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Abstract
Different from classical rough set, Multigranulation Rough Set (MGRS) is frequently designed for approximating target 
through using multiple results of information granulation. Presently, though many forms of MGRS have been intensively 
explored, most of them are constructed based on the homogeneous information granulation with respect to different scales 
or levels. They lack the multi-view which involves the results of heterogeneous information granulation. To fill such a gap, 
a Triple-G MGRS is developed. Such a Triple-G is composed of three different heterogeneous information granulations: 
(1) neiGhborhood based information granulation; (2) Gap based information granulation; (3) Granular ball based informa-
tion granulation. Neighborhood provides a parameterized mechanism while gap and granular ball offer two representative 
data-adaptive strategies for performing information granulation. Immediately, both optimistic and pessimistic MGRS can 
be re-constructed. Furthermore, the problem of attribute reduction is also addressed based on the proposed models. Not 
only the forward greedy searching is used for deriving the Triple-G MGRS related reducts, but also an attribute grouping 
based accelerator is reported for further speeding up the process of searching reducts. The experimental results over 20 UCI 
data sets demonstrate the follows: (1) from the viewpoint of the generalization performance, the reducts obtained by our 
Triple-G MGRS is superior to those obtained by previous researches; (2) attribute grouping does speed up the process of 
searching reducts.

Keywords  Attribute reduction · Attribute grouping · Multigranulation rough set · Triple-G

1  Introduction

Up to now, in the field of Granular Computing (GrC) [14, 20, 
41, 42, 49, 54], multigranulation has witnessed great success 
in knowledge representation [28], distributive information 
processing [63], groups of intelligent agents [29] and so on. 

Following the basic principle of multigranulation, various 
studies have been reported and then most of them can be 
divided into the following two phases. 

1.	 On the one hand, the structure related topics are explored 
in view of the multiple different granulations [15, 47, 
59]. For example, by examining the relationships among 
different information granulations, Yang et al. [55] have 
systematically revealed the hierarchical structures of the 
multigranulation space; Qian et al. [30] have proposed 
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a serious of measures for characterizing the coarser 
or finer relationships over the multigranulation space, 
immediately, the order structure of the multigranulation 
space can be quantitatively represented; Lin et al. [18] 
have investigated the uncertainty measures in multigran-
ulation space based on the hierarchical structure.

2.	 On the other hand, the modelling and data analysis 
related topics are also investigated in the framework 
of multigranulation. For instance, Lin et al. [21] have 
introduced the neighborhood based multiple informa-
tion granulations into the rough modelling; Sun et al. 
[35] have studied the fuzzy based multiple information 
granulations over two universes for decision making; Li 
et al. [22] have introduced the Dempster-Shafer evidence 
theory into the multigranulation framework for improv-
ing the effectiveness of clustering ensemble; Qian et al. 
[34] also proposed the local modelling in cost-sensitive 
[17] environment for realizing quick feature selection.

Though reviewing various modelling strategies in terms of 
multigranulation, it is not difficult to point out that Multi-
granulation Rough Set (MGRS) [16, 61, 62] aims to approxi-
mate the target through using multiple different results of 
information granulation [37, 57]. Up to now, though a lot 
of MGRS have been proposed and carefully studied, most 
of the used information granulations only come from the 
homogeneous mechanism. For example, through appointing 
different values of radius, different neighborhood relations 
[10] can be obtained and these neighborhood relations are 
considered as the results of multiple information granula-
tion for constructing MGRS; by using different values of 
threshold, the multigranulation decision-theoretic rough set 
[33] can be constructed, in which the thresholds are used to 
rule the granularity of the information granulation; through 
using a set of the coverings [19] for representing the results 
of information granulation, the covering based MGRS and 
the corresponding properties can also be studied. Neverthe-
less, it must be emphasized that most of the these researches 
lack the multi-view [56] which is rooted in the heterogene-
ous information granulation.

From discussions above, a new MGRS called Triple-G 
MGRS (covers three different “G”, i.e., neiGhborhood, 
Gap and Granular ball) will be developed in the context 
of this paper. Different from previous MGRS, our Triple-
G MGRS employs the following three different informa-
tion granulations: (1) a neiGhborhood [25, 46, 53] based 
parameterized information granulation; (2) a Gap [65] based 
data-adaptive information granulation; (3) a Granular ball 
[50, 51] based data-adaptive information granulation. Obvi-
ously, since both parameterized information granulation and 
data-adaptive information granulations have been used, our 
Triple-G MGRS does reflect the fundamental principle of 
heterogeneous information granulation. Therefore, the main 

structure of such Triple-G MGRS model can be elaborated 
in the following Fig. 1.

Moreover, it must be pointed out that in the field of rough 
set, the neighborhood, gap and granular ball are three widely 
accepted techniques for performing information granulation 
when facing data with continuous values or mixed data with 
both continuous and categorical values. Not only the compu-
tations of these information granulations are straightforward 
because only the distances among samples are required, but 
also the semantic explanations of these information gran-
ulations are clear. For example, the neighborhood based 
information granulation characterizes the similarity or dis-
similarity [38] between any two samples through using only 
one justifiable parameter, it follows that different parameters 
offer different scales of such similarity or dissimilarity; the 
granular ball based information granulation characterizes the 
similarity or dissimilarity between samples through using 
the labels of samples, it follows that such mechanism can 
figure the distribution of data in some degree.

As the core of the rough set [8, 23, 36, 43, 44, 48], the 
problem of attribute reduction [9, 39, 45, 52, 60] can also 
be further explored in terms of Triple-G MGRS. However, 
since obtaining reduct based on Triple-G MGRS requires 
three different types of the information granulation, the 
elapsed time of searching reduct may be huge. For such a 
reason, an acceleration mechanism [12, 24, 58] called attrib-
ute grouping [3] will be further introduced into the process 
of searching reduct for reducing the computation overhead. 
Without loss of generality, the essence of such an accelerator 
is to partition the raw attributes into different groupings and 
then attributes in those groupings which contain at least one 
attribute in the potential reduct will not be evaluated in the 
process of deriving reduct. This is why the searching space 
of candidate attributes can be compressed and the computa-
tional efficiency will be improved.

The main contribution of our research can be summa-
rized as the following aspects: (1) the proposed Triple-G is 
a novel development of MGRS, which can characterize the 

Fig. 1   The structure of Triple-G MGRS model
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universe not only from the perspective of multigranulation, 
but also from the perspective of heterogeneity based multi-
view; (2) since three comprehensively different mechanisms 
of information granulation are employed, the proposed 
Triple-G model is more explanatory than other rough set 
models; (3) to further improve the efficiency of searching 
Triple-G related reduct, the attribute grouping [3] based 
acceleration mechanism is introduced into the procedure 
of searching reduct; (4) as a framework of accelerator, the 
attribute grouping is with strong expansibility and then dif-
ferent approaches for partitioning the attributes may generate 
different attribute grouping based accelerators.

The rest of this paper is organized as follows. In Sect. 2, 
basic notions related to neighborhood, gap, granular ball and 
multigranulation rough sets are briefly reviewed. Our pro-
posed Triple-G MGRS and the corresponding attribute reduc-
tion will be addressed in Sect. 3. Comparative experimental 
results are reported in Sect. 4, as well as the corresponding 
analyses. This paper is ended in Sect. 5 by summarizing the 
novelties and scheduling some further perspectives.

