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Abstract
Low-rank matrix recovery aims to recover a matrix of minimum rank that subject to linear system constraint. It arises in 
various real world applications, such as recommender systems, image processing, and deep learning. Inspired by compres-
sive sensing, the rank minimization can be relaxed to nuclear norm minimization. However, such a method treats all singular 
values of target matrix equally. To address this issue, recently the transformed Schatten-1 (TS1) penalty function was pro-
posed and utilized to construct low-rank matrix recovery models. Unfortunately, the method for TS1-based models cannot 
provide both convergence accuracy and convergence speed. To alleviate such problems, this paper further investigates the 
basic properties of TS1 penalty function. And we describe a novel algorithm, which we called ATS1PGA, that is highly 
efficient in solving low-rank matrix recovery problems at a convergence rate of O(1/N), where N denotes the iterate count. 
In addition, we theoretically prove that the original rank minimization problem can be equivalently transformed into the 
TS1 optimization problem under certain conditions. Finally, extensive experimental results on real image data sets show that 
our proposed algorithm outperforms state-of-the-art methods in both accuracy and efficiency. In particular, our proposed 
algorithm is about 30 times faster than TS1 algorithm in solving low-rank matrix recovery problems.

Keywords  Low-rank matrix recovery · Transformed Schatten-1 penalty function · Nonconvex model · Equivalence

1  Introduction

The problem of recovering a matrix of minimum rank sub-
ject to linear system constraint has attracted considerable 
attention in recent years. This problem arises in various real 
world applications, such as recommender systems [1, 2], 
image processing [3–5], quality-of-service (QoS) prediction 
[6], and deep learning [7, 8]. In general, such a task can be 

formulated as the following low-rank minimization problem 
[9, 10]:

where X is the considered low-rank matrix in ℝm×n , b is a 
given measurement in ℝd , and A denotes the linear trans-
formation. By adopting the regularization method, the opti-
mization problem (1) can be equivalently converted into the 
following unconstrained minimization problem:

where 𝜆 > 0 is a regularization parameter.
Unfortunately, the optimization problems (1) and (2) are 

computationally intractable due to the nonconvexity and 
discontinuous properties of the rank function. In order to 
overcome this difficulty, many researchers suggested to use 
the nuclear norm instead, which is known as the tightest con-
vex proxy of the rank function [11, 12]. Theoretical analysis 
shows that, under some mild conditions, the low-rank matrix 
can be exactly recovered with high probability by using this 

(1)min
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scheme. Thus, a large number of methods have been pro-
posed for the resultant nuclear norm optimization problem, 
such as singular value thresholding (SVT) [13], accelerated 
proximal gradient with linesearch algorithm (APGL) [14], 
and accelerated inexact soft-impute (AIS-Impute) [15].

Since the methods mentioned above are simple and easy 
to use with theoretical guarantee, nuclear norm based model 
has recently attracted significant attention in the field of low-
rank matrix recovery. However, the performance of such a 
convex relaxation is not good enough. In other words, the 
solutions of nuclear norm optimization problem may devi-
ate from the solutions of the original optimization problem. 
The main reason is that the nuclear norm based model over-
penalizes large singular values. To alleviate this limitation, 
a common used strategy is to use nonconvex surrogates to 
approximate the rank function, which make closer approxi-
mation than nuclear norm. Examples of these nonconvex 
surrogate functions include lq-norm (0 < q < 1) [16–18], 
weighted nuclear norm (WNN) [19], smoothly clipped 
absolute deviation (SCAD) [20], mini-max concave penalty 
(MCP) [21], log-sum penalty (LSP) [22], and so on. Despite 
the resultant problem is nonconvex, non-smooth, and even 
non-Lipschitz, numerous methods have been proposed to 
handle it. In [16] and [23], the authors proposed fixed point 
iterative scheme with the singular value thresholding opera-
tor. The convergence analysis and empirical results show 
that these methods are fast and efficient. In [24], the itera-
tively reweighted nuclear norm (IRNN) method has been 
proposed by using the concavity and decreasing supergra-
dients property of existing nonconvex regularizer. Since a 
computationally expensive singular value decomposition 
(SVD) step is involved in per iteration, the IRNN method 
converges slowly. In order to improve the speed and perfor-
mance of IRNN method, fast nonconvex low-rank (FaNCL) 
[25] method was proposed. The empirical results of all the 
methods mentioned above illustrate that the nonconvex 
based model outperforms the convex based model.

Recently, the transformed Schatten-1 (TS1) penalty func-
tion [26], as a matrix quasi-norm defined on its singular 
values, has been successfully applied to low-rank matrix 
recovery. Actually, the TS1 penalty function is extended 
from the Transformed �1 (TL1) function. The TL1 function 
can be seen as a class of �1 based nonconvex penalty func-
tion, which was generalized by Lv and Fan in [27]. Kang 
et al. [28] have demonstrated the very high efficiency of 
TL1 function when applied to robust principal component 
analysis. However, the TL1 penalty function leads to a non-
convex optimization problem that is difficult to solve fast and 
efficient. Therefore, Zhang et al. continue such a study [29, 
30] and point out that the TL1 proximal operator has closed 
form analytical solutions for all values of parameter. Based 
on this finding, in this paper, we consider the following TS1 
penalty function:

where

is a nonconvex function with parameter a ∈ (0,+∞) , and 
�i(X) denotes the ith singular value of matrix X. Therefore, 
the original problem (1) can be naturally converted into the 
following optimization problem:

More often, we focus on its regularization version, which 
can be formulated as:

It should be noted that the TS1 penalty function is more gen-
eral than the nonconvex penalty function in [31]. Besides, �a 
with a ∈ (0,+∞) provides solutions satisfying the unbiased-
ness and low-rankness.

