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Abstract
Biomedical event extraction is an important branch of biomedical information extraction. Trigger extraction is the most 
essential sub-task in event extraction, which has been widely concerned. Existing trigger extraction studies are mostly based 
on conventional machine learning or neural networks. But they neglect the ambiguity of word representations and the insuf-
ficient feature extraction by shallow hidden layers. In this paper, trigger extraction is treated as a sequence labeling problem. 
We introduce the language model to dynamically compute contextualized word representations and propose a multi-layer 
residual bidirectional long short-term memory (BiLSTM) architecture. First, we concatenate contextualized word embed-
ding, pretrained word embedding and character-level embedding as the feature representations, which effectively solves the 
tokens’ ambiguity in biomedical corpora. Then, the designed BiLSTM block with residual connection and gated multi-layer 
perceptron is adopted to extract features iteratively. This architecture improves the ability of our model to capture informa-
tion and avoids gradient exploding or vanishing. Finally, we combine the multi-layer residual BiLSTM with CRF layer to 
obtain more reasonable label sequences. Comparing with other state-of-the-art methods, the proposed model achieves the 
competitive performance (F1-score: 80.74%) on the biomedical multi-level event extraction (MLEE) corpus without any 
manual participation and feature engineering.

Keywords Biomedical trigger extraction · Contextualized word representations · Long short-term memory · Residual 
connection · Conditional random field

1 Introduction

Event extraction is a high-level task of information extrac-
tion, which aims to extract complex and pre-defined struc-
tured events from large amounts of unstructured data. In 

biomedical field, biomedical event extraction is employed 
to mine detailed and complicated molecular activities, such 
as describing the intermolecular interactions.

Usually a biomedical event consists of a trigger and sev-
eral arguments. Each trigger corresponds to a biomedical 
event and determines the corresponding event type. Argu-
ments refer to multiple participants in the events. As shown 
in Fig. 1 and Table 1, the example sentence contains multi-
ple trigger-guided biomedical events. A representative bio-
medical event extraction process consists of three stages: 
trigger extraction, arguments extraction and post-processing. 
Among these stages, trigger extraction plays a vital role in 
the whole process. On one side, the trigger directs different 
types of events and related arguments. Moreover, triggers 
help to parse the association between multiple arguments in 
complex events. They are the basis and prerequisite for the 
following steps. Case studies show that more than 60% of 
event extraction errors are caused by incorrect identification 
of triggers [1]. Therefore, trigger extraction is not only the 
beginning and core of the biomedical event extraction, but 
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also the key to the overall performance of the task. Early 
rule-based biomedical trigger extraction methods relied on 
manual design of rule templates, which were lack of flex-
ibility and portability, and could not be applied to large-scale 
biomedical corpora. Recent biomedical trigger extraction 
studies can be roughly divided into two categories: con-
ventional machine learning methods and neural networks. 
Pyysalo et  al.  [1] adopted more abundant contexts and 
dependencies as the representations. Based on support vec-
tor machine (SVM), they obtained 75.84% of the F1-score 
on MLEE corpus, which also became the baseline result 
of the corpus. Zhou et al. [2] developed a semi-supervised 
trigger extraction model, which identified triggers with unla-
beled corpora and hidden information. This model achieved 
reasonable performance compared with the baseline result 
above. After combining feature engineering with domain 
knowledge, Zhou et al. [3] employed SVM to classify bio-
medical triggers. He et al. [4] divided trigger extraction 
into two stages: detection and classification. Based on this 
two-stage method, the F1-score of 79.75% was achieved on 
MLEE corpus. It was also the best performance in the cur-
rent studies based on conventional machine learning. The 
conventional machine learning methods avoid manual par-
ticipation to a certain degree, but they are still limited by 
feature engineering.

Recently, with the rapid development of artificial intel-
ligence, deep learning technology is widely used in various 
fields [5–9]. Many biomedical trigger extraction researches 
are based on neural networks. Wang et al. [10] captured the 
semantic and syntactic information between tokens by regen-
erating dependency word embedding, and then identified 
triggers by multi-layer neural networks. Nie et al. [11] mod-
elled the syntactic and semantic features of sequences based 
on the word embedding generated by Skip-gram model. This 
effectively assisted neural network in extracting biomedi-
cal triggers. Rahul et al. [12] regarded biomedical trigger 

extraction as sequence labeling problem. They combined 
word embedding with entity type embedding and adopted 
bidirectional recurrent neural network (BiRNN) to label trig-
gers. He et al. [13] employed additional sentence vectors 
on dependency-based word embedding. They designed an 
attention-based bidirectional long short-term memory (BiL-
STM) network. This model achieved performance close to 
the best conventional machine learning method [4]. Wang 
et al. [14] adopted the classical BiLSTM-CRF architecture 
to recognize biomedical triggers, and word-level embedding 
and character-level embedding were combined as input rep-
resentations. Li et al. [15] concatenated dependency-based 
word embedding to entity type embedding as input repre-
sentations. They proposed a contextual label sensitive gated 
network to extract triggers. The model obtained a competi-
tive F1-score on MLEE corpus.

