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Abstract
The notion of Yager’s q-rung orthopair fuzzy set (QROFS) have gained considerable and continuously increasing attention as 
a useful tool for imprecision and uncertainty representation due to its capability to discard the constraints on the membership 
and nonmembership functions as generally required by its intuitionistic fuzzy counterpart. Among the generalizations and 
variants established in the past few years, the interval-valued QROFSs (IVQROFSs) have been diffusely considered to be a 
powerful generalization of the interval-valued fuzzy sets. The continuous ordered weighted averaging (COWA) operator has 
been extended successfully to some special cases of IVQROFSs, including interval-valued intuitionistic and Pythagorean 
fuzzy sets. Thus, to expand on previous studies, several continuous IVQROF (C-IVQROF) aggregation operators are pro-
posed in this study. First, the dual C-GOWA operator is defined on the basis of the continuous generalized ordered weighted 
averaging (C-GOWA) operator and Yager class of fuzzy negation. Subsequently, the C-IVQROFOWA operator with two 
independent parameters is constructed, and the weighted C-IVQROFOWA operator is then proposed for aggregating a 
collection of IVQROFSs. The C-IVQROFOWA operator and its weighted version can model commendably the attitudinal 
characteristics of the decision-maker. Second, a parameter optimization model and its algorithm-solving strategy driven by 
consensus measures are built to develop a group decision-making method. Finally, a case study to evaluate the SmartWatch 
design alternatives is provided to demonstrate the proposed approach, and the results of a comparative analysis verify the 
rationality and efficiency of the proposed operators.
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1 Introduction

Q-rung orthopair fuzzy sets [1–3] (QROFSs) are fuzzy sets 
[4] in which the membership grades of an element are the 
pairs of values in the unit interval, (�(x), v(x)) , one of which 
indicates support for membership in the fuzzy set and the 
other represents support against membership. QROFS pre-
sents the following prominent features:

• Large space for membership the constraining relation-
ship between the support for and against memberships is 
(�(x))q + (v(x))q ≤ 1 with q ≥ 1;

• Strong degeneracy of sets the Atanassov’s intuitionistic 
fuzzy sets [5] and what Yager called Pythagorean fuzzy 
sets [6] are special cases of QROFSs with q = 1 and 
q = 2 , respectively;

• Flexibility in the application it allows the decision-maker 
the freedom to provide information in support or against 
the membership of an element in a set.

QROFSs have received considerable critical attention from 
researchers since its introduction. Operational laws and 
aggregation operators are proposed to aggregate q-rung 
orthopair fuzzy (QROF) numbers [7–16], including QROF 
Heronian mean, Hamy mean, Bonferroni mean, Maclaurin 
symmetric mean, and Power mean operators. Information 
measures, such as distance measure, similarity measure, 
entropy, and inclusion measure, are used to analyze the rela-
tionship between different QROFSs [17–22]; the intrinsic 
correlation of these measures have also been explored [23]. 
QROF integrals and differentials are constructed to aggre-
gate QROF continuous information [24–27]. QROF pref-
erence relation has been proposed to deal with the QROF 
decision-making problems of the comparison matrix [28, 
29]. QROF multiple attribute decision-making (MADM) 
method are developed to solve MADM problems with hier-
archical interacting criteria under QROF environment [30]. 
Existing research results are used to consolidate the theoreti-
cal construction of QROFSs and promote the application of 
QROFSs in various decision-making problems.

With the continuous progress of society and the rapid 
development of the economy, decision-making problems 
have become increasingly complicated with their notice-
able uncertainty and fuzzy human thinking [31–33]. There-
fore, in the decision-making process, unlike the formal 
representation of precise values, the representation of input 
parameters in the form of interval values is more suitable 
in the current decision-making environment. For this rea-
son, a generalization of QROFSs has been introduced by 
some researchers [34, 35] in terms of interval-valued fuzzy 
sets called interval-valued QROFSs (IVQROFSs). To date, 
existing studies include mainly the operations of union, 

intersection, addition, and multiplication (with real scalars) 
of IVQROFSs. On this basis, the interval-valued q-rung 
orthopair fuzzy weighted averaging (IVQROFWA) [35] and 
Maclaurin symmetric mean operators are developed [36] to 
aggregate different IVQROFSs. Moreover, a new notion 
of the IVQROF graph (IVQROFG) [37] is introduced to 
investigate the common problem of determining the short-
est path in a traffic network. The interval-valued QROF 
(IVQROF) operators mentioned above are constructed by 
directly extending the QROF operators to the interval-valued 
fuzzy environment. The characteristics of its aggregation 
process are that the endpoints of interval-valued member-
ship (or non-membership) are directly aggregated, and the 
information aggregation results are dominated by the inter-
val endpoint values, and the contribution of other points in 
the interval is rarely considered.

The continuous ordered weighted averaging (COWA) 
operator was introduced by Yager in [38] and is a continu-
ation of the OWA operator [39, 40] when the given argu-
ment is a continuous-valued interval rather than an exact 
argument. Since its introduction, the COWA operator has 
been used in many fields, including preference relations 
[41, 42], information measures [43–46], and aggregation 
operators [47–50]. The COWA operator is applied to pro-
pose the weighted continuous interval-valued intuitionistic 
fuzzy ordered weighted averaging (WC-IVIFOWA) operator 
[47–49]. Another interesting extension of the OWA opera-
tor is the continuous ordered weighted quadratic averaging 
(C-OWQA) operator [51], which is applied to propose the 
weighted continuous interval-valued Pythagorean fuzzy 
ordered weighted averaging (WC-IVPFOWA) operator [52]. 
As mentioned earlier, intuitionistic and Pythagorean fuzzy 
sets are two special cases of IVQROFSs and the COWA 
and C-OWQA operators are the core tools for constructing 
WC-IVIFOWA and WC-IVPFOWA operators, respectively. 
Correspondingly, the COWA and C-OWQA operators are 
two special cases of a generalization of ordered weighted 
generalized averaging (OWGA) operator [53] called the 
continuous OWGA (COWGA) operator [51]. The aggrega-
tion of group information and multi-attribute information is 
a necessary process to obtain comprehensive information 
of alternatives and an important stage to deal with multi-
attribute group decision-making (MAGDM) problems. For 
the MAGDM approaches proposed in references [47–49, 
52], as the core tools, the WC-IVPFOWA and WC-IVI-
FOWA operators can effectively aggregate weighted group 
evaluation information, reduce the computational complex-
ity of information aggregation and improve the accuracy 
of decision-making.However, the COWA operator has not 
been extended to the IVQROF environment. Furthermore, 
for any given interval-valued intuitionistic fuzzy numbers 
(IVIFNs), decision makers can not obtain any IFNs con-
tained in the IVIFNs by using the C-IVIFOWA operator. The 
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C-IVPFOWA operator in interval-valued Pythagorean fuzzy 
environment exhibits the same shortcoming alike. From a 
mathematical point of view, the reason for the aforemen-
tioned shortcoming is that the values of attitudinal charac-
teristics of interval-valued membership and interval-valued 
non-membership are the same, and there is no independent 
setting. The deficiency of the operators makes it easier for 
decision makers to ignore most of the information in the 
given interval-valued fuzzy numbers, and then it is diffi-
cult to accurately model the attitude preference of decision 
makers.

