higher correlation coefficient (R) and lower root mean squared error (RMSE), mean 
absolute error (MAE), and mean absolute percentage error (MAPE) values, and it has great potential to accurately estimate 
the compressive strength of HSC.

Keywords Firefly algorithm · Adaptive neuro fuzzy inference system · Compressive strength · Fuzzy c-means clustering 
method · High-strength concrete

1 Introduction

Due to its outstanding properties, such as high density and 
durability, low impermeability and low shrinkage, high-
strength concrete (HSC) has been extensively used for 
concrete structures, buildings and bridges in recent years. 
Typically, HSC refers to concrete with a 28-day cylinder 
compressive strength greater than 40 MPa. Obviously, HSC 
can resist larger loads than normal-strength concrete.

To better use HSC, we need more mechanical, chemical 
and physical knowledge of the constituents of HSC than that 
of normal strength concrete. Many efforts have recently been 
made to investigate the mechanism, properties and perfor-
mance of HSC [1]. For instance, Min et al. [2] experimen-
tally studied the compressive strength of early-age concrete 
and concluded that the compressive strength of concrete 
increases with increasing content of hardening accelera-
tors. Sharmila and Dhinakaran [3] studied the durability of 
HSC by substituting readymade ultrafine slag for cement. 
Samimi et al. [4] experimentally investigated the compres-
sive strength of high-strength self-compacting concrete. 
Dvorkin et al. [5] experimentally proposed a mix design 
approach for HSC materials and predicted their compres-
sive strength. Baduge et al. [6] studied the failure mechanism 
and constitutive relations of HSC.

Compressive strength is one of the most important param-
eters of HSC and is of vital importance for construction and 
building [7]; therefore, it is important for engineers to accu-
rately estimate the compressive strength of HSC. Based on 
linear or nonlinear regression equations, many empirical 
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formulas have recently been proposed by researchers; how-
ever, these empirical formulas are less accurate because 
there are many factors that can affect the compressive 
strength of HSC, and it is difficult to incorporate these fac-
tors into a formula. In this context, accurate estimation of 
the compressive strength of HSC calls for new and innova-
tive machine learning techniques, such as artificial neural 
networks (ANNs) [8].

In recent years, many researchers have investigated the 
potential utilization of ANN techniques to estimate the 
compressive strength of concrete. For instance, Al-Shamiri 
et al. [9] predicted the compressive strength of HSC using 
extreme learning machine (ELM) and back propagation (BP) 
methods. They concluded that both the ELM and BP meth-
ods are reliable for predicting the compressive strength of 
HSC. Sarıdemir [10] investigated the compressive strength 
of concretes containing metakaolin (MK) and silica fume 
(SF) using ANN models. The results showed that the multi-
player feed forward neural network model has great potential 
to accurately predict the compressive strength of concretes 
containing MK and SF. Chou and Pham [11] developed 
an ensemble artificial intelligence approach to predict the 
compressive strength of high-performance concrete (HPC). 
They confirmed that the ensemble technique has superior 
prediction accuracy to individual models. Alshihri et al. 
[12] investigated the compressive strength of structural 
lightweight concrete (LWC) using neural network models. 
It is concluded that neural network models can be used to 
predict the compressive strength of LWC mixtures. Chithra 
et al. [13] conducted a comparative study on the compressive 
strength prediction models for HPC containing nanosilica 
and copper slag. They concluded that the ANN model is 
more accurate than multiple regression analysis for compres-
sive strength prediction of HPC. Duan et al. [14] predicted 
the compressive strength of recycled aggregate concrete 
(RAC). The results confirmed that the ANN model has good 
potential in predicting the compressive strength of RAC. 
Dantas et al. [15] investigated the compressive strength 
of concrete containing construction and demolition waste 
(CDW) using ANN models. They concluded that the ANN 
model has great potential for the prediction of the compres-
sive strength of concrete containing CDW.

Based on previous studies, it has been confirmed that the 
prediction performance of ANN techniques is better than 
that of existing empirical models; however, the ANN model 
may face some issues, such as a slow convergence rate and 
reaching a local minimum. Combining neural networks 
(NNs) and fuzzy logic systems, the adaptive neuro fuzzy 
inference system (ANFIS) has recently become an attrac-
tive modeling technique and has been extensively applied 
in many fields [16]. However, similar to that of ANNs, the 
training process of an ANFIS may also have some limita-
tions, including slow convergence and overfitting problems.

