
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2021) 12:1879–1891 
https://doi.org/10.1007/s13042-021-01282-z

ORIGINAL ARTICLE

An efficiency‑enhanced deep learning model for citywide crowd flows 
prediction

Zhongyi Zhai1  · Peipei Liu1 · Lingzhong Zhao1 · Junyan Qian1 · Bo Cheng2

Received: 8 October 2019 / Accepted: 3 February 2021 / Published online: 7 April 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
The crowd flows prediction plays an important role in urban planning management and urban public safety. Accuracy is a 
challenge for predicting the flow of crowds in a region. On the one hand, crowd flow is influenced by many factors such as 
holidays and weather. On the other hand, sample data about crowd flows are generally high-dimensional, which not only has a 
negative impact on the prediction accuracy but also increases computational complexity. In this paper, an efficiency-enhanced 
model is constructed for predicting citywide crowd flows based on multi-source data using deep learning techniques. Spe-
cifically, a data reconstruction mechanism is built with Bernoulli restricted Boltzmann machine (BRBM), for the purpose 
of reducing the dimension of sample data. A collaborative prediction mechanism is introduced to improve the prediction 
accuracy of crowd flows, in which a spatio-temporal data oriented prediction model is constructed based on bottleneck 
residual network that can reduce the effectively computational complexity of model training, and an auxiliary prediction to 
further optimize the prediction accuracy based on the fully-connected network. The proposed method is evaluated by using 
two open datasets. The experimental results show that our method can significantly improve the prediction accuracy and 
reduce the training time of the prediction model, compared with other methods.

Keywords Deep learning · Bernoulli-RBM · Data reconstruction · Bottleneck residual network · Crowd flows prediction

1 Introduction

With the rapid growth of population and economic develop-
ment in a city, crowds sometimes surge around in a prosper-
ous region rapidly. Consequently, a series of safety accidents, 
e.g., crowd stampedes, may be caused by such emergency. 
For instance, 36 persons were killed in a stampede acci-
dent at Shanghai’s Bund area when huge crowds of revelers 
gathered to celebrate the 2014 New Year. If crowd flows of 
every region in a city can be predict accurately, some safety 
accidents will be avoided effectively by taking emergency 
plans and measures in advance. Therefore, researches related 

to smart cities [1] and public safety have paid great attention 
to the problem of crowd flows forecasting.

Deep learning (DL) has become a promising approach 
for crowd flows prediction with the abundance of city data 
in recent years. Compared to traditional machine learning-
based prediction models, DL-based models can explore non-
linear features from crowd flows data, which enhances pre-
diction accuracy and applicability. Presently, some research 
works have utilized DL techniques to predict crowd flows 
[2–4]. These works usually use single traffic data to predict 
crowd flows. Nevertheless, the flow of crowds is influenced 
by many factors. For example, people may prefer to take 
part in big celebrations on holiday, reduce the number of 
going out on rainy days. Thus, multi-source data (eg., traffic 
data, weather data, holiday data) based prediction is a more 
competitive method for crowd flows in the cities.

Zhang et al. [5] proposed a deep ST-ResNet, which uses 
traffic and weather data to predict crowd flows. Although the 
ST-ResNet model improves the prediction accuracy com-
pared to other existing models, there are still some problems. 
Firstly, source data related to crowd flows are high dimen-
sional generally, which may reduce the prediction accuracy 
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of crowd flows and increase computational complexity. 
Then, the ST-ResNet model is complex, it not only requires 
more computational cost but also spends more time training 
the network.

To address the above problems, a multi-source data-based 
deep spatio-temporal bottleneck residual network (ST-B-
ResNet) prediction method is introduced. Firstly, BRBM-
based data reconstruction mechanism is used to reconstruct 
high-dimensional crowd flows data of a city. Then, a collab-
orative prediction mechanism is introduced to predict crowd 
flows. Specifically, a convolution-based neural network is 
employed to construct spatial dependencies between any two 
regions, and three bottleneck residual networks are used to 
model three temporal properties of crowd flows, such as 
closeness, day, week. Also, an auxiliary prediction method 
is introduced based on external factors to optimize the pre-
diction accuracy of crowds flows. Overall, number of param-
eters and computational complexity of prediction method 
is greatly reduced by establishing the bottleneck remaining 
cells. By calculation, the number of connections in ST-B-
ResNet is about a quarter of ST-ResNet. The experiment 
result shows that the proposed model can improve effectively 
the prediction accuracy, meanwhile reduce the training time.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the related work. Section 3 describes some 
and basic theories. Section 4 presents introduces the process 
of data reconstruction and the proposed crowd flows predic-
tion model. Section 5 presents the training algorithms or 
data reconstruction model and prediction model. Section 6 
shows the experiment and evaluation results. Finally, we 
conclude this paper in Sect. 7.