Previous work has achieved advanced performance in 
biomedical trigger extraction, but there are still several 
problems. First, the triggers in biomedical field are usually 
verbs or verb phrases with fixed collocation. It is well known 
that verbs usually represent multiple meanings according to 
context information. This ambiguity is more common in bio-
medical literatures than in the general field. The main reason 
is that the relatively monotonous verbs are used to trigger 
multiple biomedical events. Moreover, abbreviations and 
coreferences also interfere with the extraction of biomedical 
triggers. For example, the trigger “increase”, which belongs 
to the event “E1” in Fig. 1, is also treated as a non-trigger 
in one third of samples on the MLEE corpus. Furthermore, 
the token “activates” has only a third of the probability of 
being used as triggers in different corpora, and the rest are 
non-triggers. “play” can be serve as different types of trig-
gers (Regulation, Positive_regulation, Negative_regulation) 
and non-trigger. Most of the current neural network mod-
els are based on conventional pretrained word embedding. 
They are limited by fixed feature representations and cannot 
effectively express the different semantics of vocabulary in 
complex contexts. Employing pretrained language model to 
dynamically compute contextualized representations is an 
effective avenue to improve the above problems. Second, 
tokens in the fixed collocation verb phrase are highly label 
dependent, all tokens in a phrase must be complete and in 
a fixed order. Third, most of the current representative trig-
ger extraction models are based on conventional shallow 

Fig. 1  The example of biomedi-
cal event extraction

Table 1  Structural analysis of biomedical events included in example 
sentence

Events Type Trigger Theme Cause

E1 Positive Regulation Increase E2 LIF
E2 Gene Expression Production Antigen –
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neural networks, such as single-layer convolutional neural 
network (CNN) or recurrent neural network (RNN) and their 
improved structures. The single-layer structures greatly limit 
the ability of feature capturing in the encoding layer of the 
models, while the stacked deep network structures will cause 
training difficulties due to too many training parameters, 
which is more likely to cause gradient exploding or gradient 
vanishing. Therefore, how to properly enhance the depth of 
neural networks under the premise of avoiding information 
redundancy and gradient anomaly has become one of the 
solutions to this problem. Residual structure with recurrent 
trick has achieved great success in the field of computer 
vision [16, 17]. In the field of natural language processing 
(NLP), Huang et al. [18] designed a 9-layer CNN based 
on residual learning for distantly supervised noisy relation 
extraction in general field. Gui et al. [19] proposed a residual 
LSTM, which used dynamic skip connection based on rein-
forcement learning to simulate the variable distance depend-
ence between words. These studies suggest that the residual 
structure has positive effects on NLP problems. However, 
the effect of residual structure on trigger extraction task is 
still not well understood, especially in biomedical field. The 
deep neural networks based on residual structure can effec-
tively make up for the lack of feature extraction ability of 
shallow neural networks. Therefore, this paper considers the 
use of residual architecture to alleviate this problem.

In this paper, we propose a multi-layer residual BiLSTM-
CRF architecture based on contextualized word embedding. 
First of all, embeddings from language models (ELMo) [20] 
is used to compute contextualized word embedding. The 
generated embedding is combined with pretrained word 
embedding and character embedding at the same time. The 
introduction of contextualized word embedding can solve 
the problem of triggers ambiguity in different contexts. 
Then, we treat the trigger extraction as a sequence labeling 
problem, considering the dependency of token labels in trig-
ger phrases, CRF [21] is employed as the output layer to 
combine with BiLSTM. Finally, because the shallow neural 
networks cannot obtain the hidden valuable features of com-
plex sequences effectively, we design a multi-layer residual 
BiLSTM block. The residual connection avoids the gradi-
ent exploding or vanishing during the training period. The 
introduction of gate mechanism in this block can dynami-
cally control the transmission of information and avoid the 
information redundancy problem of multi encoding layers. 
In summary, the main contributions of this paper are as 
follows: 

1. We dynamically express the semantic information of 
tokens in different sequences through contextualized 
word representations.

2. The multi-layer residual BiLSTM-CRF architecture is 
designed to capture hidden valuable features from com-

plex biomedical text sequences. The residual BiLSTM 
block realizes the adaptive stacking of multi encoding 
layers and the CRF layer alleviates the problem of strong 
label dependence among tokens in trigger phrases.

3. The experimental results show that our model obtains 
the advanced performance on the biomedical MLEE 
corpus.

The structure of this paper is as follows: Sect. 2 introduces 
the multi-layer residual BiLSTM architecture proposed in 
this paper. Section 3 describes the experimental corpus and 
settings. Section 4 reports the experimental results and anal-
ysis. Section 5 summarizes our work and draws conclusions.

2  Methods

This section first introduces the overall structure of our 
approach, and then describes each part of the model in detail.