These facts motivate us to design a robust decision-
making framework with the application of continuous 
ordered weighted averaging operator in solving the group 
decision-making (GDM) scenarios under IVQROF environ-
ment. Concretely, this study proposes continuous IVQROF 
aggregation operators by combining the COWGA opera-
tor with IVQROFSs. The dual COWGA (DCOWGA) is 
constructed using Yager’s class negation [54, 55] and the 
COWGA operator. With COWGA and DCOWGA operators 
as the aggregation tools, the continuous IVQROF ordered 
weighted averaging (C-IVQROFOWA) and weighted 
C-IVQRFOWA (WC-IVQROFOWA) operators are proposed 
to aggregate IVQROF numbers. Based on these operators, 
a GDM method with consensus-improving is developed 
with the help of a parameter optimization model. Several 
novel consensus measures are defined in the use of the pro-
posed WC-IVQROFOWA operator. This method is used to 
solve problems in the evaluation of SmartWatch appearance 
design alternatives.

The remainder of this paper is organized as follows. 
In Sect. 2, we briefly review basic concepts, such as the 
IVQROFSs, GOWA operator, and DGOWA operator. In 
Sect. 3, the WC-IVQROFOWA operator is proposed. A 
decision-making approach based on the WC-IVQROFOWA 
operator and parameter optimization model is presented in 
Sect. 4, and an illustrative example is examined in Sect. 5. 
Comparison analysis is performed between the aggregation 
operators proposed in this study and the existing aggregation 
operators in Sect. 6. The main conclusions of the study are 
drawn in Sect. 7.

2  Preliminaries

In this section, we provide the necessary background for our 
subsequent developments.

2.1  Q‑rung orthopair fuzzy set interval‑valued 
q‑rung orthopair fuzzy set

Yager [1] generalizes Atanassov’s intuitionistic fuzzy set 
theory [5] with the concept of QROFS as defined below.

Definition 1 [1] Let X be a universe of discourse. A QROFS 
P in X is expressed as

where the function �P ∶ X → [0, 1] defines the degree of 
membership and vP ∶ X → [0, 1] defines the degree of non-
membership of the element x ∈ X to P, respectively. For 
every x ∈ X , it holds that (�P(x))

q + (vP(x))
q ≤ 1 . The degree 

of indeterminacy is �P(x) = (1 − (�P(x))
q − (vP(x))

q)
1∕q.

For simplicity, we define (�P(x), vP(x)) as a q-rung 
orthopair fuzzy number (QROFN) as denoted by 
P = (�P, vP) , where �P, vP ∈ [0, 1],�P = (1 − �q − vq)1∕q 
and �q+vq ≤ 1 . It can be conveniently observed that the 
intuitionistic fuzzy sets (IFSs) [5] are QROFS with q = 1 
and Yager’s Pythagorean fuzzy sets (PFSs) [6] are QROFS 
with q = 2.

Theorem 1 [1] If � is a QROFN on X and if q1 > q , then � 
is also a QROFN on X.

Corollary 1 [1] (1) Any IFS is a QROFS for all q ≥ 2;

(2) An IFS is a PFS;

(3) Any PFS is a QROFS for q ≥ 2.

Definition 2 [17] Let � = (�, v) be a QROFN solid at q, then 
s(�)=�q − vq is the score function of � and h(�)=�q + vq is 
the accuracy function of �.

Based on the defined score function and the accuracy 
function, a ranking method was proposed in the following 
definition.

Definition 3 [17] Let �i = (�i, vi) be two QROFNs solid at q. 

1. If s(𝛼1) < s(𝛼2) , then 𝛼1 ≺ 𝛼2;
2. If s(�1) = s(�2) , (i) h(𝛼1) < h(𝛼2) , 𝛼1 ≺ 𝛼2 , and (ii) if 

s(�1) = s(�2) and h(�1) = h(�2) , then �1 = �2.

Definition 4 [34, 35] Let X be a universe of discourse. An 
IVQROFS P̃ in X is expressed as

where the function �̃�P(x) = [𝜇−
P
(x),𝜇+

P
(x)] defines the degree 

of membership and ṽP(x) =
[
v−
P
(x), v+

P
(x)

]
 defines the degree 

of non-membership of the element x ∈ X to P, respectively; 
and for every x ∈ X , it holds that (�+

P
(x))

p
+ (v+

P
(x))

p ≤ 1 . 
The degree of indeterminacy is

(1)P =
�⟨x,�P(x), vP(x)⟩�x ∈ X

�
,

(2)P̃ =
�⟨x, �̃�P(x), ṽP(x)⟩�x ∈ X

�
,
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For simplicity, we call (�̃�P(x), ṽP(x)) an interval-valued 
q-rung orthopair fuzzy number (IVQROFN) denoted by 
P = (�̃�P, ṽP) = ([𝜇−

P
,𝜇+

P
], [v−

P
, v+

P
]) , where (�+

P
)
p
+ (v+

P
)
p ≤ 1 . 

Let P = ([�−,�+], [v−, v+]) be an IVQROFN solid at q, then

is the score function [35] of P and

is the accuracy function [35].
A ranking method of IVQROFNs is proposed based 

on the above score and the accuracy functions [35]. Let 
�̃�i = ([𝜇−

i
,𝜇+

i
], [v−

i
, v+

i
])(i = 1, 2) be two IVQROFN solids 

at q. 

1. If S(�̃�1) < S(�̃�2) , then �̃�1 ≺ �̃�2;
2. If S(�̃�1) = S(�̃�2) , (i) H(�̃�1) < H(�̃�2) , �̃�1 ≺ �̃�2 , and (ii) if 

S(�̃�1) = S(�̃�2) and H(�̃�1) = H(�̃�2) , then �̃�1 ∼ �̃�2.

2.2  GOWA and DGOWA operators

Definition 5 [56] Fuzzy negation is a mapping denoted by 
N ∶ [0, 1] → [0, 1] , which satisfies the following properties: 

1. Boundary conditions: N(0) = 1 and N(1) = 0;
2. Monotonicity: for all a, b ∈ [0, 1] , if a ≤ b , then 

N(a) ≥ N(b);
3. Continuity;
4. Involution: N(N(a)) = a for all a ∈ [0, 1].

The Yager class of fuzzy negation [54, 55] is defined by 
Nq(a) = (1 − aq)1∕q , where q ∈ (0,∞) . When q = 1 , 
this function becomes the classical fuzzy negation 
N1(a) = 1 − a , whereas q = 2 will make this function 
become the Pythagorean negation [6] N2(a) =

√
1 − a2.

Definition 6 [56] An aggregation function is a function of 
n > 1 arguments that maps the (n-dimensional) unit cube 
onto the unit interval 𝖥 ∶ [0, 1]n → [0, 1] with the following 
properties: 

�̃�P(x) = [𝜋−
P
(x),𝜋+

P
(x)]

=
[(
1 −

(
𝜇+
P
(x)

)p
−
(
v+
P
(x)

)p)1∕p
,

(
1 −

(
𝜇−
P
(x)

)p
−
(
v−
P
(x)

)p)1∕p ]
.

S(�)=
1

2
+

(�−)q +
(
�+

)q
− (v−)q −

(
v+
)q

4

H(�)=
(�−)q +

(
�+

)q
+(v−)q+

(
v+
)q

2

1. �(0, 0,… , 0) = 0 and �(1, 1,… , 1) = 1;
2. aj ≥ bjimplies �(a1, a2,… , an) ≥ �(b1, b2,… , bn) for all 

j.

