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Abstract
Time series prediction (TSP) is a process of using data collected at different times in the past for statistical analysis, so as 
to speculate on the trend of things, where the non-stationary and non-linear characteristics of data portray a hard setting for 
predictive tasks. Obviously, there will be no single model that could perform the best for all TSP issues. Dynamic Ensemble 
Selection (DES) technique achieves more accurate and robust performance than a single model, due to that it aims to select 
an ensemble of the most competent models in a dynamic fashion according to each test sample. A variety of DES approaches 
have been proposed to address pattern classification problems, but little work has been conducted on the research of TSP 
adopting the DES paradigm. Commonly, the DES approaches work by the definition of a single criterion to evaluate the 
capability of base classifiers. However, only one criterion is often inadequate for the comprehensive evaluation of classi-
fier power. Thus, in this paper, a multiple criteria Dynamic Ensemble Pruning (DEP) technique exploiting meta-learning 
ad-hoc for TSP, termed DEP-TSPmeta, based on the inspiration from a state-of-the-art META-DES framework specifically 
presented for classification tasks, is developed. Within DEP-TSPmeta, Extreme Learning Machines (ELMs) and Hierarchi-
cal Extreme Learning Machines (H-ELMs) are integrated as the base models, and four distinct meta-attributes collections, 
i.e., hard prediction, local accuracy, global accuracy, and prediction confidence, are presented. Each set of meta-attributes 
corresponds to a specific assessment criterion, i.e., the prediction accuracy in local area of the eigenspace, the overall local 
accuracy, the prediction accuracy in global area of the decision space, and the confidence level of predictor. A desirable 
meta-predictor, obtained by training on the strength of these meta-attributes, is the key to deciding whether a base predictor 
is capable of predicting the unseen instance well or not. Those incapable base predictors determined by the meta-predictor 
will be pruned and the capable predictors will be expanded into the final dynamic ensemble system. The size of the sets of 
meta-attributes is specified dynamically by genetic algorithm for different time series benchmark datasets. Empirical results 
on eight benchmark datasets with different time granularities have verified that, the proposed DEP-TSPmeta algorithm pos-
sesses dramatically improved prediction performance at different granularities, when compared against three other DES 
approaches and four static selective ensemble learning methods.

Keywords Dynamic Ensemble Pruning (DEP) · Time series prediction (TSP) · Meta-learning · Meta-predictor · DEP 
exploiting meta-learning for TSP (DEP-TSPmeta)

1 Introduction

A time series is an assemblage of data points acquired by 
sampling at equal intervals. Time series prediction (TSP) is 
a process to predict data future values exploiting knowledge 

learned from past and current values of data associated with 
a particular phenomenon [1]. In the digital information age, 
TSP algorithms have been extensively adopted in various 
data mining fields, including economics [2, 3], physical sci-
ences [4, 5], and engineering [6].

TSP methods can be divided into traditional linear mod-
els, e.g., Auto Regressive (AR) and Auto Regressive Moving 
Average (ARMA), and nonlinear models, e.g., neural net-
works (NNs). Some restrictive assumptions are required by 
these linear models, such as linearity, smoothness and nor-
mality, which are rarely satisfied, due to the characteristics 
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of nonlinearity and chaos in time series. Though NNs are 
more effective than traditional linear models, NNs still have 
their own demerits, including time-consuming learning pro-
cess, slow convergence, and being prone to get into local 
minima [7].

Huang et  al. [8] proposed a learning scheme called 
extreme learning machine (ELM), which is a special case 
of Single-hidden Layer Feedforward Neural Networks 
(SLFNs), to improve the above mentioned disadvantages 
of NNs. For an ELM model, it is not necessary to set stop-
ping criteria, learning rate, and learning epochs. ELM can 
offer good generalization performance with fast learning 
speed. Many research works [9–11] have proved that ELM 
is suitable for addressing various types of classification and 
regression issues. However, when handling natural scenes 
or practical applications, due to its shallow architecture, fea-
ture representation learning using ELM may not be effec-
tive. Huang et al. [12] further extended ELM and proposed 
a Hierarchical ELM (H-ELM) framework for Multi-Layer 
Perceptrons (MLPs). H-ELM reserves ELM’s advantage of 
training efficiency, while possessing superior generalization 
performance to the classical ELM, simultaneously.

What’s more, NNs might be somewhat unstable with 
randomicity. Ensemble learning paradigm is thus proposed 
to utilize the unique capability of each component model 
for better capturing different characteristics in data, which 
brings remarkable advancements in NNs. Numerous theo-
retical analysis and experimental results [13–15] have shown 
that the combination of different models can significantly 
improve the predictive performance of a single model, par-
ticularly in the cases that the base learners in an ensemble 
are adequately complementary and diverse [16, 17]. Diver-
sified ensembles could be generated by utilizing diversified 
initial weight matrices, variable numbers of hidden nodes, 
or various activation functions [18]. In this work, both shal-
low learning models, i.e., ELMs, and deep learning models, 
i.e., H-ELMs, will be integrated together to form the origi-
nal ensemble. The original ensembles built in this way are 
compounded, and possess relatively high complementarity 
and diversity intuitively.

However, an initial ensemble of base learners is certainly 
not always optimal for its prediction or classification tasks, 
while removing the incompetent base learners from an initial 
ensemble can improve its predictive or classification per-
formance in many cases. In view of that each base learner 
has its own unique capabilities, it is unreasonable to always 
underestimate or deny one specific learner, which may have 
poor performance on some samples, but good performance 
on the other ones.

To address the above issues, the Dynamic Ensemble 
Selection (DES) paradigm is proposed for pattern classifica-
tion tasks. With DES, only the classifiers obtaining a certain 
competence level for the given test sample, according to a 

selection criterion or several selection criteria, are dynami-
cally selected into the ensemble currently constructed for the 
given test sample. Recently, many remarkable achievements 
and breakthroughs have been made. In [19], a novel proba-
bilistic model for dynamic ensemble selection is proposed. 
In this model, an optimal subset is obtained by simultane-
ously measuring diversity and classifier competence. In [20], 
a creative approach, called dynamic multistage organization 
(DMO), is proposed by Cavalin et al. It is based on mul-
tistage organizations and respectively designs the optimal 
multistage structure for each unseen sample. In [21], to alle-
viate the problem of selecting classifiers which overfit the 
local region in typical DES, new modifications are proposed 
to improve the generalization performance of DES methods.

Motivated by its preferable performance on pattern recog-
nition, we carry out research on applying the DES paradigm 
to time series prediction. However, the measure criteria of 
classifier competence in the above methods are not equally 
applicable to predictor. With TSP, the key point of the DES 
is how to evaluate the capability of a base predictor. Accord-
ing to our previous work [22], three novel DES algorithms 
have been proposed for TSP, including the DES algorithm 
based on Predictor Accuracy over the Local Region (DES-
PALR), the DES algorithm based on the Consensus of Pre-
dictors (DES-CP), and the Dynamic validation set determi-
nation algorithm based on the similarity between the Output 
profile of the test sample and the Output profile of each train-
ing sample (DVS-OpOp).

All of the above algorithms define only one criterion, 
such as the local precision in the feature space or the global 
precision in the decision space, to measure the capability of 
a base predictor or ensembles of predictors (EoPs) to imple-
ment DES tasks. However, it is not sufficient to compre-
hensively evaluate the competence level of a base predictor 
merely by utilizing one criterion. Using a single standard 
to estimate the competence level of a base predictor is one-
sided, and thus error prone. Therefore, multiple criteria to 
measure the competence of a base predictor should be con-
sidered in order to achieve a more robust DES technique.

In [23], an updated taxonomy of dynamic selection sys-
tems for classification problem is presented. A comparative 
study shows that the algorithms designed based on meta-
learning can generally achieve favorable classification per-
formance. One DES framework using meta-learning, called 
META-DES, is proposed in [24], where a meta-classifier is 
trained with multiple criteria to predict whether a base clas-
sifier is sufficient to classify a test sample. So even though 
one criterion does not work well, the framework can still 
get desirable capability, as the other criteria are also taken 
into consideration. Then, the authors of [25] assessed the 
influence of the meta-classifier and an extension algorithm 
of META-DES. The experimental results demonstrate that 
the performance of the meta-classifier and the classification 
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accuracy of the DES system are strongly correlated. Moreo-
ver, in [26], more meta-features are considered, and a meta-
feature selection scheme using a Binary Particle Swarm 
Optimization (BPSO) is applied, in order to improve the 
performance of the meta-classifier. It is believed that, the 
whole capability of the framework will be improved, when 
the identification ability of the meta-classifier is improved 
by choosing more suitable sets of meta-features or classifier 
models to train the meta-classifier.

Enlightened by the researches on the META-DES frame-
work [24–26] for classification tasks introduced above, we 
construct our own multiple criteria Dynamic Ensemble 
Pruning technique based on the meta-learning paradigm, 
specifically for solving TSP problems, called the DEP-TSP-
meta technique. The key point of the DEP-TSPmeta technique 
is to construct a meta-predictor, which is responsible for 
determining whether a base predictor has the ability to pre-
dict an unseen instance well or not. The unqualified base 
predictors will be pruned, while the eligible base predictors 
will be extended to the final dynamic ensemble system.

