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Abstract
Person re-identification (Re-ID) models usually present a limited performance when they are trained on one dataset and tested 
on another dataset due to the inter-dataset bias (e.g. completely different identities and backgrounds) and the intra-dataset 
difference (e.g. camera and pose changes). In other words, the absence of identity labels (who the person is) and pairwise 
labels (whether a pair of images belongs to the same person or not) leads to failures in unsupervised person Re-ID problem. 
We argue that synchronous consideration of these two aspects can improve the performance of unsupervised person Re-ID 
model. In this work, we introduce a Classification and Latent Commonality (CLC) method based on transfer learning for the 
unsupervised person Re-ID problem. Our method has three characteristics: (1) proposing an imitate model to generate an 
imitated target domain with estimated identity labels and create a pseudo target domain to compensate the pairwise labels 
across camera views; (2) formulating a dual classification loss on both the source domain and imitated target domain to 
learn a discriminative representation and diminish the inter-domain bias; (3) investigating latent commonality and reducing 
the intra-domain difference by constraining triplet loss on the source domain, imitated target domain and pairwise label 
target domain (composed of pseudo target domain and target domain). Extensive experiments are conducted on three widely 
employed benchmarks, including Market-1501, DukeMTMC-reID and MSMT17, and experimental results demonstrate that 
the proposed method can achieve a competitive performance against other state-of-the-art unsupervised Re-ID approaches.

Keywords Person re-identification · Unsupervised transfer learning · Dual classification

1 Introduction

The person re-identification (Re-ID) [69] targets at matching 
images of people in a large-scale dataset collected by non-
overlapping camera views. In this task, images of person 
undergoes large variations in illumination, appearance, pose, 
viewpoints and background in different cameras. It attracts 
significant attentions from both academia and industry due 
to its great potential applications in video surveillance and 
security. Thanks to the development of deep learning [47, 
59], the person Re-ID performance has been significantly 
improved in recent years. For example, the Rank-1 accu-
racy of single query on Market-1501 [68] has been upgraded 
to 93.8%  [43]. The Rank-1 accuracy on DukeMTMC-
reID [38, 70] has been improved to 83.3% [43]. However, 
the achieved high performance for person Re-ID is only 
restricted to supervised learning frameworks [47, 67, 73] 
since the database consists of a large number of manually 
labeled images. While in a practical person Re-ID deploy-
ment, such manual labeling is not only expensive to obtain 
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as the number of cameras increases, but also improbable in 
many cases because it requires the same person appearing 
in every pair of existing cameras. When models trained on a 
supervised dataset are directly used on another dataset, the 
Re-ID performance declines precipitously due to the inter-
dataset bias [10, 37]. Therefore, learning an unsupervised 
person Re-ID model that generalizes well on a target domain 
is important and also of great relevance to applications [64, 
74].

One solution to learn an unsupervised person Re-ID 
model is unsupervised domain adaption (UDA) where 
models are trained on a source domain consisting of labeled 
images and adapted on the target domain composed of unla-
beled images. Recently, numerous unsupervised methods 
for person Re-ID [22, 49] have been proposed to extract 
view-invariant features. But these methods only achieve 
a limited Re-ID performance compared to the supervised 
counterparts. The main reason is that the inter-domain bias 
between the labeled source domain and the unlabeled target 
domain is not reduced effectively. Different domain images 
are taken under different views in different backgrounds, 
and even people who appear in these images might come 
from different nations. We consider these differences as the 
domain gap or inter-domain bias. In the unsupervised set-
ting, no labeled images in the target domain are provided 
such that it is more important to exploit label information in 
the source domain to shrink the inter-domain bias. In other 
words, without labels in the target domain (i.e. identity 
label) as a learning guidance, it is hard to utilize the super-
vised learning framework to learn identity discriminative 
feature through the classification task. Meantime, another 
factor that influences the performance of person Re-ID is the 
intra-domain difference which is caused by different cam-
era configurations in the target domain. Even in the same 
domain, images captured by different cameras have distinc-
tive styles due to various lighting condition, shooting angle, 
background, etc. Since the goal of the Re-ID test procedure 
is to identify pedestrians across cameras, pairwise labels 
(whether a pair of images belong to the same person or not) 
across cameras could be a great advice to exploit camera-
invariance in the training of Re-ID models.

In this work, we propose a method to explicitly address 
issues mentioned above. On the one hand, persons in the 
target domain are imitated from the labeled source domain 
in order to compensate for the absence of identity labels in 
the target domain. On the other hand, a content preserved 
pseudo target domain is derived in order to fill the vacancy 
of pairwise labels across camera views in the target domain. 
Furthermore, we leverage a dual classification loss on both 
source domain and imitated target domain to strengthen the 
discriminative ability of the proposed person Re-ID model 
and bridge inter-domain bias. There are some works [10, 54] 
that focus on similarity-preserving source-target translation 

models to bridge domain gaps, and also some methods [72, 
73] that concentrate on camera style adaptation to gener-
ate new datasets in the style of other cameras. But none 
of them takes into account both factors. We argue that a 
transfer model is impacted by the overall data gap between 
two domains during a training period and at the same time 
influenced by the camera styles of the target domain in the 
test phase. Moreover, to enhance the generalization ability of 
the proposed person Re-ID model, a latent commonality of 
domains beyond source and target is exploited, i.e., the mar-
gin of two images originated from the same person should be 
smaller than that from different persons across any camera in 
any domain. To this end, we develop a novel unsupervised 
transfer learning method, named Classification and Latent 
Commonality method (CLC), to train a cross dataset person 
Re-ID model. CLC does not require any manual annotations 
for images in the target domain, but requires identity labels 
for source dataset and camera IDs for images in the source 
and target dataset. Note that the camera ID for each image 
can be easily obtained along with raw videos.

To sum up, we propose the CLC method for the unsu-
pervised person Re-ID task. Three contributions are made: 
(I) In order to simultaneously compensate for the absence 
of identity labels and pairwise labels across camera views 
in the target domain, we design an imitate method to gener-
ate an imitated target domain and a pseudo target domain. 
(II) For the purpose of decreasing the inter-domain bias, we 
introduce a dual classification loss on both source domain 
and imitated target domain to learn a discriminative repre-
sentation. (III) We utilize a triplet loss constrained on the 
source domain, imitated target domain and pairwise label 
target domain (composed of pseudo target domain and tar-
get domain) to investigate camera-invariance and reduce the 
intra-domain difference.

2  Related work

Supervised person Re-ID. Most existing person Re-ID mod-
els are based on supervised learning, i.e. trained on a large 
number of labeled images across cameras. They focus on 
feature engineering [20, 53, 55, 65, 66], distance metric 
learning [7, 18, 48, 60], creating new deep learning archi-
tectures [1, 24, 31] and re-ranking methods [2, 14, 23, 61, 
71]. For example, Kalayeh et al. [20] learned both local fea-
tures from human body parts and global features from entire 
human image to integrate human semantic parsing. Chen 
et al. [7] proposed a quadruplet loss to handle the weakness 
of the triplet loss on person Re-ID. Li et al. [24] proposed a 
new person Re-ID network with a joint learning of soft and 
hard attentions, which took advantage of both joint learn-
ing attention selection and feature representation. Geng 
et al. [14] designed a Perspective Distance Model (PDM) to 
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further reduce the intra-class variations and increase the dis-
tance of inter-class variations. Although these models offer 
a promising performance on recent person Re-ID datasets 
(e.g., Market-1501 [68] and DukeMTMC-reID [38, 70]), it 
is hard to utilize in practical applications due to the demand 
of tremendous labeled data.