The dual of aggregation function with respect to fuzzy 
negation is given as follows:

Definition 7 [56] Let 𝖥 ∶ [0, 1]n → [0, 1] be an aggregation 
function. Then, the aggregation function �d is given by

which is the dual of � with respect to N  , where N  is a nega-
tion function.

Definition 8 [53] A mapping 𝖦𝖮𝖶𝖠 ∶ Rn → R is called a 
generalized ordered weighted averaging (GOWA) operator 
of dimension n if

where � is an index function to ensure that x�(j) is the j-th 
largest of the xi and the W with components wj for j = 1 , 
such that wj ∈ [0, 1] and 

∑n

j=1
wj = 1 . p is a parameter with 

p ∈ [−∞,+∞] and p ≠ 0.

We can obtain the OWA weights by using

where basic unit-interval monotonic (BUM) function [40] 
Q ∶ [0, 1] → [0, 1] is monotonic with the following prop-
erties: (1) Q(0) = 0 ; (2) Q(1) = 1 ; and (3) Q(x) ≥ Q(y) 
if x > y . Hence, these weights satisfy the conditions 
wj ∈ [0, 1](j = 1, 2,… , n) and 

∑n

j=1
wj = 1 . When p = 1 , the 

GOWA operator becomes the OWA operator as follows [39]:

Definition 9 [1] Let 𝖦𝖮𝖶𝖠 ∶ Rn → R be a generalized 
ordered weighted averaging aggregation operator of dimen-
sion n and its dual generalized ordered weighted averaging 
aggregation (DGOWA) operator with respect to a q-rung 
negation Nq is defined as follows:

According to the above definitions, we can obtain

(3)�d
(
x1, x2,… , xn

)
= N

(
�
(
N
(
x1
)
,N

(
x2
)
,… ,N

(
xn
)))

,

(4)����
(
x1, x2,… , xn

)
=

(
n∑
i=1

wjx
p

�(j)

)1∕p

,

(5)wj = Q(
j

n
) − Q(

j − 1

n
), j = 1, 2,… , n,

(6)���
(
x1, x2,… , xn

)
=

n∑
i=1

wjx�(j).

(7)
�����

(
x1, x2,… , xn

)
= Nq

(
����

(
Nq

(
x1
)
,… ,Nq

(
xn
)))

.
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where � is an index function to ensure that Nq(x�(j)) is the 
j-th largest of Nq(xi).

3  WC‑IVQROFWA operator

This section defines the weighted continuous interval-
valued q-rung orthopais fuzzy ordered weighted averaging 
(C-IVQROFOWA) and studies its properties. Based on this 
operator, a new score and accuracy functions are introduced.

(8)

�����
�
x1, x2,… , xn

�

= Nq

⎛⎜⎜⎝

�
n�
i=1

wj

�
Nq

�
x�(j)

��p
�1∕p ⎞⎟⎟⎠

,

3.1  Dual continuous generalized ordered weighted 
averaging (DC‑GOWA) operator

Definition 10 [51] The continuous generalized ordered 
weighted averaging (C-GOWA) operator is defined as 
follows:

When p = 1 the C-GOWA operator becomes the C-OWA 
operator, it can be defined as [38]

In the following, we present the establishment of the 
C-GOWA operator. 

(9)�Q([a, b]) =

(
∫

1

0

dQ(y)

dy
(bp − y(bp − ap))dy

)1∕p

.

(10)
� − ���

(
x1, x2,… , xn

)

= ∫
1

0

dQ(y)

dy
(b − y(b − a))dy.

Let Q be a BUM function and wj = Q j
n

)
− Q j−1

n

)
(j = 1, 2, · · · , n), and

∑n
j=1 wj = 1. Based on the

GOWA operator, we can show that the discrete case is as follows:

φQ (x1, · · · , xn) =
(∑n

j=1

(
Q

(
j

n

)
−Q

(
j − 1
n

))
ypj

)1/p

, (11)

where yj is the j-th largest of the xi. [a, b] ⊆ [0, 1] is assumed to be a continuous interval-valued argument and

we will take a finite approximation of φQ ([a, b]). Let δ = (bp − ap)/n , yj = (bp − jδ)1/p , b = y0 ≥ · · · ≥ yn = a,

then

φQ ([a, b]) ≈ φQ (y1, · · · , yn) =
(∑n

j=1
wjy

p
j

)1/p

=
(∑n

j=1

(
Q

(
j

n

)
−Q

(
j − 1
n

))
×

(
bp − j (bp − ap)

n

))1/p . (12)

Let ∆y = 1/n , then

φQ ([a, b]) ≈
(∑n

j=1

(
Q (j∆y)−Q (j∆y −∆y)

∆y

)
× (bp − j∆y (bp − ap))∆y

)1/p

. (13)

When n → ∞ denoting y = j∆y = j/n , then y ∈ [0, 1] and

φQ ([a, b]) =
(∫ 1

0

dQ (y)
dy

(bp − y (bp − ap)) dy
)1/p

. (14)
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Theorem  2 [51]  (Monotonicity)  Let �Q be the 
C-GOWA operator. If a1 ≥ a2, b1 ≥ b2 for all Q, then 
�Q([a1, b1]) ≥ �Q([a2, b2]).

Theorem 3 [51] (Boundness) Let �Q be the C-GOWA opera-
tor. For all Q, we have a ≤ �Q([a, b]) ≤ b.

Theorem 4 [51] If Q1 ≥ Q2 , then �Q1
([a1, b1]) ≥ �Q2

([a2, b2])

.

Definition 11 The dual continuous generalized ordered 
weighted averaging (DC-GOWA) operator is defined as 
follows:

where Nq is the q-rung negation function.

The derivative of the DC-GOWA operator is analyzed 
based on the establishment of the C-GOWA operator. 

(15)
�d
Q
([a, b]) = Nq

((
∫

1

0

dQ(y)

dy

((
Nq(a)

)p

−y
((
Nq(a)

)p
−
(
Nq(b)

)p))
dy
)1∕p )

,

Based on the DGOWA operator, we can show that the discrete case is as follows:

φd
Q (x1, · · · , xn) = Nq (φQ (Nq (x1) , · · · ,Nq (xn))) . (16)

[a, b] ⊆ [0, 1] is assumed to be a continuous interval-valued argument, and we will take a finite approximation

of φd
Q ([a, b]). Let δ = (bp − ap)/n , yj = (bp − jδ)1/p , b = y0 ≥ · · · ≥ yn = a, then we have

φd
Q ([a, b]) ≈ φd

Q (y1, · · · , yn) = Nq (φQ (Nq (y1) , · · · ,Nq (yn))) . (17)

Let ydj = Nq (yn−j+1), then Nq (a) ≥ yd0 ≥ · · · ≥ ydn = Nq (b) approximate [Nq (b) ,Nq (a)]

φd
Q ([a, b]) ≈ Nq (φQ (Nq (y1) , · · · ,Nq (yn))) ≈ Nq (φQ [Nq (b) ,Nq (a)]) . (18)

According to Definitions 10 and 11, when n → ∞, we have

φd
Q ([a, b]) = Nq

((∫ 1

0

dQ (y)
dy

((Nq (a))
p − y ((Nq (a))

p − (Nq (b))
p)) dy

)1/p )
. (19)

Theorem 5 (Monotonicity) If a1 ≥ a2, b1 ≥ b2 for all Q, then 
�d
Q
([a1, b1]) ≥ �d

Q
([a2, b2]).