The motivations behind the development of DEP-TSPmeta, 
and simultaneously, the contributions of this work for TSP 
tasks, as well as the essential differences between META-
DES [24–26] and our proposed DEP-TSPmeta technique, are 
summarized as follows.

Firstly, as is known to all that, the more diverse and 
informative become the generated base models, the more 
successful the ensemble system will be. Hence, in the 
ensemble initialization stage of DEP-TSPmeta, ELMs and 
H-ELMs, as base predictors, which are complementary and 
diverse, constitute the initial collection of predictors for 
TSP problems. Both shallow models, i.e., ELMs, and deep 
models, i.e., H-ELMs, are combined together to establish 
the initial ensemble. In this sense, the initial ensemble is 
diversified, which might contribute to the predictive per-
formance advancement acquired by the final dynamically 
pruned ensemble.

Secondly, in the meta-predictor construction stage of 
DEP-TSPmeta, we design four groups of meta-attributes, 
instead of only consider a single criterion, that have proven 
effective respectively in our previous research results [22]. 
These newly formed four groups of meta-attributes are 
entirely different from the meta-features in META-DES 
[24–26]. Besides, ELM is employed as the meta-predictor 
model, given its good generalization performance, the abil-
ity of fast learning and effective avoidance of local minima 
issues.

Thirdly, the ensemble pruning process within DEP-TSP-
meta is implemented dynamically by a meta-predictor trained 
on basis of the meta-attributes, instead of probabilistic-based 
approaches or data handling-based approaches.

Fourthly, the parameters utilized in the meta-predictor 
learning procedure of DEP-TSPmeta are adapted dynamically 

by genetic algorithm, which markedly boosts its predictive 
performance.

Fifthly, in the prediction stage of DEP-TSPmeta, based 
on the data characteristic of time series, the average of the 
predicted values produced by the selected predictors, rather 
than the results obtained by using the majority voting rule 
for classification problem in META-DES, is taken as the 
final algorithm output.

Last but not least, the DEP-TSPmeta technique proposed 
in the work is developed specifically for TSP application 
scenarios, significantly differing from the META-DES 
framework presented in [24–26], which is focused on the 
problem of pattern classification. The effectiveness of DEP-
TSPmeta in handling with TSP problems has been proven by 
the empirical results conducted based upon eight TSP bench-
mark datasets with distinct time granularities, such as year, 
month, quarter, and so on. In comparison with three DES 
approaches and four Static Ensemble Selection (SES) ones, 
DEP-TSPmeta achieves superior forecasting performance at 
various levels of granularities.

The remaining of this paper is arranged as follows. Sec-
tion 2 presents some important principles of the ELM algo-
rithm and H-ELM algorithm. Section 3 discusses the notion 
of predictor competence for DES. Section 4 describes the 
details of the proposed DEP-TSPmeta technique. The experi-
mental investigation is carried out in Sect. 5. Finally, the 
conclusion and prospect of future work are presented in 
Sect. 6.

2  Preview of ELM and H‑ELM

This section will briefly review the ELM and H-ELM algo-
rithms, which will be utilized in the proposed DEP-TSPmeta 
technique as the base predictors.

2.1  Extreme Learning Machine (ELM)

This section describes the background knowledge of 
ELM (Fig.  1). The ELM model proposed by Huang 
et  al. [8] can be built by using randomly or artifi-
cially given hidden node parameters that do not need 
to be further adjusted. The training dataset is denoted as 
{(xi, ti)|xi ∈ Rd, ti ∈ Rm, i = 1,… , N} , where xi is the fea-
ture vector of the i-th training sample, ti denotes the target 
value of xi , and L is the number of hidden neurons. The 
principle of ELM is devoted to reaching the smallest both 
training error and the norm of output weights, simultane-
ously, namely,

(1)Minimize ∶ ‖�‖�1
�
+ �‖H� − T‖�2

�
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where 𝜎1 > 0 , 𝜎2 > 0 , u, v = 0, (1∕2),… ,+∞ , H represents 
the output matrix of the hidden layer, as shown below:

and the target matrix T of training data is defined as:

The ELM training process has the following steps.
(1) Set the hidden neuron parameters at random.
(2) Compute the output matrix H of the hidden layer.
(3) Attain the weight vector of output layer as below:

where H† represents the Moore–Penrose (MP) generalized 
inverse of matrix H.

The MP generalized inverse of matrix H can be com-
puted by utilizing the vertical project approach, namely, 
H

†

= (HTH)−1HT . In accordance with the ridge regression 
theory [27, 28], a positive value (1∕�) can be added to the 
computation of the weight vector � . The solution is equiva-
lent to the ELM optimal solution with �1 = �2 = � = � = 2 , 
which possesses favorable generalization capability and high 
stabilization. There is:

and then the output of ELM will be computed as:

(2)H =

⎡
⎢⎢⎢⎢⎢⎣

h(x1)

⋅

⋅

⋅

h(xN)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

h1(x1) … hL(x1)

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

h1(xN)… hL(xN)

⎤
⎥⎥⎥⎥⎥⎦

sin−1 �

(3)T =

⎡
⎢⎢⎢⎢⎢⎣

tT
1

.

.

.

tT
N

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

t11 … t1m
. . .

. . .

. . .

tN1 … tNm

⎤⎥⎥⎥⎥⎥⎦

(4)� = H†T

(5)� = HT
(
1

�
+HHT

)−1

T

or there is:

and then the corresponding output of ELM will be calcu-
lated as:

2.2  Hierarchical Extreme Learning Machine (H‑ELM)

It could be observed from Fig. 2 that, differing from tradi-
tional DL frameworks in [29] and [30], the H-ELM system 
[12] can be partitioned into two independent subframeworks. 
In the first subframework, a new ELM-based autoencoder is 
used to obtain multilayer sparse features of the input sam-
ple. In the latter subframework, the original ELM is imple-
mented to make final decisions.

The principles and merits of H-ELM are described 
detailedly below. In order to mine latent knowledge within 
the training instances, the raw data entered is converted into 
an ELM random eigenspace. High-level sparse features will 
be acquired through an N-layers unsupervised learning. The 
output of each hidden layer can be expressed in mathemati-
cal formula as follows:

where Hi and Hi−1 are the output matrices of the i-th layer 
and (i-1)-th layer, respectively, g( ⋅ ) represents the hidden 
layers activation function, and � denotes the output weight 
vector. It is noteworthy that, when the features of the former 
hidden layer are extracted, the parameters of the current hid-
den layer will be determined and do not need to be further 
adjusted. The more layers, the more compact the feature are 
generated. Therefore, each function can be regarded as a 
parted feature extractor, and each hidden layer of H-ELM 
can be identified as a self-contained module. However, 
within the classical DL models [29–33], all of their hidden 
layers are organized as an integral. And Back-Propagation 
(BP) algorithm is exploited to retrain the integral model 
iteratively. Consequently, compared to most of the classic 
DL frameworks, H-ELM possesses a faster learning speed.

As stated earlier, the second subframe of the entire 
H-ELM framework is implemented by the original ELM, 
thus we will focus on the first subframe. As is well-known, 
an autoencoder attempts to make the reconstructed outputs 
resemble the input data as far as possible, so as to effec-
tively approximate input data [34]. Owing to its universal 

(6)f (x) = h(x)� = h(x)HT
(
1

�
+HHT

)−1

T

(7)� =
(
1

�
+HHT

)−1

HTT

(8)f (x) = h(x)� = h(x)
(
1

�
+HHT

)−1

HTT

(9)Hi = g(Hi−1 ⋅ �)

Fig. 1  The overview of ELM
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approximation ability, ELM is employed to develop the 
autoencoder. In the mean time, sparsity constraint is imple-
mented on the optimization of autoencoder, forming the 
ELM sparse autoencoder. According to the principle of 
ELM, the optimization approach of this autoencoder can be 
formulated as Eq. (10).

where X represents the input samples, H denotes the out-
put matrix of random mapping, which is not required to be 
optimized, and � is weight matrix of the hidden layer to be 
obtained.

Hereinafter, the �1 optimization algorithm is described. 
For more concise and clear expression, Eq. (10) is rewrit-
ten as:

where p(�) = ‖H� − X‖2 , and q(�) = ‖�‖
�1

 is the �1 pen-
alty term of the model.

(10)O� = argmin
� ‖H� − X‖2 + ‖�‖

�1

�

(11)O� = p(�) + q(�)

A fast iterative shrinkage-thresholding algorithm (FISTA) 
is employed to tackle with the problem in Eq.  (8). The 
implementation process of FISTA is listed out as below [35].

(1) Compute the Lipschitz constant � of the gradient of 
smooth convex function ∇p.

(2) Start the iteration with y1 = �0 ∈ �
n , t1 = 1 , initially. 

