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Abstract
Three-dimensional human motion synthesis is one of the key technologies in the field of computer animation and multimedia 
applications. It is well known that the human body’s own motion is full of strong personality, emotion, and high-dimensional 
characteristics, leading to the automatic synthesis of diverse and lifelike 3D human motion data continues to be a challenging 
task. Facing the challenge, this paper proposes a human motion synthesis framework based on hierarchical learning recurrent 
neural networks (HL-RNN). The framework includes a low-level network and a high-level network, which are used to extract 
the path information of the movement and the spatio-temporal relationship of the human bone structure, respectively. Then, 
after fusion, motions that satisfy the path constraints could be generated. This method can not only synthesize high-quality 
human movements that follow a specified trajectory, but also synthesize smooth transitions between various movements, and 
can also be used to synthesize data of different motion styles. Compared with some latest methods, experiments showed that 
the proposed method can significantly improve the quality and generalization performance of motion synthesis.

Keyword Hierarchical learning · Recurrent neural network · Motion synthesis · Motion transition

1 Introduction

The three-dimensional human motion capture device is a 
high-tech device for accurately measuring the movement 
of the human body in three-dimensional space. The device 
mainly employs the multi-video principle and computer 
graphics technology to obtain three-dimensional dynamic 
data of human joint points, and then uses the physiologi-
cal topological structure of the human body to reconstruct 
the human motion data set. This data set has a wide range 
of application values, and can be widely used in computer 
animation [1], virtual reality [2, 3], security monitoring [4, 
5], human–robot interaction [6, 7] and other fields related to 
human motion analysis. On the other hand, the contradiction 

between the personalization of human motion and the need 
for data commonality limits the reusability of human motion 
data. Due to economic, time and other factors, the acquisi-
tion of new motion data requires high costs, and it is easy to 
further cause a lot of redundancy of the same type of data. 
Therefore, how to effectively reuse existing motion data has 
become one of the key issues urgently to be solved in aca-
demic and engineering fields.

Human motion synthesis technology uses existing dataset 
to synthesize a variety of new motions that meet demand. 
This technology can not only solve the data reuse problem 
mentioned above, but also break through the hardware bar-
riers in many fields related to human motion analysis [8]. At 
the same time, the technology has also emerged in some typ-
ical representative fields of AI, such as natural human–robot 
interaction [9–11] and autonomous driving [12, 13]. As one 
of the basic supporting technologies for machine under-
standing, analysis, and prediction of human behavior, this 
technology has shown a wider and more vital research and 
application value, and has attracted more and more attention 
from researchers.

However, the existing human motion synthesis meth-
ods still have the challenge of generalization performance 
and synthesis accuracy to be improved, and it is difficult to 
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smoothly transition different types of motions. This paper 
proposes a multi-purpose human motion synthesis frame-
work to solve the above problems. In summary, the main 
innovations of this article are:

This paper proposes a multi-purpose general human 
motion synthesis method, which can,

1. Synthesize a human motion sequence that follows the 
user’s input trajectory.

2. Synthesize a smooth transition between two different 
types of motion sequence.

3. Able to motion style conversion.

The rest of this paper is organized as follows. In Sect. 2, 
some related works are briefly introduced by category. 
In Sect. 3, the motion synthesis algorithm based on HL-
RNN is proposed. In Sect. 4, experiments and analysis are 
illustrated. Finally in Sect. 5, the conclusion of this paper 
is summarized. Also, some challenges and future work are 
presented.

2  Related work

Due to high research difficulty, practicality and commer-
cial value, the technology of human motion synthesis has 
become one of the focuses, both in academic and application 
fields. This section outlines some representative methods of 
motion synthesis technology, mainly including three types: 
optimization-based methods [14–17], deep-learning-based 
methods [18–27], and reinforcement-learning-based meth-
ods [28–30]. The details are as follows:

2.1  Optimization‑based methods

Synthesizing new movements that satisfy constraints and 
control conditions is one of the most important goals of 
motion synthesis technology. The quantitative measure is 
the minimum error between the composite value and the ref-
erence value. That is, from a mathematical point of view, the 
motion synthesis problem can be converted into an optimal 
value solving process that takes into account various con-
straints. Although the optimization-based method belongs 
to the traditional idea, in recent years, researchers have still 
proposed some representative new methods.

