
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2021) 12:2543–2557 
https://doi.org/10.1007/s13042-021-01338-0

ORIGINAL ARTICLE

hier2vec: interpretable multi‑granular representation learning 
for hierarchy in social networks

Shun Fu1 · Guoyin Wang1 · Ji Xu2

Received: 2 July 2020 / Accepted: 21 April 2021 / Published online: 4 May 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Network representation learning (NRL) maps vertices into latent vector space for further network inference. The existing 
algorithms concern more about whether the vectors of two similar nodes be close in latent vector space while the hierarchy 
proximity has been largely neglected by them. The distribution of the representation vectors needs to reflect the hierarchi-
cal structural properties which widely exist in networks. In this paper, we propose a novel network representation learning 
framework that can encode the interpretable hierarchical structural semantics into the representation vectors. Specifically, 
we measure the distance and importance degree of nodes in the original network and map the nodes to a tree space. This 
makes the hierarchical structural relations in the original network be clearly revealed by the tree which is also of good inter-
pretability. In this paper, the local structural proximities and the interpretable hierarchy knowledge are encoded into vector 
space by optimizing the objective function. Extensive experiments conducted on the realistic data sets demonstrate that the 
proposed approach outperforms the existing state-of-the-art approaches on tasks of node classification, link prediction, and 
visualization. Finally, a case study is conducted for further analysis about how the proposed model works.

Keywords Rough set · Multi-granular computing · Network representation learning · Social networks

1 Introduction

Networks have wide applications on revealing the properties 
of relational objects [1–3]. Recently, network representa-
tion learning, also known as network embedding (NE) [4, 
5], seeks to learn representations that encode the similarity 
between nodes (e.g. neighborhoods [6, 7], node attributes [8] 
and labels [9, 10]) in the original network. Representation 
learning approaches for machine learning on graphs offer a 
powerful alternative to traditional feature engineering. These 
approaches have consistently pushed the state of the art on 
tasks such as node classification, link prediction, community 
detection, etc. [5]. On the other hand, the communities in 

networks often compose a hierarchical organization, with 
communities embedded within other communities [11, 12]. 
This nesting property of communities is called the hierarchy 
that is ubiquitous in real networks [13]. Revealing the hierar-
chy knowledge about networks can help us learn about them 
on different granularity and handle the problems caused by 
the high complexity and the huge scale of networks [14]. 
However, the hierarchy in networks is paid less attention to. 
Simply doing the hierarchical clustering on the representa-
tion vectors fails to reveal the hierarchy of nodes because 
they concern more about the similarity between nodes rather 
than the hierarchical structural relationships. NRL algorithm 
focuses too much on local connection characteristics and 
fails to capture the hierarchy in the network. This can cause 
problems such as that shown in Fig. 1. The graph of network 
contains nodes of two classes, i.e. ‘class a’ (orange) and 
‘class b’ (blue). NRL algorithm A focuses more on local 
connections and the edges (0,1) and (0,2) in the original 
graph have more influence on node ‘0’ than the edge (0,3). 
This makes the representation vector of node ‘0’ be closer 
with those of node ‘1’ and ‘2’ in latent vector space and 
node ‘0’ is finally classified into ‘class a’ through algorithm 
A. Nevertheless, of all the nodes with degrees larger than 

 * Guoyin Wang 
 wanggy@ieee.org

 Shun Fu 
 fushun21@sina.com

1 Chongqing Key Laboratory of Computational Intelligence, 
Chongqing University of Posts and Telecommunications, 
Chongqing, China

2 School of information engineering, Guizhou University 
of Engineering Science, Guiyang, Guizhou, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-021-01338-0&domain=pdf


2544 International Journal of Machine Learning and Cybernetics (2021) 12:2543–2557

1 3

node ‘0’, node ‘5’ is the closest to it. If we consider the 
hierarchy in the original graph in algorithm B, as the graph 
shown in Fig. 1, we can establish a red dashed line repre-
senting the effect of node ‘5’ on node ‘0’. This can lead to 
classifying node ‘0’ into ‘class b’ in the end.

Tree structures play an important role in machine learning 
and statistics [15]. Learning a tree structure over data points 
gives a straightforward picture of how objects of interest are 
related. Trees are easily interpreted and intuitive to represent 
the hierarchy in data. Sometimes we may know that there is 
a true hierarchy underlying the data. For example, species in 
the tree of life or duplicates of genes in the human genome, 
known as paralogs [16]. In 2016, Xu et al. proposed a lead-
ing tree granular computing model, called DenPEHC [17]. 
Based on the density calculation given by Eq. 1, DenPEHC 
clearly separates the data points into different granular levels 
and reveals the hierarchy of the distributions of data by a tree 
structure (called leading tree). In the leading tree, a node has 
more child nodes means it is at the center of a community. 
Assume there is a set of data points distributed in 2-dimen-
sional space, shown in Fig. 2a. We can obtain the leading 
tree via the distribution of samples, shown in Fig. 2b. In that 
tree, the node ‘10’ is at the root of the tree while the node 
‘13’ is leading a subtree in green. It means that the node ‘10’ 
acts as the center of the entire community and the node ‘13’ 
acts as the center of a sub-community, which is at a lower 
granular level. We can even see the blue nodes, ‘19’ and ‘20’ 
can be split into the smaller community at a lower granular 
level than that of green nodes. Thus, the hierarchy revealed 
by in Fig. 2b matches the real distribution of sample points 
in Fig. 2a.

In Fig. 3, the original graph (Fig. 3a) is a relationship graph 
for the member of a karate club. Zachary et al. collected this 

(1)�i =
∑

j∈I⧵{i}

e
−

(
di,j

dc

)2

data set [18]. They used these data and an information flow 
model for network conflict resolution to explain the split-up 
of this group following disputes among the members. In that 
graph, the person represented by node ‘33’ is the founder of 
whole community while the node ‘0’ is the core member 
of a split new community. The original graph (Fig. 3a) is 
represented in vectors (Fig. 3b) by local approximation pre-
serving NRL, i.e. LINE, and the Fig. 3c shows the leading 
tree (which can be seen as a directed graph) that generated 
by representation vectors and thus extracting the hierarchy 
implicit in the distribution of the vectors. In Fig. 3a, the 
node ‘0’ is the center of a community. However, the Fig. 3c 
shows the node ‘0’ has no child node and its parent node 
is ‘12’. This means that node ‘12’ is a point that is more at 
the center of the community than node ‘0’, which clearly 

1

2

03

class a

5

4

1

2

03
5

4

1

20

3
5

4

class b

Original graph Latent vector space

NRL algorithmA

NRL algorithmB

Fig. 1  The failure of modeling hierarchy in networks causes different 
classification results (Zoom for better view)

0
1

2

3
4

5

6

7

8

9

10

11
12

13
14

15

16
17

18
19 20

(a) Sample data points

4

750

62 9

3

1

12

11

14

17 19

2015

16 18

13

10

8

(b) The leading tree

Fig. 2  From sample data points to its leading tree



2545International Journal of Machine Learning and Cybernetics (2021) 12:2543–2557 

1 3

contradicts the reality. On the other hand, if the hierarchy in 
the original network is followed, using the method of this 
paper, a leading tree can be generated as shown in Fig. 3d 
and the contradiction is resolved. It indicates that the distri-
bution of the representation vectors obtained by local struc-
tural approximation preserving NRL fails to represent the 
hierarchy of nodes in the original graph.

This paper proposes a framework of interpretable multi-
granular representation learning (hier2vec) which builds an 
interpretable multi-granular tree on the original graph struc-
ture and embeds the multi-granular semantic knowledge of 
hierarchy revealed by the leading tree to the representation 
vectors. In this way, the representation vectors encode not 
only the local linkage semantic but also the global multi-
granular hierarchy semantic knowledge. The extensive 
experiments conducted on several networks demonstrate 
that the proposed approach is effective and it outperforms 
the existing state-of-the-art approaches on a variety of tasks, 
including node classification, link prediction, and node 
visualization.

The main contributions of this paper are summarized as 
follows. 