Proof According to Definitions 10 and 11, we have

From ***Theorem 2, if a1 ≥ a2, b1 ≥ b2 for all , then

Therefore, we have

and

From this and Nq

(
x1
) ≤ Nq

(
x2
)
 for x1 ≥ x2 and 

x1, x2 ∈ [0, 1] . Thus,

The proof is completed.   ◻

�d
Q
([a, b]) = Nq

(
�Q

[
Nq(b),Nq(a)

])
.

�Q

([
a1, b1

]) ≥ �Q

([
a2, b2

])
.

�Q

([
Nq

(
b1
)
,Nq

(
a1
)]) ≤ �Q

([
Nq

(
b2
)
,Nq

(
a2
)])

Nq

(
�Q

([
Nq

(
b1
)
,Nq

(
a1
)]))

≥ Nq

(
�Q

([
Nq

(
b2
)
,Nq

(
a2
)]))

.

�d
Q

([
a1, b1

]) ≥ �d
Q

([
a2, b2

])
.
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Theorem  6  (Boundness)  For al l  Q ,  we have 
a ≤ �d

Q
([a, b]) ≤ b.

Proof According to Definitions 10 and 11, we have

From Theorem 3, For all Q, we have

Therefore, we have

From this and (i) Nq(x1) ≤ Nq(x2) for x1 ≥ x2 and 
x1, x2 ∈ [0, 1] ; (ii) Nq(Nq(x)) = x for all . Thus,

The proof is completed.   ◻

Definition 12 [38] If Q1 and Q2 are such that Q1(x) ≥ Q2(x) 
for all x ∈ [0, 1] , we denote this as Q1 ≥ Q2.

Theorem 7 If Q1 ≥ Q2 , then �d
Q1

([a, b]) ≤ �d
Q2

([a, b]).

Proof According to Definitions 10 and 11, we have

From Theorem 4, if Q1 ≥ Q2 , then

Therefore, we have

and

From this and Nq(x1) ≤ Nq(x2) for x1 ≥ x2 and x1, x2 ∈ [0, 1] . 
Thus,

  ◻

Yager [38] pointed out that � = ∫ 1

0
Q(y)dy is the atti-

tudinal character of Q and � ∈ [0, 1] . Some properties of 
C-GOWA and DC-GOWA operators with respect to the atti-
tudinal character � are discussed.

Theorem 8 [51] If � is the attitudinal character of Q, then

�d
Q
([a, b]) = Nq

(
�Q

[
Nq(b),Nq(a)

])
.

Nq(b) ≤ �Q

[
Nq(b),Nq(a)

] ≤ Nq(a).

a = Nq

(
Nq(a)

) ≤ Nq

(
�Q

[
Nq(b),Nq(a)

])

≤ Nq

(
Nq(b)

)
= b.

a ≤ �d
Q
([a, b]) ≤ b.

�d
Q
([a, b]) = Nq

(
�Q

[
Nq(b),Nq(a)

])
.

�Q1
([a, b]) ≥ �Q2

([a, b]).

�Q1

[
Nq(b),Nq(a)

] ≥ �Q2

[
Nq(b),Nq(a)

]

Nq

(
�Q1

[
Nq(b),Nq(a)

]) ≤ Nq

(
�Q2

[
Nq(b),Nq(a)

])
.

�d
Q1

([a, b]) ≤ �d
Q2

([a, b]).

Theorem 9 If � is the attitudinal character of Q, then

Proof According to Definitions 10 and 11, we have

From Theorem 8, we have

  ◻

Remark 1 For convenience, we denote �Q and �d
Q
 as �� and 

�d
�
 , respectively.

3.2  C‑IVQROFOWA operator

Consider the situation where �̃� = ([𝜇−,𝜇+], [v−, v+]) is a 
QROFN. Use �Q and �d

Q
 to aggregate the continuous inter-

val-valued [�−,�+] and [v−, v+] , respectively. Further, 
assume the power of p = q in this case, then

and

If � is the attitudinal character of Q, then

Definition 13 Let �̃� = ([𝜇−,𝜇+], [v−, v+]) be an IVQROFN 
solid at q and the continuous interval-valued q-rung 
orthopair fuzzy ordered weighted averaging (C-IVQRO-
FOWA) operator is defined as follows:

where �1 and �2 are the attitudinal character of BUM func-
tion Q1 and Q2 , respectively.

Example 1 Let �̃� = ([0.5, 0.6], [0.7, 0.8]) be an IVQROFN 
with q = 2 . Let Q1(x) = x2 and Q2(x) = x be the related BUM 
functions. The attitudinal character of Qi(i = 1, 2) and the 

(20)�Q([a, b]) = (�bp + (1 − �)ap)1∕p .

(21)�d
Q
([a, b]) = Nq

(
�
(
Nq(a)

)p
+ (1 − �)

(
Nq(b)

)p)1∕p
.

�d
Q
([a, b]) = Nq

(
�Q

[
Nq(b),Nq(a)

])
.

�d
Q
([a, b]) = Nq

(
�
(
Nq(a)

)p
+ (1 − �)

(
Nq(b)

)p)1∕p
.

(22)�Q([a, b]) = (∫
1

0

dQ(y)

dy
(bq − y(bq − aq))dy)

1∕q

(23)

�d
Q
([a, b])=

(
1 − ∫

1

0

dQ(y)

dy
(1 − aq − y(bq − aq))dy

)1∕q

(24)
��([a, b]) = (�bq + (1 − �)aq)1∕q ,�d

�
([a, b])

= (�aq + (1 − �)bq)1∕q .

(25)G𝜆1,𝜆2
(�̃�) =

(
𝜙𝜆1

([
𝜇−,𝜇+

])
,𝜙d

𝜆2

([
v−, v+

]))
,
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C-IVQROFOWA operator of �̃� can be computed on the basis 
of Definition 13 as follows:

Theorem 10 Let �̃� = ([𝜇−,𝜇+], [v−, v+]) be an IVQROFN 
solid at q, then G𝜆1,𝜆2

(�̃�) is also an IVQROFN solid at q.

Proof According to Definition 11, we have

where G𝜆1,𝜆2
(�̃�) is also an IVQROFN solid at q.   ◻

Definition 14 Let �̃� = ([𝜇−,𝜇+], [v−, v+]) be an IVQROFN 
solid at q. For any QROFN � , if � ∈ [�−,�+] and 
v ∈ [v−, v+] , then � belongs to �̃� . We write 𝛼 ∈ �̃� and read 
“ � is a q-rung orthopair fuzzy element of �̃�”.

3.3  New score and accuracy functions based 
on the C‑IVQROFOWA operator

For any IVPFN �̃� , its related C-IVQROFOWA operator 
G𝜆1,𝜆2

(�̃�) is QROFN. Based on the score and accuracy func-
tions of QROF, the new score and accuracy functions of 
IVQROF are defined as follows.

Definition 15 Let �̃� = (�̃�, ṽ) = ([𝜇−,𝜇+], [v−, v+]) be an 
IVQROFN solid at q and the new score function Sco𝜆1,𝜆2(�̃�) 
and accuracy function Acc𝜆1,𝜆2 (�̃�) are defined as follows:

where G𝜆1,𝜆2
(�̃�) = (𝜙𝜆1

(�̃�),𝜙d
𝜆2
(ṽ)) is the C-IVQROFOWA 

operator of �̃�.

