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Abstract

Low-rank matrix recovery aims to recover a matrix of minimum rank that subject to linear system constraint. It arises in
various real world applications, such as recommender systems, image processing, and deep learning. Inspired by compres-
sive sensing, the rank minimization can be relaxed to nuclear norm minimization. However, such a method treats all singular
values of target matrix equally. To address this issue, recently the transformed Schatten-1 (TS1) penalty function was pro-
posed and utilized to construct low-rank matrix recovery models. Unfortunately, the method for TS1-based models cannot
provide both convergence accuracy and convergence speed. To alleviate such problems, this paper further investigates the
basic properties of TS1 penalty function. And we describe a novel algorithm, which we called ATS1PGA, that is highly
efficient in solving low-rank matrix recovery problems at a convergence rate of O(1/N), where N denotes the iterate count.
In addition, we theoretically prove that the original rank minimization problem can be equivalently transformed into the
TS1 optimization problem under certain conditions. Finally, extensive experimental results on real image data sets show that
our proposed algorithm outperforms state-of-the-art methods in both accuracy and efficiency. In particular, our proposed
algorithm is about 30 times faster than TS1 algorithm in solving low-rank matrix recovery problems.

Keywords Low-rank matrix recovery - Transformed Schatten-1 penalty function - Nonconvex model - Equivalence

1 Introduction formulated as the following low-rank minimization problem
[9, 10]:

The problem of recovering a matrix of minimum rank sub-
ject to linear system constraint has attracted considerable
attention in recent years. This problem arises in various real
world applications, such as recommender systems [1, 2],
image processing [3—5], quality-of-service (QoS) prediction
[6], and deep learning [7, 8]. In general, such a task can be

ngrlnlxn rank(X) s.t. AX)=b, (1)

where X is the considered low-rank matrix in R™" b is a
given measurement in R4, and A denotes the linear trans-
formation. By adopting the regularization method, the opti-
mization problem (1) can be equivalently converted into the
following unconstrained minimization problem:
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where A > 0 is a regularization parameter.

Unfortunately, the optimization problems (1) and (2) are
computationally intractable due to the nonconvexity and
discontinuous properties of the rank function. In order to

chenwu@swu.edu.cn

Jianjun Wang
wjj@swu.edu.cn

College of Computer and Information Science, Southwest
University, Chongqing 400715, People’s Republic of China

College of Artificial Intelligence, Southwest University,
Chongqing 400715, People’s Republic of China

School of Mathematics and Statistics, Southwest University,
Chongqing 400715, People’s Republic of China

overcome this difficulty, many researchers suggested to use
the nuclear norm instead, which is known as the tightest con-
vex proxy of the rank function [11, 12]. Theoretical analysis
shows that, under some mild conditions, the low-rank matrix
can be exactly recovered with high probability by using this
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scheme. Thus, a large number of methods have been pro-
posed for the resultant nuclear norm optimization problem,
such as singular value thresholding (SVT) [13], accelerated
proximal gradient with linesearch algorithm (APGL) [14],
and accelerated inexact soft-impute (AIS-Impute) [15].

Since the methods mentioned above are simple and easy
to use with theoretical guarantee, nuclear norm based model
has recently attracted significant attention in the field of low-
rank matrix recovery. However, the performance of such a
convex relaxation is not good enough. In other words, the
solutions of nuclear norm optimization problem may devi-
ate from the solutions of the original optimization problem.
The main reason is that the nuclear norm based model over-
penalizes large singular values. To alleviate this limitation,
a common used strategy is to use nonconvex surrogates to
approximate the rank function, which make closer approxi-
mation than nuclear norm. Examples of these nonconvex
surrogate functions include lq—norm 0O<g<1)[16-18],
weighted nuclear norm (WNN) [19], smoothly clipped
absolute deviation (SCAD) [20], mini-max concave penalty
(MCP) [21], log-sum penalty (LSP) [22], and so on. Despite
the resultant problem is nonconvex, non-smooth, and even
non-Lipschitz, numerous methods have been proposed to
handle it. In [16] and [23], the authors proposed fixed point
iterative scheme with the singular value thresholding opera-
tor. The convergence analysis and empirical results show
that these methods are fast and efficient. In [24], the itera-
tively reweighted nuclear norm (IRNN) method has been
proposed by using the concavity and decreasing supergra-
dients property of existing nonconvex regularizer. Since a
computationally expensive singular value decomposition
(SVD) step is involved in per iteration, the IRNN method
converges slowly. In order to improve the speed and perfor-
mance of IRNN method, fast nonconvex low-rank (FaNCL)
[25] method was proposed. The empirical results of all the
methods mentioned above illustrate that the nonconvex
based model outperforms the convex based model.

