
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2022) 13:255–268 
https://doi.org/10.1007/s13042-021-01399-1

ORIGINAL ARTICLE

Domain adaptive attention‑based dropout for one‑shot person 
re‑identification

Xulin Song1,2 · Zhong Jin1,2 

Received: 23 December 2020 / Accepted: 26 July 2021 / Published online: 7 August 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Cross-domain person re-identification (re-ID) has attracted much attention due to its wide applications in the field of computer 
vision and surveillance. However, the domain shift issue leads to unsatisfactory generalization performance of a model on 
an unseen target domain when the model is trained on the source domain. Current methods usually adopt clustering methods 
to assign pseudo labels for unlabeled target images, resulting in high dependence on the performance of clustering method. 
In this paper, we firstly focus on extracting universal domain-adaptive features by designing a domain-adaptive-attention-
based-dropout (DAAD) layer. DAAD layer is achieved by a universal attention-based dropout adapter (ADA) bank to hide 
the most discriminative region stochastically and a domain attention module to assign weights to the two domains (source 
and target). Then two feature memories are introduced according to one-shot learning in which only one image is annotated 
for each target identity. These two memories are designed to store target features from labeled and unlabeled images, respec-
tively. The labeled feature memory is leveraged to estimate pseudo labels for these unlabeled images while the unlabeled 
feature memory aims to maximize distances between all the unlabeled images and minimize distances between similar 
images simultaneously. Extensive experiments on three re-ID datasets (DukeMTMC-reID, Market-1501, and MSMT17) 
demonstrate that the proposed model is effective to improve the domain adaptation performance than existing techniques.

Keywords Domain adaptation · Attention · One-shot learning · Person re-identification

1 Introduction

Person Re-identification (re-ID) [3, 42] aims to match peo-
ple across non-overlapping surveillance camera views. It 
embraces many applications due to its great potential for 
video surveillance and public security. Despite the impres-
sive advancements have been witnessed [39] by convolu-
tional neural networks (CNNs) [16, 17, 28, 33, 40] in recent 
years, person re-ID is still challenging towards its practi-
cal applications [10, 24]. The key problem is domain shift 

caused by illuminations, backgrounds, occlusions, and cam-
era conditions, among many others. Concretely, these re-ID 
models trained on source domain suffer large performance 
degradation when tested on target domain [8, 12]. Here, each 
dataset is regarded as a distinct domain in the community of 
person re-identification.

To tackle the domain shift problem, there are two main 
solutions. The first and the most straightforward is to col-
lect enough labeled data of target domain for supervised 
training. However, it is expensive and laborious to col-
lect and annotate such a large-scale dataset, resulting in 
the seriously limited practicability for actual applications. 
The second and the most used is unsupervised domain 
adaptation (UDA) method which trained on labeled source 
domain together with unlabeled target domain then tested 
on target domain [26, 38]. In the conventional settings of 
UDA, most approaches are mainly designed for a closed-
set scenario and always have an assumption that the source 
and target domain share the same label space, i.e. the two 
domains have identical classes. However, this assumption 
is invalid to person re-ID problem since different re-ID 
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datasets have completely different identities. Therefore, 
UDA for person re-ID task is more challenging. In this 
work, we are dedicated to learning discriminative and 
robust features that domain-sensitive for effective cross-
domain person re-ID.

In person re-ID, the local features of body regions without 
extra background noise are obviously more discriminative 
compared to these global features from the whole images. 
Attention mechanism which is designed to help the networks 
focus on the most discriminative regions has been widely 
introduced into person re-ID [4, 20, 36, 43]. The perfor-
mance gain achieved by existing attention models proved 
that erasing these background noise can increase the perfor-
mance of person re-ID. However, their cases are only suit-
able for one domain. In the situation of domain adaptation, 
only leveraging the discriminative region with completely 
remove background may probably lead overfitting on the 
source domain. Inspired by the success of these attention 
models, we rethink the attention to combine with domain 
adaptation. A model will be designed in which it not only 
can remove the background noise but also can address the 
problem of domain shift.

To learn robust and universal person features for the tar-
get domain, we propose a domain-adaptive-attention-based-
dropout (DAAD) layer to extract universal domain-adaptive 
features and further improve re-ID performance in the target 
domain. DAAD layer is composed of two key components: a 
universal attention-based dropout adapter (ADA) bank and 
a domain attention (DA) module. The ADA bank generates 
two attention-based dropout adapters to produce domain-
sensitive features. Each ADA generates a discriminative map 
and a drop map to help the network to focus on the most 
discriminative region or not. The domain attention module is 
designed to assign weights to the domain-sensitive features 
from the bank so as to enable the adapters are specialize on 
individual domains. In this way, DAAD layer can be repre-
sented as an atomic domain adaptation unit which utilized 
to build domain detectors in this work.

To predict pseudo labels for the unlabeled images in the 
target domain, we introduce two feature memories, namely 
labeled memory and unlabeled memory. The two feature 
memories store the features of all the labeled and unlabeled 
images, respectively. They are updated according to the new 
features learned from each iteration. Concretely, the memory 
that stores labeled image features is used to compute the 
similarity between each unlabeled image and each labeled 
image and then assign a pseudo label for the unlabeled 
image. The memory that saves the unlabeled image feature 
treats each image as an individual identity together with 
keeping clusters in the target domain. During the iteration, 
we adaptively maximize the distances between unlabeled 
images and minimize the distances between these similar 
images for the unlabeled images in the target as [9].