Unsupervised domain adaptation. Our work is also 
closely related to the unsupervised domain adaptation 
(UDA) [34, 42, 51, 52], where during training only the 
labeled source dataset and unlabeled target dataset are avail-
able. In this community, most of previous methods aimed to 
align the feature distributions between the two domains [33, 
45], which has been justified theoretically by Ben-David 
et al. [5]. For example, Tzeng et al. [46] proposed a domain 
classifier to encourage the features of two domains to be 
indistinguishable. There were also some methods [39, 41] 
aimed at predicting pseudo-labels on the unlabeled target 
domain. Sener et al. [41] proposed to utilize the k-nearest 
neighbors to provide the labels of unlabeled samples. Most 
of the UDA methods assume that class labels are the same 
across domains, which forms a close set problem. However, 
in practice, there are many scenarios that source domain 
and target domain have different labels, which is a open 
set domain adaptation [3, 26, 30, 36, 40, 44]. For instance, 
Panareda et al. [36] proposed a method to learn a mapping 
from the source to the target domain and then jointly solve 
an assignment problem for labels between source and tar-
get domain. These methods are limited on the assumption 
that source domain and target domain share labels. In this 
paper, we study the problem of UDA in person Re-ID, where 
source domain and target domain contain entirely different 
identities (classes). It is more challenging open set problem.

Unsupervised person Re-ID. The supervised methods 
obtain a remarkable performance thanks to the large amount 
of labeled data and the deep networks [24]. However, the 
performance drops dramatically when employed on an 
unseen dataset. Hand-craft features [4, 12, 15, 27, 35] could 
be directly employed in unsupervised cross-domain person 
Re-ID. But the cross domain data is not fully exploited by 
these features because they neglect the inter-domain bias. In 
the unsupervised person Re-ID community, some works [11, 
13, 29, 32, 57, 57, 58, 62, 64] used labeled source data to 
initialize model and attempted to predict pseudo-labels of 
unlabeled target images. For instance, Fan et al. [11] pro-
posed a method that iteratively applied data clustering, 
instance selection and fine-tune techniques to estimate labels 
of images in target domain. Liu et al. [32] predicted reliable 
labels with k-reciprocal nearest neighbors. Yu et al. [64] pro-
posed to learn a soft multilabel for each unlabeled target per-
son image to learn deep soft multi-label reference learning 
(MAR). Wu et al. [58] proposed a progressive framework, 
which consists of CNN model jointed training step and label 
estimation step. Feng et al. [13] proposed an unsupervised 

cross-view metric learning method based on assumption 
that person samples of different views taken from different 
distribution. Lin et al. [29] proposed a bottom-up clustering 
(BUC) approach to update CNN model and the relation-
ship among the individual samples. Although these works 
make efforts on the prediction of pseudo-labels, they do 
not take full advantage of the labeled source data as super-
vised learning during training. To address this problem, 
many methods proposed to refine model with both labeled 
source data and unlabeled target data. These works [25, 28, 
37, 50] aimed at learning domain-invariant features. Peng 
et al. [37] presented a multi-task dictionary to learn a view-
invariant representation and Li et al. [25] proposed to learn 
a share space between the source domain and the target 
domain under a deep learning framework. Lin et al. [28] 
tried to align the mid-level feature across datasets in the 
task of attribute learning, while Wang et al. [50] presented 
a deep Re-ID model to represent an attribute-semantic and 
identity-discriminative feature space. The above methods 
aim at bridge domain gap between source domain and target 
domain, while overlook the intra-domain difference caused 
by different cameras in the source domain and target domain. 
Different from these models, we propose the CLC to dimin-
ish both the inter-domain bias and intra-domain difference, 
and design a dual classification loss to strengthen the super-
vision from transferred knowledge.

Image-Image Domain Adaptation for Re-ID. Image-image 
domain adaptation aims at generating a new dataset that con-
nects the source domain and the target domain on image-
level. A number of methods [10, 54, 72–74] have studied 
image-image translation based on domain gap for person 
Re-ID. Deng et al. [10] proposed a Similarity Preserving 
cycle consistent Generative Adversarial Network (SPGAN) 
to create a new dataset which preserved the underlying ID 
information during image-image translation and proposed 
a “learning via translation” framework for cross-domain 
which has been widely used. Wei et al. [54] presented a Per-
son Transfer Generative Adversarial Network (PTGAN) to 
translate the foreground of image in order to preserve person 
ID better. The objective of these methods is to narrow down 
the domain gap in the cross-dataset person Re-ID model, but 
they ignore the intra-domain variations in the target domain.

To reduce the intra-domain difference, both   [73] 
and   [72] trained several style transfer models between 
different cameras in a dataset, while the former employed 
Label Smoothing Regularization (LSR) loss to train a person 
Re-ID model and the latter utilized a triplet loss to train a 
cross-dataset person Re-ID model. Zhong et al. [74] pro-
posed to investigate the intra-domain variations, i.e. three 
types of the underlying invariance on target domain. These 
methods make an improvement on the re-ID performance. 
However, they only focus on the intra-domain difference in 
the target domain. In contrast, the proposed CLC develops 
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an imitated target domain transferred from the source dataset 
and a pseudo target domain transferred from the target data-
set, based on which both the inter-domain bias and the intra-
domain difference between the source and target domain are 
addressed.

3  Proposed method

Problem definition. For unsupervised domain adapta-
tion in person Re-ID, a source dataset S = (Xs, Ys,Cs) 
with labeled image-camera pairs and another unlabeled 
dataset T = (Xt,Ct) from the target domain are provided. 
The source dataset consists of Ns images denoted by 
Xs = {xs

i
}N

s

i=1
 , and each image xs corresponds to an identity 

label ys ∈ {1, 2,… ,Ps} (i.e. a total of Ps different persons) 
and a camera ID cs ∈ {1, 2,… ,Ms} (i.e. a total of Ms dif-
ferent cameras). The target dataset contains Nt images rep-
resented by Xt = {xt

i
}N

t

i=1
 , and they are captured by a total of 

Mt cameras. Our goal is to leverage on both labeled source 
training images and unlabeled target training images to learn 
a Re-ID model that generalizes well during the test process 
in the target domain.

The pipeline of the proposed CLC is described in Fig. 1, 
which is a two-stage method. In the first stage, we employ 
StarGAN as the backbone of the imitate model because it 
can learn the image-image translation from two-domain with 
multiple cameras through one time training. In the second 
stage, we employ ResNet-50 [17] pre-trained on the Ima-
geNet [9] as the backbone of our Re-ID model due to its 
rich feature representations. We discard the last 1000-dim 

fully connected(FC) layer and add three more FC layers to 
learn the representations. The output of the first FC layer is 
1024-dim named as “FC-1024”, followed by the second FC 
layer with a dimension of Ps (named as “FC-#ID”), where 
Ps is the number of identities in the labeled source training 
set. The third layer is connected with “FC-1024” as well but 
yields a 128-dim feature map (named as “FC-128”).

As shown in Fig. 1, the first stage is to train an imitate 
model between the source domain and the target domain 
across camera views, by which two new domains including 
imitated target domain and pseudo target domain are gener-
ated in order to make up the identity labels and pairwise 
labels. The second stage consists of two branches. The first 
branch “FC-#ID” is to learn discriminative representations 
across domains and bridge the inter-domain bias based on 
classification task constrained by a dual classification loss, 
and the second branch “FC-128” is to mine the latent com-
monality and lessen intra-domain difference across different 
domains in the class-style space restricted by a triplet loss.

3.1  Supervised learning for person Re‑ID

To obtain a good performance in person Re-ID task, the 
prime goal is to learn discriminative representations to dis-
tinguish person identities. With labeled images S = {Xs, Ys} , 
an effective strategy is to adopt the ID-discriminative 
embedding (IDE) borrowed from the classification task [69]. 
The first branch “FC-#ID” of the proposed person Re-ID 
model is treated as a classification task and employs the 
cross-entropy loss LS

Class
 on the source dataset as described 

in Eq. (1). The IDE-based model [69] does achieve a very 

Fig. 1  The pipeline of CLC. It is divided into two stage. The first 
stage is to train an imitate model between the source domain and the 
target domain across camera views, which generates labeled imitated 
target domain to make up the identity labels and unlabeled pseudo 
target domain to compensates the pairwise labels. The second stage is 
to learn discriminative representations across domains and reduce the 

inter-domain bias by formulating a dual classification task on source 
domain and labeled imitated target domain, and to exploit the latent 
commonality and lessen the intra-domain difference across source 
domain, labeled imitated target domain and pairwise label target 
domain (composed of unlabeled pseudo target domain and unlabeled 
target domain) in class-style space
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good performance on the single person Re-ID dataset, but 
it fails in the cross-domain person Re-ID problem [72]. In 
terms of this issue, we propose an imitate model to enhance 
the generalization ability.

where ŷs is a predicted label on image xs ∈ Xs with ground 
truth ys.