2  Related work

This section introduces the related work from two aspects: 
single data source-based crowd flows prediction, and multi-
source data-based crowd flows prediction.

2.1  Single data source‑based crowd flows 
prediction

Wang et al. studied the Gaussian regularization residual learn-
ing and proposed a noise-residual network (noise-ResNet) to 
predict crowd flows. Compared with the ST-ResNet algorithm, 
this method uses traffic flow data, which greatly reduces the 
training time and slightly improves prediction accuracy [2]. 
Nicholas G. Polson et al. proposed an architecture to predict 
traffic flows. In the traffic prediction architecture, a regular-
ized vector autoregressive model is used to perform variable 
selection, and a sequence of tanh activation functions is used 
to address the issue of non-linear and non-stationary relations 
between variables (speed measurements) [3]. Daisuke Sato 

et al. proposed a multi-agent simulator to predict human traf-
fic and proposed a data assimilation method that can real-time 
acquire data to improve simulation accuracy [6]. Daisuke Sato 
et al. developed a human traffic prediction system, which com-
bines the multi-agent simulator to predict the occurrence of 
congestion. Even if the past information is not available, the 
system can use the collected data on the day to predict the 
flow of crowds.

2.2  The multi‑source data‑based crowd flows 
prediction

Minh X. Hoang et al. proposed a method to predict two types 
of crowds flow for every region of a city based on big data, 
including human mobility data, weather conditions, and road 
network data [7]. In this method, seasonal and trend models 
are constructed as intrinsic Gaussian Markov random fields. 
It can cope with noisy and missing data. LiuYang et al. pro-
posed an end-to-end deep learning architecture to predict 
passenger inflow and outflow of the subway. The architecture 
integrates external environmental factors, temporal depend-
encies, spatial features, and metro operational properties to 
predict short-term metro passenger flow [8]. Wenzhe et al. 
proposed a mixed model based on Gaussian mixture cluster-
ing model to predict the number of bicycles rented/returned 
by each station group in a period of time in the future, in 
order to carry out redistribution in advance [9]. The model 
considers the impact of meteorological factors on the predic-
tion results. Zhang J et al. proposed a deep learning archi-
tecture combining the ResNet, GCN, and LSTM to forecast 
short-term passenger flow in urban rail transit on a network 
scale [10]. The proposed approach combines external factors 
eg., weather, holidays, and workdays or weekends, to col-
laboratively forecast the crowd flows. Lin Z et al. proposed 
the DeepSTN+ model based on space-time convolution to 
predict traffic flow [11]. The model considers the impact of 
external factors on crowd flows prediction. Although this 
model has improved the prediction accuracy, it does not con-
sider the problem of gradient vanishing as the depth of the 
network increases. Zheng et al. proposed deep ST-ResNet 
for predicting citywide crowd flow with external factors [5]. 
Deep ST-ResNet solves the problem of network performance 
degradation with the increase of network’s depth. However, 
a large number of high-dimensional crowd flows data still 
reduce prediction accuracy and increase computational com-
plexity of deep ST-ResNet.

3  Basic models

This section introduces some basic models used in crowd 
flows prediction, including crowds flow model, Bernoulli 
RBM and Bottleneck Residual Network.
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3.1  Modeling crowd flows problem

Definition 1 (Region) Formally, the domain of a city is 
divided into several P × Q grid maps based on longitude and 
latitude, where each grid represents a region. As shown in 
Fig. 1, ri,j is one of P × Q grids. For a grid (p1, q1) ∈ (P,Q) , it 
lies at the p1-th row and the q1-th column, and (p1, q1) ⇔ r1,1 . 
Each gird has two types of crowd flows: inflow and outflow.

Inflow denotes the total crowd flows entering a region 
from other areas within a given time interval. The outflow 
is the total crowd flows leaving a region for other regions 
within a certain time interval. Inflow/outflow can be meas-
ured by the number of cars driving on nearby roads, the 
number of pedestrians, and the number of people on public 
transportation systems (such as subways, buses).

Definition 2 (Inflow/outflow) Let M be a set of crowd 
flow trajectories at the n-th time interval. For a grid 
(p, q) ∈ (P,Q) , it lies at the p-th row and the q-th column. 
The following two formulas indicate the inflow and outflow 
of the crowd at the time interval n, respectively.