The primary purpose of this study is to develop a hybrid 
model by integrating the firefly algorithm (FFA) and fuzzy 
c-means (FCM) clustering method into an ANFIS to esti-
mate the compressive strength of HSC. The FFA and FCM 
techniques were utilized to improve the forecasting accuracy 
of the proposed ANFIS. A large amount of experimental 
data was used to build the hybrid ANFIS-FFA model. The 
five main constituents of HSC and the compressive strength 
of HSC were considered the input and output variables, 
respectively. Furthermore, a comparison was conducted 
among four artificial intelligence models, including the pro-
posed ANFIS-FFA model, the traditional ANFIS, the back 
propagation neural network (BPNN) and the extreme learn-
ing machine (ELM), in terms of four statistical indices. In 
addition, a detailed parametric analysis was carried out to 
investigate the effect of each input variable on the compres-
sive strength of HSC.

2  Data collection

HSC data from 324 samples in Ref. [9] were used in this 
study. According to Ref. [9], HSC mix designs were made 
by utilizing Type 1 Portland cement, fine aggregate, coarse 
aggregate, water, and a polycarboxylate superplasticizer 
admixture. The maximum aggregate size of the coarse 
aggregate is 20 mm. To compare with the experimental 
and predicted results in Ref. [9], 244 out of the 324 data 
points were randomly selected for model training, while the 
remaining 80 data points were utilized for testing. Five main 
constituents of HSC, cement (kg/m3), water (kg/m3), fine 
and coarse aggregates (kg/m3), and superplasticizer (kg/m3), 
are considered the input variables; meanwhile, the compres-
sive strength of HSC (MPa) is used as the output variable. 
The statistical results of the collected data are summarized 
in Table 1. The histogram frequencies of these five input 
parameters are shown in Fig. 1. Figure 1 illustrates that spe-
cific ranges of values exist for these five parameters, and pre-
dictions of the compressive strength of HSC are meaningful 
only in this context.

3  Methodology

3.1  ANFIS

The ANFIS combines the learning capabilities of both the 
neural networks and fuzzy logic system. The structure of 
the ANFIS (see Fig. 2) is mainly composed of premise parts 
and consequence parts [17, 18], and it can be described as 
follows [19–22]:

Layer 1: Each node generates membership grades to a 
fuzzy set by utilizing the membership functions (MFs):
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where xj is the input to node j and Ak
j
 is the linguistic label 

characterized by MF �Ak
j
 . In this study, the Gaussian function 

is employed as the MF:

where �j and cj are the premise parameters of the MFs.
Layer 2: Each node in this rule layer is labeled 

∏
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where wi denotes the firing strength of a rule.
Layer 3: The normalized firing strength in this layer can 

be calculated as follows:

where wi denotes the firing strength of normalization.
Layer 4: The node function of this layer can be calculated 

as follows:
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as follows:

Due to its good capability of learning and excellent perfor-
mance, the ANFIS is adopted in the present study. The pre-
dictive abilities of the ANFIS rely on the optimally selected 
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the FFA and FCM techniques were utilized to optimize the 
premise and conclusion parameters of the ANFIS in this study.

3.2  FCM

FCM is currently one of the most important data clustering 
methods, and the objective function in the FCM algorithm can 
be written as follows [23]:

where c represents the total number of clusters; �
ij
∈ [0, 1] 

is the degree of membership; ‖‖‖xj − vi
‖‖‖ denotes the Euclidean 

metric from the jth data point xj to the ith cluster center vi ; 
and m ∈ (1,∞) is a constant.

In the FCM approach, the cluster center vi and the degree 
of membership �

ij
 can be calculated by the following 

equations:

3.3  FFA

The FFA is a new firefly-inspired algorithm and was first pro-
posed by Yang in 2010 [24]. In the FFA, the light intensity 
I(r) and the attractiveness of a firefly � are the two important 
parameters, and they can be defined as follows [24]:
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Table 1  Statistical results of data collected (data from Ref. [9])

Parameter Water (kg/m3) Cement (kg/m3) Fine aggregate 
(kg/m3)

Coarse aggregate 
(kg/m3)

Superplasticizer 
(kg/m3)

Exp. compressive 
strength (MPa)

Maximum 180 600 951 989 2 73.60
Minimum 160 281 552 845 0 37.5
Mean 170 417.81 767.71 898.51 0.95 51.33
Median 170 411 770 898 1 48.9
Variation coef-

ficient (%)
4.81 18.44 11.30 4.88 100 18.19
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where I0 is the original light intensity; � is the light absorp-
tion coefficient; and �0 is the attractiveness at r = 0 . r is the 
distance between the ith firefly and the jth firefly and can be 
determined by

(12)rij =
‖‖‖xi + xj

‖‖‖ =

√√√√
n∑

k=1

(
xi,k − xj,k

)

Fig. 1  Histograms of the input parameters
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The position update of firefly i attracted by another 
brighter firefly j can be determined by

where ��i represents the randomized term and 
�0e

−�r2
ij

(
xj − xi

)
 is the attraction term. A flowchart of the 

FFA is shown in Fig. 3.