Recently, the transformed Schatten-1 (TS1) penalty func-
tion [26], as a matrix quasi-norm defined on its singular
values, has been successfully applied to low-rank matrix
recovery. Actually, the TS1 penalty function is extended
from the Transformed £, (TL1) function. The TL1 function
can be seen as a class of | based nonconvex penalty func-
tion, which was generalized by Lv and Fan in [27]. Kang
et al. [28] have demonstrated the very high efficiency of
TL1 function when applied to robust principal component
analysis. However, the TL1 penalty function leads to a non-
convex optimization problem that is difficult to solve fast and
efficient. Therefore, Zhang et al. continue such a study [29,
30] and point out that the TL1 proximal operator has closed
form analytical solutions for all values of parameter. Based
on this finding, in this paper, we consider the following TS1
penalty function:
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rank(X) rank(X)
_ i (a+ Do,(X)
T(X) = ; Pa(0,(X)) = Z:, 2 To 3)
where
_ (a+ D]
pa(lx]) = ot (€]

is a nonconvex function with parameter a € (0, +o0), and
0;(X) denotes the ith singular value of matrix X. Therefore,
the original problem (1) can be naturally converted into the
following optimization problem:

min T(X) s.t.
XeRmXil

AX) = b. )

More often, we focus on its regularization version, which
can be formulated as:

Jin % w AX) = b w3 +AT(X). ©6)
It should be noted that the TS1 penalty function is more gen-
eral than the nonconvex penalty function in [31]. Besides, p,
with a € (0, +o00) provides solutions satisfying the unbiased-
ness and low-rankness.

In this paper, we further investigate the basic properties
of TS1 penalty function and propose a fast and efficient
algorithm to solve problem (6). Specifically, we analyze the
solution of rank minimization and prove that, under certain
rank-RIP conditions, rank minimization can be equivalently
transformed into unconstrained TS1 regularization, whose
global minimizer can be obtained by TS1 thresholding func-
tions. The TS1 thresholding functions are in closed analyti-
cal form for all parameter values. Thus, an exact mathemati-
cal analysis provides theoretical guarantee for the application
of TS1 regularization in solving low-rank matrix recovery
problems. We list the findings and contributions as follows:

(1) We first show that the minimizer of problem (5) is actu-
ally the optimal solution of problem (1).

(2) We further establish the relationship between problems
(5) and (6), and prove that the solution of problem (5)
can be obtained by solving problem (6).

(3) Nesterov’s rule and inexact proximal strategies are
adopted to achieve a novel algorithm highly efficient
in solving the TS1 regularization at a convergence rate
of O(1/N).

(4) Extensive empirical studies regarding image inpainting
tasks validate the advantages of our proposed method.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the related works. In Sect. 3, the equiva-
lence minimizers of the resultant optimization problem and
the original optimization problem are established. Section 4
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proposes an efficient optimization method with rigorous con-
vergence guarantee. The experimental results are reported
and analyzed in Sect. 5. Finally, we conclude this paper in
Sect. 6.

2 Background
2.1 Proximal algorithms

In this paper, we consider the following low-rank optimiza-
tion problem:

where f is bounded below and differentia-
ble with L;-Lipschitz continuous gradient, i.e.,
" Vf(Xl) - Vf(Xz) ”FS Lf n X] —X2 WE, h is low-rank
regularizer, and A > 0 is a given parameter. During the last
decades, the proximal algorithm [32] has been received con-
siderable attention and successfully applied to solve problem
(7). Specifically, the proximal algorithm generates X, as

1
X = proxs, (X, =~V ). @®)
where 7 > 0 is a parameter, and

prox;, (M) = arg min 1 n X—-M ||%— +ih(X) )
T XeRmxn T

denotes the proximal operator. Assume that fand & are con-
vex, Toh and Yun [14] proposed an accelerated proximal
gradient (APG) algorithm with a converge rate of O(1/N?).
However, exactly solving the proximal operator may be
expensive. With the aim of alleviating this difficulty, the
inexact proximal gradient methods have been proposed and
the theoretical analysis in [33] reveals that it shares the same
convergence rate as APG. Most recently, the inexact proxi-
mal gradient method has been extended to nonconvex and
nonsmooth problems [34]. It should be pointed out that the
nmAIPG algorithm in [34] is nearly the same as the nmAPG
algorithm in [35], but it is much faster. Unfortunately, both
nmAIPG and nmAPG algorithms may involve two proximal
steps in per iteration.