Where Tr : g1 → g2 → g3 ⋯ → gTr represents a trajectory in 
the set M, and gz is the geospatial coordinate, gz ∈ (p, q) 
means gz lies within the grid (p, q), and vice versa, | ⋅ | repre-
sents the cardinality of a set. Inflow and outflow in all P × Q 

(1)xin,p,q
n

=
∑

Tr∈M

|{z > 1|gz−1 ∉ (p, q) ∧ gz ∈ (p, q)}|

(2)xout,p,q
n

=
∑

Tr∈M

|{z ≥ 1|gz ∈ (p, q) ∧ gz+1 ∉ (p, q)}|

regions can be represented as a tensor Xn ∈ R2×p×q , where 
(Xn)0,p,q = x

in,p,q
n  , (Xn)1,p,q = x

out,p,q
n  . A spatial region is rep-

resented by a P × Q grid map. There are two types of flows 
in the (p, q), i.e., the crowd inflow and crowd outflow. Thus, 
the historical observation at any time can be represented by 
a tensor Xn ∈ R2×p×q.

Crowd flow prediction can be abstracted as fol-
low: Predict Xn based on the historical observations 
{Xn|n = 0, 1, 2, 3,⋯ , t − 1}.

3.2  Bernoulli restricted Boltzmann machine

Restricted Boltzmann Machine (RBM) is a variant of Boltz-
mann Machine. It is an energy-based model for unsupervised 
learning [12]. It has been used in data dimension reduction 
[13], collaborative filtering [14] and feature learning. RBM 
consists of a hidden layer with some random hidden units, 
which obey the Bernoulli distribution, and a visible layer 
with some random visible units, which obey the usually Ber-
noulli distribution or Gauss distribution.

If visible units in the RBM obey Bernoulli distribution, 
it is called Bernoulli-RBM (BRBM). All units are binary 
random units, that is, input data are either binary or real-
valued between 0 and 1.

The structure of the Bernoulli-RBM is shown in Fig. 2. 
Where, 

(1) i, j: represent the number of neurons contained in the 
visible layer and the hidden layer respectively.

(2) v = (v1, v2, v3,⋯ , vi)
T represents the state vector of the 

visible layer, in which vi represents the state of the i-th 
neuron.

(3) h = (h1, h2, h3,⋯ , hj)
T represents the state vector of the 

hidden layer, in which hj represents the state of the j-th 
neuron.

Fig. 1  The sketch map of crowd inflow/outflow meta-model in a city Fig. 2  The structure of Bernoulli RBM model
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(4) a = (a1, a2, a3,⋯ , ai)
T represents the bias value of the 

visible layer, in which ai represents the bias value of the 
i-th neuron.

(5) b = (b1, b2, b3,⋯ , bj)
T represents the bias value of the 

hidden layer, in which bj represents the bias value of 
the j-th neuron.

(6) W = (wi,j) represents the weight matrix connecting the 
hidden layer and visible layer, in which wi,j represents 
the weight between the i-th neuron in the visible layer 
and the j-th neuron in hidden layer.

3.3  Bottleneck residual network

Bottleneck ResNet(B-ResNet) [15] is a deep convolutional 
neural network. It can protect the integrity of information 
by bypassing input information to the output. The whole 
network only needs to learn the different parts between input 
and output. B-ResNet solves the problem of model perfor-
mance degradation with the increase of network layers. It 
can also reduce the number of network parameters greatly 
and has achieved good effect in many challenging areas such 
as object detection, and image classification, segmentation 
and localization [15].

Formally, the desired underlying mapping is denoted as 
H(x), and the stacked bottleneck residual blocks satisfied 
the mapping of F(x) ∶= H(x) − x . The original mapping is 
reconverted into F(x) + x [16]. Figure 3(a) shows a building 
block of B-ResNet, where the upper 1 × 1 layer is used to 
reduce dimensions, the 3 × 3 layer extracts the features with 
smaller input/output dimensions, the lower 1 × 1 layer recov-
ers the data style as upper layer’s, and Relu is an activation 
function. Figure 3(b) shows the ordinary convolution unit 
adopted by ST-ResNet, and two 3 × 3 convolution kernels 

are used to calculate the convolution. Xl and Xl+1 are the 
input and output of the bottleneck residual block respec-
tively. F(x) is a residual function.

4  Multi‑source data‑based deep 
spatio‑temporal bottleneck ResNet 
prediction model

Figure 4 shows the architecture of the deep ST-B-ResNet 
prediction model. It consists of two major components: data 
reconstruction mechanism, multi-source data fusion predic-
tion mechanism. The fusion prediction mechanism is com-
posed of spatio-temporal data oriented prediction module, 
and auxiliary prediction module based on external factors. 
Here, spatio-temporal data refer to traffic flows data of a city, 
such as taxi trajectory data and bicycle trajectory data, and 
these data include spatial property and temporal property. 
External data mainly include weather data, holiday data, and 
metadata (i.e., Weekend/Weekday). Traffic flows data and 
external data are used to predict collaboratively the flow of 
crowds in each region of a city.