In this paper, we further investigate the basic properties 
of TS1 penalty function and propose a fast and efficient 
algorithm to solve problem (6). Specifically, we analyze the 
solution of rank minimization and prove that, under certain 
rank-RIP conditions, rank minimization can be equivalently 
transformed into unconstrained TS1 regularization, whose 
global minimizer can be obtained by TS1 thresholding func-
tions. The TS1 thresholding functions are in closed analyti-
cal form for all parameter values. Thus, an exact mathemati-
cal analysis provides theoretical guarantee for the application 
of TS1 regularization in solving low-rank matrix recovery 
problems. We list the findings and contributions as follows: 

(1)	 We first show that the minimizer of problem (5) is actu-
ally the optimal solution of problem (1).

(2)	 We further establish the relationship between problems 
(5) and (6), and prove that the solution of problem (5) 
can be obtained by solving problem (6).

(3)	 Nesterov’s rule and inexact proximal strategies are 
adopted to achieve a novel algorithm highly efficient 
in solving the TS1 regularization at a convergence rate 
of O(1/N).

(4)	 Extensive empirical studies regarding image inpainting 
tasks validate the advantages of our proposed method.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the related works. In Sect. 3, the equiva-
lence minimizers of the resultant optimization problem and 
the original optimization problem are established. Section 4 

(3)T(X) =

rank(X)∑
i=1

�a(�i(X)) =

rank(X)∑
i=1

(a + 1)�i(X)

a + �i(X)
,

(4)�a(|x|) = (a + 1)|x|
a + |x| ,

(5)min
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proposes an efficient optimization method with rigorous con-
vergence guarantee. The experimental results are reported 
and analyzed in Sect. 5. Finally, we conclude this paper in 
Sect. 6.

2 � Background

2.1 � Proximal algorithms

In this paper, we consider the following low-rank optimiza-
tion problem:

where  f  i s  bounded below and di f ferent ia-
ble with Lf -Lipschitz continuous gradient, i.e., 
⇑ ∇f (X1) − ∇f (X2) ⇑F≤ Lf ⇑ X1 − X2 ⇑F , h is low-rank 
regularizer, and 𝜆 > 0 is a given parameter. During the last 
decades, the proximal algorithm [32] has been received con-
siderable attention and successfully applied to solve problem 
(7). Specifically, the proximal algorithm generates Xk+1 as

where 𝜏 > 0 is a parameter, and

denotes the proximal operator. Assume that f and h are con-
vex, Toh and Yun [14] proposed an accelerated proximal 
gradient (APG) algorithm with a converge rate of O(1∕N2) . 
However, exactly solving the proximal operator may be 
expensive. With the aim of alleviating this difficulty, the 
inexact proximal gradient methods have been proposed and 
the theoretical analysis in [33] reveals that it shares the same 
convergence rate as APG. Most recently, the inexact proxi-
mal gradient method has been extended to nonconvex and 
nonsmooth problems [34]. It should be pointed out that the 
nmAIPG algorithm in [34] is nearly the same as the nmAPG 
algorithm in [35], but it is much faster. Unfortunately, both 
nmAIPG and nmAPG algorithms may involve two proximal 
steps in per iteration.

2.2 � TS1 thresholding algorithm

We first define the proximal operator with TS1 regularizer, 
which can be found as follows:

(7)min
X∈ℝm×n

F(X) = f (X) + �h(X),

(8)Xk+1 = prox �

�
h

(
Xk −

1

�
∇f (Xk)

)
,

(9)prox �

�
h(M) = argmin

X∈ℝm×n

1

2
⇑ X −M ⇑

2
F
+
�

�
h(X)

(10)prox
�a
�
(y) = argmin

x∈ℝ

1

2
(y − x)2 + ��a(|x|),

where �a(⋅) is defined in (4). As shown in [30], this noncon-
vex function has a closed-form expression for its optimal 
solution and the following lemma addresses this issue.

Lemma 1  (see [30]) For any 𝜆 > 0 and y ∈ ℝ , the solutions 
to nonconvex function (10) are

where

with �(y) = arccos(1 −
27�a(a+1)

2(a+|y|)3 ) , and

Based on this finding, the optimal solutions to problem 
(6) can be obtained by the proximal operator.

Lemma 2  (see [26]) Assume that 𝜏 >⇑ A ⇑
2
2
 , the optimal 

solutions to problem (6) are

where B�(X
∗) = X∗ −

1

�
A

∗(A(X∗) − b) and it admits SVD as 
UDiag(�(B�(X

∗)))VT.