(1) This work embeds the multi-granular hierarchy knowl-
edge into the representation vectors by using an inter-
pretable model of the leading tree. This ameliorates the 
lack of interpretability of representation learning for 
the hierarchy in network.

(2) It makes up for the fact that the traditional network 
representation learning only pays attention to the local 
structural similarity but ignores the global multi-level 
structural characteristics.

(3) The multi-granularity hierarchical clustering model on 
Euclidian space is extended to graph data mining so 
that the structure on the graph can be intuitively dis-
played.

The remainder of this paper is organized as follows. In Sect.  
2, related backgrounds of the proposed method are given. 
Section 3 gives the problem definition and formulation in 

hier2vec, while Sect. 4 deals with detailed descriptions of 
the proposed algorithm. Experimental results are analyzed 
in Sect. 5, and finally, we summarize in Sect. 6 with conclu-
sions and future work.

2  Related works

2.1  Multi‑granularity computing

Multi-granularity computing is a concept of intelligent com-
puting which simulate the cognition law of human for solv-
ing the complex problems. It is an umbrella term to cover 
any theories, methodologies, techniques, and tools that 
departs and solve the complex problems on multi-scale, 
multi-complexity, multi-size, multi-resolution, etc. [19]. 
Multi-granularity computing (MGrC) emphasizes on jointly 
utilizing multiple levels of information granules in problem-
solving, instead of only one optimal granular layer [20]. Hei-
mann et al. [21] represents the multi-granular distribution 
of node embeddings in feature space, which enables the 
expressively and inductively comparison of graphs. Li et al. 
[22] propose an axiomatic approach to describe three-way 
concepts utilizing multi-granularity. By proposing a hierar-
chical cluster ensemble model, Hu et al. [23] provide a new 
way for the ensemble learning application of the knowledge 
granulation. Multi-granular computing has been one of the 
fastest-growing information-processing paradigms in the 
domain of computational intelligence.

2.2  Hierarchical clustering and the leading tree

Hierarchical clustering is regarded as a method to construct 
multi-granular information granules for the original finest-
grained data from the perspective of granular computing 
[17]. The hierarchical clustering divides the data clustering 
into coarser to finer granule or verse versa. It offers people a 
good understanding of the distribution of data. Hierarchical 
clustering methods can be categorized into two types. One 
type presents a new method or methodology. Bouguettaya 

...
...

0

31

21
19

17
13

12

11

10

8

7

64

3

2

1

30

932
28

27

33

14

15

18
20

22

2329

25
2426

16

5

0

31

21

19

17

13

12

11

10

8

7

6
4

3

2

1

30

932
28

27

33

14

15

18
20

22

2329

25

2426

16

5

0.1, 0.2, 0.9, 0.5,...
0.7, 0.3, 0.9, 0.5,...
0.3, 0.5, 0.9, 0.1,...
0.1, 0.2, 0.2, 0.5,...

0.1, 0.8, 0.9, 0.5,...
0.3, 0.2, 0.4, 0.9,...
0.1, 0.2, 0.6, 0.2,...
0.5, 0.3, 0.9, 0.5,...
0.7, 0.2, 0.1, 0.4,...

(a) The original graph (b) Representation vectors (c) The leading tree structure (d) The new leading tree

0

31

21

19

17

13

12

11

10

8

7

6

5
4

3

2

1

30

932

28

27

16

33

14

15

18

20

22

2329

25

2426

0

1

2

3

30
29

31

32

33

Fig. 3  The leading tree generated from representation vectors (Zoom for better view)



2546 International Journal of Machine Learning and Cybernetics (2021) 12:2543–2557

1 3

et al. improved the efficiency of agglomerative hierarchical 
clustering by building a hierarchy that was based on a group 
of centroids rather than raw data points [24]. F. de Morsier 
et al. propose a new cluster validity measure (CVM) [25] 
to quantify the clustering performance of hierarchical algo-
rithms that handle overlapping clusters of any shape and in 
the presence of outliers. D. Knowles et al. introduce the Pit-
man Yor Diffusion Tree (PYDT), a Bayesian non-parametric 
prior over tree structures for hierarchical clustering [16]. X. 
Tang et al. develop some hierarchical clustering problems 
and analysis for fuzzy proximity relation by using rigorous 
mathematical descriptions, and an algorithm is obtained to 
compute the hierarchical clustering structure [26]. Based on 
the density and distance calculation in [27], Xu et al. [17] 
propose a method for multi-granular hierarchical cluster-
ing (called DenPEHC). By generating a tree structure (i.e. 
leading tree), the leading tree reveals the hierarchy in the 
distribution of data. The other type involves combinations 
and ensembles. Mirzaei et al. presented an algorithm called 
MATCH to combine multiple dendrograms (the presenta-
tion of a hierarchical clustering result) into one unit. This 
combination is performed by computing the min-transitive 
closure of the similarity matrices that correspond to the 
dendrograms to reach an aggregating matrix [28]. Rashedi 
and Mirzaei proposed a Bob-Hic algorithm to improve the 
performance of hierarchical clustering, whose key compo-
nents involve computing the boosting values and updating 
the weights for objects [29].

2.3  Network representation learning

Network representation learning, also known as network 
embedding, maps the network instances into a low-dimen-
sional latent vector space [4]. It has aroused a lot of research 
interest. Based on the representation vectors that preserve 
the properties of network instances, network analytic tasks 
can be easily and efficiently carried out by applying con-
ventional vector-based machine learning algorithms. In the 
early 2000s, the representative works such as IsoMap [30], 
Locally Linear Embedding (LLE) [31] and Laplacian Eigen-
map [32] calculate the similarity between pairwise data 
points to construct an affinity graph and then represent the 
affinity graph into a new space having much lower dimen-
sionality. In recent years, the research efforts have shifted to 
scalable algorithms. The representative models like Deep-
Walk [33], LINE [7], SDNE [34], GraRep [6] embed the 
network structural proximities into latent, low-dimensional 
space while the models like [35, 36], and [37] attach the rich 
content and side information on attributes. Moreover, for 
the bipartite attributed networks, Huang et al. [38] model 
not only the inter-partition proximity but also the intra-
partition proximity. Wu et al. [39] consider the information 
heterogeneity from the attributed networks and propose an 

algorithm that recursively aggregates the graph structure as 
well as individual node attributes in network. Those works 
show remarkable performance for various applications such 
as node classification, link prediction, community detection, 
visualization, etc. Nevertheless, the distribution of the rep-
resentation vectors in latent space is rarely concerned and 
the hierarchy structural properties should be revealed by the 
distribution of the representation vectors. The knowledge 
of hierarchy can be represented as a tree structure and this 
work try to represent the hierarchy of network by encoding 
the tree into vector space.

3  Problem formulation

In this section, we define some notations, and the problem 
formulations for the framework of interpretable representa-
tion learning methodologies.

3.1  Definitions

Online social network An online social network is denoted 
as a graph G = (V ,E) where V is a set of nodes and each 
node vi ∈ V represents a user account ui . E ⊆ V × V is a set 
of weighted or unweighted edges, eij ∈ E represent the con-
nection between ui and uj in social network. We have the 
binary adjacency matrix � ∈ ℝ

|V|×|V| , and �ij = 1 if and only 
if there exists an edge from vi to vj.

Network representation learning (NRL) Given a network 
G = (V ,E) . The goal of Network representation learning is 
to learn a mapping function f ∶ v ↦ � ∈ ℝ

d where � is the 
learned representation vector, and d ≪ |V| is the dimension 
of � . The transformation f preserves the original network 
information, such that two nodes similar in the original 
network should also be represented similarly in the learned 
vector space.

The granule in graph Each graph instance, such as a node 
or a community, can be taken as an information granule from 
the perspective of Granular Computing [19]. Given a net-
work G = (V ,E) , in the finest granularity level, we define 
granule r as the member v in node set V and use R for denot-
ing the set of all granules in this graph.