Alla et al. [14] improved the optimized search algorithm 
of motion maps, and proposed a suboptimal solution method, 
which improved the search efficiency of the algorithm and 
the fidelity of the synthesized motion. Levine et al. [15] used 
a connected prior Gaussian process latent variable model 
to learn the transition between different motion sequences. 
According to the control signal, the model can synthesize 
actions such as walking and hitting. However, due to the 

complex modeling process, this model is not suitable for 
processing large motion data sets. Mahmudi et al. [16] pro-
posed a multimodal search tree method which can control 
the character to generate various tasks, such as opening door 
and taking book from bookshelves. Kang et al. [17] used the 
Gaussian process to estimate the end effector position of 
the character in the motion graph, and plan the next motion 
trajectory. This method can generate the climbing locomo-
tion of the limbs contacting the object, while automatically 
avoid obstacles.

2.2  Deep‑learning‑based methods

Deep learning is based on data-driven neural networks suit-
able for processing massive amounts of complex data. Logi-
cally speaking, deep learning is very suitable for processing 
human motion data which has the characteristics of high 
dimensions, complex nonlinear dynamics, large amount of 
data and so on. In fact, using deep learning techniques to 
construct human motions has become one of the current 
research hotspots.

In recent years, Holden et al. [18] have a few outstand-
ing contributions in motion synthesis and editing, and pro-
posed a motion editing and synthesis framework based on 
manifold learning and convolutional neural networks. The 
network used manifold learning to extract low dimensional 
spatial information of motion data and edited motion in the 
hidden layer. At the same time, the feedforward neural net-
work mapped the advanced control signals into the manifold 
space, generated actions that followed the specified trajec-
tory, and completed the style conversion. Then, Holden et al. 
[19] proposed an impressive work about control motion. 
They employed the contact information between the foot-
steps and the ground as a dynamic weight to synthesize the 
motions that adapted to various terrain conditions in real 
time. Hwang et al. [20] trained a physical model based on 
an inverted pendulum, which can simulate human running, 
walking and other actions in real time under the control of 
signals. The model has the advantage of interaction with 
the environment and can avoid obstacles without any other 
inputs. However, the vividness of the motions synthesized 
still needs to be further improved. Habibie et al. [21] used 
a convolutional neural network (CNN) to extract motion 
control signals. The model combined with a variational 
encoder structure which can generate motions that satisfy 
the control signals. However, the process is a little compli-
cated because that the control signals needs to be manually 
labeled. Li et al. [22] focused on solving the problem of 
long time motion generation and proposed a method named 
auto-conditioned recurrent neural network (acRNN) which 
based on ac-LSTM architecture. Theoretically, the method 
can generate infinitely long motion sequences. Wang et al. 
[23] proposed a training model based on a combination of 
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recurrent neural networks and adversarial learning, which 
can not only synthesize and control the character’s motion 
path in an online or offline manner, but eliminate the noise 
in the original motion as well. Harvey et al. [24] focused 
on the use of neural networks to handle transitional move-
ments, and proposed a recurrent transition network (RTN) 
based on LSTM network. The model did not require any 
gait, phase or contact labels, and could generate transition 
frames only based on the previous motion data and target 
state. Gopalakrishnan et al. [25] proposed a two-layer GRU 
network. The top-level network extracts one-hot encoding 
from the initial samples as the action labels, and the lower-
level network combines the labels and the input motion to 
predict the long-term motion trend of a single action. Battan 
et al. [26] proposed GlocalNet, which captures the global 
dependence between different kinds of poses from sparsely 
sampled poses, and then uses an autoregressive network to 
learn dense motion trajectories, thereby synthesizing two 
different kinds of motions. Zhao et al. [27] proposed a novel 
method of human motion synthesis, which uses the abstract 
modeling capabilities of Bayesian networks and combines 
the generation of adversarial networks to synthesize motion 
data. The Bayesian network makes up for the shortcomings 
of the generative adversarial network that is easy to over-
fit and rely on data-driven. At the same time, because the 
Bayesian network parameterizes the motion data, the net-
work only needs a small amount of training time to synthe-
size realistic sports. Data, and can repair missing joint data.