2 � Preliminaries

In this section, we will review some basic concepts such as 
neighborhood rough set, gap rough set, granular ball rough 
set, multigranulation rough set and the corresponding attrib-
ute reductions.

In researching rough set for the classification task, a 
decision system is denoted as D = ⟨U,AT , d⟩ , in which U 
is a finite non-empty set which consists of m samples, AT is 
the set of all condition attributes, d is the decision attribute 
and d(x) indicates the label of sample x. In other words, 
the values over d are categorical and then such a decision 
attribute can be used to derive an equivalence relation such 
that IND (d) = {(xi, xj) ∈ U2 ∶ d(xi) = d(xj)} , it follows that 
the universe can be partitioned into serval disjoint decision 
classes such that U/IND(d)={X1,X2,⋯ ,Xn}.

2.1 � Neighborhood rough set and attribute 
reduction

Definition 1  [10] Given a decision system D , ∀A ⊆ AT  , the 
neighborhood relation related to A over U can be defined as:

in which �A(xi, xj) is the distance between xi and xj by using 
the set of the attributes A, � is the assigned radius which 
determines the scale of the neighborhood.

Furthermore, in the light of the information pro-
vided by neighborhood relation N�

A
 , ∀xi ∈ U  , the 

(1)N�
A
= {(xi, xj) ∈ U × U ∶ �A(xi, xj) ≤ �},

neighborhood of xi related to A can be easily derived such 
that N�

A
(xi) = {xj ∈ U ∶ (xi, xj) ∈ N�

A
}.

Definition 2  [10] Given a decision system D , ∀A ⊆ AT  
and ∀Xp ∈ U∕IND (d) , the neighborhood lower and upper 
approximations of Xp related to A are defined as:

Following the basic notions of neighborhood and the cor-
responding rough set, various forms about attribute reduc-
tion have been proposed. Generally speaking, two represent-
ative trends of neighborhood rough set related measures are 
frequently used in defining attribute reductions. Therefore, 
a formal description of attribute reduction can be given as 
follows.

Definition 3  Given a decision system D,∀A ⊆ AT  , � is a 
given non-zero measure, 

1.	 if the measure � is expected to be as higher as possible, 
then A is referred to as a reduct if and only if the follow-
ing two conditions hold: 

(a)	 �(A)

�(AT)
≥ �,

(b)	 ∀A� ⊂ A,
𝜀(A�)

𝜀(AT)
< 𝜁;

2.	 if the measure � is expected to be as lower as possible, 
then A is referred to as a reduct if and only if the follow-
ing two conditions hold: 

(a)	 �(AT)

�(A)
≥ �,

(b)	 ∀A� ⊂ A,
𝜀(AT)

𝜀(A�)
< 𝜁;

in which � is a given threshold, �(A) is the value of the meas-
ure � determined by A.

Following Def. 3, it can be observed that the reduct A 
is actually the minimum subset of the condition attributes 
which will not bring great changes to the considered meas-
ure � . Up to now, in view of the neighborhood rough set, 
various measures have been proposed, e.g., approximation 
quality [10], neighborhood conditional entropy [64], neigh-
borhood conditional discrimination index [40], neighbor-
hood decision error rate [11] and so on. For example, the 
approximation quality is used to evaluate the degree of cer-
tainty in data and then such measure is expected to be as 
higher as possible; the neighborhood decision error rate is 

(2)�
𝛿
A
(Xp) = {xi ∈ U ∶ N𝛿

A
(xi) ⊆ Xp},

(3)�
�
A
(Xp) = {xi ∈ U ∶ N�

A
(xi) ∩ Xp ≠ �}.
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used to estimate the ratio of misclassifications in data and 
then such measure is expected to be as lower as possible.

2.2 � Gap rough set and attribute reduction

Though the neighborhood relation has been widely con-
cerned for its flexibility, the determination or selection of 
the radius is an open problem. In view of this, Zhou et al. 
[65] have proposed the gap rough set which can also derive 
the information granules of samples without assigning the 
radii. In their approach, the gap based information granula-
tion can automatically select the neighbors for each sample 
by the surrounding instances distribution. For such a reason, 
the process of deriving gap information granules is data-
adaptive. The detailed notions related to gap information 
granulation will be shown as follows.

Definition 4  [65] Given a decision system D,∀A ⊆ AT  , 
∀xi ∈ U , the rest of samples are sorted by ascending order 
based on the distances between these samples and xi , they 
are denoted as a set such that DisA(xi) , the width of gap is 
then denoted as WidA(xi):

in which �A(xi, x
1

i
) ≤ �A(xi, x

2

i
) ≤ ⋯ ≤ �A(xi, x

m−1
i

).

Following Def. 4, if the distance between two samples xj
i
 

and xj+1
i

 is bigger than WidA(xi) , it is called a Gap between xj
i
 

and xj+1
i

 and denoted as GA(x
j

i
, x

j+1

i
).

Definition 5  [65] Given a decision system D,∀A ⊆ AT  , 
∀xi ∈ U , the gap information granule of xi over A is defined 
as:

in which w = min{t ∶ G
A
(xt−1

i
, xt

i
) ≥ Wid

A
(x

i
), 2 ≤ t ≤ (m − 1)}.

Definition 6  [65] Given a decision system D , ∀A ⊆ AT  and 
∀Xp ∈ U∕IND (d) , the gap lower and upper approximations 
of Xp related to A are defined as:

Following Def. 6, Zhou et al. [65] have designed a for-
ward greedy searching for deriving reduct based on gap 
rough set. The specific steps are shown as follows. 

(4)DisA(xi) = {x1
i
, x2

i
,⋯ , xm−1

i
},

(5)WidA(xi) =

∑m−1

j=1
�A(x

j

i
, xi)

m − 1
,

(6)
GA(xi) = {xk

i
∈ DisA(xi) ∶ GA(x

k−1
i

, xk
i
) < WidA(xi), 2 ≤ k ≤ w} ∪ {xi},

(7)�A(Xp) = {xi ∈ U ∶ GA(xi) ⊆ Xp},

(8)�A(Xp) = {xi ∈ U ∶ GA(xi) ∩ Xp ≠ �}.

(1)	 The potential reduct red is initialed to be ∅.
(2)	 By the considered measure � , calculate the measure 

value �(AT) over AT.
(3)	 ∀a ∈ AT − red , compute �(red ∪ {a}).
(4)	 Select an appropriate attribute b from AT − red and add 

it into red.
(5)	 If the constraint in attribute reduction is fulfilled, then 

return red; otherwise, go to (3).

2.3 � Granular ball rough set and attribute reduction

Besides the gap rough set, Xia et al. [50, 51] have also devel-
oped a novel concept called granular ball for adaptively 
acquiring the information granules of samples. Furthermore, 
it should be emphasized that the sizes of the information 
granules in terms of different samples may be different. Such 
a case also characterizes the internal structure of the samples 
in some degree.

For Xia et al.’s [50, 51] work, the concept of granular 
ball mainly involves two phases: (1) the center point; (2) 
the radius.