3.4  Hybrid model based on ANFIS‑FFA

This section introduces the developed ANFIS-FFA model in 
detail. In the proposed ANFIS-FFA model, the ANFIS param-
eters will be optimally obtained by the FFA. Similar to the 
traditional ANFIS model, the proposed ANFIS-FFA model 
has five layers. The nodes of the first layer represent the five 
input variables (e.g., water, cement, fine aggregate, coarse 
aggregate, and superplasticizer). The nodes of the second and 
third layers represent the MFs of input variables and fuzzy 
logic rules, respectively. The fourth layer is the defuzzification 
layer, and the nodes in this layer use the consequent part of the 
Sugeno fuzzy model. The fifth layer’s output is the compres-
sive strength of HSC. The FFA is mainly used to determine 
the best weights between layers 4 and 5, as well as to train the 
MFs according to the input variables. The proposed ANFIS-
FFA model begins by dividing the whole dataset into two 
parts: training datasets and testing datasets. In the next step, 
the FCM clustering approach is used to generate clusters, and 
the ANFIS model is subsequently constructed based on the 
FCM results. Then, the premise and conclusion parameters of 
the ANFIS are initialized randomly, and consequently, these 
parameters are updated in each iteration by utilizing the FFA. 
This step will be repeated until the stop criteria (e.g., the maxi-
mum number of iterations) are satisfied. The optimal solution 

(13)xi = xi + �0e
−�r2

ij

(
xj − xi

)
+ ��i

is then transferred to the ANFIS model. Figure 4 illustrates the 
flowchart of the developed ANFIS-FFA model.

3.5  Performance evaluation criteria

To evaluate the performances of the proposed ANFIS-FFA 
method, the traditional ANFIS, the back propagation neural 
network (BPNN) and the extreme learning machine (ELM), 
four statistical benchmark indices, including the root mean 
squared error (RMSE), the correlation coefficient (R), the 
mean absolute error (MAE), and the mean absolute percentage 
error (MAPE), were adopted in this study and were expressed 
as follows [25, 26]:

(14)RMSE =

�∑n

i=1

�
yi − ŷi

�2

n

Fig. 2  Structure of the ANFIS

Fig. 3  Flowchart of the FFA
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where yi and ŷi are the actual and predicted compressive 
strengths of HSC, respectively. yi and ŷi are the average 
results of the actual and predicted compressive strengths of 
HSC, respectively. n is the whole number of data samples.

4  Results and discussion

4.1  Evaluation of the proposed models

Note that the selection of FFA parameters has an important 
influence on the convergence rate and forecasting accuracy. 
For this purpose, the optimal parameters of the FFA were 
determined by the trial and error approach, and they are 
given as follows: � = 1.0 , �0 = 2.0 , and � = 0.2 . Table 2 lists 
different parameter types and their values used to train the 
ANFIS.

Figure 5 plots the MFs of the five main constituents of 
HSC. Figure 6 compares the results of the actual and pre-
dicted compressive strengths of HSC for the training data 
samples and testing data samples. Figure 7 plots the fitting 
relationship between the actual and predicted compressive 
strengths of HSC for all the data samples. Figure 7 shows 
that the correlation coefficient R = 0.9999. Obviously, the 
predicted compressive strength agrees well with the actual 
compressive strength of HSC.

Figure 8 plots the three-dimensional graphs of the pre-
dicted compressive strength vs. the five main constituents 

(15)R =

∑n

i=1

�
yi − yi

��
ŷi − ŷi

�

�
∑n

i=1

�
yi − yi

�2 ∑n

i=1

�
ŷi − ŷi

�2

(16)MAE =

∑n

i=1
��yi − ŷi

��
n

(17)MAPE =

∑n

i=1

���
yi−ŷi

yi

���
n

Fig. 4  Flowchart of the ANFIS-FFA

Table 2  Different parameter types and their values used to train the 
ANFIS

ANFIS parameter type ANFIS-FFA

Number of nodes 440
Number of linear parameters 216
Number of nonlinear parameters 360
Total number of parameters 576
Number of training data pairs 244
Number of checking data pairs 80
Number of fuzzy rules 36
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of HSC. We can choose the region from Fig. 8 if we want 
to obtain the desired compressive strength values of HSC.