2.2 TS1 thresholding algorithm

We first define the proximal operator with TS1 regularizer,
which can be found as follows:

1
prox’(y) = arg min S0 - X + Ap,(Ix]), (10
xXE

where p,(-) is defined in (4). As shown in [30], this noncon-
vex function has a closed-form expression for its optimal
solution and the following lemma addresses this issue.

Lemma 1 (see [30]) Forany A > 0 and y € R, the solutions
to nonconvex function (10) are

parn _ J O, iflyl <t
ot 0= {0 S an
where

_ 2 90 _2a, bl
gz(y)—sgn(y){3(a+Iyl)cos< 3 ) 33 }

. _ _ 27Xa(a+1)
with ¢p(y) = arccos(1 T ), and

Ma+1) . a?

=, if A<
= { ;A 1 2 9f A 2("%“) a2
V2Aa+1) =3, if 4> TR

Based on this finding, the optimal solutions to problem
(6) can be obtained by the proximal operator.

Lemma 2 (see [26]) Assume that T >, A ..%, the optimal
solutions to problem (6) are

X* = P”‘)xfr(-)(Br(X*)) = UDiag (prox’;a (O'i(BT(X*)))> VT,

(13)
where B, (X*) = X* — %A*(A(X*) — b) and it admits SVD as
UDiag(c(B (X “MVT.

Therefore, at kth iteration
1 .
Xk+1 :proxiT(.) (Xk - ;A (.A(Xk) - b)) (14)

According to iteration (14), the TS1 algorithm is proposed.

3 Equivalence minimizers of problem (1)
and problem (5)

In this section, we further investigate the basic properties
of TSI penalty function. Assume that X, and X, be the
minimizers to the problems (1) and (5), respectively. Let
R = X, — X,, then partition matrix R into two matrices R
and R, which are defined as follows.

Definition 1 Let R admits SVD as UDiag(c(R))VT, the
matrices R, and R, can be defined as:

2,00
Ry = [Uy O]mxm [ 01 0 0] [Vax O]ZXH 15)
mxXn
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and

000
Rc = [0 Um—2K]m><m [O 22 O] [0 Vm—ZK]ZXn‘ (16)
mxn

Definition 2 Define the index set
[;={P(G—-1)+2K+1,...,Pj+ 2K} and partition R, into

a sum of matrices R, R,, ..., 1.e.,
R, = 2 R,
J
where
000
R; =10 Uj Ol,| 0 Z;, O [0V, O, a7
000

mxn

First, we introduce the following useful results.

Lemma 3 Assume that K = rank(X,), we have
T(R.) < T(Ry). (18)
Proof Since X, is the minimizer of (5), we have

T(X,) > T(X,) =T(X, + R) > T(X, + R.) — T(Ry)
=T(Xp) + T(R,) — T(Ry),

the second inequality follows from Lemma 2.1 in [30] and
the last equality follows from Lemma 3.4 in [12]. O

Theorem 1 For any a > 0, we have

n Ry +Ry wp2 ) (19)
(a+DV2K
Proof According to the definition of p,(-), we have
(@+Dlx|  (@+Dlx] @+ Dx* _ (a+ D|x|
pa(lal) = a+ |x| - a h aa+ |x|) ~ a

Hence, we get

_ (a+Do(Ry) _a+1 _a+1
T(RO)‘Z« aroRy) - a Z"f‘Ro)‘ a "R

< “:1\/21( W Ry up< %\/21( W Ry+Ry up.

Thus, we get the desired result

aT(R,)

(a+ V2K

M RO +R1 np>

O

Lemma4 Let X € R™" admits SVD as UDiag(c(X))V'. For
any a > 0 and o > a,, where

@ Springer

ar+r —

o = 1‘71(X) (20)

with r = rank(X), we have
T 'X) < 1. 21

Proof Using the fact that p,(x) is increasing in the range
[0, +00), we have

T(a'X) =) p,(oa' X)) < rp, (o) (™' X))

i=1
@+ Do) ra+ o (X)
- T o (X)+aa

1
a+ ;al(X)

To get T(a~'X) < 1, it suffices to impose

r(a+ 1o, (X) <1
0,(X) + aa

equivalently,

o> Mal(X).
a

We complete the proof. O

Theorem 2 Foranya > 0 and a >

=1
%GI(RC), we have
T(a™'Ry)

_ T(a'R;_))
na lRl' 1l S : S > 22
2z < 7 7 22)

i>2 i>2

where r, = rank(R.).