3.2  Imitate model: inter‑dataset bias 
and intra‑dataset difference

The inter-dataset bias caused by different domains is a criti-
cal factor that declines the generalization ability of unsu-
pervised person Re-ID models. In other words, without the 
identity label information on the target domain as the learn-
ing guidance, it is very challenging to learn the identity dis-
criminative information as supervised methods did. As we 
have none information on the target dataset, e.g., identities 
of people and styles of images, how to transfer informa-
tion from dataset with labels is the key. On the other hand, 
the intra-dataset difference induced by different cameras in 
the target dataset is also a crucial factor, because in the test 
procedure images of the same person usually come from 
different cameras of the target domain. That is to say, with-
out the pairwise labels on target domain, it is hard to learn 
commonality of cameras. Consequently, if transfer learning 
is employed in the unsupervised person Re-ID problem, how 
to narrow down the inter-dataset bias and reduce the intra-
dataset difference simultaneously is a significant issue, and 
we propose the imitate model to address this issue.

To bridge the inter-domain gap, we propose to gener-
ate imitated target dataset by the learned imitate model, 
which is denoted by ST = S → T  . Specifically, images in 
the source domain are adapted to imitate all camera views 
of the target domain, and thus images of the generated imi-
tated target domain preserve the person identity of the source 
domain and reflect the style of different cameras in the target 
domain. This compensates for the absence of identity labels 
on the target domain. The imitated target domain ST  is fur-
ther elaborated in Sect. 3.3. To diminish the intra-domain 
difference, with learned imitate model, we also propose to 
develop a pseudo target dataset, denoted by TT = T → T  , 
which diversifies camera styles for each image in the target 
domain to make up for the lack of pairwise labels. In par-
ticular, images in the target domain are transferred to all the 
camera styles of the target domain. And we clarify more 
details about TT  in Sect. 3.4.

To train the imitate model, we follow the CamStyle [73] 
approach to generate new images that preserve the person ID 
and reflect the style of other camera views across domains. 

(1)LS
Class

= −

Ns

∑

i=1

ys
i
⋅ log ŷs

i
,

Image generation models are widely employed in person 
Re-ID area. For example, CycleGAN [75] is utilized to do 
image-image domain adaptation [10], and StarGAN [8] is 
employed to construct camera style transfer model [72, 74]. 
AttGAN [19] and RelGAN [56] are utilized in image-to-
image translation. As shown in Fig. 2, we build the imitate 
model based on StarGAN. This is because StarGAN only 
requires one time training for image-image translation on 
two-dataset with multiple cameras, while CycleGAN, Att-
GAN and RelGAN require multiple translation models for 
each pair of camera views between the source and target 
dataset. Compared with previous works that utilize StarGAN 
to learn camera variance for the target domain, our method 
employs StarGAN to learn both domain gaps between source 
and target domain and the camera variance for the target 
domain, which is more advanced. Examples of real images 
and fake images generated by the imitate model (i.e. Star-
GAN) are displayed in Fig. 3, which shows the preservation 
of the identity of source images by the imitate model.

3.3  Semi‑supervised learning for person Re‑ID

Denote the imitated target dataset as ST = {Xst, Yst,Cst} , 
which is constructed by image-image translation for every 
camera pair from the source domain to the target domain 
through the imitate model. The dataset consists of Nst images 
represented by xst with corresponding identity label 
yst ∈ {1, 2,… ,Pst} (i.e. a total of Pst different persons) and 

Fig. 2  Imitate model. The cameras in the source domain are rep-
resented by 1, 2,..., M

s
 and the cameras in the target domain are 

expressed by 1, 2,..., M
t
 . The imitate model G learns the styles of dif-

ferent cameras from the source domain to the target domain by only 
one time training
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camera ID cst ∈ {1, 2,… ,Mst} cameras (i.e. a total of Mst 
cameras), and it preserves person identities with the source 
dataset. Specifically, for a real image xs

i,j
 (i.e. the i-th image 

under the j-th camera) in the source dataset, we generate Mt 
imitated images xst

i,1
, xst

i,2
,… , xst

i,Mt via the learned imitate 
model. These images preserve the person identity ys

i
 but their 

styles are similar to their corresponding target cameras 
ct
1
, ct

2
,… , ct

Mt  ,  respectively.  Therefore,  we have 
Nst = Ns

⋅Mt, Yst = Ys,Pst = Ps,Cst = Ct,Mst = Mt . Note 
that, imitated target dataset makes up for the absence of iden-
tity labels on target domain, which greatly benefits the person 
Re-ID performance.

Generally, an approach based on supervised learning can 
perform better than the corresponding unsupervised learn-
ing method for the same person Re-ID problem as the for-
mer encodes more information than the latter. Therefore, in 
order to boost the cross-domain person Re-ID performance, 
we propose to view the unsupervised person Re-ID as a semi-
supervised person Re-ID task by imitating the target domain. 
As shown in Fig. 4, given labeled source training samples S 
and unlabeled target training samples T  , we semi-supervise 
the Re-ID model on the imitated target domain ST  that is 
transferred from S to T  , and a cross-entropy loss on domain 
ST  is formulated as described in Eq. (2).

where ŷst is a predicted label for the image xst ∈ Xst with the 
ground truth yst.

(2)LST
Class

= −

Nst

∑

i=1

yst
i
⋅ log ŷst

i
,

Further, the dual classification loss LDual
Class

 is designed to 
bridge the inter-domain bias as follows:

3.4  Mining commonality

In Sect. 3.2, with the imitate model trained on the source 
domain and the target domain, we actually create two new 
domains, ST  and TT  , where the former is described in 
Sect. 3.3. The pseudo target domain TT  is built by the 
image-image translation for every camera pair from the tar-
get domain to itself. The pseudo target domain TT = {Xtt,Ctt} 
consists of Ntt images, where each image xtt corresponds to 
a camera ID ctt ∈ {1, 2,… ,Mtt} (i.e. a total of Mtt cameras), 
which preserves the same identity with the target domain. In 
particular, with the learned imitate model, for a real image 
xt
i,j

 (i.e. i-th image under the j-th camera) in the target 
domain, a total of Mt pseudo images xtt

i,1
, xtt

i,2
,… , xtt

i,Mt are 
generated. These images hold the person identity with the 
original images but their styles are similar to the correspond-
ing target camera styles ct

1
, ct

2
,… , ct

Mt , respectively, which 
means Ntt = Nt

⋅Mt,Ctt = Ct,Mtt = Mt . Note that the image 
xtt
i,j

 transferred from itself is also included in the Mt pseudo 
images. The pseudo target domain exactly makes up for the 
lack of pairwise labels on the target domain.

As mentioned above, the source domain and the target 
domain have totally different classes and styles, which leads 

(3)LDual
Class

=
1

2
(LS

Class
+ LST

Class
).

Fig. 3  Examples of image transfer on DukeMTMC-reID and Mar-
ket-1501 by the imitate model. An image captured by a certain cam-
era is transferred to views of all the cameras in both datasets. The 

imitate model preserves the content and identity of the source image 
while reflects the style of the target view



2287International Journal of Machine Learning and Cybernetics (2021) 12:2281–2295 

1 3

to a limited performance when models trained on the source 
domain are directly executed on the target domain. That is 
because models trained on the source domain only learn to 
extract the camera-invariance image feature in the source 
domain camera styles to distinguish source classes. The 
models are unaware of any information on the target classes 
or target domain camera styles. In other words, if models 
could exploit the latent commonalities of the source domain 
and the target domain, a better performance on the target 
domain could be achieved. Naturally, one of the latent com-
monalities is camera-invariance that the distance of persons 
with the same identity in different camera views should be 
smaller than that of different persons. Based on this intui-
tion, we design a second branch, after embedding-1024 in 
the Re-ID network, named “FC-128” as shown in Fig. 1. The 
two branches have different goals: the first branch is a clas-
sification task to learn a discriminative image feature, while 
the second branch is a commonality mining task to acquire 
more common information of source and target domains and 
is restricted by a triplet loss as presented in Eq. (4).

where X represents images in a training batch and xa, xp, xn 
are images from X. xa is an anchor point, xp is a farthest 
positive sample to xa , and xn is a closest negative sample to 
xa in X. m is a margin parameter, which is set to 0.3 in our 
experiments, and D(⋅) is the Euclidean distance between two 
images in the commonality feature space. We conduct two 

(4)LTri(X) =
∑

xa,xp,xn

[m + Dxa,xp
− Dxa,xn

]+,

types of triplet features: No L2-normalized triplet feature 
and L2-normalized triplet feature. Note that during Re-ID 
test process, the feature at pool-5 (2048-dim) layer is utilized 
as the person descriptor.