The main contributions can be summarized in the follow-
ing twofolds. (1) We propose a domain-adaptive-attention-
based-dropout (DAAD) layer to generate domain sensitive 
features. It contains a universal attention-based dropout 
adapter bank that can specialize on individual domains and 
a domain attention module to assign different network acti-
vations for different domains. DAAD layer is also plug-and-
play and can predict the domain of images automatically, the 
domain of interest therefore is not required in advance. (2) 
We design two feature memories in the target domain for 
one-shot learning. The labeled feature memory is utilized to 
predict pseudo labels for the unlabeled images, the unlabeled 
feature memory adaptively keep clusters in the unlabeled 
images for the target domain.

2  Related works

2.1  Unsupervised person re‑ID

Supervised re-ID methods have made great progress benefit-
ing from the rapid advancement of deep CNNs [16, 17, 28, 
40] and sufficient labeled data. In addition, graph convolu-
tional network [25] based method is also proposed for person 
re-identification, in which each person image is regarded as a 
node of the graph. However, supervised learning is impracti-
cal in real-world applications due to intensive labeling costs. 
This motivates the research into an unsupervised manner. 
Some works [11, 21] add additional auxiliary information, 
eg. facial landmarks or pose estimation, for unsupervised 
person re-ID. Some unsupervised re-ID works focus on one 
dataset and need no additional information [23, 35]. In [23], 
a bottom-up clustering method (BUC) is proposed which 
jointly optimizes the CNNs and the relationship between 
images. Recently, transfer learning has been introduced 
into unsupervised person re-ID [12, 32] in which all utilize 
transferable information from an external source domain. 
This work follows the setting that addresses person re-ID by 
introducing a labeled source domain.

2.2  Unsupervised domain adaptive person re‑ID

This work is related to unsupervised domain adaptation 
(UDA) method which transfers discriminative re-ID infor-
mation from labeled source to unlabeled target domain. 
Some works for addressing UDA by reducing the discrep-
ancy [14, 15] between the two domains or by learning an 
adversarial domain-classifier [2, 30]. However, these UDA 
approaches are usually based on an assumption that the class 
space is identical in both source domain and target domain, 
while this is not applicable in person re-ID community. 
Benefiting from the great progress of deep learning, some 
recent deep learning-based unsupervised domain adaptation 
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methods for re-ID task [8, 13, 47, 48] have emerged. In [8], it 
proposed a similarity preserving generative adversarial net-
works (SPGAN) to translate the images from source domain 
into target domain. Zhong et al. [47] aim to improve the 
generalization ability by the proposed Hetero–Homogeneous 
Learning (HHL) method which can achieve camera invari-
ance and domain connectedness simultaneously. Fu et al. 
[13] propose a Self-similarity Grouping (SSG) method to 
harness the similar characteristics between images in the 
target domain. Zhong et al. [48] investigate into three intra-
domain invariances of the target domain to achieve effective 
domain adaptation accuracy. In [6], an unsupervised domain 
adaptive person re-identification method, style transfer re-
identification (STReID), is proposed to solve the potential 
image distinctions between different domains. In this work, 
the domain attention adaptive based dropout layer aims to 
capture the domain-sensitive feature and achieves competi-
tive performance on domain adaptive person re-ID.

2.3  Attention model in person re‑ID

Attention has been found effective in person re-ID task [4, 
20, 36, 43]. Li et al. [20] propose a Harmonious Attention 
CNN (HA-CNN) which jointly learn soft pixel attention 
and hard regional attention along with the optimization of 
feature representations. Chen et al. [4] propose an Atten-
tive but Diverse Network (ABD-Net) by integrating atten-
tion mechanism and diversity regularization into a network 
to learn robust and discriminative features. In [36], Bryan 
et al. directly leverage second-order feature statistics to 
model long-range relationship between feature maps for 
person re-ID. Zheng et al. [43] propose a Consistent Atten-
tive Siamese Network (CASNet) to address cross-view 
matching issues, eg. spatial localization and view-invariant 
representation learning in person re-ID. In [19], a spatial 
softmax is leveraged to calculate the attention weights. The 
stacked multimodal attention network (SMAN) [18] utilizes 
the stacked multimodal attention mechanism to compute 
the cross-modal similarity. These methods typically utilize 
attention to enlarge the representation power in one domain, 
we propose the DAAD layer which provides a new view-
point on learning domain-sensitive features in source and 
target domains for person re-ID.

2.4  One‑shot re‑ID

There are some recent works for one-shot person re-identi-
fication [1, 13, 35] which only leverage one labeled image 
for each identity and the rest images are unlabeled during 
training. The transfer local relative distance comparison 
(t-LRDC) [44] method introduces the one-shot group-based 
verification to address the open-world person re-identi-
fication. Wu et al. [35] propose a progressive model that 

gradually predicts the pseudo labels for the unlabeled data 
for person re-ID with one labeled image. In [13], Fu et al. 
exploit the similarity between unlabeled images to generate 
clusters automatically and propose a clustering-guided self-
similarity Grouping (SSG) approach to conduct one-shot 
domain adaptation for person re-ID. Bak et al. [1] split the 
person images into texture and color by leveraging a single 
pair of ColorChecker images which capture the differences 
between camera color distributions. This work differs from 
these works in that we introduce two feature memories to 
store features from the labeled images and the unlabeled 
images during training.

3  The proposed method

This paper aims to address domain adaptation problem for 
one-shot person re-ID. In the context of one-shot learning in 
re-ID, there is a fully labeled source domain S = {(xs

i
, ys

i
)}

NS

1
 

which includes NS person images and each image xs
i
 associ-

ated with a corresponding identity ys
i
∈
{
1, 2,… ,PS

}
 , where 

PS is the number of identities in the source domain. There 
also is a target domain T = {xt

i
}
NT

1
 with NT person images. 