For the j-th iteration, the below holds.

(a) � j = s� (yj) , where s� is given by 

(b) 
(c) yj+1 = � j +

(
tj−1

tj+1

)
(� j − � j−1).

s� = argmin
�

{
�

2

‖‖‖‖‖
� −

(
� j−1 −

1

�
∇p(�(j − 1))

)‖‖‖‖‖

2

+ q(�)

}
.

(12)tj+1 =

1 +
√

1 + 4t2
j

2

Fig. 2  The framework of H-ELM. a General frame of H-ELM, which is partitioned into two subframes: the frame of multilayer forward encod-
ing and the frame of original ELM. b Layout of one single layer inside H-ELM
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By computing the iterative steps above, the data from the 
corrupted ones can be perfectly recovered. The �1 optimiza-
tion has been proved to be a better solution for data recovery 
and other applications [36].

3  The measure of predictor competence 
for dynamic ensemble selection

The key of DES is how to measure the predictive power of 
a predictor for a given unseen sample. Since that the pre-
dictive complexities of different test samples dramatically 
differ from each other, it could be naturally thought of that, 
a sample will be predicted well if it is fed to the predic-
tors which are good at forecasting it. In our previous work 
[22], three DES algorithms are proposed, i.e., DES-PALR, 
DES-CP and DVS-OpOp. They all design a measurement to 
estimate the predictive power of a base predictor to consider 
what information can obtain better predictive performance. 
However, in this paper, through considering multiple crite-
ria, we present a new Dynamic Ensemble Pruning technique, 
i.e., the DEP-TSPmeta technique, and compare its forecasting 
performance with that of the previously proposed algorithms 
in Sect. 5. The three algorithms are described succinctly in 
the following subsections.

3.1  The DES algorithm based on Predictor Accuracy 
over the Local Region (DES‑PALR)

Predictor precision is the most universal measurement for 
the implementation of DES. In DES-PALR, predictor pre-
cision is calculated based on a small area within the train-
ing dataset embracing the prescribed test sample. This area 
can be determined by implementing clustering algorithms, 
e.g., K-nearest-neighbor (KNN) algorithm [37]. Specifically, 
the local region would have a more similar distribute to the 
unseen instance than the other areas in the training set, so 
that the predictors which perform well on the local region 
are selected into the final ensemble system for the unseen 
sample.

The most important issue existing in DES-PALR is that, 
the predictive performance of this algorithm is closely 
related to the definition of local region. Besides, some abnor-
mal samples around the unseen sample will have remarkable 
influence on the performance of this algorithm. Therefore, 
only using predictors that perform well on local regions is 
not enough to make the predicted values close to the true 
values. Consequently, in order to obtain better predictive 
performance, more information should be considered.

3.2  The DES algorithm based on the Consensus 
of Predictors (DES‑CP)

Different from DES-PALR, DES-CP considers the extent of 
consensus of a pool of EoPs rather than a pool of predictors 
as a criterion. In this algorithm, a population of EoPs is first 
generated using genetic algorithm, i.e., Genetic Algorithm 
based Selective Ensemble (GASEN) [38]. The higher the 
extent of consensus of predictors, the better the predictive 
performance of the EoP is expected. Then, for each unseen 
sample, the EoP possessing the maximum consensus will 
act as the decision maker. Two variant algorithms based on 
this generated EoPs are proposed in [22]: DES-CP-Var and 
DES-CP-Clustering. The former assesses the consensus of 
EoP by calculating the variance of the predicted values of 
all predictors in each EoP. EoP with lower variance pos-
sesses higher consensus. The latter measures the extent of 
consensus of EoP by the difference between the scale of the 
cluster comprising the most and the second most predictive 
values. The bigger the difference is, the higher the consensus 
of EoP will be regarded.

The most difference between DES-PALR and DES-CP 
lies in that, DES-CP does not need to extract information 
from local regions. Therefore, the performance of this algo-
rithm will not be influenced by the manner of local region 
definition. However, the computational costs would be 
increased for DES-CP, due to its requirement of generating 
a group of predictor ensembles.

3.3  The dynamic validation set determination 
algorithm based on the similarity 
between the Output profile of the test sample 
and the output profile of each training sample 
(DVS‑OpOp)

DVS-OpOp is somewhat similar to DES-PALR, where the 
goal of both of them is to select samples which are close to 
the unseen sample to form the validation set. However, with 
DVS-OpOp, the similarity is calculated based on space of 
decisions rather than eigenspace. What’s more, the similarity 
is measured by combining the output profile of the unseen 
sample and the output profiles of training set. The output 
profile of one sample is a vector that consists of the predicted 
values obtained by the base predictors for that sample.

The principle merit of this algorithm lies in that, it is 
not restricted by the definition of the local region in fea-
ture space. However, DVS-OpOp only considers the global 
knowledge of the unseen sample, while ignores its local 
information. Hence, we can simultaneously consider the 
local and the global knowledge and other features to measure 
competence of the base predictor in this work.
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4  The proposed technique: DEP‑TSPmeta

Aiming at addressing TSP problems, we specifically con-
struct a dynamic ensemble pruning technique, i.e., DEP-
TSPmeta, as shown in Fig. 3, which is partitioned into the 
following three stages. Moreover, to clearly describe our 
proposed technique, symbols frequently used in this paper 
is summarized in Table 1.

(a) Ensemble initialization stage, in which a preliminary 
collection of predictors using the training sample set T� 
is generated, denoted by P =

{
p1, p2,… , pM

}
.

(b) Meta-predictor construction stage, given each instance (
xj, yj

)
 from the training dataset T

�
 and each predictor 

pi , the meta-attribute vector 
(
�i,j,mi,j

)
 is extracted and 

put into T∗ that is later used to build several candidates 
and select the most competent one as the meta-predic-
tor � . A different training dataset is used at this stage 
to prevent overfitting.

(c) Prediction stage, for an unseen instance 
(
xtest_j, ytest_j

)
 , 

the meta-information mi,test_j is extracted based on 
dynamic pruning dataset Dpru is fed to the meta-pre-
dictor � , which determines several excellent predictors 
to constitute the final dynamic ensemble P′ , so as to 
make the final predictive decision for this instance.

Fig. 3  Overview of the proposed DEP-TSPmeta technique
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4.1  Ensemble initialization

During the ensemble initialization stage, the goal is to pro-
duce a diversified and informative collection of predictors, 
as it makes no sense to integrate predictors that always 
render duplicate outputs. The method of integrating vary-
ing predictor types and different learning parameters is uti-
lized in this stage. Specifically, two types of base learners, 
i.e., ELMs and H-ELMs, with different numbers of hidden 
neurons layers, disparate hidden neurons quantities, and 
diversified activation functions are employed to generate 
the collection of base predictors, using the training samples 
from the dataset T� . The detailed settings of these generated 
base predictors P =

{
p1, p2,… , pM

}
 are shown in Table 3 

of Sect. 5.2.

4.2  Meta‑predictor construction

As displayed in Fig. 3, this stage mainly includes three pro-
cedures: the instances adoption procedure, the meta-attrib-
utes extraction procedure, and the meta-predictor learning 
procedure. The crucial parameters existing in the meta-
predictor training procedure are specifically introduced in 
the dynamic parameters adjustment procedure at last. The 
details of each procedure are described as follows.

4.2.1  Instances adoption

In order to solve the problem of low degree of consensus, we 
determine to focus the training of meta-predictor � to specif-
ically handle the case where the extent of consensus among 
the collection of predictors is low. Each instance 

(
xj, yj

)
 is 

first estimated by the whole ensemble of predictors to obtain 
P
(
xj
)
=
(
p1
(
xj
)
, p2

(
xj
)
,… , pM

(
xj
))

 , which denotes the pre-
dicted values of all predictors in the ensemble P . Then, the 

consensus of the ensemble P is evaluated by calculating the 
variance of the predicted values made by its constituent pre-
dictors. The prediction variance of instance 

(
xj, yj

)
 among 

the collection of predictors is calculated as below:

The smaller the variance is, the higher the consensus will 
be. Thus, the degree of consensus is computed as:

To judge whether the extent of consensus is low, a mini-
mum acceptable consensus needs to be defined, i.e., the con-
sensus threshold �1 . If the consensus con

((
xj, yj

)
,P

)
 falls 

below the threshold �1 , the instance (xj, yj) will be selected 
to extract meta-attributes for training meta-predictor �.

Before meta-attributes are extracted, the local area of the 
instance (xj,yj) is calculated by using the KNN algorithm, 
which is composed of its K most similar instances, and is 
represented by L(xj,yj) = {(x1,y1),(x2,y2),… ,(xK ,yK)} . Next, 
the instance (xj,yj) and all the instances in the training set T

�
 

are transformed into their corresponding output property 
files. The output property file of the instance (xj,yj) is 
denoted as ỹj = (ỹj,1, ỹj,2,… , ỹj,M) , where ỹj,i is the predictive 
result generated by the base predictor pi for the instance 
(xj, yj) . Furthermore, the similarity is computed between the 
output property file of the instance (xj,yj) and the output 
property files of all the instances in training set T

�
 by utiliz-

ing the KNN algorithm. The outcome of this procedure will 
guide us to select instances, that are most similar to (xj,yj) , 
to constitute G(xj,yj)

= {(x1,y1),(x2,y2),… ,(xKp,yKp)}.

