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Abstract
The star-structured high-order heterogeneous data is ubiquitous, such data represent objects of a certain type, connected 
to other types of data, or the features, so that the overall data schema forms a star-structure of inter-relationships. In this 
paper, we study the problem of co-clustering of star-structured high-order heterogeneous data. We present a new solution, 
a Hierarchical High-order Co-clustering Algorithm by Maximizing Modularity, MHCoC, which iteratively optimizes the 
objective function based on modularity and finally converges to a unique clustering result. In contrast to the traditional co-
clustering methods, MHCoC merges information of multiple feature spaces of high-order heterogeneous data. Moreover, 
MHCoC takes a top-down strategy to perform a greedy divisive procedure, generating a tree-like hierarchical clustering result 
that reveal the relationship between clusters. To illustrate the process in more detail, we design a toy example to describe 
how MHCoC selects the appropriate co-cluster and splits it. Extensive experiments on real-world datasets demonstrate the 
effectiveness of the proposed method.

Keywords  Co-clustering · Modularity · High-order heterogeneous data · Hierarchical structure

1  Introduction

In the era of big data, there is more than ever a need for 
techniques that simultaneously group objects and features 
of data, thus making large data sets easier to handle and 
interpret. Co-clustering techniques just serve this purpose 
[1]. Several co-clustering methods have been proposed in the 
past decades and applied to many fields, such as collabora-
tive filtering recommendation [2, 3], biological science [4, 
5], multimedia data analysis [6, 7], and natural language 
processing [1, 8].

With the rapid development of data science, an increasing 
amount of high-order heterogeneous data containing multi-
ple types of object and involving the relationship between 
multiple types of object has been generated [9]. These high-
order heterogeneous data provide useful information in com-
parison with homogeneous data [10], properly combining 
information from multiple types of object data would help 
improve the clustering performance [11], Hence, it is essen-
tial to develop high-order co-clustering models to solve the 
high-order heterogeneous data co-clustering problems [12]. 
Researchers have developed many high-order co-clustering 
methods based on different theories, such as graph partition-
ing [13], information theory [14], matrix factorization [15] 
and so on.

Although these methods are different in the technique 
employed on co-clustering high-order heterogeneous data, 
they all simultaneously generate the flat partitioning of 
every types of object data, thus the relationship between the 
clusters cannot be captured. Motivated by the above obser-
vations, this paper proposes a Hierarchical High-order Co-
Clustering algorithm by maximizing Modularity (MHCoC). 
MHCoC chooses the modularity in the co-clustering context 
as a quality evaluation indicator, and an efficient iterative 
algorithm is designed to optimize the objective function. In 
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each iteration, MHCoC uses a top-down strategy for splitting 
co-cluster, and finally the tree-like clustering result of each 
types of object data is obtained. Experiments show that the 
method is effective and superior to other similar methods.

The main contributions of this paper are summarized as 
follows:

(1). We present a modularity-based co-clustering objec-
tive function, which effectively merges information of high-
order heterogeneous data.

(2). An alternating iterative method is designed to opti-
mize the objective function in an interplay manner, which 
simultaneously generates tree-like clustering result of each 
types of object data.

(3). Extensive experiments have been conducted on sev-
eral real-world datasets, demonstrating that the proposed 
algorithm outperforms the existing high-order co-clustering 
algorithms.

The remainder of this paper is organized as follows: In 
Sect. 2, we review related work. In Sect. 3, we briefly pro-
vide the modularity in co-clustering context and presents 
co-clustering on star-structured high-order heterogeneous 
data. The technical details of our approach are provided in 
Sect. 4. In Sect. 5, we present the results with a comprehen-
sive set of experiments and analyzed them. Finally, Sect. 6 
concludes the paper.

2 � Related works

Before presenting our proposed method, we review the back-
ground of our proposed method, including co-clustering and 
high-order clustering, followed by hierarchical clustering. 
Here we mainly discuss these approaches that are most rel-
evant to our work, and then briefly explore other techniques 
used in our work.