Specially, T can be split into two sub-datasets T = TL ∪ TU 
where TL is the dataset with one labeled image for each 
identity and TU is the dataset with the remaining unlabeled 
images. In general, identities from the source domain and 
the target domain are completely different and they also have 
different distributions. The goal of this work is to leverage 
the labeled source domain data, the labeled one-shot target 
data and the unlabeled target data to learn discriminative 
embeddings to generalizes well on the target test data.

3.1  Overview of the proposed framework

The framework of the proposed method is illustrated in 
Fig. 1. In our method, the inputs are sampled from the 
following three aspects, namely labeled source images, 
labeled one-shot target images and unlabeled target 
images. First, the inputs are fed into a backbone network 
ResNet-50 [16] which has pre-trained on ImageNet [7]. 
Concretely, we keep the layers of ResNet-50 till the pool-
ing-5 layer. Then, a domain-adaptive-attention-based-
dropout (DAAD) layer is plugged to further extract 
domain-related discriminative features. DAAD layer will 
be elaborated in Fig. 2. Furthermore, the features are all 
fed into an FC-Block which consists of global average 
pooling (GAP), fully connected layer (FC), batch normali-
zation (BN), and ReLU activation. Finally, features from 
the labeled source are fed into a classification module fol-
lowed with an NS-dimensional FC layer and a softmax acti-
vation for supervised learning. The features from the target 
then fed into the following two components for one-shot 
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learning. Each component contains a memory module to 
save the up-to-date features for the labeled and unlabeled 
target images, respectively. The labeled memory is used to 
estimate pseudo label for the unlabeled image. While the 
unlabeled memory is designed to estimate the similarities 
between images in each mini-batch and the whole unla-
beled images saved in the memory. Both the two memory 
modules have the same mechanism and will be elaborated 
in the following sections.

3.2  Domain adaptive attention based dropout layer

In this section, we will introduce our proposed domain-
adaptive-attention based-dropout (DAAD) layer which has 
domain sensitivity and is able to adapt to different domains 
automatically as shown in Fig. 2. DAAD layer focuses 
on extracting universal domain-adaptive features from the 
source and target domains. It is achieved by a universal 
attention-based dropout adapter (ADA) bank to hide the 

b

Fig. 1  The architecture of our proposed approach. DAAD layer denotes the proposed domain adaptive attention-based dropout layer. GAP means 
global average pooling and FC is fully connection.

Fig. 2  The architecture of our proposed domain-adaptive-attention-based-dropout (DAAD) layer.
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most discriminative region stochastically and a domain 
attention module to assign weights to the source and target 
domain. In the proposed universal DAAD layer, all param-
eters and computations are shared across domains, and a 
single network processes all domains all the time. The 
ADA bank and domain attention module will be elaborated 
in the following subsections.

Universal AD Adapter Bank is used to construct a 
universal representation space. It is implemented by con-
catenating outputs of the two individual attention-based 
dropout adapters

where Fi
AD

 is the output of each attention-based dropout 
adapter that will be elaborated next. Regarding to the two 
domains, i.e. source and target, there will have two adapters. 
Each adapter has the same structure and projects the inputs 
to the statistics of a particular domain.

Attention-based dropout adapter induces the mod-
ule to learn the most discriminative region and the entire 
region of person simultaneously. It first produces an atten-
tion map from the input, then generates a discriminative 
map and a drop map. As discussed in [5], the discrimi-
native map rewards the most discriminative region to 
improve the classification accuracy. Meanwhile, the drop 
map penalizes the most discriminative region to induce the 
module to cover the entire region of people. In the training 
process, one of the two maps is stochastically selected.

Given the input feature map Fx ∈ ℝ
C×H×W  , where C, 

H, W are the number of channels, height, and width, 
respectively. First, we get the attention map A ∈ ℝ

1×H×W 
by leveraging average pooling on Fx along with the chan-
nel-wise. Then the discriminative map Mdcm ∈ ℝ

1×H×W is 
generated by utilizing the sigmoid function on the atten-
tion map. In this way, the intensity in the most discrimi-
native region is near to 1 and the discriminative features 
can be preserved. To get the discriminative map and the 
drop map, we introduce two hyper-parameters, � and 
drop_rate , where � commands the region size that to be 
dropped while drop_rate controls the frequency that the 
drop map is used. Based on the attention map, we use � 
to get a drop threshold Tdrop = Imax × � where Imax is the 
maximum intensity in the attention map A. Then the drop 
map Mdrop ∈ ℝ

1×H×W is generated by setting the intensity 
to 0 if it is larger than Tdrop . Otherwise, it is set to 1. After 
this operation, the most discriminative region is hided 
when the intensity is 0 in the drop map. However, if the 
drop map is applied in each iteration, the module cannot 
observe the most discriminative region during training and 
would result in poor classification performance. As a rem-
edy, the drop map is selected stochastically according to 
the drop_rate . The drop map and the discriminative map 

(1)FUB =
[
F1
AD
,F2

AD

]
∈ ℝ

2×W×H

are applied alternatively. When the drop map is applied, 
the discriminative map is hidden and vice versa.

The domain attention module is proposed to achieve 
domain sensitivity. It produces a domain-sensitive set of 
weights to combine the proposed two attention-based drop-
out adapters. Specifically, the domain attention module 
learns to assign network activations to different domains 
and soft-rout their responses by the domain attention mod-
ule. This enables the adapters to specialize on individual 
domains.