(13)
var

�
P
�
xj
��

=

∑M

i=1

�
pi
�
xj
�
−

∑M

a=1
pa(xj)
M

�

M

(14)con
((
xj, yj

)
,P

)
=

1

var
(
P
(
xj
))

Table 1  Definitions of the 
major mathematical symbols 
used in our paper

Symbols Descriptions

T� Training dataset for ensemble initialization
T
�

Training dataset for meta-predictor construction
Dpru Dynamic pruning dataset(
xj, yj

)
The j-th training instance(

xtest_j, ytest_j
)

The test_j-th testing instance
pi The i-th base predictor
P Collection of predictors
mi.j Meta-attribute vector for the j-th training instance extracted by the i-th predictor
mi,test_j Meta-attribute vector for the test_j-th testing instance extracted by the i-th predictor
�i,j The i-th predictor’s competence for the j-th training instance
�i,test_j The i-th predictor’s competence for the test_j-th testing instance
T∗ Collection of meta-attributes
� Meta-predictor
P′ Final dynamic ensemble
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Finally, by employing each pi in the collection of predic-
tors P , together with the instance (xj,yj) , the local area L(xj,yj) 
and the global area G(xj,yj)

 , one meta-attribute vector mi,j can 
be extracted.

4.2.2  Meta‑attributes extraction

In one of our previous research works [22], we use one sin-
gle criterion to estimate the capability of a predictor. While 
in this work, we take into consideration the data character-
istics of TSP problems, further proposing four different sets 
of meta-attributes. Each attribute set, i.e., f 1 , f2 , f 3 and f4 , 
reflects a characteristic about the behavior of a base predic-
tor, and can be regarded as a criterion, such as the prediction 
performance estimated in the local area, and the predictor 
confidence for the prediction of an unseen instance. Utilizing 
four different sets of meta-attributes, even if one criterion 
does not work owing to the inaccuracy in the local areas or 
the results with low confidence, the system can still accom-
plish favorable predictive performance, because other crite-
ria are taken into account in the algorithm implementation.

The two attribute sets f 1 and f2 are calculated employing 
the information drawn from the local area of capacity L(xj,yj) . 
The attribute set f 3 uses information obtained from the 
global area of capacity G(xj,yj)

 . And f4 is computed directly 
from the instance (xj,yj) , which shows the level of confidence 
of pi for the accurate prediction for (xj,yj) . The details of the 
four sets of meta- attributes are described in the following.

The criterion of the neighbor’s hard prediction is denoted 
by f 1 . Firstly, a vector with K elements is set up, where K 
denotes the size of the local area. For each element (xc1� ,y

c1
� ) , 

� ∈ [1, K] , belonging to the local area of the input instance 
(xj,yj) , where c1 represents the first criterion, if the Root 
Mean Square Error (RMSE) of the prediction made by pi is 
less than the preset threshold, the �-th element of the vector 
is assigned to 1, otherwise it is assigned to 0.

where f 1 is a vector of Dc1
� , σ ∈ [1, K] , and Dc1

�  represents the 
performance of pi when implemented on (xc1� ,y

c1
� ).

The criterion of the overall local accuracy is denoted by 
f2 . The RMSE of the prediction made by pi on the entire area 
of capacity L(xj,yj) is calculated, denoted by RMSE(pi,L(xj,yj)) 
and the reciprocal of RMSE(pi,L(xj,yj)) is encoded as f2.

(15)Dc1
𝜎
=

{
1, RMSE(pi,(x

c1
𝜎
,yc1
𝜎
)) < threshold

0, otherwise

(16)f 1 = (D
c1
1
,D

c1
2
,… ,D

c1
K
)

(17)f2 =
1

RMSE(pi,L(xj,yj))

The criterion of global area accuracy is denoted by f 3 . 
Similar to f 1 , first, a vector with Kp elements is set up, 
where Kp denotes the size of the global area. Then, for each 
element (xc3� ,y

c3
� ) in G(xj,yj)

 , � ∈
[
1,Kp

]
 , where c3 represents 

the third criterion, belonging to the global area decided by 
output property file, if difference between the RMSE 
obtained by pi on (xc3� ,y

c3
� ) and the RMSE obtained by pi on 

(xj,yj) is less than the threshold, the �-th element of the vec-
tor is assigned to 1, otherwise it is assigned to 0.

where f3 is a vector of Dc3
� , � ∈ [1, Kp] , and Dc3

�  represents 
the consensus of the decisions of pi when implemented on 
(x

c3
� ,y

c3
� ) and (xj,yj).

The criterion of predictor’s confidence is denoted by f4 . 
The predicted value of pi on (xj,yj) is added to the set of 
predicted values, with the scale of the set being equal to the 
scale of the initial collection of predictors. Then, all the devi-
ations between the predicted values and the true value are 
calculated. Finally, the min–max normalization approach is 
utilized to normalize all the deviations to the interval [0, 1] . 
Each of deviation value di is normalized by the min–max 
normalization formula, which is shown as below:

where dnew
i

 is the normalized value, dmin
i

 and dmax
i

 repre-
sent the minimum and maximum value of all deviations, 
respectively.

A vector mi,j = (f 1, f2, f 3, f4) can be constructed at the 
end of meta-attributes extraction procedure (Fig. 4), where 
mi,j represents the meta-knowledge that extracted by pi from 
(xj,yj) , with the size of mi,j being K + Kp + 2 . If the psre-
dicted value of pi on (xj,yj) is very close to the true value, 
the class label of mi,j , i.e., �i,j , is set to 1; otherwise, it is set 
to 0.This class label indicates whether pi possesses good 
enough performance on (xj,yj) or not. (�i,j,mi,j) is stored into 
the meta-attributes dataset T∗.

Each predictor in the collection of predictors can extract 
a meta-attribute from each instance. There are N instances 
belonging to T

�
 , whose consensus E

((
xj, yj

)
,P

)
 is less than 

�1 . In this way, the size of the meta-attributes dataset T∗ 
equals M × N ( M is the size of the collection of predictors). 
Hence, we can address the small sample size prediction 

(18)

D
c3
𝜎 =

{
1,

|||RMSE(pi,(xj,yj)) − RMSE(pi,(x
c3
𝜎 ,y

c3
𝜎 ))

||| < threshold

0, otherwise

(19)f 3 = (D
c3
1
,D

c3
2
,… ,D

c3
Kp
)

(20)dnew
i

=
di − dmin

dmax − dmin

(21)f4 =
1

dnew
i
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issue, due to the lack of training data, by the increasement 
to the scale of the collection of predictors.

4.2.3  Learning of meta‑predictor

The purpose of this procedure is to train the meta-predic-
tor � . In this work, we use 75 percent of the dataset T∗ for 
learning and the remaining 25 percent for validation. ELM 
is employed as the base model for the meta-predictor. Ten 
ELMs are trained, using {10, 20, …, 100} as the set of the 
numbers of hidden neurons, and the sigmoid transfer function 
as the activation function. The criterion utilized to evaluate 
the performance of the ten meta-predictors is RMSE. That 
is to say, the meta-predictor achieving the minimum RMSE 
over the validation set is chosen to be the decisive meta-
predictor �.

The whole meta-predictor construction stage is formalized 
in Algorithm 1.

4.2.4  The dynamic adjustment of parameters

There exist three crucial parameters for the successful imple-
mentation of the proposed technique: the consensus threshold 
�1 , the local area size K , and the global area size Kp . For 
different datasets, the most appropriate parameters should be 
dynamically adapted to apply to the DEP-TSPmeta technique. 
Here, genetic algorithm (GA) [39–41] is applied to find the 
optimal parameters for each dataset.

GA is a searching algorithm designed on basis of bio-
logical evolutionary principle. It is a mathematical model 
for simulating Darwin’s genetic selection and natural elimi-
nation. As an effective global parallel optimization search 
tool, GA is simple, universal, robust and fit for concurrent 
processing.

In our paper, the three parameters are optimized by GA, 
including the following several basic steps:

Step 1: The three parameters are encoded into binary for-
mat and an initialized population of size 20 is generated. And 
the maximal generation epoch of GA is set to 20.

Step 2: The initialized population of size 20 is used in 
the proposed technique for evaluating the performance of 
DEP-TSPmeta. RMSE is employed as the measurement for 
the fitness value.

Step 3: The “roulette” is set to be the selection function. 
Roulette is the conventional selection function with the 
survival probability equal to the fitness of i∕sum of all the 
individuals.