Proof According to the definition of 7(-) and Lemma 4, we
have

-1 —1 .
p(o,(a Rj)) <T(a Rj) <l1,Vie I]
Hence, we have

@+ Doy(@™'R)

-1 _
paloila R;) = a+o(a'R;)

<leo@'R)<1,

which is equivalent to

oi(a”'R) < p,(ci(a”'R)).

By Definition 2, we have

0/(R) < 0y(Ri_)), Vi€, i'e Iy,

and the rank of R;s is not greater than k.
Since p, () is increasing in the range (0, o0), we get
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T(a‘le_l)
oi(a”'R) < p,(oi(a”'R)) £ ———.
Therefore, we obtain

| T(a™'R;_y)
na Rj ”FS _—
VP
and
T(a 'R, )
Z noa R “F< Z -
j=2 J=2 \/_

This is the first part of (22). By Lemma 3, the second part of
(22)is obtained immediately.
We complete the proof. O

In order to show that the minimizers to problem (5) are
the optimal solutions of the problem (1), we introduce the
following rank restricted isometry property (rank-RIP)
condition.

Definition 3 (see [36]) For every integer r with 1 < r < m,
let the restricted isometry constant §,(A) be the minimum
number such that

(1 bl 5,(.'4)) " "F—" .A(X) ||§< (1 +0 (.A)) n X "F’

(23)
holds for all X € R"™" of rank at most r.

0= A((X_]R) ny=n A((X_]RO'F(Z_]RC) 1)
= A(a_]R0+(1_lRl)+ ZA(a_lRi) ny

Armed with rank-RIP condition, the following theorem
reveals that the original problem (1) and its nonconvex relax-
ation problem (5) share the same solutions under the rank-

RIP condition with 655 < Sa;:ttaafZ

Theorem 3 Assume that there is a number P > 2K, where
K = rank(X,), such that

P
8p(A) + 5 62K+P(-A) <5g L (24)

Then, there exists a* > 0, such that for any a* < a < +o0,
X, =X,

Proof Let

2

(a +1)2 2K L= Saerp(A) =

fla) = (1+6p(A). (25

It is easy to verify that the function f is continuous and
increasing in the range [0, +o0). Note that at a = 0,

F(0) = =1 = 8,(A) <0,
and
1@ = 2 (1= 8p( D) = (146,(4) >0, a5 a = +oo.

Thus, there exists a constant a* > 0 such that f(a*) =0
Then, for any a* < a < +00, we get

a \/ 1= by p(A) \/ 1+ 68,(A)
a+1 2K P

AKX,

> 0. (26)

Since A(R) = - X,) =b—b =0, we obtain

i>2

> A(@ 'Ry + a™'R)) ), — &#XArrowvert, Z A(a™'R,) &#XArrowvert;,
i>2
Z n A(O(_IRO+(X_1R1) 1no —Z m A(a_lRi) o

i>2

Z\/ 1- 52K+P(A) n (l_lRO + a_lRl
—\/1 + ap(A) 2 n C{_lRi ng -

i>2
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Using Theorems 1 and 2, we get

aT(a‘lRO)

1
— 14 6p(A—T(a"'Ry)
(a+ DV2K ’ \/P ’

{ a 1 = 835, p(A) \/ 1+ 6,(A) »
_<a 1 \/ K - 5 T(a™"Ry).

According to the inequality (26) and the definition of T'(-),
we have T(a~'R,)) = 0, which implies that R, = 0. This,
together with Lemma 3, yields R. = 0. Therefore, X* = X,

We complete the proof. O

02/1 = 635, p(A)

Remark 1 In Theorem 3, if let P = 3K, the inequality (26) is

3a?

m(l — 6sx(A)) > 1+ 655 (A).

@7

a*—4a-2

This inequality will approach 6., < EIVIEE

Moreover, we
can obtain 657 < 0.2 as a — oo.

Although the minimizers of problem (1) can be exactly
obtained by solving the nonconvex relaxation problem (5),
the resultant optimal problem is still NP-hard. To overcome
this difficultly, we focus on its regularization version (6).
The following theorem addresses this issue.

Theorem 4 Let {A,} be a decreasing sequence of positive
numbers with 4, — 0, and X/lp be the optimal minimizer of

the problem (6) with A = /1p. Assume that the problem (5) is
feasible, then the sequence {X /lp} is bounded and any of its

accumulation points is the optimal minimizer of the problem

4.