The distance matrix and importance degree The distance 
matrix � ∈ ℝ

|R|×|R| . Each element �ij in � is the distance 
between two granules ri and rj . �ij is defined as follows:

where lijs  is the length of shortest path between vi and vj , and 
max(l

ij
s ) is the maximum length of shortest path between 

vi ∈ V  and vj ∈ V .

(2)�ij =
l
ij
s

max{l11
s
, l12
s
,… , l

|R||R|
s }



2547International Journal of Machine Learning and Cybernetics (2021) 12:2543–2557 

1 3

We also define the importance degree �i for granule ri as 
follows:

where ni is the degree of node vi.
This is one way of the generation of distance and impor-

tance degree. However, the original graph can contain dif-
ferent styles of the relationship of distance. We can even 
take multiple nodes as one granule and the distance between 
granules can be calculated by the similarity of multi-nodes 
granules.

3.2  The graph leading tree

The graph leading tree is a tree that contains ri ∈ R as its 
node and (ri, rj) as its edge. The graph leading tree can be 
viewed as a graph GLT = (VLT ,ELT ) . The (ri, rj) ∈ ELT rep-
resent the leading from the granule ri to granule rj while the 
granule rj is the parent of ri . In the model of DenPEHC [17] 
and generalized leading tree [40], each granule in graph can 
be assigned by one parent granule except the root node in 
that tree. We will discuss how the parent granule is assigned 
in Sect.  4, and how does the graph leading tree contribute 
to the revealing of the hierarchy in network.

4  The hier2vec model

The hier2vec model is shown in Fig. 4. The original network 
can yield multiple graph leading trees on different granulari-
ties. All the leading trees will be merged into one leading 
tree and feed into a comparator for optimization. On the 
other side, the initial representation vectors are obtained by 
representation learning on local structural proximities. The 
final representation vectors are obtained by optimizing the 
objective function in the comparator.

(3)�i =
ni

max{n1, n2,… , n|R|}

4.1  The generation of graph leading tree

For any object, or granule, we define its importance degree 
and its distance from other granule. With these two ele-
ments, we can generate a tree structure. This tree structure 
will reveal the membership and hierarchy of all granule 
classes in a set. This tree structure will form a general 
lead tree and it’s not limited to data points in Euclidean 
space. Based on this argument, we defined the distance 
and importance degree for granule in graph. For granule 
ri , we can select its parent rj from the set R. R is the set of 
all granules defined in Sect. 3. We can denote the process 
of assigning the parent node for granule ri as a mapping 
of � ∶ ri ↦ rj:

where Ri
higher

∶= {rk ∶ 𝜌k > 𝜌i ∀ rk ∈ R}

Once the parent node for each granule is assigned, the 
graph leading tree GLT is generated. Under different scope of 
granularities, we can obtain multiple GLT s, and the GLTmerge 
can be obtained by merging all the edges in set of GLTs.

4.2  Interpretable hierarchical semantic

This subsection will discuss how does the leading tree 
reveals the hierarchical semantic in an interpretable way. 
Figure 5 shows the original graph and the graph leading tree 
generated from that graph. In the original graph, Figure 5a, 
we can find there are two main communities leader, i.e. node 
‘32/33’ and ‘0’. The node ‘33’ has the biggest importance 
degree as the definition. It’s believed that the ‘33’ is the 
center of the whole graph while the node ‘0’ is the center 
of a smaller community at the right-bottom of the original 
graph. In the perspective of granular computing, there are at 
least two granular layers. In the coarsest layer, the graph is 
one community with ‘33’ as the center; in the finer layer, the 
graph consists of two communities lead by ‘32,33’ and ‘0’ 
respectively. In the graph leading tree, the ‘33’ is the root. 
This means the whole community is lead by it. The ‘0’ is 
leading the second large scale of communities and the ‘0’ is 
lead by ‘32’ while ‘32’ is lead by ‘33’. These hierarchy prop-
erties are revealed by the graph leading tree. This instance 
shows that the graph leading tree reveals the hierarchical 
semantic of the graph in an interpretable way.

4.3  Representation learning for the hierarchy 
semantic

The objective of representing the hierarchical semantic 
in graph is to find a mapping that maps the GLT to a set of 

(4)� (ri) = rj if �ij = min{�ij ∶ j ∈ Ri
higher

}

Multi-granular
Interpretable Trees

Original
Network

Representation
vectors

Local structure representation learning

comparator

Merging

Fig. 4  The framework of hier2vec model



2548 International Journal of Machine Learning and Cybernetics (2021) 12:2543–2557

1 3

low-dimensional vectors under some initial conditions. The 
representation learning process can be denoted as:

In Eq. 5, we have a given target graph leading tree GLT target , 
and an initial set of representation vectors �initial given by 
the algorithms for encoding the local structural proximities, 
e.g. LINE [7]. The goal of this algorithm is to find the �new 
that can generate the GLTnew , and the GLTnew needs to be as 

(5)
min�(�new) = min

�new

Diff(GLT target,GLTnew)

+ �||�initial − �new||F

similar as the given target graph leading tree GLT target . By 
solving the Eq. 5, the �new can be obtained. Proper repre-
sentation of the GLT target can contain the hierarchy semantic 
of the original graph in the obtained �new . However, directly 
solving the Eq. 5 poses great challenges because the gradient 
of the � function of �new can not be explicitly expressed. 
One workaround way for approximately solving this prob-
lem is to capture the structure of GLT target by maximizing the 
probability of the appearance of context for each node in the 
graph leading tree.

4.4  Optimization

We consider the direction of the edge as the finest differ-
ence of the importance degree for the graph leading tree 
generation since the being leading node has some informa-
tion about priority such as one famous movie actor is fol-
lowed by millions of fans. With this consideration, the graph 
leading tree can be viewed as a graph and we can encode 
the structures by maximizing the co-occurrence probabil-
ity among the granules that appear within a window w. We 
follow the method [33] and samples a set of paths from the 
graph leading tree GLT target using truncated random walk. 
The objective function for approximately solving the Eq. 5 
can be denoted as:

where w is the window size which restricts the size of ran-
dom walk context and y is the representation vector for gran-
ule r. The Eq. 6 can be transformed to:

where P(ri+j|yi) is defined using the softmax function:

For a node (i.e. ri ), we want to distinguish the target node 
(i.e. ri+j ) from noise using the logistic regression. A noise 
distribution Pn(ri) is designed to draw the negative samples 
for node ri [41]. Then, each logP(ri+j|yi) in Eq. 8 can be 
calculated as:

Equation 9 represents the negative sampling process. For 
each node i, we sample K negative samples rt, t = 1, ...,K 
with a probability distribution of Pn . The value of K can be 
set as 2-5 if the number of nodes is larger than thousand. The 
noise distribution Pn(r) is given by the unigram distribution 

(6)min
y

− logP({ri−w,… , ri−1, ri+1,… , ri+w}|yi),

(7)min
y

− log
∑

−w≤j≤w
P(ri+j|yi),

(8)P(ri+j�yi) =
exp(yT

i+j
yi)

∑�R�
k=1

exp(yT
k
yi)

.

(9)log �(yT
i+j
yi)) + �K

t=1
Ert∼Pn(ri)

[log �(−yT
rt
yi)],

0

31

21

19

17

13

12

11

10

8

7

6
4

3

2

1

30

932
28

27

33

14

15

18
20

22

2329

25

2426

16

5

(a) Original graph

(b) The graph leading tree

Fig. 5  The graph leading tree reveals the hierarchy



2549International Journal of Machine Learning and Cybernetics (2021) 12:2543–2557 

1 3

U(r) raised to the 3/4 power. The time complexity of solving 
the Eq. 7 is O(K|R|).

From the calculation above, the representation vectors 
{yi}

|R|
i=1

⊂ ℝ
d

2 for granules {ri}
|R|
i=1

 can be obtained and the d is 
dimension number of the final representation vector �i ∈ ℝ

d . 
The representation vectors that encoding the local structural 
proximities can be obtained by the LINE algorithm [7]. We 
denote that representation vectors as a set of {y�

k
}
|V|
k=1

 . Because 
at the finest granular level, each node is a granule and the 
|R| equals |V|. We can obtain the final representation vector 
�i ∈ ℝ

d for the nodes by concatenating the yi and y′
i
.