2.1  Overall framework

The multi-layer residual BiLSTM architecture is shown in 
Fig. 2. It is divided into embedding layer, residual BiLSTM 
block and CRF layer. First, original sequences are trans-
formed into multiple embedding at the embedding layer. 
They are standardized to be consistent with the dimension 
of residual BiLSTM block. Secondly, in multi-layer residual 
BiLSTM block, these features representations are captured 
by BiLSTM at first. Then residual connection and layer nor-
malization strategies in residual architecture are performed 
between these features and the output of BiLSTM. They 
are sent to the gated multi-layer perceptron at last, and two 
strategies of residual architecture are implemented again. 
In order to fully extract hidden features, the above process 
is repeated 4 times. The output of each iteration serves as 
input for the next iteration. Finally, the output of the multi-
layer residual BiLSTM block are fed into the CRF layer to 
parse labels.

2.2  Embedding layer

The embedding layer adopts three kinds of representations, 
including: pretrained word embedding, contextualized word 
embedding and character embedding. They are used to opti-
mize the ambiguity of tokens and to parse the internal struc-
ture of tokens.

2.2.1  Pretrained word embedding

First, we introduce the pretrained word embedding. Word 
embedding is a kind of distributed representation, which 
is used to transform high-dimensional, sparse one-hot 



724 International Journal of Machine Learning and Cybernetics (2022) 13:721–733

1 3

vectors into low-dimensional, dense representations. They 
map original tokens into vectors of fixed length, and dis-
tinguish the similarity between tokens according to the 
vectors’ distribution. Word embedding optimizes the per-
formance of neural networks in NLP tasks. Common tools 
for computing distributed representations include Word-
2vec [22], Glove [23], etc.

In view of the fact that high-quality word embedding 
can better express potential semantic features and language 
patterns. The word embedding pretrained in large-scale 

biomedical corpora provided by Pyysalo et  al.  [24] is 
adopted as input of the model in this paper.

2.2.2  Contextualized word embedding

Previous pretrained word embedding is based on fixed vec-
tors trained from large-scale corpora, which is context-inde-
pendent and cannot reflect the proper semantics of tokens. 
On the basis of the pretrained word embedding, this paper 
additionally employs the 2-layer ELMo to compute the 

contextualized
word embeddings

pretrained word
embeddings

character
embeddings+ +

Original Sequence

ELMo PMC+PubMed BiLSTM

……

……

……

Embedding
Layer

Residual
BiLSTM Block

(×4)

CRF Layer O B I O

Residual Connection Layer Normalization&

Residual Connection Layer Normalization&
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Output

Residual
Architecture

Residual
Architecture

Gated Multi-layer
Perceptron
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I

Fig. 2  The framework of multi-layer residual BiLSTM. The contex-
tualized word embedding, pretrained word embedding and charac-
ter embedding are generated by ELMo, PMC + PubMed pretrained 
vocabulary and BiLSTM, respectively. They are concatenated and 
input into the residual BiLSTM block. The green dots represent the 

output of BiLSTM. The residual connection operation is represented 
by dotted line. The blue striped dots represent the gated multi-layer 
perceptron. The output of the residual BiLSTM block after four itera-
tions is fed into the CRF layer to predict the labels
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contextualized representations as one of our model’s input. 
Unlike other fine-tuning-based pretrained language mod-
els [25, 26], ELMo can flexibly adapt to the neural networks 
of various downstream tasks, and does not rely on high-
performance devices and large-scale computing. In order 
to express the semantic features of tokens and the syntac-
tic features of sequences dynamically, we directly transfer 
the pretrained ELMo language model proposed by Peters 
et al. [20] to generate the contextualized word representa-
tions. As shown in Fig. 3, the model includes two unidi-
rectional LSTMs in opposite directions. Given the original 
embedding as input, the contextualized word representations 
are obtained as follows:

where xLM
k

 represents the original word embedding of the 
k-th token, �����⃗hLM

k,j
 and �⃖����hLM

k,j
 represent the k-th output of two 

unidirectional LSTMs in opposite directions, w represents 
the softmax-normalized parameters and L represents the 
layer number. ELMo calculates the contextualized word rep-
resentations through the above formulas. The representations 
is generated by performing addition operation on each lay-
er’s output of the language model, or only adopts the output 
of the last layer. The former is adopted in this paper. The 
contextualized word representations can be directly concat-
enated to other input embedding as feature representations.

(1)ELMok =

L∑
j=0

whLM
k,j

(2)Rk =

{
xLM
k

,
�����⃗hLM
k,j

,
�⃖����hLM
k,j

}
, j = {1,… , L}

(3)Rk =

{
hLM
k,j

}
, j = {0,… , L}

2.2.3  Character embedding

In addition to the above two kinds of coarse-grained repre-
sentations, the lexical features are also beneficial for trig-
ger extraction because triggers of biomedical events are 
usually words or phrases suffixed with various tenses. In 
order to make the model learn these fine-grained features, 
we adopt BiLSTM to compute character embedding which 
has advantages in capturing continuous features. As shown 
in Fig. 4. First, all characters of tokens are randomly ini-
tialized to the embedding. Then BiLSTM is employed to 
capture bidirectional global features of character matrix. 
Finally, these global features are integrated as the charac-
ter-level embedding of tokens.