To illustrate the commonality of all domains, we view 
domains in the class-style space where three clusters are 
formed as shown in Fig. 5. S denotes the source domain 
classes and source domain styles, ST  represents source 
domain classes and target domain styles, and TTցT  suggests 
target domain classes and target domain styles. The last cluster 
TTցT = {Xtt&t,Ctt&t} is consisted of pseudo target domain 
TT  and target domain T  (i.e. Xtt&t = Xtt ∪ Xt,Ctt&t = Ctt ∪ Ct ), 
which has pairwise labels of person samples. Specifically, we 
are not aware of the identity of the person but we do know that 
xtt
1
, xtt

2
,… , xtt

Mt and xt
i,j

 belong to the same class, and other 
images from the target domain can be viewed as a different 
class. Clearly, such three samples share latent commonality:

where, in our experiment, on the LST
Tri

 , a training batch 
consists of nst ×Mt images, i.e. we randomly select nst 
classes and corresponding Mt generated images. And on 
the LTTցT

Tri
 , a training batch consists of nt × (Mt + 1) , i.e. 

randomly selecting nt real images on target domain and the 

(5)LS
Tri

= LTri(X
s),

(6)LST
Tri

= LTri(X
st),

(7)L
TTցT

Tri
= LTri((X

tt&t),

Fig. 4  Illustrations of semi-supervised learning. The proposed model 
is semi-supervised by the labeled source training samples and the 
unlabeled target training samples. Specifically, images and the cor-

responding labels are generated by imitating the unlabeled target 
domain from the labeled source domain, based on which the Re-ID 
model is trained by the classification loss
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corresponding Mt generated images, and we assume that nt 
real images belong to different classes. That is because when 
nt is small enough, it is a low probability event to select the 
same person in a training batch.

Consequently, the total loss Ltotal
Tri

 for the latent com-
monality task to lessen the intra-domain difference can 
be written as follows:

where �1, �2, �3 are hyper-parameters that control the contri-
bution of three clusters on the latent commonality .

Considering both the classification branch and the 
commonality mining branch, the total training objective 
Ltotal of CLC is formulated as follows:

Note that our model is trained in an end-to-end form.

(8)Ltotal
Tri

= �1 ⋅ L
S
Tri

+ �2 ⋅ L
ST
Tri

+ �3 ⋅ L
TTցT

Tri
,

(9)

Ltotal = LDual
Class

+ Ltotal
Tri

=
1

2
⋅ (LS

Class
+ LST

Class
)

+ �1 ⋅ L
S
Tri

+ �2 ⋅ L
ST
Tri

+ �3 ⋅ L
TTցT

Tri
.

4  Experiments

In this section, we conduct studies to examine the effec-
tiveness of each component in the CLC and run cross-
domain person Re-ID experiments against a number of 
state-of-the-arts.

4.1  Datasets

To evaluate the performance of the proposed method, exper-
iments are executed on three widely used person Re-ID 
datasets: Market-1501 [68], DukeMTMC-reID [38, 70], 
and MSMT17 [54]. The details on the number of training 
samples under each camera are presented in Table 1.

Market-1501 [68] collects from 6 camera views, involv-
ing 32,668 labeled images of 1501 identities. The dataset 
consists of two non-over-lapping fixed parts: 12,936 images 
from 751 identities for training and 19,732 gallery images 
from the other 750 identities for testing. In testing, 3368 
query images from 750 identities are used to retrieve the 
corresponding person in the gallery.

DukeMTMC-reID  [38, 70] (Duke) contains 36,411 
labeled images of 1404 identities captured by 8 camera. It 
is split into two non-over-lapping fixed parts: 16,522 images 
from 702 identities for training and 17,661 gallery images 
from the other 702 identities for testing. In testing, 2228 
query images from 702 identities are used to retrieve the 
person in the gallery.

MSMT17  [54] has 15 cameras and 126,441 labeled 
images belonging to 4101 identities. Similar to the division 
of DukeMTMC-reID, it is split into two non-over-lapping 

Fig. 5  Three domains in class-style space: source domain S , imitated 
target domain ST  , and pseudo target and target domain TTցT  . Here, 
the source domain S and the imitated target domain ST  share the 
same identities, and the imitated target domain ST  and the pseudo 
target and target domain TTցT  possess similar styles. The color of 
pie chart represents domain. The direction of line represents classes, 
i.e. identity, and the color of line delineates image styles. Among the 
three domains, these is a latent commonality, the distance of persons 
with the same identity in different camera views should be smaller 
than that of different persons (colour figure online)

Table 1  Number of training samples with respect to each camera in 
Market-1501, DukeMTMC-reID and MSMT17 datasets

Market-1501 DukeMTMC-reID MSMT17

Camera # of images camera # of images Camera # of images

1 2017 1 2809 1 4910
2 1709 2 3009 2 203
3 2707 3 1088 3 454
4 920 4 1395 4 1614
5 2338 5 1685 5 4296
6 3245 6 3700 6 1678

7 1330 7 3453
8 1506 8 795

9 1396
10 655
11 3154
12 1364
13 3635
14 3876
15 1138
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fixed parts: 32,621 images from 1041 identities for training 
and 82,161 gallery images from the other 3060 identities for 
testing. In testing, 11,659 query images from 3060 identities 
are used to retrieve the person in the gallery.

Note that in all experiments we use labeled training set 
of the source domain and unlabeled training set of the target 
domain to learn our model, and examine the performance 
on the test set of the target domain. The conventional rank-1 
accuracy and mAP are adopted as metrics for cross-domain 
Re-ID evaluation [68] on all three datasets.

4.2  Experimental settings

Imitate model. Given source and target training datasets with 
camera labels, we employ StarGAN [8] to train an imitate 
model to transfer images for every camera pair across two 
datasets. Note that no identity annotation is required dur-
ing training. The input images are resized to 256 × 128 in 
our experiments and Adam optimizer [21] is employed with 
betas = (0.5, 0.999) . Following the update rule in [16], the 
generator is trained to optimality once after the discrimina-
tor parameter updates five times. Note that for each image 
in these two datasets, a total number of Ms +Mt style-trans-
ferred images that preserve the identity of the original image 
are generated to be used in cross-domain person Re-ID. Dur-
ing training, we only use training samples of source domain 
and training samples of target domain to generate imitated 
target domain and pseudo target domain.

CLC. The input images are resized to 256 × 128 , and we 
initialize the learning rate to 0.01 for the layer pre-trained 
on ImageNet and to 0.1 for the other layers. The learning 
rate is multiplied by a factor of 0.1 every 40 epochs and we 
use SGD optimizer in a total of 60 epochs. The classifica-
tion task and mining commonality task are trained together. 
For classification task under supervised and semi-supervised 
framework, the mini-batch sizes of the source images, imi-
tated target images are set to 64, 12 ×Mt , and in the mining 
commonality task, the mini-batch sizes of source images, 
imitated target images and pseudo target images are set to 
4 × 8, 4 ×Mt, 4 ×Mt . The involving parameters �1, �2, �3 are 

set to 0.6, 0.6, 0.2. During training, our goal is to utilize the 
labeled source training samples, labeled imitated target sam-
ples, unlabeled pseudo target samples and unlabeled target 
training samples, to minimize the total loss Ltotal described 
on Eq. (9). In the test procedure, 2048-dim (pool-5) features 
are extracted to compute Euclidean distance between the 
query and galley images of target testing samples.