The multi-granular graph trees can be obtained by making 
the granules that are far from the root granule share the repre-
sentation vectors with the local root granule they are leading 
to. By controlling the degree of granule aggregation, we can 
control the generation of finer or coarser graph tree.

4.5  The hier2vec algorithm

The hier2vec algorithm first generate the target leading tree 
GLT = (VLT ,ELT ) by the steps described in algorithm 1. The 
process of generating the GLT is consisted by two steps: (1) 
generating the distance matrix � by calculating the distances 
between two nodes, i.e. �ij and (2) assigning the parent for 
each node i with the mapping described in Eq .4

The Algorithm 1 shows how to obtain the final embedding 
vectors in hier2vec algorithm. Since the construction of the 
target tree GLT target in Eq. 5 cannot be explicitly expressed by 
a mathematical formula, we cannot directly optimize the target 
function Eq. 5 to obtain the embedding vectors. We approxi-
mate our initial goal by incorporating the hierarchy informa-
tion contained in the target graph leading tree into the final 
embedding. As the Algorithm 1 shown, we treat the target 
graph leading tree as a graph and do random walk to obtain 
the node sequence Sri

 . By optimizing the skip-gram model, the 
probability of co-occurrence of neighboring nodes in Sri

 is as 
high as possible. Such that the subordination between nodes 
on the leading tree supports the closeness of representation 
vectors in the latent feature space. After we obtain the initial 
vector {y�

i
} , and the {yi} , we concatenate them together. This 

incorporates the hierarchy information into the final node vec-
tor expression. Thus, the final expression vector have both the 
hierarchical structure of the network and the local structural 
proximity of the original network.

5  Experiments

In this section, the performance of the proposed hier2vec 
is presented. These results are obtained after conducting 
several experiments on three realistic social networks. To 
be convincing, we selected the most representative baseline 
methods and compared the performance under a wide-used 
metrics. Finally, a case study is given and discussed to show 



2550 International Journal of Machine Learning and Cybernetics (2021) 12:2543–2557

1 3

how hier2vec’s hierarchy knowledge boosts the realistic task 
of node classification.

5.1  Data sets

In order to verify the effectiveness of the proposed hier2vec 
model, we use the three publicly available network data sets 
as described below:

Wiki. Wikipedia is an online encyclopedia created and 
edited by volunteers around the world. The data set is a 
word co-occurrence network constructed from the entire set 
of English Wikipedia pages [42]. This data contains 2405 
nodes, 17981 directed edges, and 19 labels.

Cora. The Cora data set [43] consists of 2708 scientific 
publications of 7 classes. The graph has 5429 links that indi-
cate citation relations between documents. Each document 
has text attributes that are expressed by a binary-valued vec-
tor of 1433 dimensions. We only use its linkages and labels.

blogCatalog. The blogCatalog data set [44] is a social 
network. Nodes and edges represent the bloggers and the 
friendship between them respectively. It contains 10312 
nodes, 333983 undirected edges, 39 labels.

5.2  Experimental settings

For the task of node classification, we evaluate our method 
using the same experimental procedure outlined in [33]. A 
portion of the labeled nodes are randomly picked out under 
the training ratio (TR) and they are used as training data 
with the rest being used for testing. The one-vs-rest logis-
tic regression implemented by LibLinear [45] is utilized for 
node classification task and the Macro-F1 and Micro-F1 
scores are reported. There are several parameters for Algo-
rithm 2 that generate the representation vectors. The walk-
length parameter L is set to 80 while the number of walks � 
is set to 10 and the window size w is set to 4. The dimension 
d is set to 256.

5.3  Comparative methods

We compare the proposed hier2vec model with several most 
representative state-of-the-art methods, which are summa-
rized as follows.

– DeepWalk DeepWalk [33] generates a context window 
for each node from random walks and adopts SkipGram 
[46] to model the probability of a node appearing in the 
context. It then learns node representations by optimizing 
the SkipGram objective function.

– LINE LINE [7] learns a d
2
-dimensional representation 

to preserve first-order proximity (i.e. linked nodes tend 
to be similar) and another d

2
-dimensional representation 

to preserve second-order proximity (i.e. nodes sharing 

common neighbors tend to be similar) for each node. 
It produces the final d-dimensional representation for a 
node by concatenating the two parts.

– node2vec node2vec [47] is a generalization of Deep-
Walk and uses a biased random walk sampler. The biased 
sampler can behave like either depth-first search (DFS) 
or breadth-first search (BFS), depending on its hyper-
parameters.

– SDNE SDNE [34] learns a low-dimensional network-
structure preserving representation by considering both 
the first order and the second-order proximities between 
vertexes using CNNs.

– Graph factorization (GF) GF [48] tries to directly fac-
torize node proximity matrix. Node proximity can be 
approximated in a low-dimensional space using matrix 
factorization. The objective of preserving node proximity 
is to minimize the loss of approximation.

– Laplacian eigenmaps (Lap) LAP [32] technique mini-
mizes a cost function to ensure that points close to each 
other on the manifold are mapped close to each other in 
the low-dimensional space to preserve local distances.

– MARINE The MARINE [49] algorithm uses not only 
graph structure information but also node features to 
learn the representation vectors. It shows the possibil-
ity that combining graph structure information and node 
attribute information can yield a more robust network 
embedding model which is suitable for different types 
of networks. In order to compare the performance, as 
with hier2vec, only the graph structure information is 
used to train MARINE. Note that the node attributes are 
either missing or not disclosed for privacy reasons in 
many practical cases.

5.4  Node classification

Node classification is to assign a class label to each node in 
network, based on the rules learned from the labeled nodes. 
Intuitively, “similar” nodes have the same labels. We con-
duct this by applying a linear SVM classifier on the set of 
labeled representation vectors for training. A portion of 
labeled nodes (i.e. training ratio, TR) is used for training 
the classifier and the rest of nodes are used for testing. This 
subsection shows the experiment result obtained by repre-
senting vectors learn by the proposed hier2vec algorithm 
and the other baseline methods. We calculate the precision 
by micro-F1 and macro-F1 score. The F1 scores on TR = 0.5 
are proposed in Table 1.

Note that on the data set of Cora, hier2vec fails to out-
perform the representation learned by GF. We attribute this 
to that the citation network of Cora data set is quite well 
behaved. It exhibits highly homophonous behavior. The 
co-authors guarantee similar attributes and the two authors 
sharing publications are in very similar research areas. When 



2551International Journal of Machine Learning and Cybernetics (2021) 12:2543–2557 

1 3

the edges in the graph indicate a high degree of similarity 
(it is harder to create spurious edges), the GF’s direct fac-
torizing node proximity matrix can yield high-performance 
gains. However, GF requires materializing a dense matrix, 
which is inherently unscalable.

At different training ratio, the Micro-F1 scores obtained 
by baselines on blogCatalog data set are shown in Table  2. 
It shows that on the node classification task, the proposed 
hier2vec algorithm outperforms the baselines.

5.5  Link prediction

Link prediction is one of the most important network infer-
ence tasks. It has a wide variety of applications such as 
predicting the outbreak of a disease, controlling privacy in 
networks, detecting spam emails, suggesting new friends 
or merchandise, etc. [50]. Link prediction aims to infer the 
existence of relationship or interaction among pairs of nodes 
in a graph. This requires the learned representation to help 
inferring the graph structure, especially when some links 
are missing. The learned representation should preserve 
the network proximity and the structural similarity among 
nodes. We conduct the link prediction experiment as the 
same procedure as that of [47] to facilitate the comparison 
between our method and the relevant baselines. The per-
formance of link prediction is evaluated by the Precision-
Recall area under the curve (PR AUC) [51, 52]. To verify 

the validity of this hier2vec model with different propor-
tions of training samples, we conducted experiments at dif-
ferent TR values. A portion of labeled edges (i.e. training 
ratio, TR) is used for the training and the rest of edges are 
used testing. Since unknown links are far more than known 
ones, we randomly select disconnected edges as negative 
samples with an equal number of positive samples in both 
the training and testing phase. For each node pair, we take 
the average of embeddings of two nodes as the edge feature 
and then build a Logistic Regression binary classifier based 
on it using scikit-learn package [53]. The PR AUC scores 
under different training ratio on three data sets are shown 
in Table  3.