To get the weights in proper dimensions, we first apply 
a global average pooling on Fx to remove the influence of 
spatial position. Then follows with a liner layer and softmax 
layer as in Fig. 2

where Fgap denotes the global average pooling operation 
and Wl is the weights in the FC layer. After the softmax 
layer, WDA is utilized to weight the two adapters FUB , then 
the domain adaptive responses are generated

where Mean(⋅) is average operation on the feature map.
Inspired by the residual learning and identity mapping in 

the ResNet [4] which is known as identity skip connection 
(shortcut), we then utilize the identity skip connection for 
avoiding the gradient degradation. Therefore, the output of 
DAAD layer can be denoted as

where � is the sigmoid activation and ⊗ denotes the channel-
wise multipication.

3.3  Feature memory module

Inspired by [9, 48], we introduce the memory module to pre-
dict the pseudo label along with calculating the similarities 
between the unlabeled target images during training.

Considering we have a target domain contains NT 
images and PT person. After the FC-Block, each image is 
equipped with a d-dimensional vector. The labeled memory 
ML ∈ ℝ

PT×d and the unlabeled memory MU ∈ ℝ
NTU×d will 

save the corresponding features and be updated after each 
training epoch. PT is the number of the identities in the target 
domain and also is the number of images in one-shot labeled 
target domain dataset. NTU = NT − PT denotes the number of 
the rest unlabeled images in target domain. Both the memo-
ries initialized with zeros. Since the labeled memory and 
the unlabeled memory have the same setting except for their 
size. For simplicity, we record both memories as M. The 
index in M corresponds to the image index in the labeled 

(2)WDA = softmax
(
WlFgap

(
Fx

))

(3)FDA = Mean(FUBWDA) ∈ ℝ
1×H×W

(4)Fout = Fx + Fx ⊗ 𝜎
(
FDA

)
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or unlabeled dataset, namely, M[i] is the feature of the ith 
image. In the forward-propagation, we obtain stored features 
that can be used to compute the similarity between images 
within mini-batch and labeled or unlabeled images from the 
memory. During the back-propagation, the memory M is 
updated as [9, 48] by M[i] = � ×M[i] + (1 − �) × �

(
xi
)
 , 

� ∈ [0, 1] is a hype-parameter which controls the update rate 
of memory, and �

(
xi
)
 is features extracted from the current 

iteration. According to our experiment results, we find that 
an increasing � is superior to a fixing � . In the initializa-
tion, M is set to zeros and a smaller � is set to accelerate the 
update rate at the beginning of training.

3.4  Supervised learning for the labeled source 
domain

Due to the available identities in the source domain, we can 
train the source domain in the supervised learning way. 
G i v e n  t h e  NS  s o u r c e  d o m a i n  i m a g e s {(

xs
1
, ys

1

)
,
(
xs
2
, ys

2

)
,… ,

(
xs
NS
, ys

NS

)}
 , S denotes the source 

domain. As a classification task, the probability that image 
xs
i
 belongs to the identity ys

i
 can be formulated as the com-

mon used softmax function

where �(⋅;W) denotes the ith logit of the output from the 
network given image xs

i
 , PS denotes the number of identities 

in the source domain and W is the network-related weights. 
Then the supervised loss by cross-entropy loss is defined as

3.5  One‑shot learning for the target domain

In this subsection, we introduce one-shot (OS) learning for 
the target domain. After feature extraction for the target 
images, there are two branches and each has a memory. For 
the unlabeled images within each mini-batch, the first branch 
aims to predict pseudo label through leveraging the labeled 
features stored in the labeled memory, the second branch 
minimizes the similarity among all the unlabeled images 
together with maximizing the similarity between similar 
images.

There is the target domain T = TL ∪ TU  , where 
TL =

{
xtl
1
,… , xtl

PT

}
 , TU =

{
xtu
1
,… , xtu

NTU

}
 . As described in 

Fig. 1, we obtain the labeled features

(5)p
�
ys
i
�xs

i

�
=

exp
�
�
�
xs
i
;W

��
∑PS

j
exp

�
�

�
xs
j
;W

��

(6)Lsrc = −
1

NS

NS∑
i=1

log p
(
ys
i
|xs

i

)

FTL =
{
f tl
1
,… , f tl

PT

}
 a n d  u n l a b e l e d  f e a t u r e s 

FTU =
{
f tu
1
,… , f tu

NTU

}
 from FC-block. Based on the labeled 

memory ML ∈ ℝ
PT×d , we can calculate the similarity 

between each unlabeled image within mini-batch and all 
the labeled images. Here, we utilize the cosine distance as 
similarity, where the bigger distance means the more simi-
larity according to cosine similarity. Then the similarity 
matrix can be denoted as

where b is the size of each mini-batch. For each image 
within mini-batch, we assign the label of the most similar 
labeled image as its pseudo label

However, it is not reliable only use the label of its nearest 
neighbor as pseudo label. Suppose the pseudo label of image 
xtu
i

 from Eq. (7) is yi , so the unlabeled image is the most 
unlikely to share the same identity with another unlabeled 
image who has the smallest distance to the labeled image 
labeled yi . For a specific labeled image, the unlabeled image 
with the largest distance and the unlabeled image with the 
smallest distance have the minimum probability to share the 
same identity. To enlarge the confidence of pseudo label, we 
introduce a confidence term as

when smin(i) and siyi are closer, wi will be closer to 0. That 
means, the pseudo label for xtu

i
 is not reliable. Otherwise, if 

smin(i) is far away from siyi , then wi will be close to 1 and the 
pseudo label is reliable. So the loss function for one-shot 
prediction will be

where p(k�xt
i
) =

exp(�(xt
i
;W)⋅(ML[i])

T∕�)
∑NTU

j
exp(�(xt

j
;W)⋅(ML[j])

T∕�)
 , �(⋅;W) represents 

the embedding feature extracted from the network, W 
denotes the network weights and ML[i] is the ith labeled 
image feature stored in the labeled memory. The � ∈ (0, 1] 
denotes temperature fact to balance the distribution.