2.1 � Co‑clustering

Co-clustering, also called bi-clustering or block cluster-
ing, aims to cluster both rows and columns of a data matrix 
simultaneously. Compared with the traditional one-side clus-
tering, co-clustering algorithms show more powerful per-
formance [16] and they have become one of the important 
methods to solve the problem of high-dimensional sparse 
data clustering [17]. Co-clustering could be used for an 
extensive range of applications [18]. Some notable works 
are summarized as follows: Dhillion [19] poses the cluster-
ing problem as a graph partitioning problem and gives a 
new spectral algorithm based on normalized cut that, uses 
the second left and right singular vectors of an appropri-
ately scaled word-document matrix to yield good bi-par-
titioning. Another notable co-clustering algorithm is the 
block diagonal clustering algorithm described in [20]. This 

algorithm produces a block diagonal matrix of the given 
binary document-term matrix by minimizing the squared 
error between the original data and its approximation. More 
recently, another attempt is presented to use network-related 
criteria in the field of block diagonal structure is the spectral 
co-clustering maximizing a generalization of the modular-
ity [21]. Compared to clustering methods based on other 
theories like nonnegative matrix factorization or tri-factor-
ization, this algorithm appears to perform better. Despite 
similar algorithms are trying to optimize criteria initially 
used in the studies of networks, they do so by using a spec-
tral relaxation of the discrete optimization problem. Ailem 
et al. [1] develop an algorithm that allows getting even bet-
ter co-clusters by directly maximizing modularity using an 
iterative alternating optimization procedure.

Inspired by above work and in order to take full advantage 
of the modularity co-clustering for high-order heterogeneous 
data, we develop our approach by extending the modularity 
to the task of high-order clustering.

2.2 � High‑order co‑clustering

Although many clustering methods have been developed, yet 
they cannot be directly applied to cluster high-order heteroge-
neous data. Properly combining information from high-order 
heterogeneous data would help improve the learning perfor-
mance, which leads to the emergence of the high-order clus-
tering technique [11]. It has drawn a large amount of atten-
tion in different research fields, such as recommender system 
[22], social network mining [23], natural language processing 
[24], biomedicine [25] and multimedia analysis [26]. In recent 
years, high-order clustering has been studied extensively, 
researchers have designed many high-order co-clustering 
methods based on different theories. The graph partitioning 
based methods [27] take the features of samples and different 
feature spaces as nodes and consider the data values as edges 
to find the clustering problem of optimal graph partitioning. 
The information theory-based methods [28] perform cluster-
ing by maximizing the mutual information of object cluster 
and feature cluster random variables. For the authoritative-
based clustering algorithms [29], the authoritative ordering 
of samples and features is obtained and applied to clustering. 
The correlation measure-based methods [9] uses the predic-
tive ability to estimate the correlation between objects and 
features, and partitions the objects and features with strong 
correlation into a cluster. The fuzzy-based methods are used 
to maximize the degree of aggregation inside the cluster, and 
the membership degree of the object and feature is solved by 
iterative method [30]. The matrix factorization-based methods 
reduce each high dimensional feature space to a low dimen-
sional space [31] for clustering.

Their approach, although using different theories, does 
not involve network-related measures. Also, they all generate 
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the flat partitioning of every types of object data, while our 
method is a hierarchical high-order co-clustering method.

2.3 � Hierarchical clustering

Top-down hierarchical clustering is a recursive partition-
ing of a dataset into successively smaller clusters [32]. It 
does not require a fixed number of clusters and provides 
richer information at all levels of granularity, simultaneously 
displayed in an intuitive form, importantly, there are many 
fast and easy to implement algorithms commonly used in 
practice to find a tree-shaped cluster structure [33]. Several 
hierarchical clustering methods have been proposed and 
applied to many fields, include image and text classification 
[34], Anomaly detection [35], bioinformatics [36], person 
re-identification [37] and more. In summary, a taxonomy 
structure can be more beneficial than a flat partition for many 
real applications [8].