2.3  Reinforcement‑learning‑based methods

Reinforcement learning considers the interaction between 
the agent and the external environment, and uses the interac-
tive feedback to enhance its own learning ability, which has a 
very broad application prospect. By receiving feedback from 
the environment, it can interact with the actual environment 
in real time and quickly learn tasks to meet the goal. There-
fore, reinforcement learning methods are also widely used in 
human motion synthesis considering intelligent interaction.

Peng et  al. [28] proposed a two level reinforcement 
learning model. This model combines high level naviga-
tion function with low level walking and balance control 
targets. The biped physical character generated by this model 
can pass through the obstacles, independently plan paths, 
and complete target navigation tasks. However, the posture 
of the physical model is quite different from a real person 
and needs to be improved. Then, Peng et al. [29] combined 
data-driven skeletal motion with reinforcement learning 
physics models to drive the model to learn motion clip data, 
which could imitate a broad of example motion clips and 
generate realistic motion. Merel et al. [30] proposed a mul-
tilayer reinforcement learning model based on adversarial 
imitation. The method learned motion capture sequences 

by constructing a discriminator, which interacted with the 
environment as a reward function of the network. Using this 
method, the agent could complete various special tasks, such 
as kicking a ball, avoiding obstacles.

In summary, although the optimization based methods 
can synthesize motions that satisfied the constraints, the 
modeling process is complex and it is difficult to handle 
large dataset. Reinforcement learning can interact with the 
external environment, but they are still limited by complex 
modeling processes and can only generate limited types of 
motion. In contrast, deep learning-based methods can handle 
large data sets with various forms of motion, and can encode 
complex motion data into small, fixed-size networks. The 
above advantages have gradually made it a research focus 
in the field of motion synthesis.

3  Method

This paper proposes a human motion synthesis framework 
method based on hierarchical learning recurrent neural net-
work (HL-RNN). The method defines a synthesis task as a 
sequence of movements of a character given a trajectory and 
a speed of movement. The difference is that we divide the 
synthetic motion path and the synthetic action sequence into 
two parts, the purpose is to receive the user’s input path and 
synthesize a motion sequence that meets the user’s input. 
And, the whole pipeline of the method is shown in Fig. 1, 
in which consists of two parts. The structure in the red dash 
line box is the first part of the framework, which is the low 
level motion information extraction network. The structure 
in the yellow dash line box is the second part of the frame-
work, which is a high level motion synthesis network. More 
details of the two parts are as follows.

3.1  Low level motion information extraction 
network

The function of this part of the network is to extract the 
motion trajectory parameters. The motion trajectory param-
eters are used as extra information to synthesize the char-
acter’s motion and control the motion path. The network 
consists of two layers of GRU [31] units and a fully con-
nected layer.

The network represents the character trajectory informa-
tion as a piecewise linear spline [32]. The network receives 
the curvature and average speed 

{
ci, bi

}
 of each frame as 

input, and extracts parameters related to the motion path on 
the trajectory through the network. The motion parameters 
of the frame i can be expressed as ei =

{
di, fi, qi, gi

}
, ei ∈ R6 . 

During training, the motion parameters of each frame of the 
skeleton data need to be pre-calculated. The process is as 
follows.



2258 International Journal of Machine Learning and Cybernetics (2021) 12:2255–2267

1 3

First, define the function as equation below:

where, X =
(
x1, x2

)
,X ∈ R2.

where, qi represents the offset of the character in frame i, 
qi ∈ R2 . pi is the world coordinate position of the x and y axis 
of the character’s root joint at frame i, pi ∈ R2.

where, ci is the curvature feature for input.

where,si represents the instantaneous velocity of the charac-
ter’s root joint after passing the Gaussian filter.

where, b represents the average speed of a character. L is 
the length of a motion sequence. �i represents the contact 
information of the foot joints, and we defined that �i = 2� 
when the left foot touches the ground, and �i = � when the 
right foot touches the ground.

where, di indicates the direction of the character’s movement 
in each frame, �i is the Euler direction angles of x and y axis.