Proof Assume that the problem (5) is feasible and X is any
feasible point, then A(X) = b. Since X A is the optimal mini-
mizer of the problem (6) with 4 = 4, we get

max {/lpT(XAP), W AX, )~ b ;} <u AKX, ) = b 3 +24,T(X, )
<u AX) = b w3 +4,T(X)
= 2,TX).
(28)
Thus, the sequence {XA,,} is bounded and has at least one
accumulation point. Assume that X* be any accumulation
point of {X/lp }. From (28), we get A(X*) = b, which means
that X* is a feasible point of the problem (5). Together with
T(X*) < T(X) and the arbitrariness of X, we get that X* is the

optimal minimizer of the problem (5).
We complete the proof. O

@ Springer

4 The proposed algorithm and its
convergence analysis

In order to solve the nonconvex relaxation problem (6) effi-
ciently, in this section we propose a novel algorithm highly
efficient to handle it at a convergence rate of O(1/N). Specifi-
cally, the proposed algorithm has an improved convergence
rate and improved recovery capability of the low-rank matrix
over those of the state-of-the-art algorithms.

First, the power method [37] is adopted to obtain approxi-
mate SVD. As shown in [33] and [34], in real application
it is often too expensive to compute the proximal operator.
To speed up the convergence of the proposed algorithm, it
is desirable to solve the proximal operator by computing the
SVD on a smaller matrix. The following lemma addresses
this issue.

Lemma 5 For any fixed A>0, assume that
X = 007X € R™" where Q € R™!(t <« n) is an orthogo-
nal matrix. Then,

pVOXiT(_)(X) = QP”OXiT(.)(QTX)- (29)
Proof The proof can be followed the footsteps of Proposition
1 in [38], and we omit it here. O

Since the power method is employed in our algorithm to
get approximate SVD, the results generated by the proximal
operator may be inexact, meaning that

Xk+1 =}7V0)C5T(_)(Yk)

={ U|§T(U)+% W U=Y, ..§S§k+%T(V) 30)

1 mxn
+3 0 V=Y, 2, WeR™ |,

As indicated in [34], although the inexact proximal steps
are employed in our algorithm, the basic properties stay the
same.

Second, the convergence rate of our proposed algorithm
is further accelerated by the Nesterov’s rule [39] which is
a widely used method to speed up the convergence rate of
first-order algorithm. In this paper, we integrate APGnc*
[40] with our proposed algorithm, and the details can be
found in Algorithm 1. It should be pointed out that our pro-
posed algorithm ATS1PGA is much different from APGnc™*.
We focus on the transformed Schatten-1 regularizer which
induces lower rank and achieves improved recovery perfor-
mance than the nonconvex regularizer used in APGnc™.
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Algorithm 1 The Accelerated Transformed Achatten-1 Proximal Gradient Algorithm

(ATS1PGA)

Input: & :R™" R RER™ heRIA>0,7> 2|3, a,B € (0,1).

1: Initialize: X; =Y, =0, 4 > 0;
2: fork=1:K do
Y=Y
B=Y— L'/ (Y)+ Lar*(b);
Q = PowerMethod (B,R);
Y= mexir(.)(QTB)§
T
r=rank(Y), X1 =Y;

AR

90 Virr = X1 + B (Xer1 — Xi)s
10: if F), (Xx11) < Fj (Vik+1) then

11: Yir1 = Xir1, B < af;

12: else

13: Yier = Vepr, B min{ 2, 1};
14: end if

15: end for

16: return Xy

_ 2001 (X)) A [ray2 24
A= 1+2f+7r+1&k+|>’u_?+ (£)+ F 1=

Ala+1) .

The following theorem shows that the objective func-
tion is always decreased and any accumulation point of the
sequence generated by Algorithm 1 is a stationary point.

Theorem 5 Let F(X) = 5 v AX) = b u2 +AT(X) and {X;}
be the sequence generated via Algorithm 1 witﬁ z2u A %
Assume that & < 6 w Xy = Yy wjand3 — =2 — 16 >0,

then

(1) the sequence {X, } is bounded, and has at leat one accu-
mulation point;

(2) F(X) is monotonically decreasing and converges to
F(X*), where X* is any accumulation point of { X, };

(B) lim_ o u Xy — Y 07=0;

(4) X*is a stationary point of (6).

To prove Theorem 5, we first introduce the following
lemma.

Lemma6 If& <6 w A=Y, u2, then

T IIAII%

F(A)SF(Yk)_(E_ 3

-w) wA=Y, ur (31

where A = proxip, (Y — %Vf(Yk)).