In order to obtain tree-like hierarchical clustering results 
and reveal the relationship between clusters, MHCoC adopts 
a top-down strategy to perform a greedy splitting process.

2.4 � Summary

By integrating co-clustering and high-order clustering and 
hierarchical clustering, this paper proposes a Hierarchical 
High-order Co-Clustering algorithm by maximizing Modu-
larity (MHCoC). MHCoC can merges information of high-
order heterogeneous data and then produce a tree-like parti-
tion for each types of object data.

3 � Preliminaries

In this section, we first review the modularity in co-cluster-
ing context and then present the star-structured high-order 
heterogeneous data.

3.1 � Modularity for co‑clustering

Modularity has been widely used in many fields and has 
shown outstanding effects. Modularity is a commonly used 
to measure the quality of community detection, and it can 
also be used as a quality evaluation in graph clustering. By 
rewriting the formula, the modularity can be used as a qual-
ity measure for block diagonal co-clustering, which means 
that objects and features have the same number of clusters 
[1]. In this way, while obtaining the clustering results of 
the objects, the feature clusters that indicate them can be 
discovered.

Let A ∊ Rm×n be the two dimensional contingency table 
or co-occurrence matrix, where rows and columns are rep-
resented by object set O = {o1,o2,…,oi,…,om} and feature 

set F = {f1,f2,…,fj,…,fn}, respectively. The co-clustering 
problem is to partition object set O and feature set F into 
k object clusters {r1,r2,…,rl,…,rk} and k feature clusters 
{c1,c2,…,cl,…,ck} simultaneously (k ≪ min{m,n} can be 
greater or equal to 2). For this, we define the object index 
matrix U ∊ {0,1}m×k, with each entry as follows: uil = 1 if the 
object i belongs to the object cluster l and uil = 0 otherwise. 
Feature index matrix V ∊ {0,1}n×k is defined similar with U. 
The relationship matrix is defined as C = UVt, with its the 
entry cil = 1 when object i and feature j belong to object clus-
ter and feature cluster having same cluster sequence number, 
otherwise cil = 0, ie.cij =

∑k

l=1
uilvjl . Then the modularity can 

be formulated as follows in co-clustering context:

where a
⋅⋅
=
∑

i,j aij , ai⋅ =
∑

j aij and a
⋅j =

∑
i aij . For conveni-

ence, we define the matrix X ∊ Rm×n with elements xij =
ai⋅a⋅j

a
⋅⋅

 , 
the modularity can also be expressed in the following form:

3.2 � Star‑structured high‑order heterogeneous data

High-order heterogeneous data is a data structure containing 
multiple types of object data. In this structure, there is a cen-
tral type of object that connects the other types of objects. 
We take academic thesis systems as an example, where 
paper is the central data type while other data types can be 
seen as feature spaces used to represent paper. In order to 
identify a certain group of authors who usually write papers 
of a certain series of topics with a certain list of terms, and 
submit them to a certain kind of conferences [14].

Figure  1 shows the high-order heterogeneous data 
A = ∪�(s)(s = 1,2,…,N), which is composed of the central 
object set O = {o1,o2,…,om} with its multiple feature spaces 
F(1) =

{
f
(1)

1
, f

(1)

2
, ..., f

(1)

n(1)

}
, F(2) =

{
f
(2)

1
, f

(2)

2
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(2)

n(2)

}

,…,F(N) =
{
f
(N)

1
, f

(N)

2
, ..., f

(N)

n(N)

}
 , where f (s)

j
 is the j-th feature 

in the s-th feature space F(s) , and a(s)
ij

 is the feature value of 
the object oi expressed on the feature f (s)

j
.