Fig. 3  The framework of ELMo
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Fig. 4  The BiLSTM framework for computing character embedding
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2.2.4  Multiple embedding integration

Let n denote the number of tokens, Welmo ∈ Rn×de denote 
the contextualized word embedding generated by ELMo, 
Wword ∈ Rn×dw denote the pretrained word embedding gener-
ated by PMC + PubMed pretrained vocabulary, Wchar ∈ Rn×dc 
denote the character embedding generated by BiLSTM. In this 
step, the concatenate operation is performed to integrate the 
above three kinds of embedding. The final input representa-
tions of the model are as follows:

where ⊕ denotes the concatenate operation. Wf ∈ Rn×de+w+c.

2.3  Residual BiLSTM block

2.3.1  Background

LSTM [27] is an evolutionary model of RNN. It is proposed 
to optimize the gradient vanishing or exploding problems 
of RNN when capturing long distance information. LSTM 
designs memory cell and gate mechanism based on RNN 
structure. The memory cell is designed for caching and 
propagating information. The gate mechanism can be seen as 
“valve”. There are three kinds of gates designed to control and 
update the input information (input gate i, forget gate f and 
output gate o). Due to the gate mechanism, LSTM is able to 
capture features from longer distance than RNN. The internal 
structure of LSTM unit is shown in the Fig. 5 and its updating 
process at time t is as follows:

(4)Wf = Welmo ⊕Wword ⊕Wchar

(5)it = �(Wi[ht−1, xt] + bi)

(6)ft = �(Wf [ht−1, xt] + bf )

where xt is the original input of the unit. � is the sigmoid 
function of gate mechanism. ∗ is the dot product between 
vectors. Wi , Wf  , Wo and Wc are weight parameter matrices. bi , 
bf  , bo and bc are biases. it , ft and ot denote the state of input 
gate, forget gate and output gate at time t, respectively. ct and 
c̃t denote the final state and candidate state of the memory 
cell at time t, respectively. ht is the output of the LSTM unit 
at time t.

In order to capture context information adequately, this 
paper employs bidirectional LSTM (BiLSTM) to extract 
features. First, BiLSTM captures the forward and backward 
features of the input sequence respectively. Then the con-
catenate operation is performed to merge two features as 
the global features. Finally, the global features are output 
to the residual architecture. The global features of BiLSTM 
are as follows:

where ⊕ denotes the concatenate operation, �⃗h and �⃖h denote 
the forward and the backward features captured by BiLSTM, 
respectively.

The residual architecture is designed in two strategies, 
including residual connection and normalization. Residual 
connection is proposed by He et al. [28] in image recogni-
tion. It merges the current layer’s input and output as the 
input of the next layer. The residual connection avoids the 
problem of gradient exploding or vanishing with the con-
tinuous iteration.

The normalization is to optimize the convergence rate of 
parameters in complex neural networks. Because the con-
ventional batch normalization relies on large batch size, it is 
difficult to apply in sequence labeling models with inconsist-
ent sample lengths. So we employ layer normalization [29] 
to optimize neurons. It normalizes different neurons based 
on a single sample, which is more suitable for our task than 
batch normalization.

2.3.2  Residual BiLSTM block structure

The residual BiLSTM block is the most important part of our 
model. Its structure is shown in the middle shaded part of 
Fig. 2. We extract features iteratively by the residual BiLSTM 
block. The output of the current iteration serves as the input 

(7)ot = �(Wo[ht−1, xt] + bo)

(8)c̃t = tanh(Wc[ht−1, xt] + bc)

(9)ct = it ∗ c̃t + ft ∗ ct−1

(10)ht = ot ∗ tanh(ct)

(11)h = [ �⃗h⊕ �⃖h]

× ×Ct

it ot

ft Forget Gate

Output GateInput Gate

Cell

×

xt

xt xt

xt

ht

Fig. 5  The internal structure of LSTM unit
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for the next iteration. The final output is fed into the CRF layer. 
The residual architecture guarantees the performance of fea-
ture extraction for our multi-layer BiLSTM block. We perform 
residual connection and layer normalization of the input and 
output of BiLSTM. The relevant formula is as follows:

where x denotes the input of BiLSTM, h denotes the output 
of BiLSTM, yB denotes the final output of BiLSTM through 
the above strategies.

After residual connection and layer normalization, yB is 
input to gated multi-layer perceptron (GMLP). GMLP is a 
feed-forward network with gate mechanism that maps a set 
of input vectors to a set of output vectors. It is proposed to 
integrate captured information while avoiding redundancy 
and controlling output. The structure of GMLP is shown in 
the Fig. 6.