As shown in left side of Fig. 4, the reconstruction mod-
ule firstly convert data of crowds flow into a multi-channel 
image format, where the inflow and outflow are mapping 
into a channel respectively. Then, the reshaped multi-chan-
nel image data are fed into BRBM for reconstructing into 
single-channel images, i.e.,two-dimensional flow matrix.

Spatio-temporal data oriented prediction module con-
sists of three time dimensions: closeness, day, and week. 
According to temporal properties of traffic flows data, dif-
ferent timestamps are selected and concatenated together to 
model three temporal properties respectively, that is, close-
ness, day, and week. For every time dimension, a sequence 

Fig. 3  Bottleneck convolution 
unit and traditional convolution 
unit
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of two-dimensional flow matrices is constructed. These three 
sequences separately trains the prediction model according 
to their own temporal data. In this way, a three-dimension 
time-awareness learning architecture is built. The outputs of 
three-dimension architecture are fused based on the param-
eter matrix [17] as XR . The network structures of every time 
dimension is composed of two CNNs and a sequence of 
bottleneck residual blocks. This network structure can deal 
with spatial dependencies between nearby and remote areas. 
In the auxiliary prediction module, external factors data are 
converted into binary vectors. The temperature and wind 
speed data are normalized to map the data between [0, 1].
Then, the data are fed into the two-layer fully-connected 
networks. The outputs of the full-connected network are 
defined as XE . XE and XR are intergrated together to further 
improve the prediction accuracy. Finally, the fusion results 
are mapped to [−1, 1] by Tanh activation function.

4.1  High‑dimensional data reconstruction

In the multi-source data-based crowds flow prediction, the 
reference data are from many fields, and have different 
forms. That is, the source data for crowds flow prediction 
may be high-dimensional. Generally, traffic flows data of a 

city are high-dimensional, which has a negative impact on 
the prediction accuracy of crowd flows. In addition, due to 
the environmental specificity of regions, the crowds flow 
of two regions may have a huge difference. For example, 
the crowd flows of one region may be 0 sometimes, while 
crowd flow of nearby region may be 10000. The differ-
ence between these data values may reduce the prediction 
accuracy of crowds flow. Therefore, a data reconstruction 
mechanism based on BRBM network is built to reconstruct 
traffic flows data and extract important features for improv-
ing the performance and effectiveness of prediction.

In the first step of data reconstruction, the source data 
are reshaped into multi-channel image format, as shown in 
Fig. 5. Two single-channel images at adjacent time points 
are combined into a multi-channel image. The inflow and 
outflow are mapping into a channel respectively. In this 
process, multiple channels of images are divided according 
to important factors such as the input and output of traffic. 
In the next step, the reshaped multi-channel image should 
be encoded by BRBM to obtain the single-channel image, 
so as to achieve dimension reduction. In BRBM, the value 
of each pixel point is between 0 and 1. It indicates the 
probability of the flow in this area.

Fig. 4  The architecture of multi-source data-based deep spatio-temporal bottleneck ResNet prediction model
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The BRBM network includes two layers: visible layer and 
hidden layer. The visible layer includes varity of visible units, 
and each visible unit corresponds to a image pixel. The hid-
den layers also include a lot of hidden units which are capable 
of modeling dependencies between input data, i.e. dependen-
cies between pixels in an image. Generally ,the hidden units 
is regarded as non-linear feature detectors [18]. Through 
the training of BRBM, the probability distribution of recon-
structed data can be approximately equal to the input data, so 
as to achieve the purpose of data dimension reduction.

Data reconstruction based on BRBM. What the energy 
model needs to do is to define an appropriate energy func-
tion firstly. Then the probability distribution of traffic flows 
data can be calculated with energy function. According 
to the probability distribution, an objective function, i.e., 
maximum likelihood can be solved. The joint configuration 
energy equation E(v, h|�) of BRBM can be defined as:

Where � = {a, b,w} , the joint probability distribution of the 
(v, h) can be got as follows:

Where z
�
 is normalized factor, and the expression is:

Based on eq. (3), p(v|�) , which represent the probability 
distribution function of crowd flows data of input layer, can 
be computed with the following:

(3)E(v, h|�) = −
∑

i

∑

j

wi,jvihj −
∑

i

aivi −
∑

j

bjhj

(4)p(v, h|�) = 1

z
�

exp(−E(v, h|�))

(5)z
�
=
∑

v

∑

h

exp(−E(v, h|�))

The process of training BRBM is to find a set of � so that 
the outputs of visible layer are as same as the distribution 
of traffic flows data. To achieve this goal, a likelihood func-
tion is introduced as follow:

Via maximizing the likelihood function, an optimal set of 
parameters � can be obtained. In eq.(7), vi is traffic flows data 
of the i-th region in a city, and s is the number of regions. 
The edge probability distribution of traffic flows data can be 
also calculated with following two formulas:

In eq. (8) and (9), “ � ” is sigmoid activation function, as 
follows:

 
Equations (8) and (9) are used repeatedly k times, which 

can represent the k-th sampling result. The probability dis-
tribution approximate to the input data can be obtained, i.e., 
p̃(h|v) . After m iterations, BRBM training can be completed. 
The processing of data reconstruction is shown in Fig. 6.

(6)p(v|�) = 1

z
�

∑

h

exp(−E(v, h|�))

(7)lnL
�,s =

∑

i∈s

p(vi)

(8)p(hj|v, �) = �

(
bj +

∑

i

viwi,j

)

(9)p(vi|h, �) = �

(
aj +

∑

j

hjwi,j

)

(10)� =
1

1 + exp(−x)

Fig. 5  Reconstruction process
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4.2  Multi source data fusion prediction

The fusion prediction mechanism consists of two major com-
ponents: spatio-temporal prediction module, auxiliary pre-
diction module. Spatio-temporal prediction module adopts a 
three-dimension time awarness learning structure. The three-
dimensions has same structure.

4.2.1  Spatial feature extraction with CNN

Intuitively, the crowds flows in nearby regions may affect 
each other. Moreover, with the existence of various types 
of transportation such as subway and highway, two remote 
locations can create spatial dependencies between each 
other. CNN has a powerful ability to capture spatial struc-
ture information [19]. More convolutional layers can capture 
a wider range of spatial dependencies. Therefore, a multi-
layers CNN is used to capture the spatial dependencies of 
any region. Being different from classical CNN, the convolu-
tions only used without subsampling.

In “closeness” dimension, the prediction model 
adopts a few 2-channel flows matrices in the recent time 
intervals to build temporal closeness dependence. Let 

historical data of the recent time fragment of entire region 
be [Xn−lc

,Xn−(lc−1)
,⋯ ,Xn−1] . This formula is regarded as the 

closeness dependent sequence. The dependent sequence is 
concatenated along with the time axis (i.e. time interval) as 
one tensor X(0) ∈ R2lc×p×q . Then, the tensor is fed into the 
Conv1, and the size of convolution kernel is 3 × 3.

4.2.2  Bottleneck residual block

In the traditional residual block, the accuracy of prediction 
model is generally improved by increasing network layers. 
However, with the increase of network layers, it increases the 
training parameters of the network and computational cost. 
It needs to take more time to train the prediction model. As 
a result, the prediction accuracy of the model is reduced. In 
recent years, bottleneck ResNet [15] has achieved state-of-
the-art results for training super deep neural networks. To 
solve above issues, the bottleneck ResNet is employed to 
deal with the prediction task. It consists of stacked sequen-
tially bottleneck residual blocks, as follows:

Where Xl+1 and Xl are output and input of the l-th bottleneck 
residual block in deep bottleneck ResNet. F is a residual 
function and Wl is the learnable parameter of the l-th bot-
tleneck residual block.

As shown in Fig. 7, a 3 × 3 convolution is surrounded 
by two 1 × 1 convolutions, batch normalization [20] and 
Relu function. Two 1 × 1 convolutions are used to reduce 
the dimension and then restore the data style respectively. 
The 3 × 3 convolution layer is as a bottleneck with smaller 
input/output dimensions. The structure can greatly reduce 
the number of training parameters and computational com-
plexity. Specifically, a residual block is composed of three 
BN+Relu+Conv. The Conv2 is added to follow the L-th bot-
tleneck residual block.

(11)Xl+1 = Xl + F(Xl,Wl), l = 1, 2, 3,⋯ , L

V

h

Data  P(v|h)

P(h|v) P(h|v)

...