4.2  Comparison of the applied models

Figure 9 and Table 3 show the forecasting performances of 
the proposed ANFIS-FFA method, the traditional ANFIS 

model, the back propagation neural network (BPNN) 
model [9] and the extreme learning machine (ELM) model 
[9] in terms of four statistical indices. According to Fig. 9 
and Table 3, for the training data samples, the R, MAE, 
RMSE and MAPE values of the developed ANFIS-FFA 
method are 1, 0 MPa, 0 MPa and 0, respectively, while 
the R, MAE, RMSE and MAPE values are 1, 0  MPa, 
0 MPa and 0 for the traditional ANFIS method, 0.9952, 
0.7292 MPa, 0.9197 MPa and 1.467% for the BP model, 
and 0.9976, 0.5014 MPa, 0.6538 MPa and 1.0198% for 
the ELM model, respectively; for the testing data samples, 
the R, MAE, RMSE and MAPE values of the developed 
ANFIS-FFA method are 0.9965, 0.086 MPa, 0.1673 MPa 
and 0.2%, respectively, while the R, MAE, RMSE and 
MAPE values are 0.8788, 0.7315  MPa, 1.0148  MPa 
and 1.78% for the traditional ANFIS method, 0.9938. 
0.7888 MPa, 1.0507 MPa and 1.543% for the BP model, 
and 0.9937, 0.9205 MPa, 1.1344 MPa and 1.8178% for 
the ELM model, respectively. For all the data samples, 
the R, MAE, RMSE and MAPE values of the developed 
ANFIS-FFA method are 0.9999, 0.0212 MPa, 0.0831 MPa 
and 0.05%, respectively, while the R, MAE, RMSE and 
MAPE values are 0.9987, 0.1806  MPa, 0.5042  MPa 
and 0.44% for the traditional ANFIS method, 0.9949, 
0.7372 MPa, 0.9498 MPa and 1.4704% for the BP model 
and 0.9965, 0.6049 MPa, 0.7998 MPa and 1.2169% for 
the ELM model, respectively. The results show that both 
the ANFIS and ANFIS-FFA models are able to predict 
the compressive strength of HSC quite accurately; how-
ever, the ANFIS-FFA model exhibits greater accuracy than 
the nonoptimized ANFIS model, with higher values of R 
and lower values of MAE, RMSE and MAPE. The reason 
behind this may lie in the robustness of the FFA, which 
is linked to the ANFIS model and contributed to the opti-
mization of the membership function parameters. Similar 
results have also been reported in previous studies. For 
example, Yaseen et al. [27, 28] conducted streamflow fore-
casting using a hybrid ANFIS-FFA model and concluded 
that the ANFIS-FFA model was not only superior to the 
ANFIS model but also behaved like a parsimonious model 
for streamflow prediction; thus, the rationality of the simu-
lation results obtained by this paper is proven.

In addition, Table 3 also shows that the performance of 
the traditional ANFIS model surpasses that of the BP and 
ELM models for all data samples, with higher values of R 
and lower values of MAE, RMSE and MAPE. Overall, the 
results showed that the forecasting performance rank was 
ANFIS-FFA > ANFIS > ELM > BP model. We ascertain 
that the proposed ANFIS-FFA method is a prudent mod-
eling approach that could be adopted for the prediction of 
the compressive strength of HSC.

Fig. 5  MFs of the five main constituents of HSC: a water; b cement; 
c fine aggregate; d coarse aggregate; and e superplasticizer
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4.3  Parametric analysis

To investigate the influence of each input variable (e.g., 
cement, water, fine aggregate, coarse aggregate and super-
plasticizer) on the compressive strength of HSC, a paramet-
ric study was conducted based on the proposed ANFIS-FFA 
model. In each experiment, one of the five input parameters 
was excluded, and only four of them were employed in the 

proposed ANFIS-FFA model. The parametric experimental 
results are listed in Table 4.