The original formula is as follows:

where yB and y denote the input and output of GMLP, 
respectively. M(yB) and M�(yB) denotes the identical MLP 
without activation function. � denotes the sigmoid function, 
which is the gate mechanism. Because its interval is [0, 1], it 
can act as a “valve” to control output. We also adopt residual 
connections in GMLP:

Since M(yB) is a linear transform without activation func-
tion. The above formula is equivalent to:

(12)yB = LayerNorm(x + h)

(13)y = M(yB) × �(M�(yB))

(14)y = yB +M(yB) × �(M�(yB)).

(15)y� = yB + (M(yB) − yB) × �(M�(yB))

(16)y� = yB × [1 − �(M�(yB))] +M(yB) × �(M�(yB))

where × denotes element-wise multiplication, y is equiva-
lent to y′ . The above formula can more intuitively explain 
the motivation of the designed GMLP: the input informa-
tion is directly output with the probability of 1 − �(M�(yB)) , 
and output with the probability of �(M�(yB) through the gate 
mechanism. Similar to GRU [30], this effectively optimizes 
information transmission and avoids gradient vanishing.

In this block, residual connection and layer normalization 
are performed again for the output of GMLP. The relevant 
formula is as follows:

y denotes the output of GMLP. yG denotes the output of 
GMLP through the above two strategies, which is fed into 
the CRF layer.

2.4  CRF Layer

2.4.1  Background

In this paper, we treat biomedical trigger extraction as a 
sequence labeling task based on BIO label scheme. In detail, 
each token is classified into three boundary labels (label “B”, 
label “I” and label “O”). “B” denotes the first token of a trig-
ger. “I” denotes the internal tokens of a trigger. “O” denotes 
the non-triggers. Although independent decision functions 
such as Softmax can generate prediction labels, they ignore 
the label dependency problem and cannot recognize illegal 
label sequences. For example, it is illogical for label “I” 
to follow behind label “O”. Therefore, our model employs 
CRF layer to solve this problem. CRF considers not only 
the initial probability generated by decision function, but 
also the transition probability between labels. It focuses on 
sentence-level label prediction, not limited to token-level. 
The effectiveness of adopting CRF layer has been demon-
strated in previous biomedical trigger extraction studies [14].

2.4.2  CRF structure

Assuming that given an input sequence x = {x1, x2,… , xn} , 
there exists a corresponding label sequence l = {l1, l2,… , ln} , 
n represents the number of tokens. In addition, for a prob-
ability matrix P, P ∈ Rn×m , m represents the types of labels. 
First, let i and j denote the i-th token in the sequence and 
the j-th class in the label, respectively. The formula of P is 
as follows:

where T represents the transition matrix of labels. Tij repre-
sents the score from the previous label to the current label. 

(17)yG = LayerNorm(yB + y)

(18)P(x, l) =

n∑
i=0

Tli,li+1 +

n∑
i=1

Pi,li

y

×

σ

×

M(x)

M'(x)yB

1-

Fig. 6  The structure of gated multi-layer perceptron
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Let l0 and ln be the head and end of the label sequence, 
T ∈ R(m+2)×(m+2).

Then, let lx denote the predicted trigger labels of original 
sentence x. The prediction probability of all possible label 
sets l in CRF layer is expressed as P(l ∣ x) . Its formula is as 
follows:

where l̃  represents the actual labels of original samples.
Next, the following likelihood function monitors the dis-

tance between predicted and real results in order to optimize 
the model.

Finally, the CRF layer maximizes the likelihood function by 
adjusting the parameters during training, and generates the 
optimal labels l∗ under this condition:

3  Experimental settings

This section introduces the relevant settings during model 
training, including dataset, label scheme, optimizer, regu-
larization, parameters and evaluation measures.

3.1  Dataset and label scheme

In order to evaluate the performance, the trigger extraction 
experiments are carried out on MLEE [1], the mainstream 
corpus of biomedicine. MLEE corpus includes 4 categories 
of 19 biomedical event types. It covers molecular, cellular, 
organ and so on. The size of MLEE corpus adopted by us 
is consistent with Rahul et al. [12] and Li et al. [15]. There 
are 2608 samples in the corpus, of which 1728 are used for 
training and 880 are used as test sets. The trigger statistics 
for MLEE are shown in Table 2.

In this paper, trigger extraction is treated as a sequence 
labeling problem. Therefore, a label scheme is needed to 
re-label the samples containing triggers. We adopt BIO as 
the label scheme, which is one of the most common method 
in sequence labeling. B denotes the beginning of triggers, I 
denotes the middle part of trigger phrases, and O denotes 
that the token does not belong to a trigger. Taking sentence 
“matrix metalloproteinases are present at elevated levels 
during early wound healing when angiogenesis occurs and 

(19)P(l ∣ x) =
expP(x,l)∑
l̃∈lx

expP(x,̃l)

(20)log(P(l ∣ x)) = P(x, l) − log

⎛
⎜⎜⎝
�
l̃∈lx

expP(x,̃l)
⎞
⎟⎟⎠
.