(7)S =

⎡
⎢⎢⎢⎢⎣

s11 s12 ⋯ s1PT

s21 s22 ⋯ s2PT

⋯ ⋯ ⋱ ⋯

sb1 sb2 ⋯ sbPT

⎤
⎥⎥⎥⎥⎦

(8)yi = argmax
j=1,…,PT

sij (i = 1,… , b)

(9)smin(i) = min
k=1,…,b

skyi

(10)wi = 1 −
smin(i)

siyi

(11)Lnsht = −
1

NTU

NTU∑
i=1

wi log p
(
k|xt

i

)
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The goal of the second branch is to minimize the simi-
larity among all the unlabeled images while maximizing 
the similarities between similar images. Inspired by [9], 
we introduce the adaptive selection mechanism. To mini-
mize the similarity among all the unlabeled images, each 
unlabeled image is assumed as an individual class

Here, the index of each unlabeled image is regarded as its 
pseudo label.

For each unlabeled image, there may exist some posi-
tive images that share the same identity. Here, we assume 
that the unlabeled image and its neighborhoods belong to 
the same identity. Neighborhoods are adaptively selected 
by a similarity threshold � , i.e. the image will be selected 
as neighborhood only if its distance to the given unlabeled 
image is larger than the similarity threshold � . The selec-
tion is formulated as [9] by minimizing the loss

where vj
i
∈ {0, 1} is the selection indication vector. If 

s
(
𝜙
(
xt
i
;W

)
,M[j]

)
> 𝛾 , vj

i
= 1 and indicates that j-th image 

is selected into neighborhood. Otherwise, it is not selected 
into neighborhood. Here, the similarity threshold � is set to 
0.55. By minimizing Las , similar images in the target are 
forced to stay closer.

To ensure the number of neighborhoods for each unla-
beled image is almost equal, the balance loss is formu-
lated by integrating an balance term in Eq. (13)

(12)Lmax = −
1

NTU

NTU∑
i=1

log p(i|xt
i
)

(13)Las = −
1

NTU

NTU∑
i=1

NTU∑
j=1

v
j

i
log p

(
j|xt

i

)

where ‖‖vi‖‖1 represents the number of neighborhoods for 
image xt

i
 , and �(⋅) means the binary selector function. Espe-

cially, ‖‖vi‖‖1 =1 means the image has no selected neighbor-
hoods and �(⋅)=0, while ‖‖vi‖‖1 > 1 means the image has 
selected neighborhoods and then �(⋅) = 1 . The sum of the 
losses between images and its neighborhoods depends on the 
number of neighborhoods. When the number of selected 
neighborhoods is too large, the sum of their losses is large. 
The balance term 1

‖vi‖1
log‖vi‖1

 is therefore punished heavily 

and the sum of the losses is decreased. Otherwise, it pun-
ishes slightly. As a consequence, each image will attract 
relatively similar number of neighborhoods.

3.6  Final loss

The final loss function combines the supervised learning for 
source domain, the one-shot loss for estimating pseudo label 
and the adaptive selection with balance strategy loss

where � ∈ [0, 1] controls the importance of the source loss 
and the target loss. Lsrc is the supervised loss of the source 
domain, Lnsht denotes the one-shot loss for the target domain, 
and Lasb represents the neighbor selection loss. Algorithm 1 
shows the detailed training procedure of the proposed 
method.

(14)Lasb = −
1

NTU
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4  Experiments

4.1  Datasets and evaluation protocol

Datasets We evaluate our method on three re-ID datasets, 
DukeMTMC-ReID [45], Market-1501 [41] and MSMT17 
[34]. DukeMTMC-ReID [45] is a sub-dataset of Duke-
MTMC [27] and collected from eight cameras for 1404 
identities. It has 16522 training images with 702 identities, 
while 2228 query images and 17661 gallery images with 
the rest 702 identities. Market-1501 is composed of 1501 
identities from six camera views. There are 12936 images 
of 751 identities for training, 3368 query images and 19732 
gallery images of 750 identities for the test. MSMT17 is 
the largest public-available benchmark currently. It includes 
4101 identities from a 15-camera system. The training set 
contains 32621 images from 1041 identities and the test set 
includes 11659 images in query and 82161 images in gallery.

Evaluation protocol During training, we leverage a data-
set as labeled source domain while another dataset as the 
unlabeled target domain. In testing, we evaluated our method 
on the target test set by Mean Average Precision (MAP) 
and Cumulative Matching Characteristic (CMC) which used 
rank1, rank5, rank10 as metrics. To be fair, we did not utilize 
the re-Ranking [46] algorithm.