4.3  Ablation studies

To highlight the components of the proposed CLC, we 
conduct experiments to evaluate their contributions to the 
cross-domain person Re-ID performance. Table 2 reports 
the comparison results, where Duke→Market-1501 means 
that Duke is the source domain and Market-1501 is the tar-
get domain, and vise versa. Each domain contains its own 
training set and test set. The performance is always evaluated 
on the test set of the target domain. In the supervised situa-
tion, labels of training set in the target domain are utilized. 
In contrast, in the unsupervised situation, labels of training 
set in the target domain are not allowed to be used. Figure 6 
shows some Re-ID results on the Market-1501 dataset when 
using DukeMTMC-reID as the source set. Compared with 
the supervised model, the person Re-ID performance of our 
method CLC has been significantly improved.

Comparisons between supervised learning and direct 
transfer. The supervised person Re-ID model (baseline) 
which is trained on the target training dataset is evaluated on 
the target test dataset, and it shows an excellent performance 
as reported in Table 2. However, a large performance drop 
can be observed when the model is trained on the source 
training dataset and tested on the target dataset directly. 
For instance, the baseline model trained and tested on Mar-
ket-1501 achieves a rank-1 accuracy of 85.5% and mAP of 
66.0%, but declines to 46.0% and 19.1% when it is directly 
tested on Market-1501. The main reason is the bias of data 
distributions among domains.

The effectiveness of the semi-supervised learning. Given 
labeled source training samples and unlabeled target training 
samples, an imitated target dataset is created by the imitate 

Table 2  Ablation studies by 
using Duke/Market as the 
source dataset and Market/
Duke as the target dataset. S : 
training set with labels in the 
source domain. Tl : training set 
with labels in the target domain. 
T  : training set without labels in 
the target domain. ST  : imitated 
target set with labels. TT  : 
pseudo target set without labels

Method Train set Duke→Market-1501 Market-1501→Duke

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

Supervised Tl 85.5 94.0 96.1 66.0 73.2 84.8 88.2 52.7

LS
Class

S 46.0 63.0 69.7 19.1 29.9 46.2 53.4 15.6

LST
Class

ST 62.9 80.1 85.7 32.0 45.7 62.3 67.2 23.4

LDual

Class
S + ST 64.4 81.8 87.4 31.4 47.4 62.6 68.6 24.7

LDual

Class
+ LS

Tri
S + ST 68.1 84.3 89.1 36.1 52.6 67.2 72.4 29.9

LDual

Class
+ LS

Tri
+ LST

Tri
S + ST 68.2 85.0 89.7 37.8 53.1 67.1 71.8 30.0

LDual

Class
+ LS

Tri
+ LST

Tri
+ L

TTցT

Tri

S + ST + TT + T 72.9 86.2 90.4 40.2 55.5 68.5 73.7 31.6
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model. It preserves the identity with the source dataset and 
at the same time reflects the camera style of the target data-
set. And we formulate a classification loss LST

Class
 to learn 

a discriminate feature on target domain and the dual clas-
sification loss LDual

Class
 extracts a domain-invariant feature as 

an open set domain adaptation to bridge inter-domain bias. 
As reflected in Table 2, the performances of objectives 
LST
Class

 and LDual
Class

 are consistently improved in all settings. 
Compared to the direct transfer method, the proposed semi-
supervised method LST

Class
 obtains an improvement of +16.0% 

in rank-1 accuracy and +12.9% in mAP on Market-1501, and 
+15.8% in rank-1 accuracy and +7.8% in mAP on Duke. 
Furthermore, compared with the semi-supervised meth-
ods, the proposed dual classification loss LDual

Class
 obtains an 

improvement of +1.5% in rank-1 accuracy on Market-1501 
and +1.7% in rank-1 accuracy on Duke. This demonstrates 
the effectiveness of the proposed semi-supervised formula-
tion and the dual classification loss.

The effectiveness of commonality mining. A pseudo target 
dataset TT  that is transferred from the target dataset to the 
target dataset via the imitate model is generated. The dataset 
TTցT  is composed by the pseudo target dataset and the 
target dataset and the triplet loss is constrained over three 
datasets S,ST  and TTցT  to capture the commonality over 
them in the class-style space. Our goal is to reduce both the 
inter-domain bias and the intra-domain difference.

We first compare the re-ID model with or without the 
commonality mining and the results are presented in Table 2, 
where we can see that one triplet loss largely improves the 
performance due to the capture of the commonality on 
three datasets. For example, when tested on Market-1501, 
the objective LDual

Class
+ LS

Tri
 could improve +3.7% in rank-1 

accuracy and +4.7% in mAP, and when tested on Duke, it 
could improve +5.2% in rank-1 accuracy and +5.2% in mAP. 

The consistent improvements indicate the existence of the 
latent commonality.

In addition, we also evaluate the impacts of the combina-
tion of two triplet losses that capture the latent commonality. 
As shown in Table 2, the combination of two triplet losses 
has little influence on the rank-1 and mAP accuracy com-
pared with the solo triplet loss. For instance, compared with 
single triplet loss on source domain, when tested on Mar-
ket-1501, the objective LDual

Class
+ LS

Tri
+ LST

Tri
 achieves 68.2% 

(+0.1%) at rank-1 accuracy and 37.8% (+1.7%) in mAP, and 
when tested on Duke, it obtains 53.1% (+0.5%) in rank-1 
accuracy and 30.0% (+0.1%) in mAP. For little improve-
ments, we argue that to some extent, S and ST  has share 
common information (i.e. identities) so that there is some 
overlap on two domain’s latent commonality.

Finally, we verify the effectiveness of our hypoth-
esis that the latent commonality of three datasets can 
be captured in the form of triplet loss. It is clear that 
“  Ltotal = LDual

Class
+ LS

Tri
+ LST

Tri
+ L

TTցT

Tri
 ”  s i g n i f i c a n t ly 

improved. For instance, compared with two triplet losses, 
when tested on Market-1501, “ Ltotal ” obtains a rank-1 accu-
racy of 72.9% (+4.7%) and mAP of 40.2% (+2.4%) when 
using Duke as the source dataset. Similar improvements can 
be observed when tested on DukeMTMC-reID, it obtains 
a rank-1 accuracy of 55.5% (+2.4%) and mAP of 31.6% 
(+1.6%). The consistent improvements indicate that the 
latent commonality is critical to enhance the generalization 
ability of models.

Normalization and margin of the triplet feature. We 
further analyze the influences of different margins m in 
Eq. (4) and types (whether or not normalized by L2) of 
triplet feature and the results are reported in Table 3 where 
NoNormalize means no L2-normalized triplet feature and 
Normalize means L2-normalized triplet feature in Eq. (8). 

Fig. 6  Sample Re-ID results on Duke→Market-1501. Image in the 
first column are queries. The images in the second to sixth columns 
and seventh to eleventh columns are results retrieved by baseline and 

CLC separately, which are sorted according to their similarity to the 
query (high to low) from left to right. True matches and false matches 
are in green solid and red dashed bounding box (colour figure online)
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In our experiments, in each type for triplet feature, mod-
erate margin m is best for results, and given margin m, 
no L2-normalized is always better for L2-normalized in 
rank-1 accuracy and mAP. We argue that from the per-
spective of dimensionality reduction, triplet feature that is 
reduced from 1024-dim to 128-dim is no longer distributed 
on the sphere, so we should not apply L2-normalized on 
triplet feature. The best results are produced when margin 
m = 0.3 and using no L2-normalized for triplet feature.

Weights of the triplet loss �1, �2, �3. We evaluate three 
important parameters, i.e. the weights of the triplet loss 
�1, �2, �3 in Eq. (9), as shown in Fig. 7. When evaluat-
ing one parameter, we fix the other two. The rank-1 
accuracy and mAP of model with the dual classification 
loss LDual

Class
 is 64.4% and 31.4% in setting of Duke→Mar-

ket-1501. It is clearly shown that, our approach signifi-
cantly improves the model with the dual classification 

loss at all values. And the performance becomes best 
when �1 = 0.6, �2 = 0.6, �3 = 0.2.