The ranking method is proposed based on the 
score function and accuracy function. Assume that 
�̃�i = ([𝜇−

i
,𝜇+

i
], [v−

i
, v+

i
])(i = 1, 2) are two IVPFNs solid at q.

(1) If Sco𝜆1,𝜆2(�̃�1) < Sco𝜆1,𝜆2 (�̃�2) , then �̃�1≺𝜆�̃�2.
(2) If Sco𝜆1,𝜆2(�̃�1) = Sco𝜆1,𝜆2and Acc𝜆1,𝜆2 (�̃�1) < Acc𝜆1,𝜆2

(�̃�2) , 
then �̃�1≺𝜆�̃�2.

⎧
⎪⎪⎨⎪⎪⎩

�1 = ∫
1

0

Q1(x)dx =
1

3
, �2 = ∫

1

0

Q2(x)dx =
1

2
,

G�1,�2
(�) =

��
1

3
0.6

2 +
2

3
0.5

2
�1∕2

,

�
1

2
0.7

2 +
1

2
0.8

2
�1∕2

�
= (0.5354, 0.7517).

��1

([
�−,�+

])
∈
[
�−,�+

]
,�d

�2

([
v−, v+

])
∈
[
v−, v+

]
,

(26)
Sco𝜆1,𝜆2 (�̃�) =

(
𝜙𝜆1

(�̃�)
)q

−
(
𝜙d
𝜆2
(ṽ)

)q

,

Acc𝜆1,𝜆2(�̃�) =
(
𝜙𝜆1

(�̃�)
)q

+
(
𝜙d
𝜆2
(ṽ)

)q

,

Remark 2 According to the ranking method of IVQROFNs 
in [35], we have

with the following

Theorem 11 Let �̃� = ([𝜇−,𝜇+], [v−, v+]) be an IVQROFN 
solid at q, then G𝜆1,𝜆2

(�̃�) increases with respect to �1 and �2 , 
and G0,0(�̃�) ≤ G𝜆1,𝜆2

(�̃�) ≤ G1,1(�̃�).

Proof Suppose that 𝜆1 < �̄�1 and 𝜆2 < �̄�2 . According to Defi-
nition 15, we have

Given that �� increases with respect to � and �d
�
 decreases 

with respect to � , then

T h e r e f o r e ,  Sco𝜆1,𝜆2(�̃�) − Sco�̄�1,�̄�2(�̃�) < 0  ,  t h e n 
G𝜆1,𝜆2

(�̃�) ≺ G�̄�1,�̄�2
(�̃�) . Thus, G𝜆1,𝜆2

(�̃�) increases with respect 
to �1 and �2.

The proof is completed.   ◻

3.4  Weighted continuous interval‑valued q‑rung 
orthopair fuzzy aggregation operators

Definition 16 [1] Let �i=(��i
, v�i )(i = 1, 2,… , n) be a col-

lection of QROFNs, then

is their aggregation operator, where

(27)�̃�1 ≺ �̃�2 ⇔ �̃�1≺𝜆�̃�2
(
𝜆1=𝜆2=0.5

)

S
(
�̃�1
)
< S

(
�̃�2
)
⇔ Sco𝜆1,𝜆2

(
�̃�1
)
< Sco𝜆1,𝜆2

(
�̃�2
)
,

H
(
�̃�1
)
< H

(
�̃�2
)
⇔ Acc𝜆1,𝜆2

(
�̃�1
)
< Acc𝜆1,𝜆2

(
�̃�2
)
.

Sco𝜆1,𝜆2 (�̃�) − Sco�̄�1,�̄�2 (�̃�)

= 𝜙𝜆1

([
𝜇−,𝜇+

])
− 𝜙�̄�1

([
𝜇−,𝜇+

])
+ 𝜙d

�̄�2

([
v−, v+

])
− 𝜙d

𝜆2

([
v−, v+

])
.

𝜙𝜆1

([
𝜇−,𝜇+

])
< 𝜙�̄�1

([
𝜇−,𝜇+

])
,

𝜙d

�̄�2

([
v−, v+

])
< 𝜙d

𝜆2

([
v−, v+

])
.

(28)
���

(
�1, �2,… , �n

)
=
(
�
(
��1

,��2
,… ,��n

)
,�d

(
v�1 , v�2 ,… , v�n

))
,
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with a negation function Nq.

Theorem 12 [1] If each �1 is an orthopair fuzzy set solid at 
rung q, which is a QROFN and the negation used to define 
E is taken with respect to q, which is the q-th rung negation 
function Nq , then Agg is an orthopair fuzzy set solid at rung 
q, which is a QROFN.

By using the general form in Definition 16, Yager [1] intro-
duced some important mean-type aggregation operators.

Definition 17 [1] Let �i=(��i
, v�i )(i = 1, 2,… , n) be a collec-

tion of QROFNs and w = (w1,w2,… ,wn)
T be the weight-

ing vector to satisfy 
∑n

i=1
wi = 1 and wi ≥ 0(i = 1, 2,… , n) . 

The q-rung orthopair fuzzy weighted averaging (Q-ROFWA) 
operator is presented as follows:

Some limiting cases are also provided.

• If q = 1 , then ������(�1, �2,… , �
n
) = (

∑n

i=1
w
i
�
i
,
∑n

i=1
w
i
v
i
).

• If q = 2 , then ������(�1, �2,… , �
n
) = ((

∑n

i=1
w

i
�2

i
)
1∕2

,

(
∑n

i=1
w
i
v
2

i
)
1∕2

).

Definition 18 Let �̃�
i
= (�̃�

i
, ṽ

i
) = ([𝜇−

i
,𝜇+

i
], [v−

i
, v+

i
])(i = 1,… , n) 

be a collection of IVQROFNs solid at q, and the weighted 
C-IVQROFOWA (WC-IVQROFOWA) operator is defined 
as follows:

(29)
�d

(
v�1 , v�2 ,… , v�n

)

= Nq

(
�
(
Nq

(
v�1

)
,Nq

(
v�2

)
,… ,Nq

(
v�n

)))

(30)

������
�
�1, �2,… , �n

�

=

⎛⎜⎜⎝

�
n�
i=1

wi�
q

i

�1∕q

,

�
n�
i=1

wiv
q

i

�1∕q ⎞⎟⎟⎠
.

(31)

�� − ���������
�
�̃�1,… , �̃�n

�

=

⎛⎜⎜⎝

�
n�
i=1

wi

�
𝜙𝜆1

�
�̃�i

��q
�1∕q

,

�
n�
i=1

wi

�
𝜙d
𝜆2

�
ṽi
��q

�1∕q ⎞⎟⎟⎠
.

Example 2 Let �̃�1 = ([0.5, 0.6], [0.7, 0.8]), �̃�2 = ([0.2, 0.4], [0.8, 0.9]),

�̃�3 = ([0.7, 0.8], [0.4, 0.6]) be three IVQROFNs solid at q = 2

,and w = (0.2, 0.3, 0.5)T  be the weighting vector. The 
WC-IVQRFOWA operator is conputed as foolows with 
Q1(x) = x2 and Q2(x) = x:

Theorem  13 Let �̃�
i
=
(
�̃�
i
, ṽ

i

)
=
([
𝜇−
i
,𝜇+

i

]
,
[
v
−
i
, v+

i

])
(i = 1,… , n) 

be a collection of IVQROFNs solid at q, then 
�� − ���������

(
�̃�1,… , �̃�n

)
 is a QROFN.