Therefore, at kth iteration

According to iteration (14), the TS1 algorithm is proposed.

3 � Equivalence minimizers of problem (1) 
and problem (5)

In this section, we further investigate the basic properties 
of TS1 penalty function. Assume that X0 and X1 be the 
minimizers to the problems (1) and (5), respectively. Let 
R = X1 − X0 , then partition matrix R into two matrices R0 
and Rc which are defined as follows.

Definition 1  Let R admits SVD as UDiag(�(R))VT  , the 
matrices R0 and Rc can be defined as:

(11)prox
𝜌a
𝜆
(y) =

{
0, if |y| ≤ t

g𝜆(y), if |y| > t

g�(y) = sgn(y)

{
2

3
(a + |y|)cos

(
�(y)

3

)
−

2a

3
+

|y|
3

}

(12)t =

�
𝜆(a+1)

a
, if 𝜆 ≤

a2

2(a+1)√
2𝜆(a + 1) −

a

2
, if 𝜆 >

a2

2(a+1)
.

(13)

X∗ = prox �

�
T(⋅)(B�(X

∗)) = UDiag

(
prox

�a
�

�

(�i(B�(X
∗)))

)
VT ,

(14)Xk+1 = prox �

�
T(⋅)

(
Xk −

1

�
A

∗(A(Xk) − b)
)
.

(15)R0 = [U2K 0]m×m

[
Σ1 0 0

0 0 0

]

m×n

[V2K 0]T
n×n
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and

D e f i n i t i o n  2   D e f i n e  t h e  i n d e x  s e t 
Ij = {P(j − 1) + 2K + 1,… ,Pj + 2K} and partition Rc into 
a sum of matrices R1,R2,… , i.e.,

where

First, we introduce the following useful results.

Lemma 3  Assume that K = rank(X0) , we have

Proof  Since X1 is the minimizer of (5), we have

the second inequality follows from Lemma 2.1 in [30] and 
the last equality follows from Lemma 3.4 in [12]. 	�  ◻

Theorem 1  For any a > 0 , we have

Proof  According to the definition of �a(⋅) , we have

Hence, we get

Thus, we get the desired result

	�  ◻

Lemma 4  Let X ∈ ℝ
m×n admits SVD as UDiag(�(X))VT . For 

any a > 0 and 𝛼 > 𝛼1 , where

(16)Rc = [0 Um−2K]m×m

[
0 0 0

0 Σ2 0

]

m×n

[0 Vm−2K]
T
n×n

.

Rc =
∑
j

Rj,

(17)Rj = [0 UIj
0]m×m

⎡
⎢⎢⎣

0 0 0

0 ΣIj
0

0 0 0

⎤
⎥⎥⎦
m×n

[0 VIj
0]T

n×n
.

(18)T(Rc) ≤ T(R0).

T(X0) ≥ T(X1) =T(X0 + R) ≥ T(X0 + Rc) − T(R0)

=T(X0) + T(Rc) − T(R0),

(19)⇑ R0 + R1 ⇑F≥
aT(R0)

(a + 1)
√
2K

.

�a(|x|) = (a + 1)|x|
a + |x| =

(a + 1)|x|
a

−
(a + 1)x2

a(a + |x|) ≤
(a + 1)|x|

a
.

T(R0) =
�
i

(a + 1)�i(R0)

a + �i(R0)
≤

a + 1

a

�
i

�i(R0) =
a + 1

a
⇑ �(R0) ⇑1

≤
a + 1

a

√
2K ⇑ R0 ⇑F≤

a + 1

a

√
2K ⇑ R0 + R1 ⇑F .

⇑ R0 + R1 ⇑F≥
aT(R0)

(a + 1)
√
2K

.

with r = rank(X) , we have

Proof  Using the fact that �a(x) is increasing in the range 
[0,+∞) , we have

To get T(�−1X) ≤ 1 , it suffices to impose

equivalently,

We complete the proof. 	�  ◻

Theorem 2  For any a > 0 and 𝛼 >
arc+rc−1

a
𝜎1(Rc) , we have

where rc = rank(Rc).

Proof  According to the definition of T(⋅) and Lemma 4, we 
have

Hence, we have

which is equivalent to

By Definition 2, we have

and the rank of Rj s is not greater than k.
Since �a(t) is increasing in the range (0,∞) , we get

(20)�1 =
ar + r − 1

a
�1(X)

(21)T(�−1X) ≤ 1.

T(�−1X) =

r∑
i=1

�a(�i(�
−1X)) ≤ r�a(�1(�

−1X))

=

1

�
r(a + 1)�1(X)

a +
1

�
�1(X)

=
r(a + 1)�1(X)

�1(X) + a�
.

r(a + 1)�1(X)

�1(X) + a�
≤ 1,

� ≥
ar + r − 1

a
�1(X).

(22)
�
i≥2

⇑ �−1Ri ⇑F≤

�
i≥2

T(�−1Ri−1)√
P

≤
T(�−1R0)√

P
,

�a(�i(�
−1Rj)) ≤ T(�−1Rj) ≤ 1, ∀i ∈ Ij.