4.2  Implementation details

The proposed method is implemented on Pytorch. With the 
backbone ResNet-50 [16] pre-trained on ImageNet [7], we 
plug our DAAD layer after the layer-4 layer of ResNet-50 
for demonstrating its re-ID performance. After the DAAD 
layer, we obtain features by adding an FC-Block which con-
sists of a fully-connected layer, batch normalization, ReLU 
activation, and dropout. After feature extraction, the images 
from the source are fed into a classifier which composed of 
FC and softmax for supervised learning. For these target 
images, the labeled images are stored in a labeled feature 
memory to estimate pseudo labels for the unlabeled images. 
The unlabeled images will be stored in an unlabeled feature 
memory. Initially, images are all resized to 256 × 128 . Dur-
ing training, we perform random cropping, random flipping 
and random erasing for both source and target domains. In 
order to enhance the robustness and reduce the impact of 
camera invariance, we adopt CamStyle [49] as data augmen-
tation in the target domain.

As is well known, there is at least one image can be 
acquired from each camera of each identity. So we randomly 
select one image from camera_1 of each identity to consti-
tute the labeled data set. During training, We fixed the first 
two residual layers of ResNet-50 to save the GPU memory. 
The last stride size of the last residual layer is set to 1 to 

enlarge the spatial resolution. In our experiments, the num-
ber of training iteration and the batch size are set to 50 and 
128 respectively. The weight decay and momentum for Sto-
chastic Gradient Descent (SGD) optimizer are set to 5 × 10−4 
and 0.9, respectively. The learning rate was initially set to 
0.1 and will multiply 0.1 after 40 epochs. We also have the 
following hyper-parameters. Without specification, we set 
the initial update rate � to 0.01 for both memories, and then 
increases it linearly as � = 0.01 × epoch . We set � to 0.85 for 
the region size to drop. For the importance of these losses, 
it is controlled by � which is set to 0.3. The temperature fact 
� is set to 0.05.

In the community of person re-identification, the dataset 
usually include training set and test set, and the test set con-
sists of query set and gallery set. Based on the above model 
design and parameter setting, the training process is per-
formed by feeding the labeled source training set images and 
the one-shot target training images into the model. Accord-
ing to the experimental results, the model tends to converge 
after 50 epochs training iteratively. Then the target testing 
set (query and gallery) is fed into the optimized model to test 
the performance by compute the similarity between query 
images and the gallery images.

Table 1  The impact on performance of the number of adapters in 
DAAD layer.

The best performance is shown in bold

Adapter 
number

Duke → Market Market→ Duke

MAP(%) R1(%) MAP(%) R1(%)

1 59.3 83.4 46.0 67.6
2 59.4 84.4 47.6 69.0
3 57.3 82.6 46.6 68.0
4 57.7 82.8 47.3 68.6

Table 2  The impacts on performance with applying DAAD layer in 
different network levels

“N/A” denotes that the proposed DAAD layer is not plugged in the 
network
The best performance is shown in bold

DAAD layer pluged Duke → Market Market→ Duke

MAP (%) R1 (%) MAP (%) R1 (%)

N/A 57.0 82.2 45.9 68.0

layer-1+ 58.1 82.5 45.4 67.6
layer-2+ 57.9 83.0 46.1 68.1
layer-3+ 58.7 83.4 45.3 66.3
layer-4+ 59.4 84.4 47.6 69.0
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4.3  Parameter analysis

In this subsection, we leverage the pre-trained ResNet-50 
as our backbone network. We analyze the impact on per-
formance of the position that DAAD layer is plugged and 
these important hyper-parameters in our method. During our 
experiments, we change one parameter while keeping the 
others fixed.

Impact of the number of adapters in DAAD layer We 
claim that two adapters are used in DAAD layers according 
to the number of domains. To verify the suppose, the impact 
on performance of the number of adapters in DAAD layer 
is summarized in Table 1. We can conclude that in both 
cases, Duke transfer to Market and Market transfer to Duke, 
the best performance can be obtained when the number of 
adapters is equal to two. This suggest that the best perfor-
mance emerges when the number of the adapters is identical 
with the number of domains.

The impact of applying DAAD layer at different lay-
ers. Since the DAAD layer is plug-and-play, we plug DAAD 
layer from low-level layers to high-level layers. The impacts 
on performance are recorded in Table 2. From Table 2, 
applying DAAD layer can increase both the MAP and rank-1 
accuracy when Duke is transferred to Market. Especially, 
MAP and rank-1 accuracy can be increased except for plug-
ging it after layer-1 when Market is transferred to Duke. The 
best performance can be achieved by applying DAAD layer 
after layer-4. This indicates that high-level layers are more 
related to class-specific features while lower-level feature 
maps are general.

The effect of drop_rate Evaluation with different values 
of drop_rate on MAP and rank-1 accuracy displayed as in 
Table 3. We observed that the best performance with MAP 
and rank-1 accuracy can be achieved when drop_rate is 0.15. 
While the MAP and rank-1 accuracy have a large degra-
dation when the drop map is leveraged at every iteration, 
i.e. the probability of drop map is 100%. This is because 
the model never observed the most discriminative regions. 
Meanwhile, We also observed that the MAP and rank-1 
accuracy decreases as the drop_rate increases. The perfor-
mance is poor when the discriminative map is adopted with 
probability 100% due to the model overfits on the source 
domain. To evaluate the effect of the discriminative map 

Table 3  Performance according to drop_rate

“N/A” represents either the “Drop Map” or the “Discriminative Map” 
is not applied or both of them are not applied
The best performance is shown in bold

Drop Map (%) Discrimina-
tive Map 
(%)

Duke → Market Market → Duke

MAP (%) R1 (%) MAP (%) R1 (%)