Theorem 14 Let �̃�
i
=
(
�̃�
i
, ṽ

i

)
=
([
𝜇−
i
,𝜇+

i

]
,
[
v
−
i
, v+

i

])
(i = 1,… , n) be 

a collection of IVQROFNs solid at q, then we have

Proof According to the definition of the score and accuracy 
functions, we have

Similarly, we can obtain

The proof is completed.   ◻

�� − ��������
�
�1, �2, �3

�

=

⎛
⎜⎜⎜⎝

�
0.2

�
1

3
0.6

2 +
2

3
0.5

2
�
+0.3

�
1

3
0.4

2 +
2

3
0.2

2
�
+0.5

�
1

3
0.8

2 +
2

3
0.7

2
��1∕2

�
0.2

�
1

2
0.7

2 +
1

2
0.8

2
�
+0.3

�
1

2
0.8

2 +
1

2
0.9

2
�
+0.5

�
1

2
0.4

2 +
1

2
0.6

2
��1∕2

⎞
⎟⎟⎟⎠

= (0.3513, 0.4605).

(32)

s
(
�� − ���������

(
�̃�1,… , �̃�n

))
=

n∑
i=1

wiSco𝜆1,𝜆2

(
�̃�i
)

h
(
�� − ���������

(
�̃�1,… , �̃�n

))
=

n∑
i=1

wiAcc𝜆1,𝜆2

(
�̃�i
)

s
�
�� − ���������

�
�̃�1,… , �̃�n

��

=

⎛⎜⎜⎝

�
n�
i=1

wi

�
𝜙𝜆1

�
�̃�i

��q
�1∕q ⎞⎟⎟⎠

q

−

⎛⎜⎜⎝

�
n�
i=1

wi

�
𝜙d
𝜆2

�
ṽi
��q

�1∕q ⎞⎟⎟⎠

q

=

n�
i=1

wi

��
𝜙𝜆1

�
�̃��̃�i

��q
−
�
𝜙d
𝜆2

�
ṽ�̃�i

��q�

=

n�
i=1

wiSco𝜆1,𝜆2

�
�̃�i
�

Acc𝜆1,𝜆2

(
�� − ���������

(
�̃�1,… , �̃�n

))

=

n∑
i=1

wiAcc𝜆1,𝜆2

(
�̃�i
)
.
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Theorem  15 (Monotonicity) Let �̃�i =
(
�̃��̃�i

, ṽ�̃�i

)
 and 

𝛽i =
(
�̃�𝛽i

, ṽ𝛽i

)
(i = 1,… , n) be two collections of IVPFNs 

solid at q. If �̃�i≺𝜆𝛽i(i = 1,… , n) , then

Proof If �̃�i≺𝜆𝛽i(i = 1,… , n),
Case1 .  Sco𝜆1,𝜆2

(
�̃�i
)
< Sco𝜆1,𝜆2

(
𝛽i
)
(i = 1,… , n) ,  by 

Theorem 14,

then �� − ���������
(
�̃�1,… , �̃�

n

)
≺ �� − ���������

(
𝛽1,… , 𝛽

n

)
.

C a s e 2 .  Sco𝜆1,𝜆2

(
�̃�i
)
= Sco𝜆1,𝜆2

(
𝛽i
)

 a n d 
Acc𝜆1,𝜆2

(
�̃�i
)
< Acc𝜆1,𝜆2

(
𝛽i
)
 , by Theorem 14,

then �� − ���������
(
�̃�1,… , �̃�

n

)
≺ �� − ���������(

𝛽1,… , 𝛽
n

)
.

The proof is completed.   ◻

T h e o r e m   1 6  ( I d e m p o t e n c y )  L e t 
�̃�i =

(
�̃�i, ṽi

)
=
([
𝜇−
i
,𝜇+

i

]
,
[
v−
i
, v+

i

])
(i = 1,… , n) be a collec-

tion of IVPFNs. If �̃�i = �̃� =
([
𝜇−,𝜇+

]
,
[
v−, v+

])
 for all i, then

Theorem  17 (Boundness) Let �̃�
i
=
([
𝜇−
i
,𝜇+

i

]
,
[
v
−
i
, v+

i

])
(i = 1,… , n) be a collection of IVPFNs,

(33)
�� − ���������

(
�̃�1,… , �̃�n

)
≺ �� − ���������

(
𝛽1,… , 𝛽n

)
.

s
(
�� − ���������

(
�̃�1,… , �̃�n

))
− s

(
�� − ���������

(
𝛽1,… , 𝛽n

))

=

n∑
i=1

wi

(
Sco𝜆1,𝜆2

(
�̃�i
)
− Sco𝜆1,𝜆2

(
𝛽i
))

< 0

h
(
�� − ���������

(
�̃�1,… , �̃�n

))
− h

(
�� − ���������

(
𝛽1,… , 𝛽n

))

=

n∑
i=1

wi

(
Acc𝜆1,𝜆2

(
�̃�i
)
− Acc𝜆1,𝜆2

(
𝛽i
))

< 0

(34)�� − ���������
(
�̃�1,… , �̃�n

)
= �̃�.

(35)�̃�min ≤ �� − ���������
(
�̃�1,… , �̃�n

) ≤ �̃�max,

where �̃�min =
(
min

i

{
𝜇−
i

}
,max

i

{
v
+
i

})
 and �̃�max =

(
max

i

{
𝜇−
i

}
,

min
i

{
v
+

i

})
.

Proof According to Definition 18 and Theorem 17, we have

and

Therefore,

The proof is completed.   ◻

The WC-IVQROFOWA operator proposed in this section 
is used mainly to aggregate interval-valued q-rung orthopair 
fuzzy numbers and support the research and construction of 
the decision-making method in the next section.

4  Decision‑making approach based 
on the WC‑IVQROFOWA operator

To select the best alternative for a given application, we put 
forward a novel framework based on the WC-IVQROFOWA 
operator for solving fuzzy multiple attributes decision-mak-
ing problems. Hence, the proposed approach consists of the 
following main stages:  (1) determining the parameter value 
of aggregation operators and (2) obtaining the collective 
matrix, computing the collective evaluation values of alter-
natives, and obtaining the ranking orders of alternatives.

In the first stage, the performance rating of alternatives 
of each attribute provided by decision-makers is linguis-
tic terms expressed in IVQROFNs. Given that the WC-
IVQROFOWA operator is used to aggregate the individual 

�� − ���������
(
�̃�1,… , �̃�n

)
= ������

(
G𝜆1,𝜆2

(
�̃�1
)
,… ,G𝜆1,𝜆2

(
�̃�n
))

�̃�min ≤ (
𝜇−
i
, v+

i

)
= G0,0

(
�̃�i
)

≤ G𝜆1,𝜆2

(
�̃�i
) ≤ G1,1

(
�̃�i
)
=
(
𝜇+
i
, v−

i

) ≤ �̃�max.

�̃�min ≤ �� − ���������
(
�̃�1,… , �̃�n

) ≤ �̃�max.

Stage 1

Collection of individual decision matrices

• WC-IVQROFOWA operator
• The operator parameters optimization model

Obtain the q-rung orthopair fuzzy collective matrix

Q-rung orthopair fuzzy collective matrix

Stage 2

• QROFWA operator
• The ranking method

• Compute the collective evaluation values of alternatives
• Determine the ranking orders of alternatives.