We can see that hier2vec obtains the higher PR AUC 
scores than the baselines. To be specific, on the data set of 
Wiki, our model is about 5% outperform the best perfor-
mance among the baseline methods. With the increase of 
the training ratio, the performance improvement decreases 
slightly (from 5.1 to 4.4%). We attribute this to the greater 
performance gains obtained with the baseline approach in 
obtaining a larger percentage of the training sample. On the 
Cora dataset, the LINE method is a strong competitor to 
our method. Our hier2vec model only gained 1% perfor-
mance advantage over it. This is because, as an academic 
citation network, Cora is very structured. The co-author 
relationships in academic networks tend to be made up of 
a very narrow domain of co-professionals. This makes the 

Table 1  The performance of 
node classification, on three 
data sets

Best performance in the experiment are in bold

Wiki (TR=0.5) Cora (TR=0.5) blogCatalog (TR=0.5)

Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1

DeepWalk 0.6509 0.5524 0.3936 0.2906 0.3718 0.2375
LINE (1st+2nd) 0.5237 0.3615 0.3781 0.1934 0.3726 0.2240
SDNE 0.6118 0.4764 0.3663 0.2171 0.1674 0.0529
node2vec 0.6401 0.5271 0.3870 0.2325 0.3781 0.2489
GF 0.5328 0.3699 0.5738 0.5217 0.2771 0.0975
Lap 0.1679 0.0181 0.3005 0.0660 0.1847 0.0370
MARINE 0.1698 0.0171 0.3075 0.0672 0.1658 0.0267
hier2vec 0.6675 0.5676 0.4343 0.3485 0.3863 0.2493

Table 2  The Micro-F1 scores 
for node-classification at 
different TR on blogCatalog

Best performance in the experiment are in bold

Training ratio: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DeepWalk 0.3072 0.3403 0.3585 0.3680 0.3718 0.3828 0.3866 0.3969 0.4112
LINE 0.3236 0.3471 0.3556 0.3662 0.3726 0.3816 0.3816 0.3880 0.3977
SDNE 0.1376 0.1635 0.1644 0.1461 0.1674 0.1674 0.1652 0.1660 0.1548
node2vec 0.3131 0.3376 0.3621 0.3713 0.3781 0.3833 0.3880 0.4010 0.4105
GF 0.2188 0.2479 0.2630 0.2723 0.2771 0.2863 0.2922 0.2975 0.2995
Lap 0.1698 0.1706 0.1766 0.1799 0.1847 0.1899 0.1941 0.2063 0.2106
MARINE 0.1422 0.1554 0.1628 0.1661 0.1658 0.1667 0.1713 0.1803 0.1847
hier2vec 0.3299 0.3553 0.3740 0.3826 0.3863 0.3940 0.4052 0.4146 0.4118



2552 International Journal of Machine Learning and Cybernetics (2021) 12:2543–2557

1 3

hier2vec method, which can encode global hierarchical 
structural properties, less advantageous than the LINE, a 
method that pays great attention to local structural features. 
We also found that the baseline approaches did not perform 
consistently across data sets. For example, LINE can get bet-
ter performance on the CORA dataset, while not performing 
as well as SDNE on the Wiki data set. Whereas DeepWalk 
performs better on the blogCatalog data set and less well on 
the Cora data set than LINE and SDNE. We believe that, on 
the task of link prediction, the proposed hier2vec is more 
stable than the baseline methods on various data sets.

5.6  Visualization of layouts

The visualization that layout a network on a two-dimensional 
space is also an important application of representation vec-
tors generated by network representation techniques. After 
the dimension of vectors is reduced, the layout of vectors 
can reveal the aggregation of nodes. The layout result on the 
Wiki data set is shown in Fig. 6. Different colors represent 
nodes belong to different classes.

From Fig. 6, we can see the community structure is mixed 
up for LINE, SDNE, GF, and Lap. For DeepWalk, node2vec, 
and hier2vec, the obtained boundaries are more indistinct 
and some nodes are diffused to other groups at the center of 
the layout. The layout given by the proposed hier2vec has 
a more distinctive layout at the center area than deepWalk 
and node2vec.

5.7  Case study

In this sub-section, we pick out a concrete instance of a 
sub-graph from the Wiki data set to explain how the muti-
granularity preserving network representation learning 
obtains vectors for better-classifying nodes in networks. 
As shown in Fig. 7, the original structure of the Wiki sub-
graph (501 nodes contained) has 3-4 instinct communities. 

In this network, the node ‘450’ and ‘78’ are two instances 
we take to explain the effect of the proposed hier2vec algo-
rithm comparing with the local structure concern algorithm, 
LINE. The node ‘450’ and ‘78’ are correctly classified by 
the representation vectors obtained by hier2vec but not by 
that of LINE. More than ‘450’ and ‘78’, all the nodes that 
are marked by red are only correctly classified by hier2vec.

In order to see the ‘450’ and ‘78’ nodes more clearly, 
we zoom in the graph and visualize them in Fig. 8. In that 
figure, some of the nodes are used for training while the rest 
are used for testing. The label on the nodes for testing con-
tains round brackets and square brackets. The round brackets 
means the prediction given by LINE model and the square 
brackets means the prediction given by hier2vec model. 
The number right after the ‘_’ means the true class label 
of that node. For example, ‘327_13’ means that node ‘327’ 
is used as training, and it belongs to class 13. The ‘78_3(1)
[3]’ means that node ‘78’ is for testing and its true class is 
class 3. Moreover, the LINE gives an incorrect prediction of 
class 1, while hier2vec gives a correct prediction of class 3.

As the Fig. 8a shown, we take ‘450’ for more detailed 
analysis. We can see that node ‘450’ belongs to class 1, but it 
was misclassified by LINE to class 3 and hier2vec correctly. 
Of the points connected to ‘450’, node ‘82’ has the largest 
number of degrees and its true class is 3. LINE is misled 
by this representation and so also classifies ‘450’ to class 
3. But in the GLTmerge construction in hier2vec, node ‘450’ 
takes the point connected to it with a slightly larger number 
of degrees, ‘451’, as its parent. So one edge of GLTmerge is 
(450,451), and as can be seen from the hier2vec-generated 
vectors, the closest cosine distance to the vector of ‘450’ is 
exactly ‘451’. Note the class of ‘451’ is 1. Therefore, com-
pared to the LINE-generated vectors, the hier2vec-generated 
vectors plays a positive role in correctly classifying the node 
‘450’.

Similarly, the subgraph centering node ‘78’ is shown in 
Fig. 8b. It belongs to class 3, but LINE’s vector leads to 

Table 3  The PR AUC scores on task of link prediction

Best performance in the experiment are in bold

Training ratio: 0.1 0.3 0.5

Wiki cora blogCatalog Wiki cora blogCatalog Wiki cora blogCatalog

DeepWalk 0.7353 0.6401 0.9399 0.7527 0.6451 0.9410 0.7617 0.6481 0.9417
LINE 0.6870 0.7253 0.9384 0.7150 0.7300 0.9385 0.7230 0.7303 0.9400
SDNE 0.7622 0.7189 0.9014 0.7764 0.7194 0.9145 0.7793 0.7283 0.9174
node2vec 0.7458 0.5737 0.8895 0.7605 0.5799 0.8902 0.7682 0.5773 0.8911
GF 0.7204 0.6081 0.9043 0.7400 0.6416 0.9071 0.7496 0.6484 0.9081
Lap 0.5937 0.5695 0.7345 0.6149 0.5712 0.7388 0.6156 0.5733 0.7402
MARINE 0.5850 0.6364 0.6254 0.6153 0.6530 0.6302 0.6231 0.6645 0.6329
hier2vec 0.8010 0.7322 0.9407 0.8121 0.7336 0.9418 0.8136 0.7336 0.9434



2553International Journal of Machine Learning and Cybernetics (2021) 12:2543–2557 

1 3

classifying it in class 1. The reason for this is that LINE’s 
vector generation process is affected by node ‘276’ con-
nected to node ‘78’ and node ‘276’ belongs to class 1. In 

contrast, the vector for ‘78’ obtained by hier2vec leads 
to correctly classifying the ‘78’ into class 3, because the 
slightly larger of the degrees in the nodes connected to 

(a) deepWalk (b) LINE (c) SDNE

(d) node2vec (e) GF (f) Lap

(g) MARINE (h) hier2vec

Fig. 6  Visualization of Wiki network. The nodes are mapped to the 2-D space using the t-SNE algorithm with learned vectors as input. Color of 
a node indicates the class of the node. (Zoom in for better view)



2554 International Journal of Machine Learning and Cybernetics (2021) 12:2543–2557

1 3

‘78’ is ‘100’, while ‘100’ belongs to class 3. In GLTmerge , 
there exists edge (78, 100), and the experimental results 
suggest that this has a positive effect on the correct clas-
sification of node ‘78’.