0 100 57.5 82.2 45.8 67.5
10 90 57.8 83.3 45.1 67.1
15 85 59.4 84.4 47.6 69.0
20 80 56.6 82.7 45.9 67.8
30 70 57.7 82.7 46.3 67.2
40 60 56.9 81.8 45.2 67.1
50 50 56.6 81.1 45.1 67.2
60 40 56.3 80.8 44.9 67.0
70 30 55.7 81.2 43.8 66.5
80 20 55.4 80.5 44.0 66.1
90 10 55.8 80.3 43.2 65.8
100 0 52.1 81.3 42.0 65.4
N/A N/A 57.0 82.2 45.9 68.0
15 N/A 57.5 82.7 44.6 66.8
N/A 85 58.2 83.3 45.7 67.6

Fig. 3  Effect on performance of 
the losses importance: �
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and the drop map, we deactivating them respectively. From 
the lower part of Table 3, we conclude that only applying 
the drop map or the discriminative map with the best prob-
ability achieves relatively lower MAP and rank-1 accuracy 
than applying them at the same time.

The importance of losses � To investigate the effect by � 
in Eq. (15), different values are employed as shown in Fig. 3. 
When � = 0 , the model is regarded as the direct transfer 
(DT) that the model is only trained on the labeled source. It 
is obvious that our method ( 𝛼 > 0 ) significantly improves 
the performance at all these values. Besides, our method out-
performs the DT method by a large margin when the model 
is only trained on the unlabeled target ( � = 1 ). Besides, the 
best performance can be achieved when � = 0.3 both for 
Duke is transferred to Market and Market is transferred to 
Duke. This demonstrates the effectiveness of our method.

4.4  Performance evaluation

To evaluate the effectiveness of our proposed DAAD 
layer and the one-shot adaptive learning, we conduct 
ablation studies in Table 4. “Sup” stands for the experi-
ment in the supervised learning manner that ground truth 
labels are available in the target domain, “DT” denotes 
the experiment that directly apply the source trained 
model on the target domain. All the other experimental 
parameter settings are same as the proposed DAADOS. 
The performance of Sup is regarded as the upper bound 
of our method because it is trained with all the labels. 
The upper bound specifies the best performance which our 
method may achieve. From the upper part of Table 4, the 
upper bound in our method is 69.4% in MAP and 87.6% 

Table 4  Comparison of various 
methods under different settings 
on DukeMTMC-ReID (Duke) 
and Market-1501 (Market)

Sup supervised learning, DT directly apply the source-trained model on the target domain, DAAD domain 
Adaptive Attention based Dropout, OS one-shot learning, Src source domain
The best performance is shown in bold

Methods Market (M, %) Duke (D, %)

Src. MAP R1 R5 R10 Src. MAP R1 R5 R10

Sup N/A 69.4 87.6 95.5 97.2 N/A 57.8 75.6 87.3 90.6
DT D 20.0 46.4 63.7 70.6 M 15.9 30.3 45.4 52.5
AE [9] D 58.0 81.6 91.9 94.6 M 46.7 67.9 79.2 83.6
Ours (DAAD+) D 58.4 83.8 92.6 94.8 M 47.3 68.6 79.8 83.3
Ours (OS+) D 57.0 82.2 92.3 94.7 M 45.9 68.0 78.8 82.2
Ours 

(DAAD+OS, 
DAADOS)

D 59.4 84.4 92.9 95.3 M 47.6 69.0 79.7 83.6

Table 5  Comparison of 
proposed method with these 
state-of-the-art domain adaptive 
methods on DukeMTMC-reID 
(Duke), Market-1501 (Market)

The best performance is shown in bold

Methods Duke → Market (%) Market → Duke (%)

MAP R1 R5 R10 MAP R1 R5 R10

UMDL[29] 12.4 34.4 52.6 59.6 7.3 18.5 31.4 37.6
PTGAN[34] – 38.6 – 66.1 – 27.4 – 50.7
PUL[12] 20.5 45.5 60.7 66.7 16.4 30.0 43.4 48.5
SPGAN[8] 22.8 51.5 70.1 76.8 22.3 41.1 56.6 63.0
SPGAN+LMP[8] 26.7 57.7 75.8 82.4 26.2 46.4 62.3 68.0
MMFA[22] 27.4 56.7 75.0 81.8 24.7 45.3 59.8 66.3
TJ-AIDL[32] 26.5 58.2 74.8 81.1 23.0 44.3 59.6 65.0
HHL[47] 31.4 62.2 78.8 84.0 27.2 46.9 61.0 66.7
CamStyle[49] 27.4 58.8 78.2 84.3 25.1 48.4 62.5 68.9
ECN[48] 43.0 75.1 87.6 91.6 40.4 63.3 75.8 80.4
SSG[13] 58.3 80.0 90.0 92.4 53.4 73.0 80.6 83.2
AE[9] 58.0 81.6 91.9 94.6 46.7 67.9 79.2 83.6
ACT[37]  60.6  80.5  –  – 54.5 72.4  – –
MMCL[31] 60.4  84.4 92.8  95.0 51.4 72.4 82.9 85.0
Ours (DAADOS) 59.4 84.4 92.9 95.3 47.6 69.0 79.7 83.6
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in rank-1 accuracy for Market, while it is 57.8% and 75.6% 
in MAP and rank-1 accuracy for Duke. We also record the 
performance about direct transfer which trains on source 
domain and tests on target domain. We observed from 
Table 4 that direct transfer has a serious performance drop. 
Concretely, the model trained on Duke direct transfer to 
Market achieves 20.0% in MAP and 46.4% in rank-1 accu-
racy, the performance has 49.4% and 43.2% drop in MAP 
and rank-1 accuracy respectively. The same phenomenon 
occurs when trains the model on Market while tests on 
Duke.