(1)f (X) = tan−1
(
x2

x1

)

(2)qi =
pi+1 − pi

‖‖pi+1 − pi
‖‖2

(3)ci = f
(
qi
)

(4)si =
1√
2��

exp(−
��pi+1 − pi

��22
2�2

)

(5)b =

∑L

1
��si cos �i, si sin �i��2

L

(6)di =
{
cos �i, sin �i

}

(7)fi =
‖‖si cos �i, si sin �i‖‖2

where, fi represents the local velocity feature of the character, 
which uses the instantaneous velocity of the root joint to 
calculate the motion characteristics of the footstep.

where,�i represents motion parameters of a complete 
sequence.

gi represents the step frequency of a character calculated by 
using the difference method.

where, êi represents the predicted motion parameters, and ei 
represents the real motion parameters. As mentioned above, 
during the training process, the network took the curvature 
and average speed of each step 

{
ci, bi

}
 as inputs to predict 

the motion parameter ei at each moment of the trajectory. 
By comparing êi and ei, the back-propagation algorithm [33] 
was employed to gradually optimize the prediction error of 
the network. Inspired by Ref. [34], the loss function can 
be defined as the Mean Absolute Error (MAE), as shown 
in formula (10). The smaller the value of loss, the closer êi 
to ei, that is to say, the extracted motion parameters will be 
more accurate.

3.2  High level motion synthesis network

The second part of the network is a high level motion syn-
thesis network, as shown by the yellow box in Fig. 1. A 
two layer GRU network was used to synthesize the motion 
sequence. Similar with [35], the network transformed the 
skeleton information represented by the three dimensional 
rotation into quaternion space. The ith frame skeleton 

(8)�i =

{
si cos �i, si sin �i

}
‖‖si cos �i, si sin �i‖‖2

(9)gi = f (�i+1) − f
(
�i
)

(10)loss
(
ei, êi

)
=

1

n

∑n

i=1
||ei − êi

||

Fig. 1  The structure diagram of hierarchical learning recurrent neural network (HL-RNN) for human motion synthesis
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information could be expressed as xi , where xi ∈ R4 , which 
represented the skeleton rotation of the quaternion space. 
The input control parameters could be expressed as Ei , 
where Ei ∈ R6 . Ei is the control parameter after the output 
of the low level network and calculated by the high level 
network. The calculation process is shown as follows:

Among them, E1
i
 represents the first feature in the ith 

frame control parameters, and � is the contact information 
of the foot joint.

The network also extracted the skeleton height and 
average speed at the previous moment as additional trans-
formation parameters expressed as Ti , where Ti ∈ R2 . The 
skeleton rotation, control parameters and transformation 
parameters were input into the GRU network. Then, the 
motion sequence could be synthesized following the input 
path. The process can be expressed as follow:

where, � represents the weight parameters of the network.
In the training stage, the control parameters for each 

frame of motion in the data set were first calculated, and 
merged to the input skeleton information. Then, based on 
the existing motion of k frames, a new motion of n frames 
could be synthesized, where the values of k and n are not 
necessarily equal, depending on the specific task. So, an 
input with motion of length k + n can be expressed as:

The output motion can be expressed as:

In the final, the network back-propagation algorithm 
[33] was used to further reduce the error between the out-
put motion and the ground truth.

In the running stage, the flow of the algorithm for syn-
thesizing motion sequences was the same as the training 
stage. It is worth noting that because the network provides 
additional control parameters at each step, it can over-
come the problem of motion divergence caused by error 
accumulation.

(11)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

E1
i
= si cos �

E2
i
= si sin �

E3
i
= siq

0
i

E4
i
= siq

1
i

E5
i
= cos �i

E6
i
= sin �i.

(12)
xk+1 = P(

{
x1,E1, T1

}
,
{
x2,E2, T2

}
,… ,

{
xk,Ek, Tk

}
, �)

(13)
xinput = ({x1,E1, T1}, {x2,E2, T2},… , {xk+n,Ek+n, Tk+n}).

(14)youtput = (xk+1, xk+2,… , xk+n).