Step 4: The “simpleXover” is set to be the crossover func-
tion. According to the results obtained by using trial and error 
method, the probability of crossover operators is assigned to 
be 0.6. According to the crossover probability, the individuals 
in the population are randomly matched and the parameters 
of different positions are changed.

Step 5: The “binaryMutation” is set to be the mutation 
function. The probability of mutation operators is set to be 
0.005. The “binaryMutation” function varies each bit of the 
parent on basis of the mutation probability.

According to the literature [42], it is proved by means of 
homogeneous finite Markov chain analysis that GA does not 
converge to the global optimum. However, as the number of 
iterations increases, GA can guarantee to find an approxi-
mate optimal solution. Moreover, a more practical question 
regards the time complexity of the algorithm to achieve the 
optimal solution. Thus, by using the trial-and-error method, a 
sufficient and acceptable initialized population size and gen-
eration epoch are set to ensure that the appropriate values of 
the three parameters are acquired by searching. Specifically, 
when the maximal generation epoch is reached, the individ-
ual with the maximum fitness function value is the output of 
the final solution and the algorithm is terminated.

Fig. 4  Attribute vector contains the meta-knowledge about the behavior of the base predictor. The class label indicates whether pi possesses 
good enough performance on (xj,yj) or not
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Just as the “No Free Lunch” theorem declares [43], there 
exists no algorithm that is superior to any other ones among 
all the probable problems. Therefore, it is necessary that GA 
is utilized to adjust the three crucial parameters dynamically, 

i.e., �1 , K , Kp . It is found through our experiments that, 
dynamic adjustments to the values of the crucial parameters 
significantly boost the predictive performance of the pro-
posed technique.
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4.3  Prediction

The prediction stage is described in Algorithm 2. Given the 
test instance (xtest_j,ytest_j) , in this stage, the local area of 
capacity L(xtest_j,ytest_j) having K  most similar instances is 
defined with the instances from the dynamic pruning dataset 
Dpru . Next, the output property files of all the instances in 
Dpru and (xtest_j,ytest_j) are computed, and the most Kp simi-
lasr instances are determined as the global area of capacity 
G(xtest_j,ytest_j) , accosrding to the similarity between the output 
property files of all the instances in the dynamic pruning 
dataset and the output property file of the test instance.

Then, for each predictor pi in the initial collection of predic-
tors P , the meta-attributes extraction procedure is the same as 
that described in Sect. 4.2.2, and the vector mi,test_j is extracted. 
Next, mi,test_j will be fed into the meta-predictor � . If the output 
�i,test_j of � equals 0 (i.e., pi is incapable for the test instance), 
pi will be pruned; otherwise if the output �i,test_j of � equals 
1 (i.e., pi is capable for the test instance), pi will be added 
into the ensemble P′ . When each predictor in the collection 
of predictors is estimated, the final ensemble P′ is obtained. 
The averaged predicted values made by the predictors in the 
ensemble P′ is taken as the final decision for (xtest_j,ytest_j).

Detailed pseudocode of DEP-TSPmeta is described in the 
following Algorithm 2.
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4.4  A summary of the proposed DEP‑TSPmeta 
technique

The contents of this section could be divided into three 
parts: (1) reorganizing and summarizing the core idea of 
the DEP-TSPmeta technique; (2) discussing advantages and 
disadvantages of the proposed technique; (3) analyzing the 
computational complexity of the proposed technique and 
making comparison to previous algorithms.

As stated in the “No Free Lunch” (NFL) theorem, without 
a prior assumption about specific problems, no algorithm 
could be expected to perform more superior than any other. 
There does not exist a universal optimal algorithm [44]. 
However, we believe that using one single criterion to esti-
mate an algorithm performance is biased. It would be com-
prehensive and reasonable to consider more measurement 
criteria. In this work, a multiple criteria Dynamic Ensem-
ble Pruning technique exploiting meta-learning specialized 
for TSP, i.e., the DEP-TSPmeta technique, is presented. The 
meta-attributes employed by meta-learning are the distinct 
criteria applied to evaluate the competence of base predic-
tors from different angles.

In our proposed DEP-TSPmeta technique, both shallow 
models, i.e., ELMs, and deep models, i.e., H-ELMs, with 
varying predictor types and different learning parameters are 
combined together to constitute the initial ensemble. Four 
meta-attributes representing different criteria for evaluating 
base predictors capacities are developed, including the pre-
diction performance of a predictor in a local area, the predic-
tion confidence of a predictor on every instance in a local 
area, the predictive performance of a predictor in the global 
area, and the prediction confidence of a predictor on the 
current test instance. The meta-attributes extracted from the 
training dataset are utilized to build one meta-predictor, and 
this meta-predictor will be responsible for selecting the most 

appropriate base predictors to construct the final ensemble 
for making the predictive decision. The crucial parameters 
of the meta-attributes are adjusted by genetic algorithm for 
matching the current dataset dynamically.

In summary, DEP-TSPmeta possesses the following three 
advantages:

• It is developed based upon four different meta-attributes, 
therefore, it is robust even though some base predictors 
do not perform well on one or two of the meta-attributes.

• The ensemble within DEP-TSPmeta is constructed 
employing ELM and H-ELM as its base learners. Con-
sequently, the technique not only inherits the merit of 
the former in its fast running speed, but also inherits the 
advantage of the latter in its adequate extraction of data 
features.

• The dynamic ensemble pruning paradigm employed 
within DEP-TSPmeta can improve its generalization per-
formance, while reducing its scale, simultaneously.

In contrast with the above summarized advantages, DEP-
TSPmeta possesses two obvious disadvantages:

• Genetic algorithm employed within DEP-TSPmeta results 
in its relatively high computational complexity;

• The structure of DEP-TSPmeta is relatively complex.

The computational complexities of the DEP-TSP-
meta training and testing phases are, respectively, 
O
(
N
(
M +M

(
N logK + 2M + N logKp

))
gM2(1.5r + rf )

)
 

and O
(
M +M

(
N logK + 2M + N logKp

))
 , where N repre-

sents the scale of training dataset, M denotes the number 
of predictors in the initial ensemble collection, K and Kp 
represent the scales of global area and local area, respec-
tively, g denotes the amount of generations, r denotes the 
scale of population, and f  represents the chromosome 
length. Because the proposed DEP-TSPmeta technique is 

Table 2  Crucial information of the eight experimental datasets

Dataset Metrics Time granularity Time range Description Domain Repository

IAP 144 fact values Month Jan 1949–Dec 1960 International airline passengers Transport TSDL
QIS 127 fact values Quarter 1959 Q4–1991 Q2 Quarterly increase in stocks non-farm total 

of Australia
Finance TSDL

DHA 91 fact values Year 1919–2004 Deaths from homicides in Australia Crime TSDL
DSA 91 fact values Year 1919–2004 Deaths from suicides in Australia Crime TSDL
ITD 69 fact values Date 19 Nov 2004–26 Jan 

2005
Internet traffic data in bits Computing TSDL

DJI 126 fact values Date 1 Jan 2020–30 Jun 2020 Dow Jones Industrial Average Finance Yahoo
Odonovan 70 fact values Time 1983 Consecutive yields for batch chemical 

process
Chemistry TSDL

Montgome 100 fact values Time 1976 Chemical process readings every two 
minutes

Chemistry TSDL
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constructed based upon four meta-attributes extracted from 
DES-PALR, DES-CP, and DES-OpOp, the computational 
complexities of the proposed technique in training and test-
ing phases become larger compared to previous algorithms. 
However, this construction scheme brings higher prediction 
accuracy and stronger robustness to the DEP-TSPmeta tech-
nique, accordingly.

5  Experiments

5.1  Datasets

We carry out empirical study based upon eight one-dimen-
sional time series datasets selected from Time Series Data 
Library (TSDL) [45] and Yahoo Finance [46]. The key infor-
mation of the eight benchmark datasets is presented, respec-
tively, in Table 2. The eight datasets are drawn from diverse 
real-world domains, with different numbers of data points, 
different time granularities, different time ranges, different 
domains, and different types of data, which guarantee the 
diversity of experimental samples.

It is required to regulate the domain value of each attrib-
ute into the interval [0, 1], due to the different scopes of 
dataset attributes. This operation of normalization guar-
antees that the data attributes with greater values do not 
overwhelm the smaller ones, so that predictive performance 
could be enhanced. Each value in the whole dataset is nor-
malized by min–max normalization.

5.2  Experimental setup

MAE [47] and RMSE [48] are employed as the evaluation 
measurements of prediction errors in this work, with the 
definitions being presented as below:

here yi is the true value, ỹi denotes the predicted value, and 
N is the number of samples.

Experiments are carried out with the system configuration 
as follows: 2.6 GHz PC with 1 GB of RAM using Windows 
XP operating system, MATLAB language source code.

Then, as base models, 50 well-trained ELMs and 50 well-
trained H-ELMs constitute the initial collection of predic-
tors. And the settings of these base models are shown in the 
following Table 3.