From the case of node ‘450’ and ‘78’, we can see that the 
process of constructing the GLTmerge considers the subordina-
tion of nodes in the hierarchy and avoids the classification 
error caused by a local connection with a neighbor which 
has higher degree.

79_3 77_3(3)[3]

73_3(1)[3]

69_3(1)[1]

427_1(1)[1]

65_3(1)[1]

59_3

58_3

54_3(1)[1]

49_3(1)[1]

48_3(1)[3]

43_3(3)[3]

92_3(1)[3]

61_1(1)[1]

26_1(1)[1]

405_1

470_1(1)[1]

264_1(1)[1]

417_1

414_1

319_1(1)[1]

114_3

112_3

98_3(3)[1]

81_3(1)[1]80_3

74_3

55_3

416_1(1)[1]

326_13(1)[1]

381_15

379_15 32_11(1)[1]31_11(1)[1]

219_2

369_15

366_15

175_8(1)[1]

362_15

360_15

358_15(1)[1]

357_15

356_15(1)[1]

310_5(3)[1]

354_15

353_15

419_1(1)[1]

347_15(1)[1]

342_15(1)[3]

286_10(1)[1]

117_0(1)[1]

435_1(1)[1] 429_1

464_10(1)[1]

337_6(1)[1]

385_15(1)[1]

105_3(3)[1]

102_3(1)[1]

292_1(1)[1]

82_3

257_1(1)[1]

335_6
329_13 127_0(1)[1]

332_6

124_0

100_3

374_15

431_1
334_6

108_3

42_3(3)[3]

407_1
83_3

85_3

86_3(1)[1]
94_3 95_3(1)[1]

96_3(1)[3]

99_3

433_1(1)[1]

450_1(3)[1]

109_3

110_3

111_3

116_3(1)[1]

308_1(1)[1]

395_1

8_1(1)[1]

138_7

340_15

196_2

222_2(1)[1]

341_15(1)[1]

252_10

345_15(1)[1]

420_1

160_8

423_1

172_8

363_15(1)[1]

424_1(1)[3]

123_0(1)[1]

437_1

179_8

373_15

444_1
478_5

125_0(1)[1] 451_1

186_8

167_8

333_6(1)[1]

344_15(1)[1]

324_13

231_2(1)[3]

330_13

350_15(1)[2]

291_15

240_0

296_8(1)[1]

315_5(1)[1]

17_5

384_15

463_9
457_1(1)[1]

388_16(1)[3]
428_1(1)[3]

370_15

28_11(1)[3]

394_16(1)[3]

227_2

421_1(1)[1]

386_15 155_8(1)[1]

469_5(1)[1]

163_8

411_1

88_3

226_1

75_3(1)[1]

383_1(1)[1]

400_1(1)[1]

473_1

402_1(1)[1]

406_1(1)[1]

130_1(1)[1]

413_1

238_1(1)[1]

242_1(1)[1]

488_1(1)[1]

397_1(1)[1]

438_1

483_5(1)[3]

387_16(1)[1]

251_10

239_0

122_0

336_6(1)[1]

256_10(1)[1]

318_5

2_3

491_5

230_1

453_1

498_1(1)[1]

0_1(1)[1]

5_1

30_1

37_1(1)[1] 45_1(1)[1]

35_1(1)[1]

44_1(1)[1] 297_1(1)[1]

432_1(1)[1]

447_1(1)[1]

16_1440_1

377_15

445_1

452_1(1)[1]

19_1

246_10(3)[1]

343_15

351_15(1)[1]

197_2(1)[1]

434_1(1)[1]

443_1(1)[1]
295_8(1)[1]

261_10

234_2

265_10

206_1

285_10(3)[1]

352_15

119_0

467_5

247_10
254_10

178_8(1)[8]

338_12(1)[1]
184_8(3)[1]

185_8

288_15(1)[1]

372_15(1)[1]

422_1

455_1

476_5(1)[1]

494_5

142_1

321_13(1)[1]327_13

161_8(1)[8]

164_8

169_8(1)[8]

136_7

149_1

309_1

355_1(1)[1]

365_1(1)[3]

371_1(1)[1]

391_1

401_1(1)[1]

408_1(1)[1]

426_1

496_1(1)[3]

7_1(1)[1]
10_5(1)[1]

23_1

24_1(1)[1]

70_1

182_1

202_1(1)[1]

211_1(1)[1]

215_1

221_1(1)[1]

191_2

278_10

489_5

148_7

22_11

245_10

458_1(1)[1]
263_10

34_11
460_9

274_10(1)[1]

281_10(1)[1]

3_3(1)[1]

485_5(1)[1]

477_5

493_5
490_5(1)[3]

1_5(1)[3]

404_1

415_1(1)[1]
418_1

425_1(1)[1] 442_1

6_3

449_1(1)[1]

244_10(1)[1]
249_10(1)[3]

273_10
275_10

474_5

480_5(1)[3]

11_1(3)[1]465_1(1)[1]

15_1(1)[1]

376_15(1)[1]

462_1

150_1(1)[1]

316_1(1)[1]

349_1(1)[1]375_1(1)[1]

380_1

399_1

389_1

120_1

396_1

18_1

410_1

479_1(1)[1]

195_1

359_15(1)[1]

25_1

398_1

177_1(1)[1]

39_4(1)[1]

403_1(1)[1]

27_11

126_0

439_1

131_0

378_1

208_2307_6(1)[1]

367_1(1)[3]

393_1(1)[1]

475_1(1)[1]
9_1(1)[3] 12_1(1)[1]

97_1

461_9

187_8

430_1392_16

29_11

441_1(1)[1]

279_10(1)[1]

33_1(1)[3]

320_1(1)[1]

13_1(3)[3] 311_1

253_1052_1

364_15(1)[1]

454_1

4_3
237_14(1)[1]

436_1(1)[3]241_14(1)[1]

448_1
459_1(1)[3]

339_15(1)[1] 36_11(1)[1]

282_1

306_1

497_5

466_5

243_6(1)[1]

390_8(3)[1]

456_1

270_1(1)[3]

302_1(1)[1]

46_3

56_3

268_1(1)[1]

269_1

276_1
280_1(1)[1]

287_1

289_1

293_1(1)[3]

104_3

299_1(1)[1]

300_1(1)[1]

301_1

303_1

304_1(1)[1]

305_1(1)[1]

47_3

71_3

78_3(1)[3]

143_7(1)[3]

93_3

103_3(3)[3]

113_3

115_3(1)[1]

266_1(1)[1]

267_1

290_1

262_1(1)[1]

87_3
106_3

68_3

272_1(1)[1]

57_3(1)[3]

409_1(1)[1]

250_1(1)[1]

84_3(1)[1]

260_1(1)[3]

101_3

51_3

60_3

63_3(1)[3]

67_3(1)[1]

89_3(1)[1]

91_3(1)[1]

331_6

50_3(1)[1]

53_3(1)[3]