4  Experiments and analysis

In order to verify the performance of the proposed method, 
four sets of experiments were designed to evaluate the qual-
ity and diversity of synthetic motion. The first set of experi-
ments aimed to evaluate the accuracy of extracting motion 
information from the low level network using four motions: 
kick, punch, wheel and jog. In the second set of experiments, 
the joint position errors and animation effects of the four 
motion sequences were evaluated quantitatively and quali-
tatively. The third set of experiments demonstrated that the 
method could generate realistic and smooth transition ani-
mations by synthesizing diversified transition motion under 
the given path. The fourth set of experiments focused on 
verifying the potential application direction, and the pro-
posed method was mainly used for transfer the motion styles.

4.1  Experimental setup

Our experiments used the dataset from Ref. [18], which 
contains multiple online large-scale motion databases, 
including various sequences of running, walking, kicking, 
rolling, etc. Similar to the pre-processing method in Ref. 
[34], we first normalized the data, that is, relocated the joint 
points to a skeleton structure with a uniform scale and joint 
length. Then, the dataset was down-sampled to 30 Hz, and 
the amount of data was doubled by mirroring. Finally, the 
fixed joint points were removed, ensuring that each data has 
26 joint points. The Pytorch 1.0 framework was used as the 
software support platform. One NVIDIA Quadro K6000 
was used as the core computing hardware which has 12 GB 
memories and 384bit memory bandwidth.

4.2  Network parameter setting

The motion information extraction network uses a two-layer 
GRU network with 128 hidden units. The learning rate of 
the network is 0.001, the decay learning rate of each genera-
tion is set to 0.999, the batch size is 40, and the number of 
network iterations is 8000 generations.

Inspired by Ref. [36], and after experiments, we found 
that compared to the LSTM network recently most used in 
human motion data processing, the GRU calculation cost 
is lower, but as the number of network layers increases, the 
GRU calculation overhead will increase significantly, and 
does not bring better synthesis results with the increase of 
network depth. The experimental results are shown in Fig. 2. 
We compared the effects of different layers of motion syn-
thesis networks on the results. The experiment uses different 
number of layers to train the network, and compares the 
total error between the four motion generated kick, punch, 
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wheel, and jog with the ground true and the GPU load dur-
ing training. Experimental results show that stacking multi-
layer GRU networks cannot improve the performance of the 
network, and multi-layer networks lead to excessive training 
parameters, increasing GPU load and training time. There-
fore, the synthetic network in this paper uses a two-layer 
GRU network with 1024 hidden units. The learning rate of 
the network is 0.001, the batch size is 40, and the number of 

network iterations is also 8000 generations. Both networks 
use Adam [37] optimizer to optimize the training process.

4.3  Experimental results

1. Motion information extraction
  Based on our method and the method in Ref. [34], the 

experiments were first performed to analyze and com-
pare the accuracy of the extracted motion information. 
The f-parameter of motion features ei =

{
di, fi, qi, gi

}
 

was selected for comparison experiments, which could 
well describe the dynamic performance of the generated 
motion. It could comprehensively reflect the order in 
which the motioned feet touch the ground and the speed 
characteristics of each frame of the character. And, four 
representative motions were used, including kick, punch, 
roll and jog. The results are illustrated in Fig. 3.

  The figure above shows the accuracy curve of footstep 
speed characteristics obtained by using low-level infor-
mation extraction network. The red curve is the result 
by using our method, the black one is based on Ref. 
[34], and the green one represents the ground truth. It 
is easy to see that the red curve is closer to the curve of 
the ground truth. That’s means our method has lower 
error, better effect, and can better reflect the dynamic 
characteristics of character movement. More details of 
error values are shown in Table 1. We compared the 

Fig. 2  Comparison of training result of different layer networks from 
1 layers to 3 layer

Fig. 3  Comparison of accuracy 
of low level network extraction 
of motion information, a kick, b 
punch, c wheel, d jog



2261International Journal of Machine Learning and Cybernetics (2021) 12:2255–2267 

1 3

errors of the motion features extracted within 60 frames 
using the above two methods. The bold values in black 
represent smaller error values. As can be seen from the 
Table 1, most of the motion features extracted by our 
method have smaller errors.

2. Motion synthesis
  Next, the joint position errors of the four synthesized 

motions (kick, punch, roll and jog) were compared 

experimentally. The generated motion sequences were 
compared with the real joint positions in the database, 
and the position error of each frame could be calculated, 
as shown in Fig. 4.