The definitions of the six activation functions are shown 
as below:

(22)MAE =
1

N

N∑
i=1

||yi − ỹi
||

(23)RMSE =

√√√√ 1

N

N∑
i=1

(yi − ỹi)
2

(24)f (x) =
1

1 + e−x

(25)f (x) = sin(x)

(26)f (x) =

{
1, if x > 0

0, otherwise

Table 3  The exhaustive 
information of base models 
used in experiments

ID Basis model The number of hid-
den layers

The number of hid-
den neurons

Activation function

1–10 ELM 1 11–20 Sigmoid (22)
11–20 ELM 1 11–20 Sine (23)
21–30 ELM 1 11–20 Hard limit transfer (24)
31–40 ELM 1 11–20 Triangular basis transfer (25)
41–50 ELM 1 11–20 Radial basis transfer (26)
51–100 H-ELM 3 51–100 Tangent sigmoid (27)

Table 4  Genetic algorithm 
parameters

Population size 20

Number of generations 20
Probability of crossover 0.6
Probability of mutation 0.005

Table 5  The parameters values determined by genetic algorithm

Dataset Local area size Global area size Consensus 
threshold

IAP 5 5 0.2
QIS 6 9 0.6
DHA 3 10 0.6
DSA 7 8 0.6
ITD 7 5 0.6
DJI 5 8 0.7
Odonovan 6 5 0.6
Montgome 7 4 0.3
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Each experiment is repeated for 10 times, and all the 
reported experimental results are the average of these 10 
repetitive runs. By using the trial-and-error method, and 
taking into account the dataset scale, simultaneously, the 
time window size (TWS) is set to five. For each repetition, 
the datasets are divided into: 50% for the training dataset, 
25% for the dynamic pruning dataset, and 25% for the test 
dataset. For the proposed DEP-TSPmeta technique, 50% of 
the training dataset is used to generate the initial collection 
of predictors, and the other 50% is used for meta-predictor 
construction. According to the literature [49], this procedure 
used in our experiments is actually one kind of cross vali-
dation procedures, i.e., hold-out cross validation, which is 
a technique that relies on a single split of data. The data is 

(27)f (x) =

{
1 − |x|, if − 1 ≤ x ≤ 1

0, otherwise

(28)f (x) = e−x
2

(29)f (x) =
2

1 + e−2x
− 1

divided into two non-overlapping parts and these two parts 
are used for training and testing respectively. Therefore, in 
our experiment, the samples that test the performance of the 
proposed algorithm do not appear in the training dataset, 
there will not yield an overoptimistic result.

For each dataset, the specific values of GA parameters are 
listed out in Table 4.

GA determines the most appropriate values of the three 
parameters for each dataset, as shown in Table 5.

We compare the predictive accuracy of the proposed 
DEP-TSPmeta technique, against seven current techniques. 
The seven comparative algorithms used in this study are: 
DES-PALR, DES-CP-Clustering, DVS-OpOp, Genetic 
Algorithm based on Selective Ensemble (GASEN), Averag-
ing All (AA), Best Single ELM (BS-ELM), and Best Single 
H-ELM (BS-H-ELM), respectively. The first three algo-
rithms belong to the category of DES techniques, while the 
others are part of the static ensemble selection techniques.

The objective of the comparative study is mainly to test 
and verify three research questions: (1) Does the ensemble 
of predictors outperform the best single model? (2) Does 
the DEP paradigm outperform the state-of-the-art static 
ensemble selection one, especially GASEN? (3) Whether the 

Table 6  The detailed RMSE 
performance of corresponding 
algorithms on the eight 
benchmark time series datasets

The boldface indicates the best RMSE performance obtained by the corresponding algorithm on each time 
series dataset

RMSE Dataset

Model IAP QIS DHA DSA ITD DJI Odonovan Montgome

DEP-TSPmeta 0.1036 0.2360 0.2228 0.1842 0.0037 0.0204 0.2088 0.2100
DES-PALR 0.1017 0.2727 0.2038 0.2685 0.0951 0.0218 0.2527 0.2160
DES-CP-Clustering 0.1589 0.2367 0.1888 0.1922 0.1075 0.0209 0.2642 0.2025
DVS-OpOp 0.1257 0.7154 0.2055 0.2096 0.0933 0.0222 0.2647 0.2150
GASEN 0.1066 0.2761 0.1845 0.1484 0.0963 0.1307 0.2787 0.2251
AA 0.4147 1.2235 0.3642 2.3006 0.1153 0.0530 0.3793 0.2378
BS-ELM 0.2518 0.2552 0.2163 0.1970 0.1432 0.0761 0.3410 0.2446
BS-H-ELM 1.3512 1.6098 0.7640 2.9352 0.1801 0.1050 0.4266 0.2955

Table 7  The detailed MAE 
performance of corresponding 
algorithms on the eight 
benchmark time series datasets

The boldface indicates the best MAE performance obtained by the corresponding algorithm on each time 
series dataset

MAE Dataset

Model IAP QIS DHA DSA ITD DJI Odonovan Montgome

DEP-TSPmeta 0.0681 0.1832 0.1568 0.1464 0.0028 0.0163 0.1665 0.1608
DES-PALR 0.0797 0.2144 0.1725 0.1897 0.0754 0.0188 0.1968 0.1780
DES-CP-Clustering 0.1267 0.1988 0.1581 0.1660 0.0781 0.0167 0.2239 0.1600
DVS-OpOp 0.0938 0.3609 0.1674 0.1610 0.0726 0.0192 0.2091 0.1702
GASEN 0.0763 0.2354 0.1611 0.1296 0.0756 0.1127 0.2301 0.1796
AA 0.2672 0.7727 0.2810 0.9642 0.0862 0.0450 0.2967 0.1824
BS-ELM 0.2078 0.2189 0.1796 0.1629 0.1158 0.0644 0.2771 0.1907
BS-H-ELM 0.6650 0.9012 0.5770 1.2451 0.1431 0.0920 0.3404 0.2251
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implementation of multiple DEP criteria as meta-attributes 
leads to a more robust performance or not, even when it is 
confronted with ill-defined problems?

5.3  Experimental results

We spilt the experimental results into two tables: Table 6 
shows the detailed RMSE performance on the eight 
benchmark time series datasets compared with the seven 

techniques, including three DES algorithms and four static 
ensemble selection rules. And Table 7 shows the correspond-
ing comparisons based on the detailed MAE performance.

It is clearly shown from the results reported in Table 6 
that, the proposed technique has the best RMSE performance 
on the QIS, ITD, DJI, and Odonovan datasets, and obtains 
the second best RMSE performance on the IAP, DSA, and 
Montgome datasets. That is to say, for 7 out of the 8 RMSE 
results, the proposed algorithm performs significantly better 

Table 8  T-test results on RMSE between DEP-TSPmeta and other comparative algorithms on the eight benchmark time series datasets

Entries displayed in bold and with H = 1 indicate that the proposed algorithm significantly outperforms a specific rival algorithm at a 5% signifi-
cance level based on the RMSE measurement

Model A Model B RMSE

IAP QIS DHA DSA ITD DJI Odonovan Montgome

The Proposed 
Algorithm

DES-PALR 0.5300 0.1602 0.9993 0.0220 1.6552e−09 0.2108 0.0457 0.2719
H = 0 H = 0 H = 0 H = 1 H = 1 H = 0 H = 1 H = 0

DES-CP-Clus-
tering

0.0055 0.2590 1.000 0.6252 1.1315e−10 0.2964 0.0209 0.1650
H = 1 H = 0 H = 0 H = 0 H = 1 H = 0 H = 1 H = 0

DVS-OpOp 0.9399 0.1227 0.9975 0.1744 7.4196e−13 0.0414 0.0282 0.3167
H = 0 H = 0 H = 0 H = 0 H = 1 H = 1 H = 1 H = 0

GASEN 0.0660 0.0023 0.5673 0.1259 5.5684e−09 2.4249e−6 0.0202 0.0831
H = 0 H = 1 H = 0 H = 0 H = 1 H = 1 H = 1 H = 0

AA 0.6255 2.7114e−08 0.0028 5.9136e−12 9.7159e−16 4.6045e−8 0.0051 0.1880
H = 0 H = 1 H = 1 H = 1 H = 1 H = 1 H = 1 H = 0

BS-ELM 1.4151e−04 0.3987 0.9703 1.0807e−04 2.1171e−08 7.7365e−6 0.0204 0.0272
H = 1 H = 0 H = 0 H = 1 H = 1 H = 1 H = 1 H = 1

BS-H-ELM 0.0019 2.7728e−05 1.2856e−05 1.3776e−04 2.0131e−6 8.8911e−8 0.0002 0.0191
H = 1 H = 1 H = 1 H = 1 H = 1 H = 1 H = 1 H = 1

Table 9  T-test results on MAE between DEP-TSPmeta and other comparative algorithms on the eight benchmark time series datasets

Entries displayed in bold and with H = 1 indicate that the proposed algorithm significantly outperforms a specific rival algorithm at a 5% signifi-
cance level based on the MAE measurement