Definition 7  [50, 51] Given a decision system D , ∀A ⊆ AT  , 
∀Bs ⊆ U , Bs is a granular ball induced by A in which c is the 
center point of Bs , r is the mean distance among all samples 
in Bs and the central point c, that is:

in which �A(xi, c) is the distance between xi and the center 
point c over A.

Following the concept of granular ball, the procedure of 
generating granular balls can be realized by using the unsu-
pervised learning. For instance, the universe can be gradu-
ally partitioned by using 2-meaning clustering [5] until the 
purities of the granular balls reach the expected values. The 
details are elaborated as follows. 

(1)	 The universe U is regarded as a grouping.
(2)	 Each grouping is divided by 2-means clustering [5].
(3)	 The center point c and the mean distance r are calcu-

lated.
(4)	 Obtain granular balls based on the centers and radii of 

grouping, calculate the purity [50, 51] of each granular 
ball.

(9)c =
1

|Bs|

|Bs|∑

i=1

xi,

(10)r =
1

|Bs|

|Bs|∑

i=1

�A(xi, c),
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(5)	 If the purity of each granular ball achieves the expected 
value, then all the granular balls are generated; other-
wise, go to step (2).

Based on the above process, the set of all obtained granular 
balls induced by A is denoted as BA in the context of this 
paper.

Definition 8  [50, 51] Given a decision system D , ∀A ⊆ AT  
and ∀Xp ∈ U∕IND (d) , the granular ball lower and upper 
approximations of Xp related to A are defined as:

Following the granular ball rough set shown in Def. 8, 
an immediate problem is to calculate the corresponding 
reduct. Therefore, Xia et al. [50, 51] have designed a back-
ward greedy searching for deriving granular ball rough set 
related reduct. The specific steps are shown as follows. 

(1)	 The potential reduct red is initialized to be AT.
(2)	 By the considered measure � , calculate the measure 

value �(AT) over AT.
(3)	 ∀a ∈ AT − red , compute �(red − {a}).
(4)	 Select an appropriate attribute b from red and remove 

it from red.
(5)	 If the constraint in attribute reduction is fulfilled, then 

return red; otherwise, go to (3).

2.4 � Multigranulation rough set and attribute 
reduction

From the perspective of GrC, the neighborhood rough set, 
the gap rough set and the granular ball rough set can be 
regarded as the similar model which is constructed based 
on one and only one strategy of information granulation. 
Nevertheless, in many real-world applications, the single 
information granulation is insufficient to characterize the 
multi-level or multi-view over data. For such reasons, Qian 
et al. [32] have developed a framework called MGRS which 

(11)�A(Xp) = {xi ∶ ∃Bs ∈ BA, xi ∈ Bs,Bs ⊆ Xp},

(12)�A(Xp) = {xi ∶ ∃Bs ∈ BA, xi ∈ Bs,Bs ∩ Xp ≠ �}.

aims to further expand the applications of rough set. Dif-
ferent from conventional researches, MGRS is constructed 
based on multiple different information granulations. The 
following definitions show us two representative models of 
MGRS.

Definition 9  [32] Given a decision system D,∀A ⊆ AT  , 
∀Xp ∈ U∕IND (d) , the optimistic neighborhood multigran-
ulation lower and upper approximations of Xp related to A 
are defined as:

in which ∼ Xp is the complement of Xp.

Definition 10  [32] Given a decision system D,∀A ⊆ AT  , 
∀Xp ∈ U∕IND (d) , the pessimistic neighborhood multi-
granulation lower and upper approximations of Xp related 
to A are defined as:

Following the definitions of optimistic and pessimistic 
MGRS, some crucial measures related to rough set can 
also be generalized, e.g., approximation quality, condi-
tional entropy, etc. Following these measures, the problem 
of attribute reduction then can be addressed over such two 
MGRS. The following Algorithm 1 shows us the detailed 
process of searching MGRS related reduct.

(13)

��
Opt
∑�A�

k=1
ak
(Xp) ={xi ∈ U ∶ N𝛿

a1
(xi) ⊆ Xp ∨⋯ ∨N𝛿

a�A�
(xi) ⊆ Xp},

(14)��
Opt
∑�A�

k=1
ak
(Xp) = ∼ ��

Opt
∑�A�

k=1
ak
(∼ Xp),

(15)

��
Pes∑�A�

k=1
ak
(Xp) ={xi ∈ U ∶ N𝛿

a1
(xi) ⊆ Xp ∧⋯ ∧N𝛿

a�A�
(xi) ⊆ Xp},

(16)��
Pes∑�A�

k=1
ak
(Xp) = ∼ ��

Pes∑�A�
k=1

ak
(∼ Xp).
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3 � Attribute reduction based on Triple‑G 
MGRS

3.1 � Triple‑G MGRS

In Sect. 2.4, it is not difficult to observe that such two MGRS 
models take one and only one form of the information granu-
lation into account, which can characterize the rough set 
related uncertainties. This is mainly because the process 
of deriving neighborhood relation is unique though differ-
ent attributes have been employed. For such reason, we can 
observe that the MGRS shown in Defs. 9 and 10 do not 
comprehensively grasp the fundamental principle of multi-
view which is the core in the theory of GrC.

Fortunately, following what have been addressed in 
Sect. 2, besides the neighborhood based information granu-
lation which heavily depends on the value of the radius, two 
state-of-the-art data-adaptive information granulations have 
been presented. Therefore, to further characterize the uncer-
tainty from multi-view in the framework of MGRS, both 

The above algorithm shows us the procedure of deriving 
reduct if the measure � is expected to be as higher as possi-
ble. Similarly, if the measure is expected to be as lower as 
possible, then the terminal condition in Algorithm 1 should 
be replaced by 𝜀(AT)

𝜀(red)
< 𝜁.

In Algorithm 1, it is not difficult to observe that each 
candidate attribute in AT − red is required to be evaluated. 
In the worst case, all the conditional attributes must be 
added into the reduct. Therefore, the number of all itera-
tions is (|AT| + (|AT| − 1) + (|AT| − 2) +⋯ + 1) . In addi-
tion, in the process of calculating the value of measure, 
the samples in the whole universe U should be scanned 
and any two samples in U should be compared. In sum-
mary, the number of iterations required in Algorithm 1 is 
|U|2 × (|AT| + (|AT| − 1) + (|AT| − 2) +⋯ + 1) , i.e., the 
time complexity of Algorithm 1 is O(|U|2 × |AT|2).
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the neiGhborhood rough set, Gap rough set and Granular 
ball rough set will be simultaneously used for constructing 
MGRS, such type of the rough set will be referred to as 
the Triple-G MGRS. The following definition shows us two 
representative models of Triple-G MGRS.

Definition 11  Given a decision system D,∀A ⊆ AT  , 
∀Xp ∈ U∕IND (d) , the Triple-G optimistic lower and upper 
approximations of Xp related to A are defined as:

Theorem  1  Given a decision system D,∀A ⊆ AT  , 
∀Xp ∈ U∕IND(d) , we have

Proof  By Def. 11, we have

	�  ◻

By Theorem 1, we can observe that though the Triple-
G optimistic upper approximation is defined by the com-
plement of the Triple-G optimistic lower approximation, 
it can also be considered as a set, in which samples have 
non-empty intersection with the target in terms of each used 
information granulation.