62_3

76_3

90_3(1)[1]

107_3

284_1

20_1(1)[1]

298_1

66_3(1)[3]

64_3

72_3(1)[1]

216_2

228_2(1)[2]

209_2

225_2

210_2

236_2(1)[2]

223_2(1)[1]

189_1

190_2

235_2

212_2

198_2

232_2(1)[2]

201_2(1)[2]

207_2(1)[2]

21_5

233_2

229_2(1)[2]

220_2(1)[2]

217_2(1)[2]213_2

204_2

203_2(1)[2]

200_2

348_15

192_2

118_0

218_2

224_2(1)[2]

368_15(1)[2]
214_2

205_2

194_2(1)[2]

193_2(1)[2]

481_5314_5(1)[5]

468_540_4(1)[5]128_0

38_4

495_5

312_5(1)[1]

294_1

484_5(1)[5]

486_5(1)[5]

500_5

487_5(1)[5]

492_5(1)[5]

482_5(1)[5]

328_13

171_8

472_5(1)[5]

5_994 31_323

145_7(1)[1]

121_0(1)[1] 313_5

325_13

322_13

129_0(1)[5]

283_10(1)[10]

277_10(3)[10]259_10(1)[10]

258_10
158_8(1)[8]

135_7

271_10(1)[8]

446_1

176_8(1)[8]

140_7(1)[7]134_7(1)[8]

255_10

157_8(1)[8]

8_071 8_471

346_15(1)[8]

248_10

14_1(1)[1]

412_1

156_8(1)[1]

199_2

132_7(1)[7]

166_8(1)[7]

151_7(1)[7]

153_7

141_7(1)[7]

133_7

147_7

159_8(1)[7]

139_7144_7

183_8(1)[7]

165_8(1)[7]

471_5(1)[7]

137_7(1)[7]

361_15(1)[1]

317_5

382_15

152_7

154_8(1)[7]146_7(1)[5]

188_8(1)[7]
162_8(1)[7]

168_8
173_8(1)[7]

180_8

181_8

41_3

1

1

1111

33333333

]]]]

_11

1

62 3

(1

Zone for zoom view for vertex ‘78’

Zone for zoom view for vertex ‘450’

3

9191

333113_3113_3

[3[_3(1))[

5

88

881179_8179_8

0

))1))

0000

_8

1
111111

1(

11

97 1(1)[1]77 1(1)7 1(1)916 144404 29999

247 10247 10247 10

2222

22

63

_

[1][11][ ]1][ ]1(3)[

92

4

3333 1(1)3 111111111111

4424
]455 1455_1455_1]]]]

Fig. 7  The layout of the original sub-graph of 501 nodes. (Zoom for better view)



2555International Journal of Machine Learning and Cybernetics (2021) 12:2543–2557 

1 3

Fig. 8  The local zoomed graph 
for node ‘450’ and ‘78’ (cont.)

82_3

416_1(1)[1] 433_1(1)[1]

427_1(1)[1]

451_1
419_1(1)[1]

256_10(1)[1]
437_1

423_1
318_5336_6(1)[1]

420_1

163_8

450_1(3)[1]

450_1(3)[1]

node name
node for testing:

The true label of its class
The prediction given by LINE
The prediction given by hier2vec

451_1

node name
node for training:

The true label of its class

Legend for node tag:

Zone for zoom view in original graph

(a) The zoomed graph take ‘450’ as center

78_3(1)[3]

103_3(3)[3]

100_3

104_3

106_3

276_1

Zone for zoom view in original graph

(b) The zoomed graph take ‘78’ as center



2556 International Journal of Machine Learning and Cybernetics (2021) 12:2543–2557

1 3

6  Conclusion and future works

This paper presents a novel model, called ‘hier2vec’. It 
is an interpretable multi-granular representation learning 
algorithm for representing the hierarchy as well as local 
structural property in networks into low-dimensional vec-
tors. The hier2vec model makes use of the pre-defined 
nodes’ importance degree and the similarity-transferred 
distance between nodes to build the graph leading tree. 
Through this way, the multi-granular semantic knowledge 
of hierarchy can be interpretably modeled into the graph 
leading tree. By optimizing the model, the representa-
tion vectors can finally encode not only the local link-
age semantic but also the global multi-granular hierarchy 
semantic knowledge. Experimental results on various 
real-world network inferring tasks prove the effectiveness 
of hier2vec. The hier2vec model is based on structural 
information, and it is not able to utilize the content infor-
mation to improve performance when it is available for the 
network. This does not limit the scenarios in which this 
model can be used, but in the presence of richer informa-
tion, the model may not be able to take full advantage 
of all the available information. In the future, we plan to 
explore ways to utilize content information in networks 
and more accurate way to simulate the generation of the 
vectors that can match the objective graph leading tree.

Acknowledgements The authors would like to thank the editors and 
anonymous reviewers for their constructive comments. This work is 
supported in part by the National Science Foundation of China (grant 
no. 61936001, 61772096, 61966005), Graduate Research and Inno-
vation Project Plan of Chongqing Municipal Education Commission 
(grant no. CYB18174) and Doctor Training Program of Chongqing 
University of Posts and Telecommunications (grant no. BYJS201809).

References

 1. Knoke D, Yang S (2019) Social network analysis, vol 154. Sage 
Publications, Thousand Oaks

 2. Kuchler T, Russel D, Stroebel J (2020) The geographic spread of 
covid-19 correlates with structure of social networks as measured 
by facebook. Tech. rep, National Bureau of Economic Research

 3. Liu Y, Dehmamy N, Barabási AL (2020) Isotopy and energy of 
physical networks, Nat Phys pp. 1–7

 4. Zhang D, Yin J, Zhu X, Zhang C (2020) Network representation 
learning: a survey. IEEE Trans Big Data 6(1):3

 5. Hamilton WL, Ying R, Leskovec J (2017) Representation learn-
ing on graphs: methods and applications. IEEE Data Eng Bull 
40(3):52

 6. Cao S, Lu W, Xu Q (2015) in Proceedings of the 24th ACM inter-
national on conference on information and knowledge manage-
ment, pp. 891–900

 7. Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) In: Pro-
ceedings of the 24th international conference on world wide web, 
pp. 1067–1077

 8. Huang X, Li J, Hu X (2017) Accelerated attributed network 
embedding, In: Proceedings of the 2017 SIAM international con-
ference on data mining (SIAM, 2017), pp. 633–641

 9. Kipf TN, Welling M (2016) Semi-supervised classification with 
graph convolutional networks, arXiv preprint arXiv: 1609. 02907

 10. Wang X, Cui P, Wang J, Pei J, Zhu W, Yang S (2017) Community 
Preserving Network Embedding. In: Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, February 4-9, 
2017, San Francisco, California, USA, ed. by S.P. Singh, S. Mark-
ovitch (AAAI Press, 2017), pp. 203–209

 11. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL 
(2002) Hierarchical organization of modularity in metabolic net-
works. Science 297(5586):1551

 12. Sales-Pardo M, Guimera R, Moreira AA, Amaral LAN (2007) 
Extracting the hierarchical organization of complex systems. Proc 
Natl Acad Sci 104(39):15224

 13. Lancichinetti A, Fortunato S, Kertész J (2009) Detecting the 
overlapping and hierarchical community structure in complex 
networks. New J Phys 11(3)

 14. Clauset A, Moore C, Newman ME (2008) Hierarchical struc-
ture and the prediction of missing links in networks. Nature 
453(7191):98

 15. Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting 
system, In: Proceedings of the 22nd acm sigkdd international con-
ference on knowledge discovery and data mining, pp. 785–794

 16. Knowles DA, Ghahramani Z (2014) Pitman yor diffusion trees for 
bayesian hierarchical clustering. IEEE Trans Pattern Anal Mach 
Intell 37(2):271

 17. Xu J, Wang G, Deng W (2016) DenPEHC: Density peak based 
efficient hierarchical clustering. Inform Sci 373:200

 18. Zachary WW (1977) An information flow model for conflict and 
fission in small groups. J Anthropol Res 33(4):452

 19. Yao JT, Vasilakos AV (1977) Pedrycz W (2013) Granular comput-
ing: perspectives and challenges. IEEE Trans Cybernet 43(6)