�a(�i(�
−1Rj)) =

(a + 1)�i(�
−1Rj)

a + �i(�
−1Rj)

≤ 1 ⇔ �i(�
−1Rj) ≤ 1,

�i(�
−1Rj) ≤ �a(�i(�

−1Rj)).

�i(Rj) ≤ �i� (Rj−1), ∀i ∈ Ij, i
� ∈ Ij−1,
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Therefore, we obtain

and

This is the first part of (22). By Lemma 3, the second part of 
(22)is obtained immediately.

We complete the proof. 	�  ◻

In order to show that the minimizers to problem (5) are 
the optimal solutions of the problem (1), we introduce the 
following rank restricted isometry property (rank-RIP) 
condition.

Definition 3  (see [36]) For every integer r with 1 ≤ r ≤ m , 
let the restricted isometry constant �r(A) be the minimum 
number such that

holds for all X ∈ ℝ
m×n of rank at most r.

�i(�
−1Rj) ≤ �a(�i(�

−1Rj)) ≤
T(�−1Rj−1)

P
.

⇑ �−1Rj ⇑F≤
T(�−1Rj−1)√

P
,

�
j≥2

⇑ �−1Rj ⇑F≤

�
j≥2

T(�−1Rj−1)√
P

.

(23)
(1 − �r(A)) ⇑ X ⇑

2
F
≤⇑ A(X) ⇑2

2
≤ (1 + �r(A)) ⇑ X ⇑

2
F
,

Armed with rank-RIP condition, the following theorem 
reveals that the original problem (1) and its nonconvex relax-
ation problem (5) share the same solutions under the rank-
RIP condition with 𝛿3K <

a2−4a−2

5a2+4a+2
.

Theorem 3  Assume that there is a number P > 2K , where 
K = rank(X0) , such that

Then, there exists a∗ > 0 , such that for any a∗ < a < +∞ , 
X1 = X0.

Proof  Let

It is easy to verify that the function f is continuous and 
increasing in the range [0,+∞) . Note that at a = 0,

and

Thus, there exists a constant a∗ > 0 such that f (a∗) = 0 . 
Then, for any a∗ < a < +∞ , we get

Since A(R) = A(X1 − X0) = b − b = 0 , we obtain

(24)𝛿P(A) +
P

2K
𝛿2K+P(A) <

P

2K
− 1.

(25)f (a) =
a2

(a + 1)2
P

2K

(
1 − �2K+P(A)

)
−
(
1 + �P(A)

)
.

f (0) = −1 − 𝛿P(A) < 0,

f (a) =
P

2K

(
1 − 𝛿2K+P(A)

)
−
(
1 + 𝛿P(A)

)
> 0, as a → +∞.

(26)a

a + 1

√
1 − 𝛿2K+P(A)

2K
−

√
1 + 𝛿P(A)

P
> 0.

0 = ⇑ A(�−1R) ⇑2=⇑ A(�−1R0 + �−1Rc) ⇑2

= ⇑ A(�−1R0 + �−1R1) +
�
i≥2

A(�−1Ri) ⇑2

≥ ⇑ A(�−1R0 + �−1R1) ⇑2 −&#XArrowvert;
�
i≥2

A(�−1Ri)&#XArrowvert;2

≥ ⇑ A(�−1R0 + �−1R1) ⇑2 −
�
i≥2

⇑ A(�−1Ri) ⇑2

≥
√
1 − �2K+P(A) ⇑ �−1R0 + �−1R1

⇑F −
√
1 + �P(A)

�
i≥2

⇑ �−1Ri ⇑F .
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Using Theorems 1 and 2, we get

According to the inequality (26) and the definition of T(⋅) , 
we have T(�−1R0) = 0 , which implies that R0 = 0 . This, 
together with Lemma 3, yields Rc = 0 . Therefore, X∗ = X0.

We complete the proof. 	�  ◻

Remark 1  In Theorem 3, if let P = 3K , the inequality (26) is

This inequality will approach 𝛿3T <
a2−4a−2

5a2+4a+2
 . Moreover, we 

can obtain 𝛿3T < 0.2 as a → ∞.

Although the minimizers of problem (1) can be exactly 
obtained by solving the nonconvex relaxation problem (5), 
the resultant optimal problem is still NP-hard. To overcome 
this difficultly, we focus on its regularization version (6). 
The following theorem addresses this issue.

Theorem 4  Let {�p} be a decreasing sequence of positive 
numbers with �p → 0 , and X�p

 be the optimal minimizer of 
the problem (6) with � = �p . Assume that the problem (5) is 
feasible, then the sequence {X�p

} is bounded and any of its 
accumulation points is the optimal minimizer of the problem 
(5).

Proof  Assume that the problem (5) is feasible and X̃ is any 
feasible point, then A(X̃) = b . Since X�p

 is the optimal mini-
mizer of the problem (6) with � = �p , we get

Thus, the sequence {X�p
} is bounded and has at least one 

accumulation point. Assume that X∗ be any accumulation 
point of {X�p

} . From (28), we get A(X∗) = b , which means 
that X∗ is a feasible point of the problem (5). Together with 
T(X∗) ≤ T(X̃) and the arbitrariness of X̃ , we get that X∗ is the 
optimal minimizer of the problem (5).