Proof Let f(A) = 3 w A(A) — b u3, we have

1 -A II2
JA) SFOO+ <A=Y V(X)) > +— 2 A=Y 2.

According to the definition of the inexact proximal operator
for each step, we have that

iT(A) +1, A= Y, + lVf(Yk) w

T 2 T
<5+4T(Y)+1 lVf(Y) 2
> o - k 5 1l - K g

and thus we can simplify it as

AT(A) < & + AT(Y)) — % WA=Y, 0k = <A—Y, V(Y >.

Therefore, we have that

F(A) =f(A) + AT(A)

n A II%

<Y+ < VAY),A=Y, > + wA=Y 2

+AT(Y)— < VF(Y),A—Y, > —% W A=Y ul 4TE,

T— n A ||2
:F(Yk)_ <TZ> 1l A—Yk ||§;+T§k

r wA
n II2
SF(Yk)—<§— ) —T5> ||A—Yk ||§-.
We complete the proof. O

Now, we begin prove Theorem 5.

Proof (1) and (2) By applying Lemma 6, we obtain that

T IIAII%

F(Xk+1)SF(Yk)_<§_ >

—15> D AR A

(32)
Since % - — 16 > 0, it follows that F(X;,,) < F(Y).
Besides, according to the the update rule of Algorithm 4.1,

WA
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we have F(Y) ) < F(X;, ). In summary, for all k the follow-
ing inequality holds:

F(Yiy) S FXpy) < F(Y) < F(Xp), (33)

which shows that { F(X,)} is monotonically decreasing and
converges to a constant C*. From {X, } C {X : F(X) < F(X,)}
which is bounded, it follows that {X,} is bounded and,
therefore, there is at least one accumulation point X*.
Moreover, using the continuity and monotonicity of { F(-)},
F(X,) - F*=FX*)ask - +oo.

(3) From (32) and (33), we have

T n A II% 2
(5_ 7 —15> w Xppr — Y 0 mnS FXY) — F(Xp )

(34
Summing (34) from k = 1to m, we have

m

1
2 n Xk+1 - Yk II?:S T(F(Xl) _F(Xm+l))'
k=1 ST 76
(35
Let m — oo, becomes
[} 1 .
2 Kot = Y np S —————(FX) = FX)). 3¢
k=1 216
2 2
Thus,
D Xy = Y wi< oo, 37)
k=1
Finally, we have that
fim v Xy = ¥ z=0, (38)

This also implies that {X, } and {Y, } share the same set of
limit points.

(4) Let {X, K, }and { ka } be the convergent subsequences of
{X,}and {Y,}, respectiVely. Assuming X* be their limit point,
ie.,

X, = X, e - X" as kj— +oo. (39)

From
£3
" ij+l _X IIFSII ij+l _Xk] IIF

+ ij - X* ngp—> 0, as k] — 400,

we get

Xk,-+1 - X" as Kk — +oo. (40)

Since Xk/,,l = proxéT(,)(Yk/ - in(Yk/_)), we have

@ Springer

2

% ||ka+1 B [Yk/‘ + %A*(b B A(ka))] ||F * ;T(Xk-”‘)

<2 |- + 24 - A “i + 210,

From (39) and (40), we immediately get for any X € R"™*"
that

S s
< % ||x - [x + o= A(X*))] * Ao,
T F T

therefore, X* is the minimizes of the following function:
1 R N
XL ”X— [X + 24— AKX ))] || + 2700
2 T F T
We complete the proof. O

ATSIPA can be directly applied to solve matrix com-
pletion problems by replacing its step 4 with

B=vY-— %PQ(W _v), (41)

where Q2 denotes the indices of the observed entries, and
P, is defined as

My, ifQ;=1

[PaD); = { 0, ifQ;=0
b l] .

The main computation cost of B is P,(W — Y) which takes
O(un £ u, 7)time, where 7 is the rank of (W — Y). The Pow-
erMethod is performed in step 5 and takes O(mnt,) time,
where ¢, is the column number of R. At step 6, a SVD on
a smaller matrix Q"B is performed and SVD(Q”B) takes
only O(mt]%) time. Besides, by using the “sparse plus low
rank” structure of (41), the complexity of proximal step
is 0((m+n)t,%+ w2 uw; tp) when Y, =V, in step 13
or O((m+n)r+ v £ v ;) when Y, ., = X, ;. Summariz-
ing, the time complexity of ATSIPGA in each iteration is
O((m +n)t;+ w & u; 1), where ; < n,u 2 u ;<< mn.