P(v|h)
Reconstructed Data

P(h|v)

Fig. 6  The processing of BRBM-based data reconstruction

Fig. 7  The bottleneck residual block
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Following the three-dimension structure, the spatial 
tempural prediction model can be bulid. The day dependent 
sequence is [Xn−ld ⋅d

,Xn−(ld−1)⋅d
,⋯ ,Xn−d] , ld is time intervals 

from the day fragment, the trend is d, and d represents one-
day that describes daily periodicity. The week dependent 
sequence is [Xn−lw⋅w

,Xn−(lw−1)⋅w
,⋯ ,Xn−w] , lw represents the 

length of week dependent sequence, the trend is w, and w 
represents one-week that shows the weekly trend.

Beside, the crowd flows can also be affected by many 
complex external factors such as weather, holidays and activ-
ity events. Among these factors, holidays and other active 
events are certain, while the weather is uncertain in the 
future time interval of n. The forecasting weather at a time 
interval n or the approximate weather at a time interval of 
n − 1 can be adopted instead of the weather at a future time 
interval of n. Then, a two fully-connected layers are adopted 
to deal with external factors data and metadata. The output 
shape are similar to Xn . XE is used to represent the output of 
the auxiliary prediction module.

4.2.3  Prediction results fusion

In the fusion prediction mechanism, a parametric-matrix-
based fusion method [17] is used to fuse the outputs of the 
spatio-temporal prediction model and auxiliary prediction 
module.

In order to get more accurate prediction result, the train-
able parameter w is used to represent the degree to which 
crowd flows in different regions are affected in different 
periods. By adjusting w, the impact degree of the different 
dimensions are affected by closeness, day, and week can be 
set. Furthermore, the Hadamard product is made with the 
outputs of the three dimensions (i.e., closeness, day, and 
week) and their respective influence factors w, to get more 
accurate prediction results. The results of the three dimen-
sions are as follows:

Where, wc,wd,ww denote the weight matrix of closeness, 
day and week, respectively. The three weights are used to 
adjust the degree affected by closeness, day and week. “ ◦ ” 
represents Hadamard product. X(L+2)

c
 is the output of the 

closeness dimension. X(L+2)

d
 is the output of the day dimen-

sion, and X(L+2)
w

 is the output of the week dimension. XR is 
the fusion result of three dimensions. The output of auxiliary 
prediction model is defined as XE , and XE is merged with XR . 
The predicted value at the t-th time interval is defined as Xn:

Where, Tanh is a hyperbolic tangent, and it maps the output 
results into [0,1].

(12)XR = Wc◦X
(L+2)
c

+Wd◦X
(L+2)

d
+Ww◦X

(L+2)
w

(13)Xn = Tanh(XR + XE)

5  Algorithm

The Persistent Contrastive Divergence (PCD) algorithm 
[21] is used to train Bernoulli-RBM. Algorithm 1 outlines 
training process. First, the state of hidden layer nodes is 
initialized randomly. Then a single Markov chain sampling 
is used to get the state of hidden layer nodes after k-step 
(lines 7-9)and calculate gradient(lines 10-13). In the next 
iteration, the state of the last hidden layer nodes is used 
to initialize the value of hidden layer nodes sampled by 
Markov chain (lines 14). The above operation is executed 
circularly to represent approximately the joint probabil-
ity distribution of (v, h). Training process of deep ST-B-
ResNet is shown in Algorithm 2. A training instances from 
the original sequence data is constructed. Then deep ST-
B-ResNet is trained via back-propagation [22] and Adam 
(lines 7-11) [23]. 
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6  Experiment and evaluation

6.1  Experiment settings

Platform: The experiment is set on windows Server 2016 
with a 2.5GHz 8-Core CPU node. Pycharm intelligent inte-
grated development tool is used as the development environ-
ment. The python libraries and Keras [24] with the support 
of Theano [25] library are used to complete the experiment.

Data preparation: In the experiment, two different data-
sets are used to verify the deep ST-B-ResNet model. The 
detailed description of two datasets is as follows:

• TaxiBJ: Trajectory data are taxi GPS data and meteorol-
ogy data in Beijing from four-time intervals : 1st Jul.2013 
- 30th Otc.2013, 1st Mar.2014 - 30th Jun.2014, 1st 
Mar.2015 - 30th Jun.2015, 1st Nov.2015 - 10th Apr.2016. 

According to Definition 2, two types of crowd flows are 
obtained. The data are selected from the past four weeks 
as testing data, and all data before as training data.

• BikeNYC: Trajectory data are taken from the New York 
bicycle system from April 1 to September 30, 2014. The 
trajectory data include the duration of trajectory, the start 
and end station IDs, and the start and end times. Among 
the data, the past 10 days were selected as testing data 
and the others as training data.