3.3 � Problem definition

The goal of the MHCoC algorithm is to acquire the hierar-
chical clustering result R = {R1,R2,…,Rh,…RH} of the central 
da t a  O  and  h ie ra rch ica l  c lus te r ing  resu l t s 
C(s) =

{
C
(s)

1
,C

(s)

2
,… ,C

(s)

h
,…C

(s)

H

}
(s = 1,2,…,N) of feature 

spaces F(s)(s = 1,2,…,N). Rh is the h-th time split clustering 
result of O, which is a set with h sample clusters, that is, 

(1)

Q(�,�) = Q(�,�� T) =
1

a
⋅⋅

m∑
i=1

n∑
j=1

k∑
l

(
aij −
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a
⋅⋅

)
uilvjl

(2)Q(�,�) =
1

a
⋅⋅

Trace
[
(� − �) T��T

]
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Rh = {rh1,rh2…,rhh}, and C(s)

h
=
{
c
(s)

h1
, c

(s)

h2
,… , c

(s)

hh

}
 is the h-th 

time split clustering result of F(s). The co-cluster formed by 
rhl and c(s)

hl
 is denoted as rc(s)

hl
 , and RChl = {rc

(1)

hl
, rc

(2)

hl
,… , rc

(N)

hl
} 

is the set of rc(s)
hl

 in each feature space.

4 � MHCoC algorithm

In this section, we first propose the modularity-based objec-
tive function and then develop a greedy divisive algorithm 
to optimize the objective function.

4.1 � Objective function of MHCoC

MHCoC algorithm chooses the modularity used for the co-
clustering context as the quality measurement. However, if we 
conduct co-clustering on every feature space independently, 
it will have a great probability that the clustering result for 
central type of data is different in every co-clustering result. 
In other words, every single clustering result of central type of 
data do not match in most cases. Actually, we are looking for a 
series of co-clustering results that each of them is not locally 
optimal, but their clustering results on the central type are the 
same, and the overall partitioning is globally optimal under 
a certain objective function. Therefore, the modularity-based 
objective function of MHCoC is defined as follows:

where A = ∪�(s)(s = 1,2,…,N) is the star-structured high-
order heterogeneous data, and A(s) is a co-occurrence matrix 
of O and F(s). a(s)

⋅⋅

=
∑

i,j a
(s)

ij
 is the sum of the weights of all 

(3)

Q(A,C) =
�
s

Q(�(s),��(s)T)

=

N�
s=1

1

a(s)
⋅⋅

m�
i=1

n(s)�
j=1

k�
l=1

⎛⎜⎜⎝
a
(s)

ij
−

a
(s)

i⋅
a
(s)

⋅j

a(s)
⋅⋅

⎞⎟⎟⎠
uilv

(s)

jl

terms in A(s), a(s)
i⋅

=
∑

j a
(s)

ij
 is the sum of the weights of all 

terms on the i-th row, and a(s)
⋅j

=
∑

i a
(s)

ij
 is the sum of the 

weights of all terms on the j-th column. C(s) = UV(s)T is the 
relationship matrix, where U is a sample index matrix and 
V(s) is a feature index matrix of the s-th feature space. Then 
we define a matrix X(s)∊∈ Rm×n, and the term in X(s) is 
x
(s)

ij
=

a
(s)

i⋅
a
(s)

⋅j

a
(s)
⋅⋅

 . The objective function can also be expressed in 
the following form:

4.2 � MHCoC algorithm

MHCoC uses a top-down strategy to perform hierarchical 
co-clustering to optimize the objective function. For easy 
understanding, we use an example to describe the MHCoC 
implement process. Figure 2 shows a toy example with con-
tains central data type and three feature spaces. MHCoC first 
takes the O as the unique cluster r11 in the 1-th time sample 
clustering result R1, and takes each F(s) as the unique cluster 
c
(s)

11
 in the 1-th time feature clustering result C(s)

1
 . MCC is then 

used to process RC11 =
{
rc

(s)

11
|s = 1, 2, 3

}
 , that is, each co-

cluster is split into two sub-co-clusters in three feature 
spaces. This split can maximizing the module increase value 
ΔQ(A11,C11). Accordingly, the 2-th time sample clustering 
result R2 = {r21,r22} and the 2-th time feature clustering 
result C(s)

2
=
{
c
(s)

21
, c

(s)