The benefit of the triplet feature. As shown in Table 4, 
the method based on Ltotal clearly outperforms the method 
based LS

Class
 , and it is noteworthy that Ltotal introduces 

limited additional training time ( ≈ 140 mins) and GPU 
memory ( ≈ 0.5 MB) compared to LS

Class
 .

Table 3  Evaluation on different 
margins m and types of triplet 
feature

The bold number denotes the best result

Margin Duke→Market-1501 Market-1501→Duke

NoNormalize Normalize NoNormalize Normalize

R-1 mAP R-1 mAP R-1 mAP R-1 mAP

0.1 70.8 38.9 67.3 35.6 53.0 29.9 51.6 28.4
0.3 72.9 40.2 70.6 38.7 55.5 31.6 54.6 30.4
0.5 71.1 40.0 71.5 38.8 54.1 30.4 53.7 30.3
0.7 70.9 39.6 71.6 38.7 53.1 30.1 53.1 30.5
0.9 70.5 39.0 70.1 36.1 53.1 30.3 52.5 29.6

Fig. 7  Sensitivity to parameter �1, �2, �3 in Eq. (9) in set-
ting of Duke→Market-1501. When evaluating one parameter, 
we fix the other two. Specifically, when we evaluate �1 , we fix 

�2 = 0.6, �3 = 0.2 . When we evaluate �2 , we fix �1 = 0.6, �3 = 0.2 . 
when we evaluate �3 , we fix �1 = 0.6, �2 = 0.6

Table 4  computational cost analysis of the triplet feature

Method Duke→Market-1501

R-1 Time (mins) Memory (MB)

LS
Class

46.0 ≈ 60 ≈ 108.25

L
total

72.9 ≈ 200 ≈ 108.75
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4.4  Comparison with the state‑of‑the‑art methods

We compare our method against a number of state-of-the-
art unsupervised learning methods on Market-1501 and 
DukeMTMC-reID in Table 5, which reports the results of 
evaluation when using these two datasets as the source and 
target domains respectively. The compared methods are 
categorized into four groups, two hand-crafted methods 
including LOMO [27] and Bow [68], three unsupervised 
methods that use a labeled source data to initialize the model 
and then use a target dataset to fine-tune model including 
UMDL [37], PUL [11], CAMEL [63], three unsupervised 
domain adaptation approaches without GAN including 
TJ-AIDL  [50], MMFA  [28], CFSM  [6], three unsuper-
vised domain adaptation approaches with GAN including 
PTGAN [54], SPGAN [10] and HHL [72].

The two hand-crafted methods [27, 68] acquire a rela-
tive worse accuracy because both of them are directly 
employed to the target test dataset, and between the dataset 
used in training and the target test dataset there is a large 
inter-domain bias. For example, the rank-1 accuracy of 
LOMO [27] is 27.2% when tested on Market-1501, which 
is much lower than transfer learning based methods.

In order to overcome this problem, some unsupervised 
methods [11, 37, 63] that train the model on the labeled 
source set are proposed and achieve much higher results than 
the hand-crafted methods. For instance, CAMEL [63] gives 
54.5% rank-1 accuracy when trained on DukeMTMC-reID 
and tested on Market-1501, surpassing LOMO [27] by a 
large margin of 27.3%.

Comparing with unsupervised domain adaptation meth-
ods without GAN [6, 28, 50], the proposed method is prefer-
able. Specifically, when tested on Market-1501, our results 

outperforms all the other methods, achieving rank-1 accu-
racy of 72.9% and mAP of 40.2%, which outperforms recent 
published CFSM [6] by a gain of +11.7% in rank-1 accuracy 
and +11.6% in mAP. When tested on DukeMTMC-reID, our 
method achieves a boost of +5.7% in rank-1 accuracy and 
+4.3% in mAP, which is superior to all the other methods 
as well.

Lastly, we further compare the proposed method with 
unsupervised domain adaptation methods using GAN, 
and the results show that our method is also superior. For 
instance, when tested on Market-1501, comparing with the 
recently published HHL [72], we obtain a better perfor-
mance by a margin of +10.7% in rank-1 accuracy and +8.8% 
in mAP. When tested on DukeMTMC-reID, the proposed 
method upgrades the performance by a margin of +8.6% in 
rank-1 accuracy and +4.4% in mAP.

We also evaluate our approach on a larger and more chal-
lenging dataset, i.e. MSMT17 [54]. As shown in Table 6, 
our approach clearly surpasses PTGAN [54] when using 

Table 5  Performance 
comparisons with state-of-the-
art person Re-ID methods using 
Duke/Market as the source 
dataset and Market/Duke as the 
target dataset

The bold number denotes the best result

Method Duke→Market-1501 Market-1501→Duke

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

LOMO [27] 27.2 41.6 49.1 8.0 12.3 21.3 26.6 4.8
UMDL [37] 34.5 52.6 59.6 12.4 18.5 31.4 37.6 7.3
Bow [68] 35.8 52.4 60.3 14.8 17.2 28.8 34.9 8.3
PTGAN [54] 38.6 – 66.1 – 27.4 – 50.7 –
PUL [11] 45.5 60.7 66.7 20.5 30.0 43.4 48.5 16.4
SPGAN [10] 51.5 70.1 76.8 22.8 41.1 56.6 63.0 22.3
CAMEL [63] 54.5 – – 26.3 – – – –
MMFA [28] 56.7 75.0 81.8 27.4 45.3 59.8 66.3 24.7
SPGAN+LMP [10] 57.7 75.8 82.4 26.7 46.4 62.3 68.0 26.2
TJ-AIDL [50] 58.2 74.8 81.1 26.5 44.3 59.6 65.0 23.0
CFSM [6] 61.2 – – 28.3 49.8 – – 27.3
HHL [72] 62.2 78.8 84.0 31.4 46.9 61.0 66.7 27.2
Ours 72.9 86.2 90.4 40.2 55.5 68.5 73.7 31.6

Table 6  Performance comparisons with state-of-the-art person Re-ID 
methods using Duke/Market as the source dataset and MSMT17 as 
the target dataset

The bold number denotes the best result

Method Src. MSMT17

R-1 R-5 R-10 mAP

PTGAN [54] Market-1501 10.2 – 24.4 2.9
Ours Market-1501 19.1 29.8 34.7 6.2
PTGAN [54] Duke 11.8 – 27.4 3.3
Ours Duke 24.0 35.2 40.7 7.8
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Market-1501 and DukeMTMC-reID as source domains. For 
example, our method achieves rank-1 accuracy = 24.0% and 
mAP = 7.8% when using DukeMTMC-reID as source set, 
which get a boost of +12.2% in rank-1 accuracy and +4.5% 
in mAP.

5  Conclusion

In this work, we present the Classification and Latent Com-
monality method (CLC) method to solve the unsupervised 
person Re-ID problem. To make up the absence of identity 
labels, we generate an imitated target domain by an imitate 
model, and to compensate the pairwise labels across cam-
era views, a pseudo target domain is created. We further 
propose a dual classification loss on both the source domain 
and the imitated target domain to learn a discriminative 
representation and bridge the inter-domain bias. To inves-
tigate the camera-invariance and diminish the intra-domain 
difference, triplet loss constrained on the source domain, 
imitated target domain and pairwise label target domain 
(composed of pseudo target domain and target domain) is 
exploited. Experiments are conducted on Market-1501 and 
DukeMTMC-reID, and experimental results demonstrate 
that the proposed architecture outperforms numerous state-
of-the-art approaches.

Acknowledgements  This work was supported the Natural Science 
Foundation of China (61972027) and the Beijing Municipal Natural 
Science Foundation (Grant no. 4212041).