Preprocessing: The traffic flows data contain temporal 
and spatial properties. Therefore, before the data are recon-
structed, the time variables need to be removed, and the 
Min-Mix-Scaler normalization method is used to map data 
into the range [0, 1]. The external factors data, such as holi-
day data, weather data, and metadata, are converted into 
binary vectors. The temperature and wind speed data are 
normalized to [0,1].

Table 1 shows 7 baseline models, including 4 traditional 
machine learning models and 3 deep learning models.

Hyperparameters settings: In the architecture of deep 
ST-B-ResNet, the convolutions of Conv1 adopt 32 filters of 
size 3 × 3 and the convolutions of Conv2 adopt two filters 
of size 3 × 3 . The convolutions of all bottleneck residual 
blocks use 16 filters of size 1 × 1 , 16 filters of size 3 × 3 
and 64 filters of size 1 × 1 . The batch size is 32. There are 5 
extra hyper-parameters in the deep ST-B-ResNet the p and 
q are empirically fixed to one-day and one-week, respec-
tively. Lengths of the three dependent sequences are set as: 
lc ∈ {3, 4, 5}, lp ∈ {1, 2, 3, 4}, lq ∈ {1, 2, 3, 4}.

ST-ResNet adopts the common residual units [5]. The 
first convolutional layer adopts 32 filters of size 3 × 3 , and 
the second convolutional layer adopts 64 filters of size 3 × 3 .

ST-ResNet and ST-B-ResNet adopt similar structure 
and the input data. In this way, the operation times of 
these two models can be illustrated by calculating the 
number of connections of residual elements. The number 
of partial connections of residual element in ST-B-ResNet 

Table 1  Baselines models

Model Describtion

HA The average value of historical crowd flows data for a certain time period is used to predict the flow of crowds for that time period.
ARIMA The Auto-regressive Integrated Moving Average(ARIMA) is primarily used to understand and predict future values in time series.
SARIMA Seasonal ARIMA
VAR Vector auto-regressive(VAR) is a spatio-temporal model that captures the pairwiserelationship between all streams, and it has 

greatly computational. cost with a large number of parameters.
ST-ANN It extracts spatial and temporal features firstly, then these features are fed into artificial neural networks.
DeepST It is a deep neural network (DNN)-based spatio-temporal data prediction model that shows good results on crowd flows prediction.
ST-ResNet It is a deep spatio-temporal residual networks prediction model. Compared with the above several models, the ST-ResNet model 

improves the prediction accuracy.
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is:1 × 1 × 16 + 3 × 3 × 16 + 1 × 1 × 64 = 224 . The number 
of partial connections of residual element in ST-ResNet is 
: 3 × 3 × 32 + 3 × 3 × 64 = 864 . The connections of ST-
B-ResNet is about a quarter of ST-ResNet’s. Overall, the 
computational complexity of ST-B-ResNet is less than ST-
ResNet’s. Generally, the lower computational complex-
ity learning model has, the less training time the learning 
architecture needs to consume.

Evaluation metrics: The mean squared error (MSE) is 
used as metrics to evaluate the accuracy of Bernoulli-RBM 
on data reconstruction, as follows:

Where, ṽ and vi represent the reconstructed data and the 
original input data respectively, and z represents the num-
ber of train data.

Taking the data provided by the New York bicycle sys-
tem as an example, the relationship between the errors of 
data reconstruction and the number of training batch is 
shown in Figs. 8 and  9 respectively. The ordinate of the 
image represents the reconstruction error and the abscisic 
coordinate represents the batch size. With the increase of 
training batch times, reconstruction error becomes smaller 
and smaller and tends to be stable gradually. The recon-
struction error of crowd inflow data is reduced to 0.0017 
and the reconstruction error of crowd outflow data is 
reduced to 0.023. Finally, the experiment results show that 
it is very effective to reconstruct the data using BRBM.

The Root mean squared error (RMSE) is used to evalu-
ate the prediction accuracy of the deep ST-B-ResNet 
model, as follows:

(14)MSE =
1

z
(vi − ṽ)2

(15)RMSE =

√
1

z
(yi − ỹ)2

where, ỹ and yi are the predicted value and ground truth 
respectively, z is the number of all predicted values.

6.2  Results on TaxiBJ

Several variants of deep ST-B-ResNet with different factors 
are designed, such as L12-E. L12-E considers all external 
factors and has 12 bottleneck residual blocks. The details 
are as follows:

• The internal structure of bottleneck residual blocks. 
In the experiment, two different types of bottleneck resid-
ual blocks are used. L12-E adopts 12 bottleneck residual 
blocks. Compared with L12-E, the bottleneck residual 
block of L12-E-BN adds two batch normalization(BN) 
layers, and each of the two BN layers is added before 
ReLU.