(17)
��

Opt

A
(Xp) = {xi ∈ U ∶ N𝛿

A
(xi) ⊆ Xp ∨ GA(xi) ⊆ Xp∨

Bs ⊆ Xp where Bs ∈ BA and xi ∈ Bs},

(18)��
Opt

A
(Xp) =∼ ��

Opt

A
(∼ Xp).

(19)

��
Opt

A
(Xp) = {xi ∈ U ∶ N�

A
(xi) ∩ Xp ≠ � ∧ GA(xi) ∩ Xp ≠ �

∧ Bs ∩ Xp ≠ � where Bs ∈ BA and xi ∈ Bs}.

x ∈ 𝖳𝖦
Opt

A
(Xp) ⇔ x ∉ 𝖳𝖦

Opt

A
(∼ Xp)

⇔ N𝛿
A
(xi) ⊈ (∼ Xp) ∧ GA(xi) ⊈ (∼ Xp) ∧ Bs ⊈ (∼ Xp)

where Bs ∈ BA and xi ∈ Bs

⇔ N𝛿
A
(xi) ∩ Xp ≠ � ∧ GA(xi) ∩ Xp ≠ � ∧ Bs ∩ Xp ≠ �

where Bs ∈ BA and xi ∈ Bs.

Definition 12  Given a decision system D,∀A ⊆ AT  , 
∀Xp ∈ U∕IND (d) , the Triple-G pessimistic lower and upper 
approximations of Xp related to A are defined as:

Theorem  2  Given a decision system D,∀A ⊆ AT  , 
∀Xp ∈ U∕IND(d) , we have

Proof  The proof of Theorem 2 is similar to that of Theo-
rem 1.	�  ◻

Similar to Defs. 9 and 10, the structures of MGRS 
shown in Defs. 11 and 12 are preserved, i.e., one sample 
belongs to the Triple-G optimistic lower approximation 
if and only if at least one type of the information granule 
related to such sample is contained in the target, one sam-
ple belongs to the Triple-G pessimistic lower approxima-
tion if and only if all the information granules related to 
such sample are contained in the target. Nevertheless, it 
must be pointed out that different from previous MGRS, 
our new Triple-G MGRS uses multiple different mecha-
nisms for performing information granulation and then 
derive the information granules for constructing rough 
sets.

Similar to Algorithm 1, we can also design the following 
Algorithm 2 for searching reduct based on Triple-G MGRS.

(20)
��

Pes
A

(Xp) = {xi ∈ U ∶ N𝛿
A
(xi) ⊆ Xp ∧ GA(xi) ⊆ Xp

∧ Bs ⊆ Xp where Bs ∈ BA and xi ∈ Bs},

(21)��
Pes
A

(Xp) =∼ ��
Pes
A

(∼ Xp).

(22)

��
Pes
A

(Xp) = {xi ∈ U ∶ N�
A
(xi) ∩ Xp ≠ � ∨ GA(xi) ∩ Xp ≠ �

∨ Bs ∩ Xp ≠ � where Bs ∈ BA and xi ∈ Bs}.
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3.2 � Attribute reduction based on Triple‑G MGRS 
with attribute grouping

As what can be observed in Sect. 3.2, the number of itera-
tions used in Algorithm 2 is greater than that is required in 
Algorithm 1, this is mainly because both the strategies of 
gap and granular ball are further introduced into the process 
of information granulation. From this point of view, Algo-
rithm 2 may be very time-consuming and then the quick 
searching has become a necessary.

Presently, in the field of rough set, various acceleration 
strategies [7, 13] have been proposed for speeding up the 
procedure of searching reduct. Most of them can be roughly 
grouped into two phases: (1) accelerator based on the per-
spective of sample; (2) accelerator based on the perspec-
tive of attribute. For example, the bucket [26] and positive 
approximation [31] are two typical representations of the 
sample based accelerators, the attribute grouping [3] is the 
typical representation of the attribute based accelerator. 
Through comparing these state-of-the-art accelerators, it can 
be observed that Chen et al.’s [3] attribute grouping based 
accelerator is superior to the sample based accelerators. This 

Similar to Algorithm 1, if the measure is expected to be as 
lower as possible, then the terminal condition in Algorithm 1 
should be replaced by 𝜀(AT)

𝜀(red)
< 𝜁.

By observing Algorithm  2, in the worst case, 
all the conditional attributes must be added into 
the reduct. Therefore, the number of iterations is 
(|AT| + (|AT| − 1) + (|AT| − 2) +⋯ + 1)  .  I n  a d d i -
tion, the lower approximations should be obtained by 
the neighborhood, gap and granular ball based infor-
mation granulations simultaneously, it follows that in 
the calculation of the value of measure, the required 
number of iterations is (|U|2 + |U| × |BAT | + |U|2) . In 
summary, the number of iterations in Algorithm  2 is 
(|U|2 + |U| × |B

AT
| + |U|2) × (|AT| + (|AT| − 1) + (|AT|

−2) +⋯ + 1) , i.e., the time complex of Algorithm  2 is 
O(|U|2 × |AT|2).
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is mainly because most of the sample based accelerators are 
vulnerable to the distribution of the samples. For instance, 
the bucket will be useless if the samples are extremely 
concentrated.

From discussions above, for further speeding up the 
searching of Triple-G MGRS related reduct, the attribute 
grouping will be introduced into Algorithm 2. Fundamen-
tally, the essence of attribute grouping is to partition the 

raw set of the condition attributes into different groupings, 
it follows that attributes in those groupings which contain at 
least one attribute in the potential reduct will not be evalu-
ated. Such a mechanism will significantly reduce the times 
of evaluating candidate attributes and then the elapsed time 
of calculating reduct can be saved. Immediately, the follow-
ing Algorithm 3 will be designed.
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Table 1   Data sets description ID Data sets #Samples #Attributes #Labels Domains

1 Banknote authentication 1372 4 2 Economics
2 Cardiotocography 2126 21 10 Medicine
3 Congressional voting 435 16 2 Politics
4 Contraceptive method 1473 9 3 Medicine
5 Dermatology 366 34 6 Medicine
6 Diabetes 372 8 2 Medicine
7 Ecoli 336 7 8 Medicine
8 Forest type mapping 523 27 4 Geography
9 Iris 150 4 3 Medicine
10 Leaf 340 15 36 Biology
11 Lymphography 98 18 4 Physics
12 Molecular biology1 106 57 2 Biology
13 Parkinson multiple sound recording 1208 26 2 Medicine
14 Seeds 210 7 3 Biology
15 Statlog (Heart) 270 13 2 Biology
16 Statlog (Image Segmentation) 2310 18 7 Computer
17 Ultrasonic flowmeter diagnostics-meter D 180 43 4 Medicine
18 Vertebral column 310 7 2 Biology
19 Waveform database generator(Version 1) 5000 21 3 Computer
20 Yeast 1482 8 10 Biology

Table 2   Maximal classification accuracies based on KNN classifier (higher accuracies are indicated in bold)

ID Algorithm 1(O) Algorithm 2(O) Algorithm 3(O) Algorithm 1(P) Algorithm 2(P) Algorithm 3(P) Gap GB