We complete the proof. 	�  ◻

0 ≥
√
1 − �2K+P(A)

aT(�−1R0)

(a + 1)
√
2K

−
√
1 + �P(A)

1√
P
T(�−1R0)

=

�
a

a + 1

�
1 − �2K+P(A)

2K
−

�
1 + �P(A)

P

�
T(�−1R0).

(27)
3a2

2(a + 1)2
(1 − 𝛿5K(A)) > 1 + 𝛿3K(A).

(28)

max
{
𝜆pT(X𝜆p

),⇑ A(X𝜆p
) − b ⇑

2
2

}
≤⇑ A(X𝜆p

) − b ⇑
2
2
+𝜆pT(X𝜆p

)

≤⇑ A(X̃) − b ⇑
2
2
+𝜆pT(X̃)

= 𝜆pT(X̃).

4 � The proposed algorithm and its 
convergence analysis

In order to solve the nonconvex relaxation problem (6) effi-
ciently, in this section we propose a novel algorithm highly 
efficient to handle it at a convergence rate of O(1/N). Specifi-
cally, the proposed algorithm has an improved convergence 
rate and improved recovery capability of the low-rank matrix 
over those of the state-of-the-art algorithms.

First, the power method [37] is adopted to obtain approxi-
mate SVD. As shown in [33] and [34], in real application 
it is often too expensive to compute the proximal operator. 
To speed up the convergence of the proposed algorithm, it 
is desirable to solve the proximal operator by computing the 
SVD on a smaller matrix. The following lemma addresses 
this issue.

Lemma 5   For  any  f ixed  𝜆 > 0  ,  assume that 
X = QQTX ∈ ℝ

m×n , where Q ∈ ℝ
m×t(t ≪ n) is an orthogo-

nal matrix. Then,

Proof  The proof can be followed the footsteps of Proposition 
1 in [38], and we omit it here. 	�  ◻

Since the power method is employed in our algorithm to 
get approximate SVD, the results generated by the proximal 
operator may be inexact, meaning that

As indicated in [34], although the inexact proximal steps 
are employed in our algorithm, the basic properties stay the 
same.

Second, the convergence rate of our proposed algorithm 
is further accelerated by the Nesterov’s rule [39] which is 
a widely used method to speed up the convergence rate of 
first-order algorithm. In this paper, we integrate APGnc+ 
[40] with our proposed algorithm, and the details can be 
found in Algorithm 1. It should be pointed out that our pro-
posed algorithm ATS1PGA is much different from APGnc+ . 
We focus on the transformed Schatten-1 regularizer which 
induces lower rank and achieves improved recovery perfor-
mance than the nonconvex regularizer used in APGnc+.

(29)prox �

�
T(⋅)(X) = Qprox �

�
T(⋅)(Q

TX).

(30)

Xk+1=prox �

�
T(⋅)(Yk)

=
{
U|�

�
T(U)+

1

2
⇑ U−Yk ⇑

2
F
≤�k+

�

�
T(V)

+
1

2
⇑ V−Yk ⇑

2
F
, ∀V∈ℝ

m×n
}
.
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The following theorem shows that the objective func-
tion is always decreased and any accumulation point of the 
sequence generated by Algorithm 1 is a stationary point.

Theorem 5  Let F(X) = 1

2
⇑ A(X) − b ⇑

2
2
+�T(X) and {Xk} 

be the sequence generated via Algorithm 1 with � ≥⇑ A ⇑
2
2
 . 

Assume that �k ≤ � ⇑ Xk+1 − Yk ⇑
2
F
 and 𝜏

2
−

⇑A⇑
2
2

2
− 𝜏𝛿 > 0 , 

then

(1)	 the sequence {Xk} is bounded, and has at leat one accu-
mulation point;

(2)	 F(X) is monotonically decreasing and converges to 
F(X∗) , where X∗ is any accumulation point of {Xk};

(3)	 limk→∞ � Xk+1 − Yk �
2
F
= 0;

(4)	 X∗ is a stationary point of (6).

To prove Theorem 5, we first introduce the following 
lemma.

Lemma 6  If �k ≤ � ⇑ A − Yk ⇑
2
F
 , then

where A = prox �

�
T(⋅)(Yk −

1

�
∇f (Yk)).

Proof  Let f (A) = 1

2
⇑ A(A) − b ⇑

2
2
 , we have

According to the definition of the inexact proximal operator 
for each step, we have that

(31)F(A) ≤ F(Yk) −

(
�

2
−

⇑ A ⇑
2
2

2
− ��

)
⇑ A − Yk ⇑

2
F
,

f (A) ≤ f (Yk)+ < A − Yk,∇f (Yk) > +
⇑ A ⇑

2
2

2
⇑ A − Yk ⇑

2
F
.

and thus we can simplify it as

Therefore, we have that

We complete the proof. 	�  ◻

Now, we begin prove Theorem 5.

Proof  (1) and (2) By applying Lemma 6, we obtain that

Since 𝜏
2
−

⇑A⇑
2
2

2
− 𝜏𝛿 > 0 , it follows that F(Xk+1) ≤ F(Yk) . 