References

 1. Ahmed E, Jones M, Marks TK (2015) An improved deep learning 
architecture for person re-identification. In: Proceedings of the 
IEEE conference on computer vision and pattern recognition, pp 
3908–3916

 2. Bai S, Bai X (2016) Sparse contextual activation for efficient 
visual re-ranking. IEEE Trans Image Process 25(3):1056–1069

 3. Baktashmotlagh M, Faraki M, Drummond T, Salzmann M (2018) 
Learning factorized representations for open-set domain adapta-
tion. arXiv preprint arXiv: 18051 2277

 4. Bazzani L, Cristani M, Murino V (2013) Symmetry-driven accu-
mulation of local features for human characterization and re-iden-
tification. Comput Vis Image Underst 117(2):130–144

 5. Ben-David S, Blitzer J, Crammer K, Kulesza A, Pereira F, 
Vaughan JW (2010) A theory of learning from different domains. 
Mach Learn 79(1–2):151–175

 6. Chang X, Yang Y, Xiang T, Hospedales TM (2018) Disjoint label 
space transfer learning with common factorised space. arXiv pre-
print arXiv: 18120 2605

 7. Chen W, Chen X, Zhang J, Huang K (2017) Beyond triplet loss: 
a deep quadruplet network for person re-identification. In: Pro-
ceedings of the IEEE conference on computer vision and pattern 
recognition, pp 403–412

 8. Choi Y, Choi M, Kim M, Ha JW, Kim S, Choo J (2018) Star-
gan: Unified generative adversarial networks for multi-domain 

image-to-image translation. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp 8789–8797

 9. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Ima-
genet: a large-scale hierarchical image database. In: 2009 IEEE 
conference on computer vision and pattern recognition, IEEE, pp 
248–255

 10. Deng W, Zheng L, Ye Q, Kang G, Yang Y, Jiao J (2018) Image–
image domain adaptation with preserved self-similarity and 
domain-dissimilarity for person re-identification. In: Proceedings 
of the IEEE conference on computer vision and pattern recogni-
tion, pp 994–1003

 11. Fan H, Zheng L, Yan C, Yang Y (2018) Unsupervised person re-
identification: clustering and fine-tuning. ACM Trans Multimed 
Comput (TOMM) 14(4):83

 12. Farenzena M, Bazzani L, Perina A, Murino V, Cristani M (2010) 
Person re-identification by symmetry-driven accumulation of local 
features. In: 2010 IEEE Computer society conference on computer 
vision and pattern recognition, IEEE, pp 2360–2367

 13. Feng Y, Yuan Y, Lu X (2021) Person re-identification via unsu-
pervised cross-view metric learning. In:  IEEE Transactions on 
Cybernetics, vol 51, pp 1849–1859. https:// doi. org/ 10. 1109/ 
TCYB. 2019. 29094 80

 14. Geng S, Yu M, Liu Y, Yu Y, Bai J (2019) Re-ranking pedestrian 
re-identification with multiple metrics. Multimed Tools Appl 
78(9):11631–11653

 15. Gray D, Tao H (2008) Viewpoint invariant pedestrian recognition 
with an ensemble of localized features. In: European conference 
on computer vision, Springer, pp 262–275

 16. Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville AC 
(2017) Improved training of wasserstein gans. In Advances in 
neural information processing systems. Springer, New York, pp 
5767–5777

 17. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for 
image recognition. In: Proceedings of the IEEE conference on 
computer vision and pattern recognition, pp 770–778

 18. He Z, Cheolkon J, Qingtao F, Zhendong Z (2018) Deep feature 
embedding learning for person re-identification based on lifted 
structured loss. Multimedia tools and applications. Springer, New 
York, pp 1–18

 19. He Z, Zuo W, Kan M, Shan S, Chen X (2019) Attgan: Facial 
attribute editing by only changing what you want. IEEE Trans 
Image Process 28(11):5464–5478

 20. Kalayeh MM, Basaran E, Gökmen M, Kamasak ME, Shah M 
(2018) Human semantic parsing for person re-identification. In: 
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp 1062–1071

 21. Kingma DP, Ba J (2014) Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv: 14126 980

 22. Kodirov E, Xiang T, Gong S (2015) Dictionary learning with 
iterative Laplacian regularisation for unsupervised person re-
identification. In: BMVC, vol 3, p 8

 23. Leng Q, Hu R, Liang C, Wang Y, Chen J (2015) Person re-iden-
tification with content and context re-ranking. Multimed Tools 
Appl 74(17):6989–7014

 24. Li W, Zhu X, Gong S (2018a) Harmonious attention network for 
person re-identification. In: Proceedings of the IEEE conference 
on computer vision and pattern recognition, pp 2285–2294

 25. Li YJ, Yang FE, Liu YC, Yeh YY, Du X, Frank Wang YC (2018b) 
Adaptation and re-identification network: an unsupervised deep 
transfer learning approach to person re-identification. In: Proceed-
ings of the IEEE conference on computer vision and pattern rec-
ognition workshops, pp 172–178

 26. Lian Q, Li W, Chen L, Duan L (2019) Known-class aware self-
ensemble for open set domain adaptation. arXiv preprint arXiv: 
19050 1068

http://arxiv.org/abs/180512277
http://arxiv.org/abs/181202605
https://doi.org/10.1109/TCYB.2019.2909480
https://doi.org/10.1109/TCYB.2019.2909480
http://arxiv.org/abs/14126980
http://arxiv.org/abs/190501068
http://arxiv.org/abs/190501068


2294 International Journal of Machine Learning and Cybernetics (2021) 12:2281–2295

1 3

 27. Liao S, Hu Y, Zhu X, Li SZ (2015) Person re-identification by 
local maximal occurrence representation and metric learning. In: 
Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp 2197–2206

 28. Lin S, Li H, Li CT, Kot AC (2018) Multi-task mid-level feature 
alignment network for unsupervised cross-dataset person re-iden-
tification. arXiv preprint arXiv: 18070 1440

 29. Lin Y, Dong X, Zheng L, Yan Y, Yang Y (2019) A bottom-up 
clustering approach to unsupervised person re-identification. Proc 
AAAI Conf Artif Intell 2:1–8

 30. Liu H, Cao Z, Long M, Wang J, Yang Q (2019) Separate to adapt: 
open set domain adaptation via progressive separation. In: Pro-
ceedings of the IEEE conference on computer vision and pattern 
recognition, pp 2927–2936

 31. Liu X, Zhao H, Tian M, Sheng L, Shao J, Yi S, Yan J, Wang 
X (2017a) Hydraplus-net: attentive deep features for pedestrian 
analysis. In: Proceedings of the IEEE international conference on 
computer vision, pp 350–359

 32. Liu Z, Wang D, Lu H (2017b) Stepwise metric promotion for 
unsupervised video person re-identification. In: Proceedings of the 
IEEE international conference on computer vision, pp 2429–2438

 33. Long M, Cao Y, Wang J, Jordan MI (2015) Learning transferable 
features with deep adaptation networks. arXiv preprint arXiv: 
15020 2791

 34. Long M, Zhu H, Wang J, Jordan MI (2017) Deep transfer learn-
ing with joint adaptation networks. In: Proceedings of the 34th 
International conference on machine learning, volume 70, JMLR. 
org, pp 2208–2217

 35. Ma B, Su Y, Jurie F (2014) Covariance descriptor based on bio-
inspired features for person re-identification and face verification. 
Image Vis Comput 32(6–7):379–390

 36. Panareda Busto P, Gall J (2017) Open set domain adaptation. In: 
Proceedings of the IEEE international conference on computer 
vision, pp 754–763

 37. Peng P, Xiang T, Wang Y, Pontil M, Gong S, Huang T, Tian Y 
(2016) Unsupervised cross-dataset transfer learning for person 
re-identification. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp 1306–1315

 38. Ristani E, Solera F, Zou R, Cucchiara R, Tomasi C (2016) Per-
formance measures and a data set for multi-target, multi-camera 
tracking. In: European conference on computer vision, Springer, 
pp 17–35

 39. Rohrbach M, Ebert S, Schiele B (2013) Transfer learning in a 
transductive setting. In Advances in neural information processing 
systems. Springer, New York, pp 46–54

 40. Saito K, Yamamoto S, Ushiku Y, Harada T (2018) Open set 
domain adaptation by backpropagation. In: Proceedings of the 
European conference on computer vision (ECCV), pp 153–168

 41. Sener O, Song HO, Saxena A, Savarese S (2016) Learning trans-
ferrable representations for unsupervised domain adaptation. In 
Advances in neural information processing systems. Springer, 
New York, pp 2110–2118