 20. Wang G, Xu J, Zhang Q, Liu Y (2015) Multi-granularity intel-
ligent information processing, In: Rough Sets, Fuzzy Sets, Data 
Mining, and Granular Computing (Springer, 2015), pp. 36–48

 21. Heimann M, Safavi T, Koutra D (2019) Distribution of Node 
Embeddings as Multiresolution Features for Graphs. In: 2019 
IEEE international conference on data mining (ICDM). Beijing, 
China, IEEE, pp 289–298

 22. Li J, Huang C, Qi J, Qian Y, Liu W (2017) Three-way cognitive 
concept learning via multi-granularity. Inform Sci 378:244

 23. Hu J, Li T, Wang H, Fujita H (2016) Hierarchical cluster ensem-
ble model based on knowledge granulation, Knowledge-Based 
Systems 91, 179. Three-way Decisions and Granular Computing

 24. Bouguettaya A, Yu Q, Liu X, Zhou X, Song A (2015) Effi-
cient agglomerative hierarchical clustering. Expert Syst Appl 
42(5):2785

 25. De Morsier F, Tuia D, Borgeaud M, Gass V, Thiran JP (2015) 
Cluster validity measure and merging system for hierarchical clus-
tering considering outliers. Pattern Recognit 48(4):1478

 26. Tang XQ, Zhu P (2012) Hierarchical clustering problems and 
analysis of fuzzy proximity relation on granular space. IEEE Trans 
Fuzzy Syst 21(5):814

 27. Rodriguez A, Laio A (2014) Rodriguez, Alex and Laio Alessan-
dro. Science 344(6191):1492

 28. Mirzaei A, Rahmati M (2009) A novel hierarchical-clustering-
combination scheme based on fuzzy-similarity relations. IEEE 
Trans Fuzzy Syst 18(1):27

 29. Rashedi E, Mirzaei A (2013) A hierarchical clusterer ensemble 
method based on boosting theory. Knowl-Based Syst 45:83

 30. Tenenbaum JB, De Silva V, Langford JC (2000) A global geo-
metric framework for nonlinear dimensionality reduction. science 
290(5500):2319

http://arxiv.org/abs/1609.02907


2557International Journal of Machine Learning and Cybernetics (2021) 12:2543–2557 

1 3

 31. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction 
by locally linear embedding. Science 290(5500):2323

 32. Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral 
techniques for embedding and clustering. Adv Neural Inform 
Process Syst 585–591

 33. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learn-
ing of social representations, In: Proceedings of the 20th ACM 
SIGKDD international conference on Knowledge discovery and 
data mining (ACM, 2014), pp. 701–710

 34. Wang D, Cui P, Zhu W (2016) Structural deep network embed-
ding, In: Proceedings of the 22nd ACM SIGKDD international 
conference on Knowledge discovery and data mining, pp. 
1225–1234

 35. Yang C, Liu Z, Zhao D, Sun M, Chang E (2015) Network repre-
sentation learning with rich text information, Twenty-Fourth inter-
national joint conference on. Artificial intelligence 2111–2117

 36. Zhang D, Yin J, Zhu X, Zhang C (2016) Collective classification 
via discriminative matrix factorization on sparsely labeled net-
works, In: Proceedings of the 25th ACM international on confer-
ence on information and knowledge management, pp. 1563–1572

 37. Zhu S, Yu K, Chi Y, Gong Y (2007) Combining content and link 
for classification using matrix factorization, In Proceedings of the 
30th annual international ACM SIGIR conference on Research 
and development in information retrieval, pp. 487–494

 38. Huang W, Li Y, Fang Y, Fan J, Yang H (2020) BiANE: Bipartite 
Attributed Network Embedding, In Proceedings of the 43rd inter-
national ACM SIGIR conference on research and development in 
information retrieval, pp. 149–158

 39. Wu J, He J (2019) Scalable manifold-regularized attributed net-
work embedding via maximum mean discrepancy, In Proceedings 
of the 28th ACM international conference on information and 
knowledge management, pp. 2101–2104

 40. Fu S, Xu J (2020) The Multi-granularity in Graph Revealed by a 
Generalized Leading Tree, arXiv preprint arXiv: 2003. 02708

 41. Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013) Dis-
tributed representations of words and phrases and their compo-
sitionality. Advances in neural information processing systems 
3111–3119

 42. Cucerzan S (2007) Large-scale named entity disambiguation 
based on Wikipedia data, In Proceedings of the 2007 joint con-
ference on empirical methods in natural language processing and 
computational natural language learning (EMNLP-CoNLL), pp. 
708–716

 43. Cabanes C, Grouazel A, Von Schuckmann K, Hamon M, Turpin 
V, Coatanoan C, Paris F, Guinehut S, Boone C, Ferry N et al 

(2013) The CORA dataset validation and diagnostics of in-situ 
ocean temperature and salinity measurements. Ocean Sci 9(1):1

 44. Tang L, Liu H (2011) Leveraging social media networks for clas-
sification. Data Min Knowl Discovery 23(3):447

 45. Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ (2008) LIBLIN-
EAR: A library for large linear classification. J Mach Learn Res 
9(Aug):1871

 46. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient Estima-
tion of Word Representations in Vector Space, In: 1st international 
conference on learning representations, ICLR 2013, Scottsdale, 
Arizona, USA, May 2-4, 2013, Workshop Track Proceedings, ed. 
by Y. Bengio, Y. LeCun. arXiv: 1301. 3781

 47. Grover A, Leskovec J (2016) node2vec: scalable feature learn-
ing for networks, In: Proceedings of the 22nd ACM SIGKDD 
international conference on knowledge discovery and data mining, 
San Francisco, CA, USA, August 13-17, 2016 (ACM, 2016), pp. 
855–864

 48. Ahmed A, Shervashidze N, Narayanamurthy S, Josifovski V, 
Smola AJ (2013) Distributed large-scale natural graph factori-
zation. In: Proceedings of the 22nd international conference on 
World Wide Web (ACM, 2013), pp. 37–48

 49. Feng MH, Hsu C, Li CT, Yeh M, Lin S (2019) MARINE: Multi-
relational network embeddings with relational proximity and node 
attributes, The World Wide Web Conference

 50. Barbieri N, Bonchi F, Manco G (2014) Who to follow and why: 
link prediction with explanations, In Proceedings of the 20th ACM 
SIGKDD international conference on Knowledge discovery and 
data mining, pp. 1266–1275

 51. Lichtenwalter RN, Lussier JT, Chawla NV (2010) New perspec-
tives and methods in link prediction, In: Proceedings of the 16th 
ACM SIGKDD international conference on Knowledge discovery 
and data mining, pp. 243–252

 52. Davis J, Goadrich M (2006) The relationship between Precision-
Recall and ROC curves, In: Proceedings of the 23rd international 
conference on Machine learning, pp. 233–240

 53. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, 
Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V et al 
(2011) Scikit-learn: Machine learning in Python. J Mach Learn 
Res (12(Oct):2825)

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2003.02708
http://arxiv.org/abs/1301.3781

	hier2vec: interpretable multi-granular representation learning for hierarchy in social networks
	Abstract
	1 Introduction
	2 Related works
	2.1 Multi-granularity computing
	2.2 Hierarchical clustering and the leading tree
	2.3 Network representation learning

	3 Problem formulation
	3.1 Definitions
	3.2 The graph leading tree

	4 The hier2vec model
	4.1 The generation of graph leading tree
	4.2 Interpretable hierarchical semantic
	4.3 Representation learning for the hierarchy semantic
	4.4 Optimization
	4.5 The hier2vec algorithm

	5 Experiments
	5.1 Data sets
	5.2 Experimental settings
	5.3 Comparative methods
	5.4 Node classification
	5.5 Link prediction
	5.6 Visualization of layouts
	5.7 Case study

	6 Conclusion and future works
	Acknowledgements 
	References