•

Fig. 1  Flowchart of the proposed decision-making approach
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decision matrix, the parameter value of the aggregation 
operator is calculated by using an optimization model and 
then the QROF collective matrix can be obtained.  In the 
second stage, the q-rung orthopair fuzzy weighted averag-
ing (QROFWA) operator is used to compute the collective 
evaluation values of alternatives, and the ranking method 
used to determine the ranking orders of alternatives.

Figure  1 delineates the flowchart of the proposed 
IVQROF decision-making approach and its detailed expla-
nations are given in the following subsections.

4.1  Determining the parameter value 
and obtaining the collective matrix

Considering the decision-making problems of general fuzzy 
multiple attributes with a set of alternatives 

{
x1,… , xm

}
 , 

which are evaluated by t decision-makers ek(k = 1,… , t) on a 
set of attributes 

{
c1,… , cn

}
 . Suppose that R̃k =

(
�̃�k
ij

)
m×n

 is a 
decision matrix, where �̃�k

ij
 is the performance or rating of alter-

native xi with respect to attribute cj and given by the decision-
maker ek and �̃�k

ij
=
(
�̃�k
ij
, ṽk

ij

)
=
([

𝜇k+
ij
,𝜇k+

ij

]
,

[
vk+
ij
, vk+

ij

])
 is an 

IVQROFN indicating the range of degrees to which the alter-
native xi satisfies and dissatisfies attribute cj , respectively. 
Given that decision-makers may come from different depart-
ments and have different backgrounds and expertise, each 
decision-maker is given a weight wk , k = 1,… , t , (where ∑t

k=1
wk = 1 and wk > 0 ) to reflect his/her influence on the 

overall decision results. Accordingly, the IVQROFS theory is 
adopted to handle the uncertain assessments of alternatives 
provided by the decision-makers.

(1) Consensus degree (CD) with interval-valued q-rung 
orthopair fuzzy sets

Before using the WC-IVQROFOWA operator to aggre-
gate t decision matrices R̃k,k = 1,… , t , the parameters �1 and 
�2 need to be determined.

Consensus measure plays an important role in the MAGDM 
process [57–60]. In the process of GDM, different experts hav-
ing different opinions on certain attributes of evaluation alter-
natives are unavoidable because of the differences in their pro-
fessional fields [61]. Therefore, defining the  element, attribute, 
and group consensus measures is necessary to identify the 
decision-making results with low group consensus effectively 
and lay the foundation for the follow-up model.

This study constructs the consensus evaluation index and 
defines the CD of each attribute, cj(j = 1,… , n) based on the 
proximity index between opinions.

• The CD on the evaluation element �̃�k
ij
.

Definition 19 Let R̃k =
(
�̃�k
ij

)
m×n

(k ∈ {1,… , t}) be an indi-
vidual evaluation matrix and R̃c =

(
�̃�ij
)
m×n

 is the collective 

matrix aggregated by the WC-IVQROFOWA operator, then 
their CD on the alternative xi for the attribute cj is

where �ij =
(
�ij, vij

)
 , which satisfies

an d  wl  i s  t he  we ig h t  o f  ex pe r t  el  ,  an d 
G𝜆1,𝜆2

(
�̃�k
ij

)
=
(
𝜙𝜆1

(
�̃�k
ij

)
,𝜙d

𝜆2

(
ṽk
ij

))
 satisfies

Therefore, we have

• The CD on the attribute cj.

Definition 20 Let R̃k(k ∈ {1,… , t}) be an individual evalu-
ation matrix and R̃c be the collective matrix, then their CD 
on attribute cj is

which is the CD on attribute cj with the group.

(36)
CEij

(
R̃k, R̃c

)
= 1 −

1

2

(||||
(
𝜙𝜆1

(
�̃�k
ij

))q

−
(
𝜇ij

)q||| +
||||
(
𝜙d
𝜆2

(
ṽk
ij

))q

−
(
vij
)q||||

)
,

(37)

𝛼ij = �� − ���������
�
�̃�1

ij
,… , �̃�t

ij

�

=

⎛
⎜⎜⎝

�
t�

l=1

wl

�
𝜙𝜆1

�
�̃�l
ij

��q

�1∕q

,

�
t�

l=1

wl

�
𝜙d
𝜆2

�
ṽl
ij

��q

�1∕q ⎞⎟⎟⎠

(38)𝜙𝜆1

(
�̃�k
ij

)
=
(
𝜆1

(
𝜇k+
ij

)q

+
(
1 − 𝜆1

)(
𝜇k−
ij

)q)1∕q

,

(39)𝜙d
𝜆2

(
ṽk
ij

)
=
(
𝜆2

(
vk−
ij

)q

+
(
1 − 𝜆2

)(
vk+
ij

)q)1∕q

.

(40)

CEij

(
R̃k, R̃c

)

= 1 −
1

2

(|||||

t∑
l=1

wl

(
𝜆1

((
𝜇k+
ij

)q

−
(
𝜇l+
ij

)q)

+
(
1 − 𝜆1

)((
𝜇k−
ij

)q

−
(
𝜇l−
ij

)q))||||
)

−
1

2

(|||||

t∑
l=1

wl

(
𝜆2

((
vk−
ij

)q

−
(
vl−
ij

)q)

+
(
1 − 𝜆2

)((
vk+
ij

)q

−
(
vl+
ij

)q))||||
)

(41)CCj

(
R̃k, R̃c

)
=

1

m

m∑
i=1

CEij

(
R̃k, R̃c

)
,
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Definition 21 Let R̃k(k = 1,… , t) be a collection of indi-
vidual evaluation matrices, then the CD on attribute cj with 
the group is defined as

Moreover, the CD on all attributes cj(j = 1,… , n) with 
the group is

Notice that

(2) Initial parameter optimization model driven by the group 
consensus measure

Based on the consensus measure defined above, a param-
eter optimization model is constructed to maximize the con-
sensus measure G-CD.

In [40], Yager proposed the following parameterized 
family of regular increasing monotone (RIM) quantifiers 
Q(x) = x� with � ∈ [0,+∞) as an attitudinal parameter that 
reflects the attitude of the expert. In this study, RIM quanti-
fiers Q(x) = x� are used to construct the following parameter 
optimization model:

(42)G-CCj =
1

t

t∑
k=1

CCj

(
R̃k, R̃c

)
.

(43)G-CD =
1

n

n∑
j=1

G-CCj.

(44)G-CD =
1

mtn

n∑
j=1

t∑
k=1

m∑
i=1

CEij

(
R̃k, R̃c

)
.

Model (M1)

The attributes or criteria are the basis of evaluation alterna-
tives. Different experts may have different opinions on the 
determined attributes or criteria in the evaluation process. 
In the original model M1, we set the uniform parameters 
( �∗

�
 and �∗

v
 ), and assume that 0.5 ≤ �∗

�
, �∗

v
≤ 1 . We wish to 

obtain the maximum consensus by adjusting the parameters 
flexibly to improve the credibility of the decision results 
based on this model.

(3) Determining the parameter value and obtaining the 
collective matrix

Using the proposed original optimization model, the fol-
lowing Algorithm 1 is constructed to determine the param-
eter values and obtain the collective matrix R̃c . 

(45)

maxG-CD =

n�
j=1

t�
k=1

m�
i=1

CEij

�
R̃k, R̃c

�
∕mtn

s.t.