 42. Shu R, Bui HH, Narui H, Ermon S (2018) A dirt-t approach to 
unsupervised domain adaptation. arXiv preprint arXiv: 18020 8735

 43. Sun Y, Zheng L, Yang Y, Tian Q, Wang S (2018) Beyond part 
models: person retrieval with refined part pooling (and a strong 
convolutional baseline). In: The European conference on com-
puter vision (ECCV)

 44. Tan S, Jiao J, Zheng WS (2019) Weakly supervised open-set 
domain adaptation by dual-domain collaboration. arXiv preprint 
arXiv: 19041 3179

 45. Tzeng E, Hoffman J, Zhang N, Saenko K, Darrell T (2014) Deep 
domain confusion: maximizing for domain invariance. arXiv pre-
print arXiv: 14123 474

 46. Tzeng E, Hoffman J, Saenko K, Darrell T (2017) Adversarial dis-
criminative domain adaptation. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp 7167–7176

 47. Wang F, Zuo W, Lin L, Zhang D, Zhang L (2016a) Joint learning 
of single-image and cross-image representations for person re-
identification. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp 1288–1296

 48. Wang G, Lin L, Ding S, Li Y, Wang Q (2016b) Dari: distance 
metric and representation integration for person verification. In: 
Thirtieth AAAI conference on artificial intelligence

 49. Wang H, Gong S, Xiang T (2014a) Unsupervised learning of gen-
erative topic saliency for person re-identification. In: Proceedings 
of the British machine vision conference (BMVC)

 50. Wang J, Zhu X, Gong S, Li W (2018) Transferable joint attribute-
identity deep learning for unsupervised person re-identification. 
In: Proceedings of the IEEE conference on computer vision and 
pattern recognition, pp 2275–2284

 51. Wang Q, Gao J, Li X (2019a) Weakly supervised adversarial 
domain adaptation for semantic segmentation in urban scenes. 
IEEE Trans Image Process 28(9):4376–4386

 52. Wang Q, Gao J, Lin W, Yuan Y (2019b) Learning from synthetic 
data for crowd counting in the wild. In: The IEEE conference on 
computer vision and pattern recognition (CVPR)

 53. Wang T, Gong S, Zhu X, Wang S (2014b) Person re-identification 
by video ranking. In: European conference on computer vision, 
Springer, pp 688–703

 54. Wei L, Zhang S, Gao W, Tian Q (2018a) Person transfer gan to 
bridge domain gap for person re-identification. In: Proceedings of 
the IEEE conference on computer vision and pattern recognition, 
pp 79–88

 55. Wei L, Zhang S, Yao H, Gao W, Tian Q (2018b) Glad: Global-
local-alignment descriptor for scalable person re-identification. 
IEEE Trans Multimed 21(4):986–999

 56. Wu PW, Lin YJ, Chang CH, Chang EY, Liao SW (2019a) Relgan: 
Multi-domain image-to-image translation via relative attributes. 
In: Proceedings of the IEEE international conference on computer 
vision, pp 5914–5922

 57. Wu Y, Lin Y, Dong X, Yan Y, Ouyang W, Yang Y (2018) Exploit 
the unknown gradually: one-shot video-based person re-identifica-
tion by stepwise learning. In: Proceedings of the IEEE conference 
on computer vision and pattern recognition, pp 5177–5186

 58. Wu Y, Lin Y, Dong X, Yan Y, Bian W, Yang Y (2019b) Progres-
sive learning for person re-identification with one example. IEEE 
Trans Image Process 28(6):2872–2881

 59. Xiao T, Li H, Ouyang W, Wang X (2016) Learning deep feature 
representations with domain guided dropout for person re-iden-
tification. In: Proceedings of the IEEE conference on computer 
vision and pattern recognition, pp 1249–1258

 60. Xu X, Li W, Xu D (2015) Distance metric learning using privi-
leged information for face verification and person re-identifica-
tion. IEEE Trans Neural Netw Learn Syst 26(12):3150–3162

 61. Ye M, Liang C, Yu Y, Wang Z, Leng Q, Xiao C, Chen J, Hu R 
(2016) Person reidentification via ranking aggregation of simi-
larity pulling and dissimilarity pushing. IEEE Trans Multimed 
18(12):2553–2566

 62. Ye M, Ma AJ, Zheng L, Li J, Yuen PC (2017) Dynamic label 
graph matching for unsupervised video re-identification. In: Pro-
ceedings of the IEEE international conference on computer vision, 
pp 5142–5150

 63. Yu HX, Wu A, Zheng WS (2017) Cross-view asymmetric metric 
learning for unsupervised person re-identification. In: Proceed-
ings of the IEEE international conference on computer vision, pp 
994–1002

 64. Yu HX, Zheng WS, Wu A, Guo X, Gong S, Lai JH (2019) Unsu-
pervised person re-identification by soft multilabel learning. In: 

http://arxiv.org/abs/180701440
http://arxiv.org/abs/150202791
http://arxiv.org/abs/150202791
http://arxiv.org/abs/180208735
http://arxiv.org/abs/190413179
http://arxiv.org/abs/14123474


2295International Journal of Machine Learning and Cybernetics (2021) 12:2281–2295 

1 3

Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pp 2148–2157

 65. Yuan Y, Zhang J, Wang Q (2020) Deep Gabor convolution net-
work for person re-identification. Neurocomputing 378:387–398

 66. Zhao R, Ouyang W, Wang X (2014) Learning mid-level filters for 
person re-identification. In: Proceedings of the IEEE conference 
on computer vision and pattern recognition, pp 144–151

 67. Zhao R, Oyang W, Wang X (2017) Person re-identification by sali-
ency learning. IEEE Trans Pattern Anal Mach Intell 39(2):356–
370. https:// doi. org/ 10. 1109/ TPAMI. 2016. 25443 10

 68. Zheng L, Shen L, Tian L, Wang S, Wang J, Tian Q (2015) Scal-
able person re-identification: a benchmark. In: Proceedings of the 
IEEE international conference on computer vision, pp 1116–1124

 69. Zheng L, Yang Y, Hauptmann AG (2016) Person re-identification: 
past, present and future. arXiv preprint arXiv: 16100 2984

 70. Zheng Z, Zheng L, Yang Y (2017) Unlabeled samples generated 
by gan improve the person re-identification baseline in vitro. In: 
Proceedings of the IEEE international conference on computer 
vision, pp 3754–3762

 71. Zhong Z, Zheng L, Cao D, Li S (2017) Re-ranking person re-
identification with k-reciprocal encoding. In: Proceedings of the 
IEEE conference on computer vision and pattern recognition, pp 
1318–1327

 72. Zhong Z, Zheng L, Li S, Yang Y (2018a) Generalizing a person 
retrieval model hetero-and homogeneously. In: Proceedings of the 
European conference on computer vision (ECCV), pp 172–188

 73. Zhong Z, Zheng L, Zheng Z, Li S, Yang Y (2018b) Camera style 
adaptation for person re-identification. In: Proceedings of the 
IEEE conference on computer vision and pattern recognition, pp 
5157–5166

 74. Zhong Z, Zheng L, Luo Z, Li S, Yang Y (2019) Invariance mat-
ters: exemplar memory for domain adaptive person re-identifica-
tion. In: Proceedings of the IEEE conference on computer vision 
and pattern recognition, pp 598–607

 75. Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-
image translation using cycle-consistent adversarial networks. In: 
Proceedings of the IEEE international conference on computer 
vision, pp 2223–2232

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TPAMI.2016.2544310
http://arxiv.org/abs/161002984

	Imitating targets from all sides: an unsupervised transfer learning method for person re-identification
	Abstract
	1 Introduction
	2 Related work
	3 Proposed method
	3.1 Supervised learning for person Re-ID
	3.2 Imitate model: inter-dataset bias and intra-dataset difference
	3.3 Semi-supervised learning for person Re-ID
	3.4 Mining commonality

	4 Experiments
	4.1 Datasets
	4.2 Experimental settings
	4.3 Ablation studies
	4.4 Comparison with the state-of-the-art methods

	5 Conclusion
	Acknowledgements 
	References