22

}
(s = 1,2,3) are generated. Then for the 

two co-cluster sets RC21 and RC22 in the 2-th time feature 
clustering result, MCC is used to find the optimal partition 
and compute the modularity increase value. It is assumed 
here that the modularity increase value of RC21 is larger, so 

(4)
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Fig. 1   Star-structure high-order heterogeneous data
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each co-cluster in RC21 is respectively split into two sub-co-
clusters, and other co-clusters are retained. Then the 3-th 
time co-cluster ing result  R3 = {r31,r32,r33} and 
C
(s)

3
=
{
c
(s)

31
, c

(s)

32
, c

(s)

33

}
(s = 1,2,3) are generated, and then the 

layer-by-layer split is continued with a top-down strategy. 
Finally, the MHCoC algorithm returns R = {R1,R2,…,Rh,…
RH} and C(s) =

{
C
(s)

1
,C

(s)

2
,… ,C

(s)

h
,…C

(s)

H

}
 (s = 1,2,…,N) as 

shown in Fig. 3. The algorithm is described in more details 
as follows:

4.3 � MCC algorithm

For given data matrix A and relationship matrix C, the fol-
lowing two propositions are hold:

Proposition 1 

The matrices AV and XV are computed from the matrices A 
and X according to the column index matrix V:

where a�
⋅l
=
∑n

j=1
vjla⋅j.

Q(�,�) =
1

a
⋅⋅

Trace
[
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]
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1

a
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�

� − �
�
)T
�

]
=Q(��,�)

�
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{
a�
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=
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j=1
vjlaij;i = 1,… ,m;l = 1,… , k

}
,

�
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{
x�
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=
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�
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a
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}
,

Fig. 2   MHCoC algorithm process example

Fig. 3   Hierarchical clustering results



2892	 International Journal of Machine Learning and Cybernetics (2021) 12:2887–2898

1 3

Proof 

Proposition 2 

The matrices AU and XU are computed from the matrices A 
and X according to the column index matrix U: 
�� ∶=

�
a�
jl
=
∑m

i=1
uilaij;j = 1,… , n;l = 1,… , k
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,
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According to the above two Propositions, we can iteratively 
update the column index matrixes according to the latest 
row cluster index matrix or update the row index matrixes 
according to the latest column index matrixes.

In each iteration, using proposition 1, the row index 
matrix U is first updated according to the current col-
umn index matrices V = {V(s)| s = 1,2,…,N} to maximize 
Q(AV,U):

the term in the matrix AV is aV
il
=

N∑
s=1

a
�(s)

il
 , and the term in 

the matrix XV is xV
il
=

N∑
s=1

x
�(s)

il
 . Then according to the updated 

row index matrix U, each column index matrix 
V(s)(s = 1,2,…,N) is updated using proposition 2 to maximize 
Q(AU(s),V(s)):

the term in the matrix AU is a�
jl
=

N∑
s=1

a�
jl
 , and the term in the 

matrix XU is x�
jl
=

N∑
s=1

x�
jl

.The modularity increase value 

ΔQ(A,C) is computed after each iteration. Since the MCC 
only processes one co-cluster set, the global modularity 
increase value is only generated in the split of this group of 
co-clusters:

Taking RC21 in Fig.  2 as an example, the following 
example is designed to describe the execution process of 
the MCC:
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5 � Experiments and results analysis

In this section, we perform experiments on two real-world 
datasets to evaluate our proposed method. We aim to answer 
the following research questions:

• RQ1: How does MHCoC perform as compared with 
state-of-the-art homogeneous co-clustering methods?

• RQ2: Compared with existing high-order heterogeneous 
clustering methods, how does MHCoC perform?

• RQ3: What are the benefits of tree-like clustering 
results generated from MHCoC?

In the following parts, we will first present the experimen-
tal settings and then answer the above research questions 
one by one.

5.1 � Experimental setting

5.1.1 � Datasets description

In order to verify comprehensively and objectively, we use 
four different real-world datasets spanning different domains 
to verify the effectiveness of our approach.