(21)l∗ = argmax̃
l∈lx

P(x, l̃).

suggest that matrix metalloproteinase-9 may play a signifi-
cant role” as an example, the result of BIO-based labeling 
is shown in Table 3.

3.2  Optimizer and regularization

Adam [31] is a first-order optimization algorithm which can 
replace the traditional stochastic gradient descent (SGD). 
It iteratively updates the parameters during training. Adam 
designs independent adaptive learning rates for parameters 
by computing the first-order and second-order moment 
estimations of gradients. It retains a learning rate for each 
parameter to improve the performance on the sparse gradi-
ent. Therefore, this paper employs Adam as the optimizer.

Dropout [32] is a conventional regularization method 
during model training. In each batch, the over-fitting can 
be significantly reduced by ignoring the fixed proportion 
of neurons in forward propagation. This method can reduce 
the interaction between neurons and make the model more 
generalized which does not depend too much on some local 
features in hidden layer.

3.3  Parameter settings

The specific parameter settings in our model are shown in 
Table 4. This paper sets the dimension of pretrained word 
embedding to 200, the contextualized word representa-
tions to 1024, and the character-level embedding to 50. The 

Table 2  The trigger statistics for MLEE corpus

Categories Triggers Training Test Total

Anatomical Cell proliferation 82 43 125
Development 202 98 300
Blood vessel development 540 305 845
Growth 107 56 163
Death 57 36 93
Breakdown 44 23 67
Remodeling 22 10 32

Molecular Synthesis 13 4 17
Gene expression 210 132 342
Transcription 16 7 23
Catabolism 20 4 24
Phosphorylation 26 3 29
Dephosphorylation 2 1 3

Genera l Localization 282 133 415
Binding 102 56 158
Regulation 362 178 540
Positive regulation 654 312 966
Negative regulation 450 233 683

Planned Planned process 407 175 582
Total 19 3598 1809 5407
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number of unidirectional LSTM units is 100. In addition, 
the dropout rate, learning rate and batch size are set to 0.5, 
0.001 and 20, respectively.

3.4  Evaluation measures

In order to objectively and comprehensively compare with 
existing studies, the following three kinds of evaluation 
measures are employed in this paper: Precision, Recall and 
F1-score. Their definitions are described below.

where TP, FP, FN and TN respectively represent the true 
positive samples with correct prediction, the true negative 
samples with incorrect prediction, the true positive samples 
with incorrect prediction and the true negative samples with 
correct prediction.

4  Results and discussions

The performance comparisons are reported and discussed 
in this section. First, experiments 1 compares the perfor-
mance of different pre-training word vectors (Sect. 4.1). 
The second experiment verifies the validity of each feature 
representation employed in this model (Sect. 4.2). In order 
to evaluate the effect of LSTM unit number on perfor-
mance, we set up the third experiment (Sect. 4.3). Then 
we experiment on the strategies designed in the model 
(Sect.  4.4). Finally, we report and discuss the perfor-
mance comparison between our model and existing studies 
(Sect. 4.5). In addition, we conduct case study and error 
analysis on the prediction results of the model (Sects. 4.6 
and 4.7).

4.1  Performance comparison of pre‑trained 
embedding

Experiments 1 evaluates the effects of different pretrain-
ing word embedding on the performance of our model. 
We provide 200-dimensional word vectors, which are 
randomly initialized, pretrained by GloVe in general 
large-scale corpus, and pretrained by Word2Vec in four 
kinds of biomedical corpora, namely PMC, PubMed, 
PubMed +Wiki and PMC + PubMed . The experimental 
results are shown in Table 5. The experimental results 
show that the performance of the model using pretrained 
word embedding is better than that of randomly initial-
ized word embedding. In addition, the performance of bio-
medical pretraining word embedding is better than that 
of general domain pretraining word embedding, among 
which PMC + PubMed has the best performance. There-
fore, PMC + PubMed is adopted as the pretraining word 
embedding in our model.

(22)P =
TP

TP + FP

(23)R =
TP

TP + FN

(24)F1 =
2 ∗ P ∗ R

P + R

Table 3  The example of BIO label scheme

Tokens BIO Labels

matrix O
metalloproteinases O
are O
present B-Gene_expression
at O
elevated B-Positive_regulation
levels O
during O
early O
wound O
healing O
when O
angiogenesis B-Blood_vessel_development
occurs O
and O
suggest O
that O
matrix O
metalloproteinase-9 O
may O
play B-Regulation
a I-Regulation
significant I-Regulation
role I-Regulation

Table 4  Experimental 
parameter settings

Hyper-parameter Value

Word dim 200
Char dim 50
ELMo dim 1024
LSTM dim 100
GMLP dim 200
Dropout rate 0.5
Initial learning rate 0.001
Optimizer Adam
Batch size 20
label schema BIO
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4.2  Performance comparison of each 
representation

This paper combines contextualized word embedding, pre-
trained word embedding and character-level embedding as 
input feature representations. Experiment 2 compares the 
performance of each feature representation. The experi-
mental results are shown in Table 6. The results show that 
contextualized word embedding can effectively improve per-
formance. In the case study section, we provide an actual 
comparison result between our model and baseline model 
in dealing with typical complicated cases. The experimen-
tal results show that this model can effectively judge the 
actual meaning of triggers when they have multiple mean-
ings, which also prove that the token ambiguity problem pro-
posed in this paper can be effectively optimized. In addition, 
character-level embedding can deeply analyze the internal 
structure of tokens and better capture their semantic and 
lexical features. Therefore, the above 3 feature representa-
tions are input into our model after connecting.