Besides, according to the the update rule of Algorithm 4.1, 

�

�
T(A) +

1

2
⇑ A − Yk +

1

�
∇f (Yk) ⇑

2
F

≤ �k +
�

�
T(Yk) +

1

2
⇑

1

�
∇f (Yk) ⇑

2
F
,

𝜆T(A) ≤ 𝜏𝜉k + 𝜆T(Yk) −
𝜏

2
⇑ A − Yk ⇑

2
F
− < A − Yk,∇f (Yk) > .

F(A) =f (A) + 𝜆T(A)

≤f (Yk)+ < ∇f (Yk),A − Yk > +
⇑ A ⇑

2
2

2
⇑ A − Yk ⇑

2
F

+ 𝜆T(Yk)− < ∇f (Yk),A − Yk > −
𝜏

2
⇑ A − Yk ⇑

2
F
+𝜏𝜉k

=F(Yk) −

(
𝜏− ⇑ A ⇑

2
2

2

)
⇑ A − Yk ⇑

2
F
+𝜏𝜉k

≤F(Yk) −

(
𝜏

2
−

⇑ A ⇑
2
2

2
− 𝜏𝛿

)
⇑ A − Yk ⇑

2
F
.

(32)

F(Xk+1) ≤ F(Yk) −

(
�

2
−

⇑ A ⇑
2
2

2
− ��

)
⇑ Xk+1 − Yk ⇑

2
F
.
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we have F(Yk+1) ≤ F(Xk+1) . In summary, for all k the follow-
ing inequality holds:

which shows that {F(Xk)} is monotonically decreasing and 
converges to a constant C∗ . From {Xk} ⊂ {X ∶ F(X) ≤ F(X0)} 
which is bounded, it follows that {Xk} is bounded and, 
therefore, there is at least one accumulation point X∗ . 
Moreover, using the continuity and monotonicity of {F(⋅)} , 
F(Xk) → F∗ = F(X∗) as k → +∞.

(3) From (32) and (33), we have

Summing (34) from k = 1 to m, we have

Let m → ∞ , becomes

Thus,

Finally, we have that

This also implies that {Xk} and {Yk} share the same set of 
limit points.

(4) Let {Xkj
} and {Ykj} be the convergent subsequences of 

{Xk} and {Yk} , respectively. Assuming X∗ be their limit point, 
i.e.,

From

we get

Since Xkj+1
= prox �

�
T(⋅)(Ykj −

1

�
∇f (Ykj )) , we have

(33)F(Yk+1) ≤ F(Xk+1) ≤ F(Yk) ≤ F(Xk),

(34)

(
�

2
−

⇑ A ⇑
2
2

2
− ��

)
⇑ Xk+1 − Yk ⇑

2
F
≤ F(Xk) − F(Xk+1).

(35)

m∑
k=1

⇑ Xk+1 − Yk ⇑
2
F
≤

1

�

2
−

⇑A⇑
2
2

2
− ��

(F(X1) − F(Xm+1)).

(36)

∞∑
k=1

⇑ Xk+1 − Yk ⇑
2
F
≤

1

�

2
−

⇑A⇑
2
2

2
− ��

(F(X1) − F(X∗)).

(37)
∞∑
k=1

⇑ Xk+1 − Yk ⇑
2
F
< ∞,

(38)lim
k→∞

� Xk+1 − Yk �
2
F
= 0,

(39)Xkj
→ X∗, Ykj → X∗ as kj → +∞.

� Xkj+1
− X∗

�F≤� Xkj+1
− Xkj

�F

+ � Xkj
− X∗

�F→ 0, as kj → +∞,

(40)Xkj+1
→ X∗ as kj → +∞.

From (39) and (40), we immediately get for any X ∈ ℝ
m×n 

that

therefore, X∗ is the minimizes of the following function:

We complete the proof. 	�  ◻

ATS1PA can be directly applied to solve matrix com-
pletion problems by replacing its step 4 with

where � denotes the indices of the observed entries, and 
P� is defined as

The main computation cost of B is P�(W − Y) which takes 
O(⇑ 𝛺 ⇑1 r̄) time, where r̄ is the rank of (W − Y) . The Pow-
erMethod is performed in step 5 and takes O(mntk) time, 
where tk is the column number of R. At step 6, a SVD on 
a smaller matrix QTB is performed and SVD(QTB ) takes 
only O(mt2

k
) time. Besides, by using the “sparse plus low 

rank” structure of (41), the complexity of proximal step 
is O((m + n)t2

k
+ ⇑ � ⇑1 tk) when Yk+1 = Vk+1 in step 13 

or O((m + n)r̄+ ⇑ 𝛺 ⇑1 tk) when Yk+1 = Xk+1 . Summariz-
ing, the time complexity of ATS1PGA in each iteration is 
O((m + n)t2

k
+ ⇑ � ⇑1 tk) , where tk ≪ n , ⇑ 𝛺 ⇑1≪ mn.