1 1.00(0.22) 1.00(0.02) 1.00(0.02) 0.82(0.02) 1.00(0.02) 1.00(0.12) 1.00 0.75
2 0.75(0.02) 0.80(0.22) 0.80(0.24) 0.26(0.04) 0.76(0.02) 0.78(0.22) 0.76 0.61
3 0.68(0.02) 0.95(0.02) 0.94(0.04) 0.66(0.02) 0.91(0.02) 0.95(0.08) 0.94 0.88
4 0.43(0.04) 0.48(0.10) 0.47(0.20) 0.43(0.02) 0.45(0.02) 0.49(0.04) 0.50 0.43
5 0.83(0.02) 0.94(0.36) 0.94(0.40) 0.45(0.02) 0.97(0.02) 0.79(0.40) 0.93 0.70
6 0.71(0.04) 0.69(0.30) 0.70(0.34) 0.62(0.08) 0.65(0.02) 0.68(0.18) 0.65 0.66
7 0.83(0.02) 0.83(0.10) 0.84(0.18) 0.63(0.02) 0.84(0.02) 0.85(0.30) 0.81 0.73
8 0.86(0.02) 0.89(0.18) 0.88(0.22) 0.53(0.02) 0.88(0.02) 0.88(0.22) 0.82 0.70
9 0.96(0.02) 0.97(0.06) 0.97(0.06) 0.96(0.02) 0.95(0.02) 0.96(0.02) 0.95 0.95
10 0.51(0.02) 0.58(0.40) 0.31(0.30) 0.18(0.02) 0.13(0.02) 0.48(0.38) 0.31 0.11
11 0.62(0.02) 0.81(0.30) 0.77(0.12) 0.47(0.16) 0.82(0.02) 0.79(0.40) 0.71 0.66
12 0.74(0.02) 0.75(0.34) 0.76(0.26) 0.66(0.02) 0.72(0.02) 0.78(0.10) 0.78 0.51
13 0.68(0.02) 0.70(0.14) 0.70(0.22) 0.55(0.04) 0.68(0.02) 0.70(0.32) 0.66 0.61
14 0.91(0.24) 0.92(0.14) 0.93(0.26) 0.86(0.02) 0.92(0.02) 0.91(0.26) 0.88 0.68
15 0.67(0.08) 0.81(0.14) 0.81(0.18) 0.66(0.14) 0.81(0.02) 0.80(0.22) 0.73 0.79
16 0.89(0.02) 0.97(0.04) 0.96(0.12) 0.62(0.02) 0.96(0.02) 0.96(0.22) 0.97 0.91
17 0.81(0.22) 0.88(0.04) 0.88(0.08) 0.67(0.32) 0.86(0.02) 0.69(0.32) 0.81 0.66
18 0.84(0.10) 0.82(0.40) 0.82(0.16) 0.73(0.02) 0.77(0.02) 0.83(0.18) 0.80 0.82
19 0.80(0.02) 0.81(0.40) 0.80(0.34) 0.47(0.02) 0.81(0.02) 0.80(0.38) 0.76 0.73
20 0.52(0.02) 0.54(0.22) 0.54(0.24) 0.35(0.18) 0.54(0.02) 0.54(0.06) 0.52 0.45
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In Algorithm 3, if all condition attributes are divided into 
q(1 < q < |AT|) groupings, then the numbers of attributes 
in those q groupings are |AT1|, |AT2|,⋯ , |ATq| , respec-
tively, i.e., |AT

1
| + |AT

2
| +⋯ + |AT

q
| = |AT| . There-

fore, in the “While” loop, the number of iterations is 
(|AT| + (|AT| − |AT

1
|) + (|AT| − |AT

1
| − |AT

2
|) +⋯ + 1) . 

Moreover, both Algorithm  2 and Algorithm  3 require 
the same number of iterations in the step of calculating 
the value of measure, i.e., (|U|2 + |U| × |BAT | + |U|2) . 
Finally, the number of iterations in Algorithm  3 is 
(|U|2 + |U| × |B

AT
| + |U|2) × (|AT| + (|AT| − |AT

1
|) + (|AT|

−|AT
1
| − |AT

2
|) +⋯ + 1) , i.e., the time complexity of 

Algorithm  3 is O(|U|2 × |AT|2) . Though the time com-
plexity of Algorithm  3 is the same as that of Algo-
rithm 2, it must be pointed out that such a case can only 
be observed if each grouping contains only one attrib-
ute. In most of the cases, we can set |ATq| ≥ 1 , then 
(|AT| + (|AT| − 1) + (|AT| − 2) +⋯ + 1) ≥ (|AT| + (|AT|
−|AT

1
|) + (|AT| − |AT

1
| − |AT

2
|) +⋯ + 1) holds, it follows 

that the number of iterations used in Algorithm 3 is less than 
or equal to that used in Algorithm 2.

4 � Experiments

4.1 � Data sets

To demonstrate the effectiveness of our proposed algo-
rithms, experimental comparisons will be conducted in the 
context of this section. All experiments will be carried out 
on a personal computer with Windows 10, Intel Core(TM) 
i5-4210U (2.60 GHz) and 8.00 GB memory. The program-
ming language is Matlab R2018a. Moreover,

20 UCI data sets have been selected to conduct the experi-
ments. The details of these data sets are shown in the fol-
lowing Table 1.

Besides Algorithms 1–3 which have been explored in this 
paper, the algorithms related to gap and granular ball rough 
sets for calculating reducts will also be tested in this section. 
Since Algorithms 1–3 should be performed by inputting the 
radius and then in our experiments, 20 different radii such 
as 0.02, 0.04, ⋯ , 0.40 are selected with the step size of 0.02.

Notably, in our experiments, the K-means clustering is 
adopted to generate attribute groups. The value of K is set 
to be K = ⌈�AT�∕3⌉ based on numerous previous testings.

4.2 � Comparisons of classification accuracy

In this subsection, 10-fold cross-validation [6, 27] is used 
to calculate the reducts by using different algorithms. That 
is, we divide each data set into 10 parts with the same size, 
they are denoted by U1,U2,⋯ ,U10 . For the first round of 
computation, U1 ∪⋯ ∪ U9 is considered as the set of training 

samples for deriving reduct and then U10 is regarded as the 
set of testing samples for obtaining the classification accu-
racy related to such obtained reduct; ⋯ ; for the last round 
of computation, U2 ∪⋯ ∪ U10 is considered as the set of 
training samples for deriving reduct and then U1 is regarded 
as the set of testing samples for obtaining the classification 
accuracy related to such obtained reduct. Immediately, the 
average classification accuracies related to different reducts 
can be obtained.

It must be pointed out that since 20 different radii have 
been selected for calculating reducts through using Algo-
rithms 1–3, the following Tables 2 and 3 show us the maxi-
mal values of classification accuracies which are selected 
from the results related to such 20 radii. Tab. 2 is based on 
the KNN (k = 3) [2] classifier while Table 3 is based on 
the SVM (libSVM) classifier [1]. And in our experiments, 
� = 0.95.