As seen in Table 4, the ANFIS-FFA model with five input 
variables has the highest R (0.9987) and the lowest RMSE 
(0.5042 MPa), MAE (0.012 MPa) and MAPE (0.05%). For 
the other five ANFIS-FFA models, the ANFIS-FFA model 
without water has the lowest R (0.8354) and highest RMSE 
(3.8875 MPa), MAE (4.225 MPa) and MAPE (8.448%). In 
contrast, the ANFIS-FFA model without superplasticizer 
has the highest R (0.9822) and lowest RMSE (1.9103 MPa), 
MAE (1.583 MPa) and MAPE (3.379%). The results show 
that the effect of the five input parameters on the compres-
sive strength of HSC can be ranked in the order water > fine 
aggregate > cement > coarse aggregate > superplasticizer.

4.4  Advantages, limitations and future 
improvement

This study, which utilized the proposed ANFIS-FFA model 
instead of the traditional ANFIS model, was highly success-
ful in improving the prediction accuracy of the compressive 
strength of HSC. Although this has verified the better utility 
of an ANFIS-FFA model over a traditional ANFIS model, 
the case study reported only the data from Ref. [9], and pre-
dictions are meaningful only in this context. For its practical 
application, the veracity of the proposed ANFIS-FFA model 
should be evaluated by using more experimental data.

Fig. 6  Comparison between the 
actual and predicted compres-
sive strengths of HSC. a Train-
ing data samples and b testing 
data samples

Fig. 7  Relationship between the actual and predicted compressive 
strengths of HSC for all the data samples
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In this study, the fuzzy concept with MFs [0, 1] was uti-
lized in the ANFIS model; however, in a follow-up study, 
the proposed ANFIS-FFA model could be improved by 

utilizing an interval-valued fuzzy robust programming 
approach [29]. The interval parameters in an interval-val-
ued fuzzy system could be directly optimized by the FFA 
[27]. In addition, Bayesian model averaging or ensemble 
Kalman filter techniques could also be used to improve the 
proposed ANFIS-FFA model [30, 31].

To define how each point in the input space is mapped 
to a membership value (e.g., degree of membership) 
between 0 and 1, Gaussian membership was used to build 
the ANFIS model in this study. Although our results 
showed good performance, further studies should inves-
tigate several other MFs, such as triangular, trapezoidal, 
sigmoidal, �-shaped and generalized bell-shaped MFs, 
with different partitioning of training and testing datasets. 
Note that each MF in an ANFIS model has its own merits 
and drawbacks, and the optimality of any prescribed MF 
is expected to rely on the particular modeling problem at 
hand; thus, independent research that compares the vari-
ous MFs is needed. Although this is a useful task, it was 
beyond the scope of the present study and thus could be 
an interesting subject in future work.

Fig. 8  Three-dimensional graphs of the predicted compressive strength vs. the five main constituents of HSC

Fig. 9  Performance comparison among different models



3594 International Journal of Machine Learning and Cybernetics (2021) 12:3585–3595

1 3

5  Conclusions

In this study, a hybrid ANFIS-FFA model was proposed 
to predict the compressive strength of HSC. To construct 
the proposed ANFIS-FFA model, five main constituents of 
HSC were considered as the input variables. These param-
eters are (1) cement, (2) water, (3) fine aggregate, (4) 
coarse aggregate, and (5) superplasticizer. The proposed 
ANFIS-FFA model was assessed using three prediction 
models: (1) the traditional ANFIS model, (2) the BPNN 
model, and (3) the ELM model. In addition, detailed para-
metric analysis was carried out to investigate the effect of 
each input variable on the compressive strength of HSC. 
The following conclusions can be drawn from this study:

1. The proposed ANFIS-FFA model provides accurate pre-
diction of the compressive strength of HSC, producing 
results that are more accurately fitted to the measured 
results than the traditional ANFIS model and two avail-
able models in the literature. The proposed ANFIS-FFA 
model has the lowest RMSE, MAE, and MAPE and the 
highest R values compared with the other three models.

2. The R of the proposed ANFIS-FFA model is 1 for the 
training datasets and 0.9965 for the testing datasets. The 
results showed that the forecasting performance rank 
was ANFIS-FFA > ANFIS > ELM > BP model.

3. The parametric analysis results show that the effect 
of five input parameters on the compressive strength 

of HSC can be ranked in the order water > fine aggre-
gate > cement > coarse aggregate > superplasticizer.

4. Although the proposed ANFIS-FFA model relative to 
the traditional ANFIS model was highly successful in 
improving the prediction accuracy of the compressive 
strength of HSC, further research should be performed 
in future work.
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