  Experiments have found that for movements with 
relatively small changes in character displacement, such 
as kick and box, our method could generate a motion 
sequence with a high degree of fit to the original motion 

Fig. 4  Comparison of errors in synthetic motion of high level network, a kick, b punch, c wheel, d jog

Fig. 5  Animation effect of synthetic kick motion
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Fig. 6  Animation effect of synthetic punch motion

Fig. 7  Animation effect of synthetic wheel motion

Fig. 8  Animation effect of synthetic jog motion
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data. However, the same types of motions synthesized 
by the method in Ref. [34] have irregular rotation and 
sliding steps, resulting in insufficient smoothness and 
fluency of the whole motion. The comparisons of visu-
alized animation sequences are shown in Figs. 5 and 6. 
The compared animations have a same timeline, and the 
first row of green is the real motion sequence, the sec-
ond row of red is the motion sequence generated based 

on our method, the third row of black is the motion 
sequence generated based on the method in Ref. [34]

  As shown in Fig. 7, for the types of motion with rela-
tively large amplitude and complexity, such as wheel, 
our method could also generate motion data with a high 
degree of fit to the original data. However, the method 
based on Ref. [34] did not perform well, and the gener-
ated motion appeared ambiguous. The input raw data is 
a wheel, but the generated motion is a jog.

Fig. 9  Effect of synthetic kick to run motion transition

Fig. 10  Effect of synthetic wheel to run motion transition

Fig. 11  Architecture of motion style transformation. The green 
dashed box in the upper part is the training process of the network, 
the red dashed box in the lower part is used to extract the trajectory 

input by the user, the yellow box is the test part, and the blue arrow 
indicates the trained network parameters
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  In addition, for motions with smaller amplitude and 
complexity, such as the jog, as shown in Fig. 8, both our 
method and Ref. [34] could generate smooth motions. 
However, our method has a higher degree of fit with real 
values, lower joint errors, and is closer to the character-
istics of real motions.

3. Transitional motion generation
  Based on the proposed method, we also conducted a 

combination experiment based on two different types of 
motions, the core of which was to generate data in the 
transition phase.

  Monotonic regular movements such as walking 
and running were defined as simple forms of move-
ment, while violent and changeable movements, such 
as wheeling, jumping, kicking, etc., were belong to 
complex forms. Combining simple and complex forms 
of motion, whether the synthetic transition motion is 
natural, real and smooth is one of the research difficul-
ties. We performed two sets of experiments. The first 
set was a combination of kicking and running, as shown 
in Fig. 9. The second is a combination of wheeling and 
running, as shown in Fig. 10. Experiments show that 
our method performs well, and the resulting transitional 
motion is natural and smooth.

  In the transition animation generated from the kicking 
motion to the running motion, the model could auto-
matically generate a smooth transition frame without 
any manual editing process, as shown in the black box of 
Fig. 9. In the transition animation from the rolling to the 
running movement, the generated transition frames show 
the stumbling state of the human body due to standing 

instability after somersaults. This action vividly reflects 
the process of the body’s spontaneous adjustment of the 
balance in motion from the details, as shown in the black 
box of Fig. 10. It is worth mentioning that the above 
synthetic actions are not included in the existing data 
set, and are entirely new actions generated based on our 
proposed method.

4. Motion styles
  We also tried to use the presented method for motion 

style conversion. We defined the task to generate an 
emotional motion from a neutral motion under a given 
motion trajectory.

  The whole detailed architecture of the method is 
shown in Fig. 10. The training phase is shown in the 
green box part of Fig. 11. We use emotional walking 
motion data as the training set to train high-level motion 
synthesis networks to synthesize motion sequences with 
emotions. The lower part in Fig. 11 is the testing phase. 
In the testing phase, the user can input the specified 
motion trajectory, and the motion trajectory is extracted 
by the low-level network and then input to the high-
level network. Then, the normal emotional motion data 
is combined with the trajectory parameters extracted by 
the low-level network into the trained high-level net-
work, and the network can synthesize a motion sequence 
with emotion that moves according to a predetermined 
trajectory.