In Tables 2 and 3, 

1.	 “Algorithm 1(O)” indicates the result of attribute reduc-
tion based on optimistic classical MGRS through using 
Algorithm 1;

2.	 “Algorithm 1(P)” indicates the result of attribute reduc-
tion based on pessimistic classical MGRS through using 
Algorithm 1;

3.	 “Algorithm 2(O)” indicates the result of attribute reduc-
tion based on optimistic Triple-G MGRS through using 
Algorithm 2;

4.	 “Algorithm 2(P)” indicates the result of attribute reduc-
tion based on pessimistic Triple-G MGRS through using 
Algorithm 2;

5.	 “Algorithm 3(O)” indicates the result of attribute reduc-
tion based on optimistic Triple-G MGRS through using 
Algorithm 3;

6.	 “Algorithm 3(P)” indicates the result of attribute reduc-
tion based on pessimistic Triple-G MGRS through using 
Algorithm 3;

7.	 “Gap” indicates the result of attribute reduction based 
on gap rough set;

8.	 “GB” indicates the result of attribute reduction based on 
granular ball rough set.

Therefore, it is not difficult to observe the following. 

1.	 No matter optimistic or pessimistic case is considered, 
compared with classical MGRS, gap and granular ball 
rough sets, the reduct obtained by using our Triple-G 
MGRS can provide higher classification accuracies. 
Take the “Parkinson Multiple Sound Recording” data 
set as an example, in Table 2, the classification accu-
racy derived from the reduct related to optimistic Triple-
G MGRS is 0.7003, it is superior to the classification 
accuracy derived from the reduct related to classical 
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optimistic MGRS, i.e., 0.6847, it is also superior to the 
classification accuracies derived from the reducts related 
to both gap and granular ball rough sets, i.e., 0.6630 and 
0.6084. Furthermore, take the “Forest Type Mapping” 
data set as an example, in Table 3, the classification 
accuracy derived from the reduct related to pessimistic 
Triple-G MGRS is 0.8929, it is superior to the classifica-
tion accuracy derived from the reduct related to classical 
pessimistic MGRS, i.e., 0.4856, it is also superior to the 
classification accuracies derived from the reducts related 
to both gap and granular ball rough sets, i.e., 0.8164 and 
0.6693.

2.	 By comparing with Algorithm 2, though Algorithm 3 is 
designed based on the consideration of accelerating of 
the process of calculating Triple-G based MGRS reduct, 
such improved algorithm can also offer well-matched 
classification performances. Take the “Cardiotocogra-
phy” data set and the optimistic model as an example, 
in Table 2, the classification accuracy derived from the 
reduct related to Algorithm 3 is 0.8045 while the clas-
sification accuracy derived from the reduct related to 
Algorithm 2 is 0.8024. Furthermore, Take the “Statlog 
(Heart)” data set and the pessimistic model as an exam-
ple, in Table 3, the classification accuracy derived from 

the reduct related to Algorithm 3 is 0.8333 while the 
classification accuracy derived from the reduct related 
to Algorithm 2 is 0.8307.

3.	 From discussions above, we can conclude that the 
reducts derived by using our optimistic(pessimistic) 
Triple-G MGRS are better than the reducts derived by 
using optimistic(pessimistic) classical MGRS, gap and 
granular ball rough sets because higher classification 
abilities can be achieved.

Furthermore, to compare the above algorithms from the 
viewpoint of statistic, the Wilcoxon signed rank test [4] is 
employed. Note that the significant level is set as 0.05, that 
is, if the returned p-value is lower than 0.05, then it indicates 
that algorithms perform significantly different. The detailed 
results are shown in the following Table 4 and the italic por-
tion is the data with a p-value greater than 0.05.

⋇ In Table 4, the value “NaN” indicates that the classifi-
cation accuracies related to the two comparison algorithms 
over 20 different radii are exactly the same. Therefore, the 
value of Wilcoxon signed rank test is incalculable.

With a deep investigation of Table 4, it is not difficult to 
observe the follows. 

Table 3   Maximal classification accuracies based on SVM classifier (higher accuracies are indicated in bold)

ID Algorithm 1(O) Algorithm 2(O) Algorithm 3(O) Algorithm 1(P) Algorithm 2(P) Algorithm 3(P) Gap GB

1 0.90(0.08) 0.98(0.02) 0.98(0.02) 0.85(0.02) 0.98(0.02) 0.98(0.12) 0.98 0.69
2 0.65(0.02) 0.75(0.20) 0.77(0.20) 0.33(0.22) 0.78(0.02) 0.77(0.40) 0.68 0.50
3 0.71(0.02) 0.94(0.02) 0.95(0.24) 0.71(0.02) 0.94(0.02) 0.95(0.08) 0.94 0.86
4 0.43(0.02) 0.51(0.22) 0.51(0.06) 0.43(0.02) 0.51(0.02) 0.51(0.14) 0.50 0.47
5 0.80(0.02) 0.92(0.26) 0.93(0.20) 0.49(0.34) 0.97(0.02) 0.76(0.38) 0.91 0.71
6 0.73(0.04) 0.75(0.30) 0.74(0.10) 0.68(0.02) 0.74(0.02) 0.74(0.30) 0.70 0.62
7 0.79(0.02) 0.81(0.08) 0.82(0.08) 0.64(0.02) 0.80(0.02) 0.82(0.18) 0.79 0.73
8 0.87(0.02) 0.89(0.16) 0.89(0.16) 0.49(0.02) 0.89(0.02) 0.88(0.26) 0.82 0.67
9 0.97(0.02) 0.97(0.04) 0.97(0.04) 0.97(0.02) 0.97(0.02) 0.97(0.12) 0.97 0.97
10 0.42(0.02) 0.43(0.24) 0.43(0.32) 0.20(0.02) 0.43(0.02) 0.39(0.40) 0.24 0.11
11 0.70(0.02) 0.78(0.34) 0.77(0.40) 0.65(0.02) 0.83(0.02) 0.77(0.40) 0.67 0.70
12 0.46(0.02) 0.71(0.34) 0.72(0.24) 0.46(0.02) 0.73(0.02) 0.66(0.20) 0.62 0.50
13 0.65(0.02) 0.66(0.14) 0.66(0.18) 0.57(0.26) 0.66(0.02) 0.66(0.22) 0.64 0.59
14 0.93(0.04) 0.94(0.14) 0.92(0.20) 0.86(0.02) 0.92(0.02) 0.93(0.24) 0.89 0.67
15 0.72(0.02) 0.83(0.16) 0.83(0.16) 0.67(0.14) 0.83(0.02) 0.83(0.26) 0.79 0.81
16 0.73(0.02) 0.82(0.02) 0.85(0.18) 0.44(0.10) 0.93(0.02) 0.88(0.22) 0.82 0.78
17 0.62(0.20) 0.65(0.08) 0.63(0.10) 0.59(0.02) 0.68(0.02) 0.61(0.06) 0.57 0.49
18 0.76(0.26) 0.77(0.40) 0.76(0.12) 0.68(0.02) 0.76(0.02) 0.76(0.32) 0.73 0.70
19 0.85(0.02) 0.87(0.40) 0.87(0.38) 0.51(0.02) 0.87(0.02) 0.86(0.40) 0.80 0.79
20 0.52(0.02) 0.54(0.18) 0.54(0.18) 0.39(0.18) 0.54(0.02) 0.54(0.20) 0.53 0.47
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Table 4   p-values for comparing classification accuracies based on different reducts

(a): p-values for comparing classification accuracies based on different reducts over optimistic MGRS