5 � Numerical experiments

In this section, numerous experimental results on real-
world data are presented to demonstrate that our proposed 
algorithm has an improved convergence rate and improved 
restoration capability of low-rank matrix over that of the 
state-of-the-art algorithms. We compare ATS1PGA algo-
rithm with the following representative algorithms:

1

2

⇑⇑⇑⇑⇑⇑⇑⇑⇑
Xkj+1

−
[
Ykj +

1

�
A

∗(b −A(Ykj ))
]⇑⇑⇑⇑⇑⇑⇑⇑⇑

2

F
+

�

�
T(Xkj+1

)

≤
1

2

⇑⇑⇑⇑⇑⇑⇑⇑⇑
X −

[
Ykj +

1

�
A

∗(b −A(Ykj ))
]⇑⇑⇑⇑⇑⇑⇑⇑⇑

2

F
+

�

�
T(X).

1

2

⇑⇑⇑⇑⇑⇑⇑⇑⇑
X∗ −

[
X∗ +

1

�
A

∗(b −A(X∗))
]⇑⇑⇑⇑⇑⇑⇑⇑⇑

2

F
+

�

�
T(X∗)

≤
1

2

⇑⇑⇑⇑⇑⇑⇑⇑⇑
X −

[
X∗ +

1

�
A

∗(b −A(X∗))
]⇑⇑⇑⇑⇑⇑⇑⇑⇑

2

F
+

�

�
T(X),

X →
1

2

���������
X −

[
X∗ +

1

�
A

∗(b −A(X∗))
]���������

2

F
+

�

�
T(X).

(41)B = Y −
1

�
P�(W − Y),

[P�(M)]ij =

{
Mij, if �ij = 1

0, if �ij = 0.
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–	 SVT [13]: a widely used nuclear-norm-based algorithm 
which is inspired by the linearized Bregman iterations 
for compressed sensing.

–	 APG [14]: a nuclear-norm-based algorithm which 
extends a fast iterative shrinkage thresholding algorithm 
from the vector case to the matrix case.

–	 FPCA [41]: an algorithm deals with the same problem 
as APG while employing fast Monte Carlo algorithm for 
approximate SVD.

–	 R1MP [36]: an algorithm which extends the orthogonal 
matching pursuit algorithm from the vector case to the 
matrix case.

–	 IRNN [24]: a nonconvex algorithm which replaces the 
nuclear norm by reweighted nuclear norm. We choose 
SCAD in this work, as it always generates the best result 
in our test.

–	 FaNCL [25]: a nonconvex algorithm deals with the same 
problem as IRNN while achieving improved convergence 
rate. We select SCAD in this work.

–	 TS1 [26]: a nonconvex algorithm which is proposed by 
using transformed Schatten-1 penalty function.

As shown in Fig. 1, an image usually represents low-rank 
or approximately low-rank structure. Thus, the problem of 

recovering an incomplete image can be treated as the prob-
lem of recovering a low-rank matrix. To test effectiveness 
of our algorithm on real data, we compare it with the state-
of-the-art algorithms on 20 widely used images represented 
in Fig. 2. The size of the first 7 images is 256 × 256 , the size 
of the following 10 images is 512 × 512 , and the size of the 
last 3 images is 1024 × 1024 . In our tests, two different types 
of mask are considered.

–	 Random mask: given an image, we randomly exclude �% 
pixels, and the remaining ones serve as the observations.

–	 Text mask: the text may cover some important texture 
information of a given image.

In the following experiments, the parameters in each algo-
rithm are obtained by the recommended setting. For our pro-
posed algorithm, we use the same parameter values as the 
TS1 algorithm [26]. Besides, all the algorithms are stopped 
when the difference in objective values between consecutive 
iterations becomes smaller than 10−4 . All the algorithms are 
implemented in MATLAB R2014a on a Windows server 
2008 system with Intel Xeon E5-2680-v4 CPU(3 cores, 
2.4GHz) and 256GB memory.

Fig. 1   Example of low-rank 
image. a One 512 × 512 image. 
b First 300 singular values of 
Barbara

Fig. 2   The 20 test grayscale images for image recovery
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Fig. 3   Recovered images by using different algorithms on image 20 with sr = 0.5 and s = 20

Fig. 4   Low-rank matrix recovery results on image data. We depict the PSNR along the running time
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5.1 � Image inpainting with random mask

Image inpainting is one of the most basic problems in the 
field of image processing, which aims to find out the miss-
ing pixels from very limited information of an incomplete 
image. In the following tests, we first consider a relatively 
easy low-rank matrix recovery problem. We assume that the 

incomplete image data is corrupted with noise. Specifically, 
let matrix X represents an incomplete image data, before 
sampling missing pixels we first generate a noise matrix 
N with i.i.d. elements drawn form Gaussian distribution 
N(0, s) . Then, we set X = X + N as the observed matrix. By 
using the same setup as in [16], we randomly exclude 50% of 

Fig. 5   Recovery results of the eight methods on Lenna with text 
noise. CPU time is in seconds. a Lenna. b Lenna with text. c SVT, 
Time = 14.08. d APG, Time = 9.37. e FPCA, Time = 18.36. f R1MP, 