Reuters is a multilingual dataset consists of 2000 samples 
with 5 types of languages. We use the subset that is written 
in English, while the other 4 features are its corresponding 
translations in 4 different languages.

USPS dataset consists of features of handwritten numer-
als and there are 2000 examples uniformly distributed in 10 
classes, and three types of features are used.

20Newsgroup corresponds to about 20,000 news doc-
uments from 20 different newsgroups with each news-
group containing 1000 documents. Two types of features 
are used.

Corel5k dataset contains 5000 images, each with text 
annotation information and image segmentation. We con-
struct high-order heterogeneous dataset including image, 
word and blobs. We summarize the statistics of the datasets 
in Table 1.

5.1.2 � Evaluation protocols

To evaluate the clustering performance, we focus primarily 
on the Macro-F1 score and NMI value which measures how 
well each algorithm finds the ground truth clusters. Specifi-
cally, given a set of algorithmic clusters C, and the ground 
truth clusters S, the Macro-F1 score is computed by averag-
ing the F1 score of the best match between each ground truth 
cluster and algorithmic clusters:

The F1 score of a single ground truth cluster s is com-
puted as the harmonic mean of P(Precision) and R(Recall):

where Precision P and Recall R can be calculated as follows:

TP, TN, FP, FN represent True Positive (The fact is the 
positive samples, which were judged as positive samples), 
True Negative, False Positive, False Negative, respectively.

NMI value is calculated as:

where the molecule is the mutual information of S and C, 
and the denominator is the average of the entropy of S and C:

Since the clustering algorithm involved in this experiment 
is random, each clustering algorithm is executed 30 times on 
each data set, and the average value of 30 clustering results 
are used for comparative analysis.

5.2 � Performance comparison with homogeneous 
co‑clustering methods (RQ1)

We first compare our proposed methods against other com-
peting homogeneous co-clustering approaches, spanning 
from the information theory based approach ITCC​ [38]: 

(8)Macro − F1 =
1

|S|
∑
s∈S

F1(s)

(9)F1(s) =
2 × P × R

P + R

(10)P =
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log
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p
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p
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p
(
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)
log p

(
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Table 1   Datasets

Dataset #Object #Class Type Feature

Reuters 1200 6 text English, French, German,
Spanish, Italian

USPS 2000 10 image fourier coefficients,
profile correlations,
zernike moments

20Newsgroup 19,949 20 text subject,
word

Corel5k 5000 5 image word,
blobs
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a classical co-clustering algorithm maximizes the mutual 
information between the clustered random variables subject 
to constraints on the number of row and column clusters, and 
the modularity-based approach Coclus [1]: a block diagonal 
co-clustering algorithm that implements automatic feature 
reduction during co-clustering, and matrix factorization 
based approach NMTFCoS [39]: a non-negative matrix tri-
factorization model based on co-sparsity regularization, with 
its objective to simultaneously minimize the loss function 
for the matrix tri-factorization, and the deep co-clustering 
algorithm DCC [17]: a deep co-clustering model jointly 
optimizes the parameters of the deep autoencoder and the 
mixture model in an end-to-end fashion on both the instance 
and the feature spaces.

For the above four baseline methods, all the features from 
each feature space are simply combined into one feature 
space. The input parameters of the comparing methods are 
set as the authors suggested in their papers or shared code. 
The clustering performance comparison of each method is 
shown in Tables 2 and 3, respectively. We have the follow-
ing observations:

•	 ITCC achieves poorest performance on all the datasets. 
This indicates that maximizing the mutual information 
between the clustered random variables is insufficient 
to capture the complex relations among different feature 
spaces, further limiting the performance. NMTFCoS 
consistently outperforms ITCC across all cases, verify-
ing that incorporating the co-sparsity regularization can 
improve the clustering results. Compared to ITCC and 
NMTFCoS, the performance of Coclus demonstrates 
the effectiveness of modularity for co-clustering. DCC 
reflects the superior performance of deep learning, but 
as a method for homogeneous data, it still has limitations 
when dealing with heterogeneous data.