ID Classifiers Algorithm 2(O) 
vs.
Algorithm 1(O)

Algorithm 2(O) 
vs.
Gap

Algorithm 2(O) 
vs.
GB

Algorithm 3(O) vs.
Algorithm 1(O)

Algorithm 3(O) 
vs. Gap

Algorithm 3(O) 
vs.
GB

1 KNN 2.86E-08 NaN 4.68E-10 2.86E-08 NaN 4.68E-10
SVM 2.86E-08 NaN 4.68E-10 2.86E-08 NaN 4.68E-10

2 KNN 2.55E-07 0.0005 8.01E-09 1.91E-07 0.0040 8.01E-09
SVM 2.21E-07 0.0040 2.10E-07 2.21E-07 0.0040 2.10E-07

3 KNN 4.68E-10 4.68E-10 4.68E-10 7.66E-09 2.24E-06 7.66E-09
SVM 4.68E-10 NaN 4.68E-10 4.68E-10 NaN 4.68E-10

4 KNN 1.13E-08 8.01E-09 8.01E-09 1.12E-08 7.99E-09 7.99E-09
SVM 4.68E-08 1.0000 7.98E-09 4.68E-08 1.0000 7.98E-09

5 KNN 2.38E-08 0.0040 7.92E-09 2.40E-08 3.99E-06 8.01E-09
SVM 2.40E-08 0.0215 7.98E-09 2.40E-08 0.0215 7.98E-09

6 KNN 0.0005 0.0014 0.0853 0.0006 5.47E-05 0.0852
SVM 4.07E-06 2.10E-07 7.99E-09 4.07E-06 2.10E-07 7.99E-09

7 KNN 3.34E-06 0.7811 7.92E-09 1.07E-06 0.0014 7.92E-09
SVM 2.42E-07 0.3881 7.88E-09 2.42E-07 0.3881 7.88E-09

8 KNN 3.98E-06 3.99E-06 8.01E-09 3.49E-06 3.99E-06 7.99E-09
SVM 2.59E-05 2.10E-07 8.01E-09 2.59E-05 2.10E-07 8.01E-09

9 KNN 0.0006 0.3956 4.76E-08 0.0038 0.0853 1.29E-08
SVM 0.0604 0.1595 4.64E-05 0.0604 0.1595 4.64E-05

10 KNN 0.5151 0.0005 0.0215 0.1884 7.80E-09 0.0039
SVM 0.0136 0.0040 7.96E-09 0.0136 0.0040 7.96E-09

11 KNN 4.79E-08 7.22E-09 7.22E-09 5.20E-08 0.0005 2.10E-07
SVM 8.61E-05 7.19E-09 1.93E-07 8.61E-05 7.19E-09 1.93E-07

12 KNN 0.0027 2.09E-09 2.09E-09 0.2688 7.77E-09 7.77E-09
SVM 7.44E-09 2.09E-09 2.09E-09 7.44E-09 2.09E-09 2.09E-09

13 KNN 0.0223 0.0040 8.01E-09 0.0026 3.99E-06 8.01E-09
SVM 0.0021 0.5729 8.01E-09 0.0021 0.5729 8.01E-09

14 KNN 0.0054 3.23E-06 7.49E-09 0.0252 1.20E-05 7.65E-09
SVM 0.0003 0.0305 7.58E-09 0.0002 0.0305 7.58E-09

15 KNN 1.08E-06 0.0039 1.0000 1.61E-07 0.0005 0.5728
SVM 7.48E-07 0.0039 0.5513 7.48E-07 0.0039 0.5513

16 KNN 9.77E-09 0.3421 7.43E-10 6.04E-08 7.96E-09 7.96E-09
SVM 6.65E-09 0.3421 7.43E-10 6.65E-09 0.3421 7.43E-10

17 KNN 1.29E-07 3.54E-05 7.79E-09 6.64E-08 2.94E-08 7.86E-09
SVM 0.0040 0.0853 2.97E-08 0.0040 0.0853 2.97E-08

18 KNN 0.8495 0.0040 7.92E-09 0.9892 0.0005 7.95E-09
SVM 0.8707 0.0185 2.08E-07 0.8708 0.0184 2.08E-07

19 KNN 2.35E-06 0.0215 3.99E-06 4.58E-06 0.0215 5.49E-05
SVM 7.24E-06 0.0040 5.50E-05 7.24E-06 0.0040 5.50E-05

20 KNN 8.33E-08 2.08E-07 7.90E-09 7.05E-08 2.04E-07 7.73E-09
SVM 7.13E-08 2.07E-07 7.85E-09 7.13E-08 2.07E-07 7.85E-09

(b): p-values for comparing classification accuracies based on different reducts over pessimistic MGRS

ID Classifiers Algorithm 2(P) 
vs.
Algorithm 1(P)

Algorithm 2(P) 
vs.
Gap

Algorithm 2(P) 
vs.
GB

Algorithm 3(P) 
vs.
Algorithm 1(P)

Algorithm 3(P) 
vs.
Gap

Algorithm 3(P) 
vs.
GB

1 KNN 4.75E-09 4.68E-10 4.68E-10 4.32E-08 0.0015 7.49E-09
SVM 4.75E-09 4.68E-10 4.68E-10 2.47E-07 6.67E-05 6.84E-09



350	 International Journal of Machine Learning and Cybernetics (2022) 13:337–356

1 3

(1)	 No matter optimistic or pessimistic case is consid-
ered, there is a great difference between the classifi-
cation accuracies obtained by reducts related to our 
Algorithms 2–3 and those obtained by reducts related 
to conventional MGRS, gap and granular ball rough 
sets. Take “Yeast” data set as an example, whether the 
optimistic or pessimistic case is used, all of the cor-

responding p-values are lower than 0.05. Furthermore, 
by combing with the observations over Tables 2–3, we 
can conclude that our proposed model does provide 
reducts which can significantly improve the classifica-
tion performances.

(2)	 In our Triple-G model, there is a great difference 
between the classification accuracies obtained by 

Table 4   (continued)

(b): p-values for comparing classification accuracies based on different reducts over pessimistic MGRS

ID Classifiers Algorithm 2(P) 
vs.
Algorithm 1(P)

Algorithm 2(P) 
vs.
Gap

Algorithm 2(P) 
vs.
GB

Algorithm 3(P) 
vs.
Algorithm 1(P)