5 Numerical experiments

In this section, numerous experimental results on real-
world data are presented to demonstrate that our proposed
algorithm has an improved convergence rate and improved
restoration capability of low-rank matrix over that of the
state-of-the-art algorithms. We compare ATS1PGA algo-
rithm with the following representative algorithms:
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Fig. 1 Example of low-rank
image. a One 512 X 512 image.
b First 300 singular values of
Barbara

Fig.2 The 20 test grayscale images for image recovery

— SVT [13]: a widely used nuclear-norm-based algorithm
which is inspired by the linearized Bregman iterations
for compressed sensing.

— APG [14]: a nuclear-norm-based algorithm which
extends a fast iterative shrinkage thresholding algorithm
from the vector case to the matrix case.

— FPCA [41]: an algorithm deals with the same problem
as APG while employing fast Monte Carlo algorithm for
approximate SVD.

— RIMP [36]: an algorithm which extends the orthogonal
matching pursuit algorithm from the vector case to the
matrix case.

— IRNN [24]: a nonconvex algorithm which replaces the
nuclear norm by reweighted nuclear norm. We choose
SCAD in this work, as it always generates the best result
in our test.

— FaNCL [25]: a nonconvex algorithm deals with the same
problem as IRNN while achieving improved convergence
rate. We select SCAD in this work.

— TS1 [26]: a nonconvex algorithm which is proposed by
using transformed Schatten-1 penalty function.

As shown in Fig. 1, an image usually represents low-rank
or approximately low-rank structure. Thus, the problem of

X 104'

-

recovering an incomplete image can be treated as the prob-
lem of recovering a low-rank matrix. To test effectiveness
of our algorithm on real data, we compare it with the state-
of-the-art algorithms on 20 widely used images represented
in Fig. 2. The size of the first 7 images is 256 X 256, the size
of the following 10 images is 512 X 512, and the size of the
last 3 images is 1024 x 1024. In our tests, two different types
of mask are considered.

— Random mask: given an image, we randomly exclude a%
pixels, and the remaining ones serve as the observations.

— Text mask: the text may cover some important texture
information of a given image.

In the following experiments, the parameters in each algo-
rithm are obtained by the recommended setting. For our pro-
posed algorithm, we use the same parameter values as the
TS1 algorithm [26]. Besides, all the algorithms are stopped
when the difference in objective values between consecutive
iterations becomes smaller than 10~*. All the algorithms are
implemented in MATLAB R2014a on a Windows server
2008 system with Intel Xeon E5-2680-v4 CPU(3 cores,
2.4GHz) and 256GB memory.

@ Springer
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(f) RIMP (2) IRNN ” (h) FaNCL

Fig.3 Recovered images by using different algorithms on image 20 with sr = 0.5 and s = 20
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Fig.4 Low-rank matrix recovery results on image data. We depict the PSNR along the running time
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() RIMP (2) IRNN

Fig.5 Recovery results of the eight methods on Lenna with text
noise. CPU time is in seconds. a Lenna. b Lenna with text. ¢ SVT,
Time = 14.08. d APG, Time = 9.37. e FPCA, Time = 18.36. f RIMP,

(h) FaNCL

(i) TSI | (i) ATSIPGA

Time = 6.96. g IRNN, Time = 9.38. h FaNCL, Time = 4.42. i TSI,
Time = 55.98. j ATS1PGA, Time = 2.79. These results show that our
proposed algorithm outperforms the competing methods

asked image
i -

( RIMP (gﬁ IRNN

Fig. 6 Recovery results of the eight methods on Boat with text noise.

CPU time is in seconds. a Boat. b Boat with text. ¢ SVT, Time =
14.78. d APG, Time = 8.51. e FPCA, Time = 18.34. f RIMP, Time

5.1 Image inpainting with random mask

Image inpainting is one of the most basic problems in the
field of image processing, which aims to find out the miss-
ing pixels from very limited information of an incomplete
image. In the following tests, we first consider a relatively
easy low-rank matrix recovery problem. We assume that the

(h) FaNCL

(e) FPA

i
<X

| A o
(j) ATSIPGA

(1) TS1

= 8.93. g IRNN, Time = 10.76. h FaNCL, Time = 5.40. i TS1, Time
= 54.54. j ATS1PGA, Time = 3.15. These results show that our pro-
posed algorithm outperforms the competing methods

incomplete image data is corrupted with noise. Specifically,
let matrix X represents an incomplete image data, before
sampling missing pixels we first generate a noise matrix
N with i.i.d. elements drawn form Gaussian distribution
MNQO, 5). Then, we set X = X + N as the observed matrix. By
using the same setup as in [16], we randomly exclude 50% of
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the pixels in each image, and the remaining ones are used as
the observations. We also use sr to denote the sample ratio.