Model A Model B MAE

IAP QIS DHA DSA ITD DJI Odonovan Montgome

The proposed 
algorithm

DES-PALR 0.0335 0.1362 0.2501 0.0172 8.5264e−09 0.1068 0.0840 0.0581
H = 1 H = 0 H = 0 H = 1 H = 1 H = 0 H = 0 H = 0

DES-CP-Clus-
tering

0.0012 0.2264 0.8258 0.8644 9.0605e−10 0.2542 0.0067 0.4666
H = 1 H = 0 H = 0 H = 0 H = 1 H = 0 H = 1 H = 0

DVS-OpOp 0.0602 0.1179 0.1363 0.3436 7.3287e−12 0.0073 0.0449 0.1703
H = 0 H = 0 H = 0 H = 0 H = 1 H = 1 H = 1 H = 0

GASEN 0.0039 0.0011 0.0107 0.1578 8.0353e−09 3.6349e−6 0.0145 0.0605
H = 1 H = 1 H = 1 H = 0 H = 1 H = 1 H = 1 H = 0

AA 0.0097 1.8776e−9 0.0013 8.2967e−12 1.9245e−15 2.9850e−7 0.0064 0.1619
H = 1 H = 1 H = 1 H = 1 H = 1 H = 1 H = 1 H = 0

BS-ELM 2.6485e−04 0.1646 0.0017 3.2954e−05 2.8638e−07 1.7975e−5 0.0145 0.0160
H = 1 H = 0 H = 1 H = 1 H = 1 H = 1 H = 1 H = 1

BS-H-ELM 0.0010 4.9229e−06 4.2404e−07 8.1344e−05 7.8341e−07 2.7308e−7 0.0002 0.0211
H = 1 H = 1 H = 1 H = 1 H = 1 H = 1 H = 1 H = 1



2229International Journal of Machine Learning and Cybernetics (2021) 12:2213–2236 

1 3

than the comparative algorithms. In contrast, BS-H-ELM 
yields the worst results on all the datasets, which could be 
explained by the lack of training samples. However, the 
proposed algorithm could overcome this difficulty well. 
For example, if there are 30 training instances in the meta-
predictor construction stage and the collection of predictors 
consists of 100 base models, then the number of training 
instances will reach 3,000. Thus, enough learning instances 
are gotten for training the meta-predictor. In this manner, the 
performance of the proposed technique will not be limited 
by the lack of training instances.

It could be observed from the results shown in Table 7 
that, the proposed DEP-TSPmeta technique achieves results 

that are superior to other algorithms on almost all the data-
sets in terms of MAE, except for the DSA and Montgome 
datasets. While on the DSA and Montgome datasets, DEP-
TSPmeta acquires the second best MAE performance. Since, 
in DEP-TSPmeta, four different criteria, designed to measure 
the capacity of base predictors, are employed as the meta-
attributes, even though one or two of them do not work well, 
the integral framework can still achieve excellent perfor-
mance. In this sense, our framework is a more robust predic-
tion technique than the comparative algorithms considering 
only one single criterion.

In addition, the algorithms achieving best performances 
on the datasets are all some ensemble selection methods 

Table 10  Friedman test and post hoc Finner test based on RMSE values (significance level of 0.1)

Friedman test

Statistic p-value Result

13.0597 0.0000 H0 is rejected
Algorithm DEP-TSPmeta DES-PALR DES-CP-

Clustering
DVS-OpOp GASEN AA BS-ELM BS-H-ELM

Ranking 2.0000 3.2500 2.8750 4.0000 4.0000 6.5000 5.5000 7.8750

Post-hoc Finner tests

Comparison Statistic Adjusted p-value Result

DEP-TSPmeta vs DES-PALR 1.0206 0.3486 H0 is accepted
DEP-TSPmeta vs DES-CP-Clustering 0.7144 0.4750 H0 is accepted
DEP-TSPmeta vs DVS-OpOp 1.6330 0.1724 H0 is accepted
DEP-TSPmeta vs GASEN 1.6330 0.1724 H0 is accepted
DEP-TSPmeta vs AA 3.6742 0.0008 H0 is rejected
DEP-TSPmeta vs BS-ELM 2.8577 0.0099 H0 is rejected
DEP-TSPmeta vs BS-H-ELM 4.7969 0.0000 H0 is rejected

Table 11  Friedman test and post hoc Finner test based on MAE values (significance level of 0.1)

Friedman test

Statistic p-value Result

19.1333 0.0000 H0 is rejected
Algorithm DEP-TSPmeta DES-PALR DES-CP-

Clustering
DVS-OpOp GASEN AA BS-ELM BS-H-ELM

Ranking 1.2500 3.6250 3.2500 3.6250 4.1250 6.5000 5.7500 7.8750

Post-hoc Finner tests

Comparison Statistic Adjusted p-value Result

DEP-TSPmeta vs DES-PALR 1.9392 0.0727 H0 is rejected
DEP-TSPmeta vs DES-CP-Clustering 1.6330 0.1025 H0 is accepted
DEP-TSPmeta vs DVS-OpOp 1.9392 0.0727 H0 is rejected
DEP-TSPmeta vs GASEN 2.3474 0.0329 H0 is rejected
DEP-TSPmeta vs AA 4.2866 0.0001 H0 is rejected
DEP-TSPmeta vs BS-ELM 3.6742 0.0006 H0 is rejected
DEP-TSPmeta vs BS-H-ELM 5.4093 0.0000 H0 is rejected
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rather than the method of selecting the best single model, 
which demonstrates the superiority of ensemble selection 
paradigm in prediction performance. At the same time, 
although the DES methods can achieve the best perfor-
mances on most datasets, static ensemble selection methods, 
especially GASEN, sometimes have better performance than 
the DES methods, including the proposed technique, which 
shows that dynamic ensemble selection algorithms are not 
always better than static ensemble selection algorithms in 
any situation. This observation also proves the “No Free 
Lunch” (NFL) theorem [44].

Next, to make sure whether the proposed DEP-TSPmeta 
technique is superior to the three DES algorithms and other 
comparative algorithms in a statistic sense, it is necessary 
to perform t-tests on the RMSE and MAE results obtained 

by all the algorithms on the eight time series benchmark 
datasets.

Then, when the t-tests are performed, the significance 
level ALPHA is set to 0.05 and TAIL is set to left. The 
results are shown in Tables 8 and 9. The items displayed in 
bold and with H = 1 indicate that hypothesis H0 is rejected, 
i.e., Model A significantly improves the predictive per-
formance of Model B, at 5% significance level (t-value ≤
− 1.8331). Conversely, the items in normal font and with 
H = 0 manifest that hypothesis H0 cannot be rejected, i.e., 
there is no significant difference between the predictive per-
formance of Model A and Model B at 5% significant level.

As shown in Tables 8 and 9, for 70 out of the 112 t-tests 
(62.5%), the proposed DEP-TSPmeta technique achieves 
significant improvements over comparative algorithms at 

Fig. 5  The absolute values of the prediction errors obtained by DEP-TSPmeta, DES-PALR and BS-ELM on the IAP time series

Fig. 6  The absolute values of the prediction errors obtained by DEP-TSPmeta, DES-PALR and BS-ELM on the QIS time series
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5% significance level in terms of RMSE and MAE. When 
applied to the ITD and Odonovan time series datasets, DEP-
TSPmeta is far better than all other compared algorithms, 
including three DES algorithms and four static ensem-
ble selection techniques. At the same time, DEP-TSPmeta 
achieves significant improvements over BS-H-ELM in terms 
of RMSE and MAE on all the datasets. These results clearly 
show that, the proposed technique based on meta-learning 
is applicable to tackle with the TSP problems with small 
sample datasets.

STAC [50], which is a web platform that provides a more 
appropriate statistical test, is used, in this work, to deter-
mine whether the superiority of our algorithm is accidental. 
The statistical test results are shown in Tables 10 and 11. 

Specifically, the Friedman test [51], a nonparametric statisti-
cal test, is used to test differences across multiple algorithms 
based on the rankings of the algorithms on multiple datasets 
in terms of RMSE and MAE values. For each dataset, the 
Friedman test ranks each algorithm, where the best perform-
ing algorithm is ranked the first, the next best one is ranked 
the second, and so on. And then, the average ranking of 
each algorithm on all the datasets is computed. The best 
algorithm is the one with the lowest average ranking. The 
null hypothesis for the Friedman test is that the predictive 
performances of all the algorithms are equivalent or simi-
lar. We set the level of significance � = 0.1 , i.e., 90% confi-
dence. The Friedman test results show that the null hypoth-
eses are rejected with extremely low p-values, and it can be 

Fig. 7  The absolute values of the prediction errors obtained by DEP-TSPmeta, DES-PALR and BS-ELM on the DHA time series

Fig. 8  The absolute values of the prediction errors obtained by DEP-TSPmeta, DES-PALR and BS-ELM on the DSA time series
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concluded that the predictive performances of at least two 
of the algorithms are significantly different from each other.