Time = 6.96. g IRNN, Time = 9.38. h FaNCL, Time = 4.42. i TS1, 
Time = 55.98. j ATS1PGA, Time = 2.79. These results show that our 
proposed algorithm outperforms the competing methods

Fig. 6   Recovery results of the eight methods on Boat with text noise. 
CPU time is in seconds. a Boat. b Boat with text. c SVT, Time = 
14.78. d APG, Time = 8.51. e FPCA, Time = 18.34. f R1MP, Time 

= 8.93. g IRNN, Time = 10.76. h FaNCL, Time = 5.40. i TS1, Time 
= 54.54. j ATS1PGA, Time = 3.15. These results show that our pro-
posed algorithm outperforms the competing methods
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the pixels in each image, and the remaining ones are used as 
the observations. We also use sr to denote the sample ratio.

The performance of all algorithms are evaluated as: (1) 
peak signal-to-noise ration (PSNR) [42]; (2) the running 
time. We vary s in the range {10, 15, 20, 30} . The results 
with different levels of noise, the average of 10 times experi-
ments, are reported.

It is seen from Table 1 that ATS1PGA algorithm achieves 
higher PSNR values than other alternative algorithms except 
TS1. We also find that TS1 achieves most accurate solutions 
9 times on all images. However, ATS1PGA runs much faster 
than TS1. Actually, our proposed algorithm is the fastest. 
From Tables 2 and 3, we can observe that the noise degener-
ates the performance of TS1. For ATS1PGA, we can obtain 
the similar trend in Table 1. From Table 4, we can find that 
our proposed algorithm outperforms all competing algo-
rithms on nearly all images. We also present the recovered 
images in Fig. 3 by using different algorithms and show that 
the images obtained by ATS1PGA contain more details than 
those obtained by other stat-of-the-art algorithms. The con-
vergence efficiency of ATS1PGA is also investigated and the 
empirical results are presented in Fig. 4. The results in Fig. 4 
show that our ATS1PGA algorithm performs best among 
all competing algorithms. Therefore, taking both accuracy 
and efficiency into consideration, our ATS1PGA algorithm 
has the best recovery performance among all stat-of-the-art 
algorithms.

5.2 � Image inpainting with text mask

In this section, we will consider the text removal prob-
lem, where some of the pixels of one image are masked 
in a non-random fashion, such as texts on the image. 
Text removal is a tough task in the field of image pro-
cessing. To deal with such a problem, the position of the 
text should be detected first, and then the corresponding 
task turns into recovering a low-rank matrix problem. Fig-
ures 5 and 6 represent the empirical results of the eight 
low-rank matrix recovery methods. Specifically, for the 
example Lenna in Fig. 5, the PSNR values for SVT, APG, 
FPCA, R1MP, IRNN, FaNCL, TS1, and ATS1PGA are 
5.53, 27.04, 13.54, 27.08, 26.63, 26.63, 29.79, and 27.76, 
respectively. And for the example Boat in Fig. 6, the PSNR 
values for SVT, APG, FPCA, R1MP, IRNN, FaNCL, TS1, 
and ATS1PGA are 5.4, 26.04, 14.27, 26.57, 25.65, 25.65, 
28.55, and 26.22, respectively. These results show that 
our ATS1PA algorithm is better than SVT, APG, FPCA, 
R1MP, IRNN, and FaNCL for both Lenna and Boat but 
only slightly worse than TS1. In terms of speed among 
eight methods, our ATS1PGA is the fastest. In particular, 
our ATS1PGA is at least 15 times faster than TS1. Thus, 
we can conclude that our ATS1PGA algorithm is competi-
tive in handling the text removal task.

6 � Conclusion and future work

This paper further investigated the basic properties of TS1 
penalty function and utilized it to deal with the problem of 
low-rank matrix recovery. Specifically, we theoretically proved 
that the original low-rank problem (1) can be equivalently 
transformed into the problem (5) under certain conditions. 
Since the resulting optimization problem (5) is still NP-hard, 
we proved that the solutions of (5) can be obtained by solv-
ing its regularization problem. To provide an efficient and fast 
low-rank matrix recovery method, an algorithm with inexact 
proximal steps and Nesterov’s rule was proposed. Besides, a 
convergence analysis of the proposed algorithm demonstrated 
that any accumulation point of the sequence generated by our 
algorithm is a stationary point. Finally, numerical experiments 
on real-world data sets demonstrated that our proposed algo-
rithm much faster than the SVT, APG, FPCA, R1MP, IRNN, 
FaNCL, and TS1 algorithms. The experiments results also 
showed that our proposed algorithm achieves comparable 
recovery performance. We can conclude that our algorithm 
leads to impressive improvements over the state-of-the-art 
methods in the field of low-rank matrix recovery.

In many real-world applications, it is not appropriate to 
assume the observed entries are corrupted by only white 
Gaussian noise. This means that there is still much follow-
up work to be done in future, such as developing more flex-
ible model with TS1 regularizer to deal with low-rank matrix 
recovery problem when observed entries are corrupted by 
non-Gaussian noise. Furthermore, developing fast, robust, 
scalable and reliable algorithm is also a central issue in the 
future.
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