  The low-level network was still used for extracting 
the parameters of motion trajectory. The high-level net-
work was used for training the weight parameters which 
could reflect the skeleton spatio-temporal relationship 
information of style movements. In the running stage, 
the high-level network takes the neutral prefix length 
as input, and combined the trajectory parameters from 
the low-level network to synthesize motions with dif-
ferent emotional styles. The control parameters have a 
restraining effect on the high-level network when gener-
ating motion, so our method could avoid the accumula-
tion of errors during synthesis, and could suppress the 
undesirable tendency of motion freezing or divergence. 
In addition, due to the full use of the RNN’s memory, 
compared with the CNN based method [38], our method 
does not need a style loss function to constrain the emo-
tional style features of the generated motion, thereby 
could reduce the complexity of the network.

  Based on the motion data with neutral emotion, the 
network can generate emotional data such as angry 
walking style, depressed walking style, old walking style 
and proud walking style, as shown in Fig. 12.

5. Ablative study
  In our network, the input control parameters of the 

high-level network are one of the important factors that 
determine the network synthesis performance. There-

Fig. 12  Some synthetic motions with different emotional styles
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fore, we verify the rationality of the network parameter 
settings by ablating different control parameters. The 
experimental results are as follows:

  In the ablation test, any one of the control parameters 
in the high-level motion synthesis network is sequen-
tially eliminated, and then the average error of the four 
motion sequences of kick, punch, wheel, jog is calcu-
lated to verify the influence of the control parameters 
on the network performance. In Fig. 13, it can be seen 
that eliminating any control parameter will result in a 
larger error in the generated motion. In fact, the lack 
of any components will cause ambiguity in the motion 
generated by the network. For example, the punching 
motion sequence generated in Fig. 14 will be mixed with 
the kicking motion. This is because the network gener-
ated motion requires control parameters to constrain the 

motion of the foot. The type of motion generated, the 
lack of any components will cause the network to mis-
judge and fail to correctly generate the required motion 
form.

5  Conclusion and future work

This paper introduces an algorithm for motion synthesis and 
motion style conversion. The framework adopts the idea of 
hierarchical learning and builds a model including low-level 
and high-level networks based on recurrent neural networks. 
In which, a low-level network is used to extract motion tra-
jectory parameters, and a high-level network is used to learn 
the spatio-temporal relationship of the skeleton data, and 
can complete motion synthesis. Experiments show that the 
presented method can not only be used to synthesize motions 
that follow an input trajectory, but also can be used to gener-
ate transitions between two different types of motions. It can 
also be used to synthesize motion sequences with different 
emotional styles. Compared with the existing method, the 
effectiveness of the proposed method was proved.

Our method also has some shortcomings. For exam-
ple, a slipping phenomenon may occur when synthesiz-
ing a rolling motion, which may be caused by the lack of 
joint constraints. In the future, in addition to continuing to 
improve the above-mentioned shortcomings, our work will 

Fig. 13  The position error comparison of the motion generated after 
ablation of different control parameters. “w/o” means to ablate the 
corresponding components, “all components” means complete con-
trol parameters

Fig. 14  In the absence of the control parameter E1, the generated 
punching motion will be distorted into a kicking motion, resulting in 
ambiguity

Table 1  Comparison of 
accuracy errors

Frames

Methods 10 20 30 40 50 60
Kick
 Ours 0.008 0.048 0.003 0.025 0.040 0
 Pavllo’s 0.088 0.005 0.048 0.008 0.078 0.038

Punch
 Ours 0.012 0.017 0.007 0.006 0.018 0.011
 Pavllo’s 0.206 0.121 0.092 0.078 0.083 0.095

Wheel
 Ours 0.252 0.348 0.373 0.393 0.358 0.326
 Pavllo’s 0.647 0.557 0.522 0.522 0.478 0.377

Jog
 Ours 0.258 0.208 0.150 0.114 0.107 0.089
 Pavllo’s 0.798 0.761 0.685 0.644 0.640 0.654
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focus on the interaction between motion and the environ-
ment, that is, the constraints imposed by the environment 
(such as terrain and obstacles) will be fully considered to 
synthesize the corresponding motion.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13042- 021- 01304-w.
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