• External factors. L12-E considers the external factors, 
including holiday, weather, and metadata. If not, the 
model is denoted as L12.

• Results fusion. Compared with L12-E, L12-E-noFusion 
adopt parametric matrix fusion.

Table 2 shows the RMSE of the ST-B-ResNet model and 
the other seven models on the TaxiBJ dataset. It can be 
seen that there is a big gap in performance between the 
traditional model and the deep learning model. In par-
ticular, The RMSE of ST-B-ResNet is smaller than ST-
ResNet’s under the same structure. That is to say, the 
performance of ST-B-ResNet has been improved. In the 
comparison experiment, the ST-B-ResNet has a minimum 
RMSE, i.e., 14.94. In addition, the RMSE of L12-E-
noFUSION is 14.98, which increase about 0.04 compared 
to L12-E-BN. That is, the fusion prediction can improve 
the accuracy to some extent.Fig. 8  Reconstruction error of NYC bicycle inflow data

Fig. 9  Reconstruction error of NYC bicycle outflow data
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The deep ST-B-ResNet model also reduces greatly the 
number of trainable parameters, saves a lot of computa-
tional costs, and shortens the training time of the model. 
Figures 10 and  11 compare the structural parameters and 
training time of four different ST-ResNet models and ST-
B-ResNet models. The ST-B-ResNet reduces the number 
of trainable parameters by 16.5 to 20.1 times, compared 
to ST-ResNet on TaxiBJ, and it also reduces the running 
time of network models by 2 to 3 times.

6.3  Results on BikeNYC

In the following experiments, four bottleneck residual blocks 
are used in the ST-B-ResNet model, and the metadata is 
considered as auxiliary features like DeepST [11]. Table 3 
shows the results based on BikeNYC. The RMSE of ST-B-
ResNet is 3.58, which have a huge improvement compared 
to other models. Figure 12 shows the number of parameter 
of ST-B-ResNet and ST-ResNet. As can be seen, the scale 
of parameters of ST-B-ResNet is a ninth of ST-ResNet’s. 
Figure 13 shows the running time of ST-B-ResNet and ST-
ResNet. The ST-B-ResNet just need about 1/6 training time 
of ST-ResNet. The experiment results show that the ST-
B-ResNet model saves computational cost and effectively 
improves the prediction accuracy.

7  Conclusion

In this paper, a multi-source data-based deep ST-B-ResNet 
prediction model has been proposed to predict the flow of 
crowds in every region of a city, and a Bernoulli-RBM-based 

Table 2  Comparison among different models on TaxiBJ

Model RMSE

HA 57.69
ARIMA 22.78
SARIMA 26.88
VAR 22.88
ST-ANN 19.57
DeepST 18.18
ST-RESNET/L12-E 12 residual blocks+E 16.89
ST-B-RESNET/L12-E(ours) 12 residual blocks+E 14.95
ST-RESNET/L12-E-BN L12-E with BN 16.69
ST-B-RESNET/L12-E-

BN(ours)
L12-E with BN 14.94

ST-RESNET/L12 12 residual blocks 17.00
ST-B-RESNET/L12(ours) 12 residual blocks 14.96
ST-RESNET/L12-E-noFusion 12 residual blocks + E with-

out fusion
17.96

ST-B-RESNET/L12-E-
noFusion(ours)

12 residual blocks + E with-
out fusion

14.98

Fig. 10  Number of parameters on TaxiBJ of the network

Fig. 11  The running time on TaxiBJ

Table 3  Comparison among different models on BikeNYC

Model RMSE

ARIMA 10.07
SARIMA 10.56
VAR 9.92
DeepST-C 8.39
DeepST-CP 7.64
DeepST-CPT 7.56
DeepST-CPTM 7.43
ST-ResNet[4 residual blocks] 6.33
ST-B-ResNet [ours, 4 residual blocks] 3.58
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data reconstruction mechanism is employed to reconstruct 
crowd flows data for optimizing the prediction model. The 
deep ST-B-ResNet model is evaluated based on two types 
of crowd flows data in Beijing and New York. The results 
show that the deep ST-B-ResNet model achieves better pre-
diction results than other baseline models. The prediction 
accuracy of the proposed model is beyond other baseline 
models. Deep ST-B-ResNet can handle effectively the tasks 
of crowd flows prediction. In the future, we will consider 
adopting the DenseNet model to improve the prediction 
accuracy of crowds flow. DenseNet establishes a dense con-
nection between all the previous layers and the later layers. 
In this way, it implements feature reuse. In theory, DenseNet 
can achieve better prediction performance with fewer param-
eters and computational costs than ResNet.
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