4.3  Performance comparison of LSTM unit 
dimensions

The number of units in neural networks plays an important 
role in feature extraction. The third experiment compares 
the effects of different unit numbers on the performance. 
Four parameters, 50, 100, 150 and 200, are set in the 
parameter set of LSTM units. The experimental results 
are shown in Table 7. It can be concluded that the optimum 
number of units in LSTM is 100. Inadequate or excessive 

number of units will interfere with feature extraction, 
which may result in feature missing or feature redundancy.

4.4  Performance comparison of different strategies

Next, this paper verifies the effectiveness of various strate-
gies designed in the model, including bidirectional LSTM, 
CRF layer, residual mechanism and multi-layer residual 
blocks. In this paper, unidirectional LSTM is used as the 
baseline model to evaluate the performance improvement 
of the model after employing the above strategies. The 
experimental results are shown in Table 8. After adopting 
the above strategies in turn, the performance of the model is 
significantly improved. From the table, the introduction of 
CRF layer can effectively improve the performance of the 
model. Moreover, with the adoption of the residual block we 
designed, the precision rate of the model has been signifi-
cantly improved, which may be due to the residual structure 
providing more abundant hidden information for the model, 
and the gate mechanism strictly limits the transmission of 
low-quality features, which may lead to the reduction of 
recall rate to a certain extent. Furthermore, with the iteration 
of the residual block, the model captures more features, so its 
generalization begins to improve gradually, that is, the pre-
cision rate decreases slightly while the recall rate increases 
significantly. Finally, the model achieves the advanced over-
all performance. The number of layers of residual blocks is 
determined to be 4 after many adjustments. From the above 
results, we conclude that the strategies designed in this 
model have positive effects on biomedical trigger extraction.

Table 5  Performance comparison of pre-trained embedding

Embedding Precision (%) Recall (%) F1-score (%)

Random 75.11 79.62 77.26
GloVe 76.93 81.08 79.35
PMC 79.80 80.79 80.29
PubMed 78.21 81.70 79.93
PubMed + Wiki 79.51 81.29 80.39
PMC + PubMed 79.89 81.61 80.74

Table 6  Performance comparison of each representation

*“� ” represents the F1-score decrease of the model when the current 
representation is excluded

Features Precision (%) Recall (%) F1-score (%) �

– 79.89 81.61 80.74 –
Word 79.01 78.70 78.83 1.91
Char 76.99 82.12 79.44 1.30
ELMo 78.32 77.28 77.77 2.97

Table 7  Performance comparison of LSTM unit dimensions

Dimensions Precision (%) Recall (%) F1-score (%)

50 77.60 81.01 79.27
100 79.89 81.61 80.74
150 80.80 80.09 80.42
200 80.48 80.01 80.24

Table 8  Performance comparison of each strategies

*“� ” represents the F1-score decrease of the model when the current 
strategy is employed

Strategies Precision (%) Recall (%) F1-score (%) �

LSTM 77.41 80.79 79.11 1.63
BiLSTM 78.79 80.31 79.54 1.20
BiLSTM-CRF 79.71 80.50 80.08 0.66
Residual Block*1 80.89 79.70 80.29 0.45
Residual Block*4 79.89 81.61 80.74 –
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4.5  Performance comparison with existing methods

Finally, as shown in Table 9, we report the performance 
comparison between our model and existing methods. The 
following is a brief introduction to the existing methods in 
the table.

Pyysalo et al. [1] proposed a SVM model that connected 
contexts and dependencies features.

Nie et al. [11] employed skip-gram model to generate 
word embedding to optimize the performance of neural 
networks.

Wang et al. [14] introduced a BiLSTM-CRF model and 
used word-level and character-level representations in the 
input layer.

Wang et al. [10] adopted artificial neural network (ANN) 
to identify triggers after regenerating raw dependency-based 
word embedding.

Zhou et al. [3] proposed a SVM model based on feature 
engineering and domain knowledge.

Rahul et al. [12] treated trigger extraction as a sequence 
labeling problem. They combined word embedding with 
entity type embedding and fed them into BiRNN to label 
triggers.

He et al. [13] merged dependency-based word embed-
ding and sentence vectors. The attention-based BiLSTM was 
employed to extract triggers.

He et al. [4] proposed a SVM classifier based on two-
stage method.