•	 As expected, MHCoC consistently yields the best per-
formance on all the datasets. Through dealing with mul-
tiple feature space under a unified framework, MHCoC 
is capable of exploring the high-order heterogonous fea-
tures in an explicit way, while other baseline methods 
only simply merge all the features to guide the clustering 
process. This verifies the importance of properly captur-
ing heterogonous features in the objective function.

In summary, the four excellent baseline homogeneous co-
clustering algorithms are based on different theories, their 
performance degenerate when dealing with heterogeneous 
data.

5.3 � Performance comparison with high‑order 
heterogeneous clustering methods (RQ2)

To answer RQ2, we compare the proposed approach against 
four high-order heterogeneous clustering methods CBGC 
[13] is a consistent bipartite graph co-partitioning co-cluster-
ing method based on semi-definite programming. CIT [14] 
extends the information theoretic co-clustering algorithm to 
solve the high-order co-clustering problem. O-NMTF [40] 
employs Nonnegative Matrix Tri-Factorization (NMTF) 
to simultaneously cluster different types of data using the 
inter-type relationships, and incorporate intra-type informa-
tion through manifold regularization. CoStar [9] optimizes 
the measure for cross-association in contingency tables that 
evaluates the strength of the relationship between two cat-
egorical variables by a local search approach.

Likewise, the input parameters of the comparing methods 
are set as the authors suggested in their papers or shared 
code. For Reuters and USPS datasets, CIT uses the first two 
features of each dataset. The clustering performance com-
parisons on the experimental data sets are shown in Tables 4 
and 5. From the results, we observed that:

•	 CBGC and CIT achieve the worse performance than 
other baselines over all the datasets in all cases. It is rea-
sonable since they both model high-order co-clustering 

Table 2   NMI comparison of the homogeneous co-clustering methods

Reuters USPS 20Ng Corel5k

ITCC​ 15.5 22.7 21.7 16.4
Coclus 23.4 28.5 40.4 36.6
NMTFCoS 18.7 21.5 30.7 23.9
DCC 34.6 48.3 40.8 36.4
MHCoC 40.5 81.7 76.7 69.4

Table 3   Macro-F1 comparison of the homogeneous co-clustering 
methods

Reuters USPS 20Ng Corel5k

ITCC​ 14.4 19.4 16.5 16.4
Coclus 23.4 27.5 33.6 20.7
NMTFCoS 16.7 30.5 28.4 23.9
DCC 22.4 45.6 48.3 40.3
MHCoC 30.6 68.3 71.7 62.3

Table 4   NMI comparison of the heterogeneous clustering methods

Reuters USPS 20Ng Corel5k

CBGC 31.2 51.5 60.3 41.3
CIT 28.5 45.2 63.3 51.4
O-NMTF 36.1 60.3 70.5 56.6
CoStar 34.2 61.4 67.3 59.7
MHCoC 40.5 81.7 76.7 69.4
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problem as the consistent fusion of pair-wise co-cluster-
ing sub-problems.

•	 O-NMTF achieves better results in terms of both metrics, 
showing the importance of the factor’s orthogonalities 
can lead to better results. Costar shows similar results, as 
it benefits from that the τ functions used to compare co-
clustering of different sizes. Further, compared with first 
two methods, these two algorithms demonstrate that it is 
a better strategy to dealing with multiple feature space 
under a unified framework.

•	 Generally speaking, MHCoC achieves better perfor-
mance than other baselines over all datasets, sometimes 
very significantly, which confirms the effectiveness of 
MHCoC in co-clustering of high-order heterogeneous 
data. We mainly attribute the improvement of the cluster-
ing performance to the advantage of modularity and the 
objective function we designed which can properly com-
bine the information from the high-order heterogeneous 
data. Moreover, MHCoC has implicit subspace selection 
in the cluster partitioning process, thus it shows better 
performance on high-dimensional sparse data high-order 
co-clustering.