Algorithm 3(P) 
vs.
Gap

Algorithm 3(P) 
vs.
GB

2 KNN 7.73E-09 4.68E-10 4.68E-10 6.62E-08 0.5728 8.01E-09

SVM 7.73E-09 4.68E-10 4.68E-10 6.62E-08 5.50E-04 8.01E-09
3 KNN 4.68E-10 4.68E-10 4.68E-10 7.98E-09 1.23E-05 1.23E-05

SVM 4.68E-10 4.68E-10 4.68E-10 7.76E-09 2.14E-02 7.76E-09
4 KNN 4.68E-10 4.68E-10 4.68E-10 8.01E-09 8.01E-09 8.01E-09

SVM 4.91E-09 4.68E-10 4.68E-10 4.67E-08 8.53E-02 7.99E-09
5 KNN 2.04E-09 4.68E-10 4.68E-10 1.84E-08 5.88E-09 4.90E-04

SVM 4.91E-09 4.68E-10 4.68E-10 4.67E-08 8.53E-02 7.99E-09
6 KNN 6.38E-09 4.68E-10 4.68E-10 5.52E-08 2.03E-07 0.2528

SVM 5.20E-09 4.68E-10 4.68E-10 5.57E-08 2.06E-07 7.79E-09
7 KNN 4.75E-09 4.68E-10 4.68E-10 4.50E-08 0.7751 7.88E-09

SVM 4.75E-09 4.68E-10 4.68E-10 4.52E-08 2.53E-01 7.92E-09
8 KNN 7.79E-09 4.68E-10 4.68E-10 6.64E-08 7.99E-09 7.99E-09

SVM 6.50E-09 4.68E-10 4.68E-10 5.78E-08 2.10E-07 7.99E-09
9 KNN 4.61E-06 4.68E-10 NaN 0.6179 0.0025 6.29E-07

SVM 3.31E-09 4.68E-10 NaN 5.30E-01 1.29E-03 6.32E-06
10 KNN 4.68E-10 4.68E-10 4.68E-10 7.51E-09 7.51E-09 7.51E-09

SVM 4.68E-10 4.68E-10 4.68E-10 7.47E-09 7.47E-09 7.47E-09
11 KNN 5.65E-09 4.68E-10 4.68E-10 5.20E-08 0.0853 2.10E-07

SVM 5.65E-09 4.68E-10 4.68E-10 1.11E-06 5.49E-04 8.53E-02
12 KNN 2.04E-09 4.68E-10 4.68E-10 2.24E-05 2.94E-08 7.86E-09

SVM 2.04E-09 4.68E-10 4.68E-10 2.34E-08 5.41E-05 3.91E-06
13 KNN 7.53E-09 4.68E-10 4.68E-10 6.49E-08 5.50E-05 8.01E-09

SVM 2.04E-09 4.68E-10 4.68E-10 2.34E-08 5.41E-05 3.91E-06
14 KNN 6.66E-09 4.68E-10 4.68E-10 5.79E-08 7.12E-03 7.82E-09

SVM 2.08E-09 4.68E-10 4.68E-10 2.36E-08 1.36E-01 7.70E-09
15 KNN 7.55E-09 4.68E-10 4.68E-10 6.45E-08 0.0005 0.7810

SVM 7.44E-09 4.68E-10 4.68E-10 6.39E-08 2.53E-01 5.73E-01
16 KNN 2.67E-09 4.68E-10 4.68E-10 2.93E-08 7.99E-09 1.00E+00

SVM 2.67E-09 4.68E-10 4.68E-10 2.94E-08 4.02E-03 1.00E+00
17 KNN 6.16E-09 4.68E-10 4.68E-10 1.64E-03 7.88E-09 7.78E-02

SVM 2.67E-09 4.68E-10 4.68E-10 2.94E-08 4.02E-03 1.00E+00
18 KNN 7.49E-09 4.68E-10 4.68E-10 6.36E-08 0.2531 3.94E-06

SVM 4.68E-10 4.68E-10 4.68E-10 3.71E-06 5.19E-05 5.19E-05
19 KNN 3.99E-09 4.68E-10 4.68E-10 3.99E-08 1.0000 4.02E-03

SVM 3.99E-09 4.68E-10 4.68E-10 3.99E-08 5.73E-01 8.54E-02
20 KNN 6.31E-09 4.68E-10 4.68E-10 5.19E-08 3.72E-06 7.17E-09

SVM 6.31E-09 4.68E-10 4.68E-10 5.47E-08 8.50E-02 7.66E-09
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Fig. 2   The elapsed time of deriving reducts
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Fig. 2   (continued)
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reduct related to our pessimistic case and that obtained 
by reduct related to optimistic case. For example, when 
the Algorithm 2 and Algorithm 1 are compared, over 
20 data sets, the p-values of 4 data sets are greater than 
0.05 in optimistic case. Similarly, the p-value of all the 
data sets are lower than 0.05. Furthermore, by combing 
with the observations over Tables 2–3, we can conclude 
that our proposed model in the pessimistic case can 
improve the classification performance better.

4.3 � Comparisons of elapsed time

In this experiment, the elapsed time of obtaining reduct by 
using two different algorithms in optimistic and pessimistic 
cases will be compared.

With a deep investigation of Fig. 2, it is not difficult to 
observe the follows. 

(1)	 In most cases, by comparing with optimistic Triple-G 
MGRS, the pessimistic Triple-G MGRS requires more 
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Fig. 2   (continued)
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elapsed time for deriving reduct. Take “Dermatology” 
data set as an example, in Fig. 2, if � = 0.2 , the elapsed 
time of obtaining reduct related to pessimistic Triple-G 
MGRS is 11.9529 s, it is superior to the elapsed time of 
obtaining reduct related to optimistic Triple-G MGRS, 
i.e., 4.5848 s.

(2)	 By comparing with Algorithm  2, Algorithm  3 is 
designed based on the consideration of accelerating the 
process of obtaining reduct by Triple-G MGRS. There-
fore, such improved algorithm can significantly reduce 
the elapsed time of obtaining reduct. Take “Waveform 
Database Generator(Version 1)” data set as an exam-
ple, in Fig. 2, if � = 0.2 , the elapsed time of obtaining 
reducts related to optimistic and pessimistic Triple-G 
MGRS, i.e., 680.0876 and 869.5392 s, it is superior to 
the elapsed time of obtaining reducts related to opti-
mistic and pessimistic Triple-G MGRS with attribute 
grouping, i.e., 442.3297 and 353.2678 s.

(3)	 From discussions above, we can conclude that the time 
consumption of obtaining reduct will be effectively 
reduced by introducing the acceleration mechanism. 
Furthermore, through combing the analyses shown in 
both Sects. 4.2 and 4.3, either optimistic or pessimistic 
case is considered, the improved Algorithm 3 can effec-
tively reduce the time consumption of obtaining reduct 
without reducing the classification performance.

5 � Conclusions and future perspectives

In the field of researching MGRS, to characterize the uncer-
tainty of the target in terms of multi-view based heteroge-
neous information granulation, a Triple-G MGRS is devel-
oped. Different from previous models, our proposed model 
is actually constructed by using both the parameterized and 
data-adaptive information granulations. Therefore, our Tri-
ple-G MGRS presents not only the principle of multi-view, 
but also the mechanism of heterogeneous information granu-
lation. Additionally, by considering the efficiency of search-
ing Triple-G MGRS based reduct, an acceleration strategy 
called attribute grouping is introduced into the procedure 
of forward greedy searching. The experimental results have 
not only demonstrated the effectiveness of our new model 
in terms of the classification ability, but also verified the 
effectiveness of our accelerator for quickly deriving reduct. 
The following topics deserve our further investigations. 

(1)	 In this paper, we have only used three neighborhood 
related techniques for realizing heterogeneous informa-
tion granulation, diversified forms for obtaining infor-
mation granulations will be further selected and used 
in our future study.

(2)	 Though the attribute grouping strategy can significantly 
reduce the time consumption of obtaining our Triple-G 
MGRS based reduct, such accelerator is only designed 
based on the perspective of sample, it can be further 
improved by combining both the sample and attribute 
based perspectives.
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