Fei et al. [33] proposed a RecurNN-CRF model, which 
combined the dependency-tree based RNN with CRF layer.

As can be seen from the table above, our model achieves 
the competitive performance with an F1-score of 80.74% 
on the premise of relying only on a simple and flexible 
architecture. Compared with the above methods based on 
BiLSTM such as He et al. [13] and Wang et al. [14], our 
model enhances the ability of feature extraction based on 

residual connection and gate mechanism. Meanwhile, the 
contextualized word embedding generated by ELMo can 
effectively alleviate the ambiguity and polysemy of biomedi-
cal triggers. He et al. [4] divide biomedical trigger extraction 
into two stages: detection and classification. They classify 
biomedical triggers by SVM based on two-stage method. 
This method achieves the best performance of conventional 
machine learning methods (F1-score: 79.75%). Compared 
with this method, although the precision rate of our model is 
reduced by 0.46%, the recall rate and F1-score are increased 
by 2.45% and 0.99%, respectively. More importantly, our 
model avoids any manual participation and feature engineer-
ing. This saves time and labor costs associated with data 
preprocessing and feature selection. In addition, compared 
with the recent advanced deep learning approach of Fei 
et al. [33], the F1-score of our model is increased by 0.46%. 
Moreover, our approach does not rely on special parsing 
tools to generate the dependency tree features, which makes 
our model more flexible.

4.6  Case study

The case study is shown in the Table 10. The sentence 
structure of this example is common in MLEE corpus. It 
contains multiple biomedical triggers where includes a 
complex phrase. We adopt LSTM as the baseline model 
to verify the effectiveness of strategies in this paper. The 
baseline model recognizes the single triggers “elevated” 
and “angiogenesis” correctly, but cannot fully extract the 
phrase “play a significant role”. Moreover, the single trig-
ger “present” is also mispredicted. This is caused by the 
insufficient feature extraction and ambiguity of triggers. 
Our model correctly extracts all triggers, including a com-
plex phrase. The proposed multi-layer residual BiLSTM 
architecture and the adopted of contextualized word rep-
resentations accurately express the semantic information 

Table 9  Performance 
comparison with existing 
studies

*“ML” is the abbreviation of machine learning.
“DL” is the abbreviation of deep learning.
All full names in the “Model” column are listed in the existing studies profiles above

Methods Type Model Precision (%) Recall (%) F1-score (%)

Pyysalo et al. [1] ML SVM 70.79 81.69 75.84
Nie et al. [11] ML ANN 71.04 84.60 77.23
Wang et al. [14] DL LSTM 77.89 78.28 78.08
Wang et al. [10] DL MLP 73.56 83.62 78.27
Zhou et al. [3] ML SVM 75.56 81.29 78.32
Rahul et al. [12] DL GRU 79.78 78.45 79.11
He et al. [13] DL LSTM 81.79 77.76 79.73
He et al. [4] ML SVM 80.35 79.16 79.75
Fei et al. [33] DL DepRNN 81.12 79.15 80.28
Ours DL ResLSTM 79.89 81.61 80.74
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of triggers according to the context, and sufficiently cap-
ture the global features. The above design enables the bio-
medical trigger to be extracted correctly and completely.

4.7  Error analysis

We further analyze the error samples of the experimental 
results and conclude that the two factors most likely to 
cause the prediction errors are as follows.

Firstly, Table 11 lists the proportion of the categories 
with the most and the least samples in MLEE corpus. 
There is a serious sample imbalance between the catego-
ries, and the proportion exceeds 300:1. Due to the lack 
of training samples, our model cannot fully capture and 
extract the features of categories with fewer samples.

In addition, triggers in some samples are various and 
dense. Continuous triggers make our model more diffi-
cult to identify them completely. For example, in example 
sentences “endothelial cell proliferation plays a pivotal 
role in angiogenesis.” and “endothelial cell proliferation 
plays a pivotal role in angiogenesis.”, the number of trig-
gers accounts for almost half of the whole sequence and 
belongs to different categories. These trigger categories 
include Cell_Proliferation, Localization, Positive_Regu-
lation, Blood_Vessel_development and so on. Our model 
does not show reasonable performance when there are 
dense triggers distributed in short sequences.

5  Conclusion

This paper proposes a multi-layer residual BiLSTM-CRF 
architecture with contextualized word representations in 
biomedical trigger extraction. The trigger extraction task is 
treated as a sequence labeling problem. Through the con-
textualized word representations are generated by ELMo, 
our model can effectively solve the ambiguity problem in 
biomedical literature and make up for the deficiency of con-
ventional word embedding. By multi-layer residual BiLSTM 
block, the model is able to improve the ability of capturing 
features and avoiding gradient exploding or vanishing. The 
experimental results show that the model obtains the com-
petitive performance on the biomedical MLEE corpus. In 
the future, we plan to adopt multi-task learning to address 
the lack of training samples, so as to alleviate the imbalance 
of samples between categories. Moreover, we can employ 
additional linguistic features and multiple contextualized 
word embedding.
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