In the lower part of Table 4, we utilize AE [9] as our 
baseline. Based on AE, we plugged our proposed DAAD 
layer with one-shot learning. By applying the DAAD layer 
or the one-shot learning, the performance gain can be 
achieved both on Market and Duke. While the best perfor-
mance is achieved by applying them at the same time. Spe-
cially, our method with DAAD layer and one-shot learning 
improves the performance by 1.4% and 2.8% in MAP and 
rank-1 accuracy when the model is trained on Duke while 
tested on Market. Similarly, we have the performance gain 
0.9% in MAP and 1.1% in rank-1 accuracy on Duke. This 
demonstrates that DAAD layer with one-shot learning is 
an effective way to improve the performance for person 
re-ID.

4.5  Comparison with state‑of‑the‑art

We compare our method with these state-of-the-art 
domain adaptive methods on three datasets DukeMTMC-
reID, Market-1501 and MSMT17 as displayed in Table 5, 
Table 6. Table 5 summaries the state-of-the-art domain 
adaptive methods on DukeMTMC-reID and Market-1501. 
As for MSMT17 results are shown in Table 6.

Table 5 reports the comparisons tested on DukeMTMC-
reID, Market-1501. To be fair, we only compare the meth-
ods that training and test are all on the same domains. Spe-
cially, UMDL [29] and PUL [34] are initialized with the 
model trained on the labeled source domain, while trained 
on the unlabeled target domain. The following ten meth-
ods, PTGAN [34], SPGAN [8], SPGAN+LMP [8], MMFA 
[22], TJ-AIDL [32], HHL [47], CamStyle [49], ECN [48], 

SSG [13] and AE [9], are the standard domain adaptive 
methods that trained on both the labeled source and the 
unlabeled target domains. As can be seen, our method 
is competitive and outperforms almost all the existing 
domain adaptive methods except SSG [13]. Specially, 
ECN [48], SSG [13] and AE [9] are all clustered-based 
methods while their performance is lagged behind the 
proposed method. Concretely, our method achieves MAP 
= 59.0% and Rank-1 accuracy is 84.0% when trained on 
labeled DukeMTMC-reID and Market-1501 that with one-
shot setting, tested on Market-1501. We also obtain MAP 
= 46.8% and rank-1=68.8% vice-versa. Compared to AE 
[9] which we adopt as baseline, our method exceeds AE 
by 1.0% in MAP and 2.8% in Rank-1 accuracy tested on 
Market-1501. When tested on Duke, the MAP and rank-1 
accuracy are 0.9% and 1.1% higher than AE, respectively. 
From Table 5, the performance of the proposed method 
is superior to most methods. It is also comparable to the 
new published state-of-the-art methods, eg. ACT [37] and 
MMCL [31].

The proposed method is also evaluated on MSMT17 
which is a more challenging and larger dataset. As MSMT17 
is newly public-available, there are only a few domain adap-
tive methods that experimented on MSMT17. The compari-
son results are displayed in Table 6. Obviously, our method 
surpasses the current best method SSG [13] by 0.3% and 
5.3% in MAP and rank-1 accuracy when Duke adaptives to 
MSMT17, 1.7% in rank-1 accuracy when Market adaptives 
to MSMT17.

4.6  Visualization of DAAD features

The feature maps from DAAD are visualized as [50]. In 
Fig. 4, the left part is visualization of Duke images while 
Market images are on the right part. Each image is followed 
with a feature map from DAAD layer. The query column 
denotes the original query image. Positive match has the 
same identity with the query while negative match has the 
different identity with query but with the similar appear-
ance. For images and its positive match, their feature maps 
have the similar importance to corresponding regions. For 

Table 6  Comparison of 
proposed method with these 
state-of-the-art domain adaptive 
methods on MSMT17

The best performance is shown in bold

Methods Duke → MSMT17 Market-1501 → MSMT17

MAP R1 R5 R10 MAP R1 R5 R10

PTGAN[34] 3.3 11.8 – 27.4 2.9 10.2 – 24.4
ECN[48] 10.2 30.2 41.5 46.8 8.5 25.3 36.3 42.1
SSG[13] 13.3 32.2 – 51.2 13.2 31.6 – 49.6
AE[9] 11.7 32.3 44.4 50.1 9.2 25.5 37.3 42.6
Ours (DAADOS) 13.6 37.5 49.1 54.4 11.7 33.3 44.8 50.0
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instance, query and its positive match in the first row of 
Fig. 4 in Duke focus on the foot region. However, its nega-
tive match mostly focus on the upper body. The same phe-
nomenon can be find in other images. This demonstrate that 
our DAAD layer is effective to find the image which has the 
same identity with query.

5  Conclusion

In this paper, a domain-adaptive-attention-based-dropout 
(DAAD) layer according to one-shot learning is proposed 
for cross-domain person re-identification. By erasing the 
most discriminative regions stochastically, the DAAD layer 
can infer the original domain for input imanges automati-
cally and then domain-sensitive features can be extracted. 
In addition, one-shot learning makes the model estimate 
pseudo labels for unlabeled images in target domain with 
high confidence. Both the above two designs can improve 
the performance in cross-domain person re-ID. Experiment 
results on DukeMTMC-ReID, Market-1501, and MSMT17 
datasets demonstrate that the proposed method improves the 
performance for cross-domain person re-ID.
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