Then, a post hoc Finner test [52] with the level of sig-
nificance � = 0.1 is conducted for a pairwise comparison 
between the rankings achieved by each algorithm, so as to 
check whether the performance differences between the 
proposed DEP-TSPmeta algorithm and those comparative 
algorithms on multiple datasets are statistically significant. 
In terms of MAE values, DEP-TSPmeta obtains the lowest 
average ranking of 1.25, followed by the DES-CP-Clustering 
technique, presenting an average ranking of 3.25. From the 
Finner test results, the performance of DEP-TSPmeta is sig-
nificantly better when compared to the majority of the DES 
techniques and four static ensembles selection techniques. 

Only DES-CP-Clustering obtains a statistically equivalent 
performance. Moreover, as shown in Tables 10 and 11, for 
9 out of the 14 Finner tests (64.3%), the predictive perfor-
mance of the proposed DEP-TSPmeta technique is signifi-
cantly superior with a 90% confidence, when compared to 
other comparative algorithms, on the eight benchmark data-
sets, in terms of RMSE and MAE values.

Finally, Figs. 5, 6, 7, 8, 9, 10, 11, 12 display, respectively, 
the absolute values of the prediction errors obtained by the 
proposed technique, DES-PALR and BS-ELM on the eight 
benchmark time series datasets.

From the above comparisons, it can be concluded that the 
proposed technique has better generalization performance 
and smaller prediction errors than DES-PALR and BS-ELM 

Fig. 9  The absolute values of the prediction errors obtained by DEP-TSPmeta, DES-PALR and BS-ELM on the ITD time series

Fig. 10  The absolute values of the prediction errors obtained by DEP-TSPmeta, DES-PALR and BS-ELM on the DJI time series
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on the six benchmark TSP problems, except for the DSA 
and the Montgome datasets. In addition, the proposed DEP-
TSPmeta technique obtains the prediction values approximat-
ing the real values. It is worth mentioning that, the proposed 
technique achieves results close to the Oracle [53] perfor-
mance on the ITD dataset. The Oracle expresses an almost 
perfect pruning scheme and its error rate is approximately 
zero.

The above reported experimental results are based upon 
the results of 10 repetitive runs. The primary reason for 
implementing repeated experiments is to reduce the impact 
of random factors, such as the random initialization of 
weights in neural networks, on the performance of the algo-
rithms, and to decrease the influence of accidental errors on 

performance evaluation. In order to further explore whether 
the number of repetitions have an effect on the experimental 
results, we have added a series of controlled experiments 
with different repetitions, i.e., 5, 10, 15, 20, on the Odonovan 
dataset. The detailed RMSE and MAE performances with 
different repetitions of experiments on the Odonovan dataset 
are, respectively, presented in Tables 12 and 13.

From Tables 12 and 13, it is not hard to see that, whether 
the number of repetitions is set as 5, 10, 15, or 20, the pro-
posed DEP-TSPmeta technique consistently obtains the best 
performances on the Odonovan dataset, in terms of RMSE 
and MAE, compared with the other seven techniques, includ-
ing the three DES algorithms and the four static ensemble 
selection rules. Therefore, it could be concluded that the 

Fig. 11  The absolute values of the prediction errors obtained by DEP-TSPmeta, DES-PALR and BS-ELM on the Odonovan time series

Fig. 12  The absolute values of the prediction errors obtained by DEP-TSPmeta, DES-PALR and BS-ELM on the Montgome time series
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number of repetitions is changed or dynamic, the compara-
tive experiment results will not change, and the proposed 
technique still can achieve optimal performance on the Odo-
novan dataset. When the number of repetitions increases, the 
performance of our algorithm tends to be more stable. Thus, 
a rough conclusion could be drawn that, the more numbers 
of repetitive experiments are conducted, the more reliable 
the experimental results will be. However, considering the 
efficiency, ten repetitive experiments are enough to obtain 
relatively reliable results for analysis.

6  Conclusion and future work

In this paper, a multiple criteria Dynamic Ensemble Pruning 
technique dedicated to Time Series Prediction applying the 
meta-learning paradigm, namely the DEP-TSPmeta technique, 
is proposed. Four sets of meta-attributes are designed, with 
each set of meta-attribute corresponding to a specific DEP 
criterion for evaluating the capacity of each predictor in the 

initial collection of predictors, such as the predictor accuracy 
in the local area computed over the feature space, the predic-
tor accuracy in the global area computed over the decision 
space, and the predictor’s confidence. These meta-attributes 
are utilized to train a meta-predictor. The meta-predictor will 
be responsible to evaluate whether or not one predictor is 
capable for predicting the unseen sample. Those incapable 
predictors determined by the meta-predictor will be pruned, 
while, in contrast, the capable predictors will be selected to 
constitute the final dynamic ensemble system.

For different TSP datasets, the size of the local area and 
global area, and the extent of consensus are totally differ-
ent, which entails these crucial parameters to be adapted 
dynamically. After exploiting genetic algorithm to dynami-
cally adjust these key parameters, significant improvement 
to the prediction accuracy of DEP-TSPmeta is obtained.

Experiments are conducted on eight benchmark TSP data-
sets coming from different fields, including transport, tour-
ism, finance, crime, and labor market, etc. And DEP-TSPmeta 
is compared against three DES techniques (each technique 
measures the competence level of a base predictor based on 
a single criterion), as well as four static ensemble selection 
techniques. Empirical results demonstrate that DEP-TSP-
meta has better predictive precision than other techniques on 
most of the eight datasets. These results may benefit from its 
designing scheme, the advantages of which are summarized 
as follows: (1) It dynamically provides the most qualified 
ensemble system for distinct test instances; (2) It devises 
four distinct DEP criteria to evaluate the competence of base 
predictors from different angles. Even if one or two criteria 
might lose efficacy, it can still keep its validity due to the 
consideration of other criteria; (3) It automatically generates 
more meta-knowledge to train the meta-predictor and conse-
quently achieves significant performance gains even though 
the size of the training dataset is small. These characteristics 
yield the proposed DEP-TSPmeta technique with relatively 
high effectiveness and robustness.

Furthermore, numerous meta-attribute vectors generated 
by training instances can be used to train the meta-predictor, 
consequently, the problem of lack of training instances for 
meta-predictor could be overcome.

Also, some limitations exist in the proposed DEP-TSPmeta 
algorithm. Firstly, a desirable meta-predictor, obtained by 
training on the strength of four distinct meta-attributes, is 
the key to determine whether a base predictor is capable of 
predicting an unseen instance well or not. However, there are 
more criteria than just four sets of meta-attributes, which are 
worth considering for training a meta-predictor. Secondly, 
multiple DEP criteria are embedded in the proposed DEP-
TSPmeta algorithm encoded as different sets of meta-attrib-
utes. However, some DEP criteria are not suitable for every 
TSP problem. Different prediction problems may require dis-
tinct sets of meta-attributes and the meta-predictor training 

Table 12  The detailed RMSE performance of corresponding algo-
rithms on the Odonovan dataset

The boldface indicates the best RMSE performance obtained by the 
corresponding algorithm with different repetitions of experiments

RMSE Repetitions

Model 5 10 15 20

DEP-TSPmeta 0.2276 0.2088 0.2047 0.2078
DES-PALR 0.2500 0.2527 0.2563 0.2591
DES-CP-Clustering 0.2501 0.2642 0.2557 0.2546
DVS-OpOp 0.2609 0.2647 0.2633 0.2630
GASEN 0.2550 0.2787 0.2590 0.2632
AA 0.4167 0.3793 0.4131 0.3836
BS-ELM 0.3168 0.3410 0.3365 0.3448
BS-H-ELM 0.5454 0.4266 0.4838 0.4809

Table 13  The detailed MAE performance of corresponding algo-
rithms on the Odonovan dataset

The boldface indicates the best MAE performance obtained by the 
corresponding algorithm with different repetitions of experiments

MAE Repetitions

Model 5 10 15 20

DEP-TSPmeta 0.1776 0.1665 0.1624 0.1640
DES-PALR 0.1920 0.1968 0.1923 0.1988
DES-CP-Clustering 0.2054 0.2239 0.2122 0.2129
DVS-OpOp 0.2051 0.2091 0.2071 0.2072
GASEN 0.2093 0.2301 0.2124 0.2161
AA 0.3264 0.2967 0.3316 0.3070
BS-ELM 0.2590 0.2771 0.2690 0.2753
BS-H-ELM 0.4307 0.3404 0.3870 0.3854
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process should be optimized for each specific prediction 
problem. As such, in our future work, we will work on the 
following aspects for time series prediction: (1) designing 
novel criteria to evaluate the capacity of the base predictors 
more effectively, such as the ranking information based on 
the number of consecutive correct predictions made by the 
base predictors; (2) developing a new meta-attributes selec-
tion scheme based on optimization algorithms, and selecting 
adaptively an appropriate set of meta-attributes for specific 
prediction problems, so as to improve the performance of the 
meta-predictor, and consequently, the predictive accuracy of 
the algorithm.
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