5.4 � Hierarchical co‑clustering analysis (RQ3)

In this section, we attempt to demonstrate how the hierarchi-
cal co-clustering facilitates the understanding of clustering 
result. Towards this end, we select five newsgroups with dif-
ferent relationships from the 20NG dataset to form the NG5 
dataset for experiments. The five newsgroups we selected 
are ‘talk.politics.mideast’, ‘sci.space’, ‘comp.graphics’, ‘rec.
motorcycles’ and ‘rec.sport.baseball’. It is easy to see that in 
NG5, ‘sci.space’ and ‘comp.graphics’ are similar, and so are 
‘rec.motorcycles’ and ‘rec.sport.baseball’, but there are obvi-
ous differences between these two groups. Besides, ‘talk.
politics.mideast’ shares no obvious relationship with other 
classes. Therefore, the NG5 dataset can representatively and 
intuitively show how the hierarchical strategy reflects the 
relationship between clusters. We initially run MHCoC on 
NG5 to get 5 clusters, then continue to split into 20 clusters.

The hierarchical object clustering results are shown in 
Fig. 4. The root consists of the entire sample set. After four 
splits, five clusters represented by rectangle with a thick-
ened border are obtained, and the circles below indicate 
the results of continued splitting. The number represents 
which class the cluster corresponds to. Intuitively, the two 
clusters ‘comp.graphics’ and ‘sci.space’ are from the same 
cluster from the previous layer, and ‘rec.motorcycles’ and 
‘rec.sport.baseball’ are from the same cluster in the previ-
ous layer. This structure has practical meaning and meets 
our expectations. Both the ‘comp.graphics’ and ‘sci.space’ 
clusters involve science and technology. The two clusters 
‘rec.motorcycles’ and ‘rec.sport.baseball’ belong to the 
entertainment category. However, the difference between 

Table 5   Macro-F1 comparison of the heterogeneous clustering meth-
ods

Reuters USPS 20Ng Corel5k

CBGC 23.5 51.5 57.3 37.6
CIT 20.5 40.2 55.3 51.4
O-NMTF 26.1 50.6 56.5 54.6
CoStar 27.6 57.4 61.1 53.7
MHCoC 30.6 68.3 71.7 62.3

root
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22 32
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talk.politics.mideast
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Fig. 4   Result of visual hierarchical cluster structure
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the two clusters of ‘comp.graphics and sci.space’ and ‘rec.
motorcycles and rec.sport.baseball’ is relatively large. In 
addition, it can be seen from the Fig. 4 that during the first 
split, ‘talk.politics.mideast’, which has no obvious relation-
ship with other classes, is divided into the same cluster as 
‘sci.space and comp.graphics’, and then it is split from them. 
Although in the subsequent splitting process, we can see that 
some of the samples in ‘talk.politics.mideast’ also appeare 
in the ‘rec.motorcycles’ that was divided with them at the 
first splitting, but from the results, there seems to be more in 
common between ‘talk.politics.mideast’ and ‘comp.graphics 
and sci.space’.

In summary, we find that compared with the flat cluster 
structure, the hierarchical cluster structure is more condu-
cive to reveal the implicit relationship between clusters and 
clusters.

We then take the word feature space as an example. 
Table 6 shows the first five words in the corresponding word 
cluster of each sample cluster obtained by sorting accord-
ing to the method in [41]. It can be seen intuitively that 
the word cluster has a clear indication of the object cluster. 
This shows that the block diagonal co-clustering includes the 
implicit hard subspace selection process, and the dimension-
ality reduction function brings the algorithm to improve the 
clustering effect and efficiency.

Conclusion
In this paper, we propose a hierarchical high-order 

co-clustering algorithm by maximizing modularity. Our 
approach merges information of multiple types of object 
data and optimizes modularity-based objective function by 
performs high-order co-clustering, finally the tree-like hier-
archical high-order co-clustering results are obtained. The 
effectiveness of the proposed method is proved on the real 
data set. Future work will focus on the study of overlapping 
hierarchical high-order co-clustering algorithms.
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