The performance of all algorithms are evaluated as: (1)
peak signal-to-noise ration (PSNR) [42]; (2) the running
time. We vary s in the range {10, 15,20,30}. The results
with different levels of noise, the average of 10 times experi-
ments, are reported.

It is seen from Table 1 that ATS1PGA algorithm achieves
higher PSNR values than other alternative algorithms except
TS1. We also find that TS1 achieves most accurate solutions
9 times on all images. However, ATS1PGA runs much faster
than TS1. Actually, our proposed algorithm is the fastest.
From Tables 2 and 3, we can observe that the noise degener-
ates the performance of TS1. For ATSIPGA, we can obtain
the similar trend in Table 1. From Table 4, we can find that
our proposed algorithm outperforms all competing algo-
rithms on nearly all images. We also present the recovered
images in Fig. 3 by using different algorithms and show that
the images obtained by ATS1PGA contain more details than
those obtained by other stat-of-the-art algorithms. The con-
vergence efficiency of ATS1PGA is also investigated and the
empirical results are presented in Fig. 4. The results in Fig. 4
show that our ATS1PGA algorithm performs best among
all competing algorithms. Therefore, taking both accuracy
and efficiency into consideration, our ATSIPGA algorithm
has the best recovery performance among all stat-of-the-art
algorithms.

5.2 Image inpainting with text mask

In this section, we will consider the text removal prob-
lem, where some of the pixels of one image are masked
in a non-random fashion, such as texts on the image.
Text removal is a tough task in the field of image pro-
cessing. To deal with such a problem, the position of the
text should be detected first, and then the corresponding
task turns into recovering a low-rank matrix problem. Fig-
ures 5 and 6 represent the empirical results of the eight
low-rank matrix recovery methods. Specifically, for the
example Lenna in Fig. 5, the PSNR values for SVT, APG,
FPCA, RIMP, IRNN, FaNCL, TS1, and ATS1PGA are
5.53,27.04, 13.54, 27.08, 26.63, 26.63, 29.79, and 27.76,
respectively. And for the example Boat in Fig. 6, the PSNR
values for SVT, APG, FPCA, R1IMP, IRNN, FaNCL, TS1,
and ATS1PGA are 5.4, 26.04, 14.27, 26.57, 25.65, 25.65,
28.55, and 26.22, respectively. These results show that
our ATS1PA algorithm is better than SVT, APG, FPCA,
R1MP, IRNN, and FaNCL for both Lenna and Boat but
only slightly worse than TS1. In terms of speed among
eight methods, our ATS1PGA is the fastest. In particular,
our ATS1PGA is at least 15 times faster than TS1. Thus,
we can conclude that our ATS1PGA algorithm is competi-
tive in handling the text removal task.

@ Springer

6 Conclusion and future work

This paper further investigated the basic properties of TS1
penalty function and utilized it to deal with the problem of
low-rank matrix recovery. Specifically, we theoretically proved
that the original low-rank problem (1) can be equivalently
transformed into the problem (5) under certain conditions.
Since the resulting optimization problem (5) is still NP-hard,
we proved that the solutions of (5) can be obtained by solv-
ing its regularization problem. To provide an efficient and fast
low-rank matrix recovery method, an algorithm with inexact
proximal steps and Nesterov’s rule was proposed. Besides, a
convergence analysis of the proposed algorithm demonstrated
that any accumulation point of the sequence generated by our
algorithm is a stationary point. Finally, numerical experiments
on real-world data sets demonstrated that our proposed algo-
rithm much faster than the SVT, APG, FPCA, RIMP, IRNN,
FaNCL, and TS1 algorithms. The experiments results also
showed that our proposed algorithm achieves comparable
recovery performance. We can conclude that our algorithm
leads to impressive improvements over the state-of-the-art
methods in the field of low-rank matrix recovery.

In many real-world applications, it is not appropriate to
assume the observed entries are corrupted by only white
Gaussian noise. This means that there is still much follow-
up work to be done in future, such as developing more flex-
ible model with TS1 regularizer to deal with low-rank matrix
recovery problem when observed entries are corrupted by
non-Gaussian noise. Furthermore, developing fast, robust,
scalable and reliable algorithm is also a central issue in the
future.
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