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 ≤ 𝜅∗
𝜇
≤ 1, 0 ≤ 𝜅∗

v
≤ 1,

𝜆∗
𝜇
= �

1

0

x
𝜅∗
𝜇dx =

1

1 + 𝜅∗
𝜇

, 𝜆∗
v
= �

1

0

x𝜅
∗
v dx =

1

1 + 𝜅∗
v

CEij

�
R̃k, R̃c

�
= 1 −

1

2

�����
�
𝜙𝜆∗

𝜇

�
�̃�k
ij

��q

−
�
𝜇ij

�q����
+
����
�
𝜙d
𝜆∗
v

�
ṽk
ij

��q

−
�
vij
�q����

�

i = 1,… ,m;j = 1,… , n;k = 1,… , t.

Algorithm 1 Obtain the collective matrix R̃c based on the optimization model M1

Input: a collection of individual evaluation matrices R̃k = α̃k
ij

)
m×n

(k = 1, · · · , t) solid at q

Step1: Obtain the consensus measure G-CD∗ and uniform parameters λ∗
µ, λ

∗
v

)
by solving model M1; Set

the threshold value θ. If G-CD∗ > θ, go to Step 5 otherwise, go to Step 2;

Step2: Compute and rank attribute consensus measure G-CCσ(j) ≥ G-CCσ(j+1) (j = 1, · · · , n);
Step3: Replace the uniform parameters λ∗

µ, λ
∗
v

)
with element parameters λijk

µ , λijk
v

)
;

Step4: Execution iteration for λ
iσ(j)k
µ(z) , λiσ(j)k

v(z) , G-CD(z), z = 1, · · · , n, and let G-CD(1) = G-CD∗.

λ
iσ(j)k
µ(1) =λ∗

µ, λ
iσ(j)k
v(1) = λ∗

v;

Step 4.1: If G-CD(z) < θ, then set





λ
iσ(j)k
µ(z) = λ∗

µ, λ
iσ(j)k
v(z) = λ∗

v, j = 1, · · · , n− z

λ
iσ(j)k
µ(z) , λ

iσ(j)k
v(z) ∈ [0, 1] , else

, and go to Step 4.2

Otherwise, stop iteration, output G-CD(z),
(
λ
iσ(j)k
µ(z) , λ

iσ(j)k
v(z)

)
and go to Step 5

Step 4.2: Obtain G-CD(z+1) and parameters
(
λ
iσ(j)k
µ(z+1) , λ

iσ(j)k
v(z+1)

)
by solving model M1 If z + 1 < n then

go to Step 4.1 and let z = z+1 Otherwise, stop iteration, output G-CD(n),
(
λ
iσ(j)k
µ(n) , λiσ(j)k

v(n)

)
, and go to Step

5;

Step5: Compute the collective matrix R̃c.

Output: the consensus measure G-CD and the collective matrix R̃c.
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4.2  Computing the comprehensive evaluation 
values and ranking orders of alternatives

From Sect.  4.2, the collective matrix R̃c =
(
�̃�ij
)
m×n

 is 
obtained, where �̃�ij =

(
𝜇ij, vij

)
 . Assume that the weights 

of attributes cj are �j(j = 1,… , n) , where 
∑n

j=1
�j = 1 and 

𝜔j > 0 for all j = 1,… , n . Use the QROFWA operator to 
compute the comprehensive evaluation values �i of alterna-
tives Xi(i = 1,… ,m) , where

Compute the score s
(
�i
)
= �

q

i
− v

q

i
 and accuracy 

h
(
�i
)
= �

q

i
+ v

q

i
 values as follows: 

 (i) If s
(
𝛼i1

)
< s

(
𝛼i2

)
 , then 𝛼i1 ≺ 𝛼i2;

 (ii) If s
(
�i1

)
= s

(
�i2

)
 and h

(
𝛼i1

)
< h

(
𝛼i2

)
 , then 𝛼i1 ≺ 𝛼i2;

 (iii) If s
(
�i1

)
= s

(
�i2

)
 and h

(
�i1

)
= h

(
�i2

)
 , then �i1 = �i2.

According to the above method, rank the comprehensive 
evaluation values 𝛼𝜎(1) ≺ ⋯ ≺ 𝛼𝜎(n) . Then, all the alterna-
tives are ranked based on the increasing order of their related 
comprehensive evaluation values (Fig. 2).

5  Numerical examples

In this section, the background in [62] is utilized to demon-
strate the implementation process and effectiveness of the 
proposed decision approach in the previous section, which 
is an evaluation problem of SmartWatch design.

A team of six experts and decision-makers is gathered 
to conduct the performance assessment and determine the 

(46)

�̃�i = ������
�
�̃�i1, �̃�i2,… , �̃�in

�
=
�
𝜇i, vi

�

=

⎛⎜⎜⎝

�
n�
j=1

𝜔j𝜇
q

ij

�1∕q

,

�
n�
j=1

𝜔jv
q

ij

�1∕q ⎞⎟⎟⎠
.

most suitable alternative. These decision-makers include a 
product manager, a customer manager, a product designer, 
a senior user, an R&D manager, and a senior expert. The 
authors also assume the relative weights of experts are 
w = (0.1, 0.2, 0.1, 0.4, 0.1, 0.1)T  . The semantic difference 
method is used in the evaluation stage, as shown in Fig. 3. 
These decision-makers expressed their preferences on the 
rating of candidate design alternatives of SmartWatch 
appearance (Fig. 4) with respect to the four essential attrib-
utes (“Fashionability ( C1 ) ”, “Science and Technology 
( C2)”, “Friendliness ( C3),” and “Comfort ( C4)”) by using 
linguistic variables according to their domain knowledge. 
Table 1 shows the linguistic variables used by the deci-
sion-makers and their corresponding IVQROFNs (solid 
at q = 2 ). The obtained linguistic assessments of the 10 
alternatives provided by the decision-makers are listed in 
Tables 2, 3 and 4.

We then apply the developed method in this study to 
derive the order relation of Ai(i = 1, 2,… , 10) . The neces-
sary steps of the method are provided as follows.

Stage 1. Obtain the q-rung orthopair fuzzy collective 
matrix.

• Stage 1.1. According to the linguistic variables and their 
corresponding IVQROFNs shown in Table 1 and the rat-
ings of design alternatives with respect to attribute by the 
decision-makers shown in Table  2, 3 and 4, the 
IVQROFNs of the decision matrix assigned by the deci-
s i o n - m a k e r s  a r e  o b t a i n e d  t h r o u g h 
R̃k =

(
�̃�k
ij

)
10×4

(k ∈ {1,… , 6}) . These fuzzy matrices are 
readily available in Tables 1, 2, 3 and 4. Hence, no spe-
cific data are provided in this study.

• Stage 1.2. Obtain a collective matrix R̃c (Table 5) based 
on Algorithm 2.
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Fig. 2  Flowchart of Algorithm 1

Fig. 3  Semantic difference method
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Algorithm 2 Obtain the collective matrix R̃c based on the optimization model M1

Input: a collection of individual evaluation matrices R̃k = α̃k
ij

)
10×4

(k = 1, · · · , 6) solid at q = 2

Step 1: Solve model M1 and obtain G-CD∗ = 0.7849 and λ∗
µ, λ

∗
v

)
= (1.0, 0.5). Set the threshold value

to θ = 0.8. Given that G-CD∗ < θ, then go to Step 2;

Step 2: Compute and rank attribute consensus measure G-CC4 = 0.7732 < G-CC2 = 0.7742 < G-CC3 =

0.7941 < G-CC1 = 0.7980;

Step 3: Replace the uniform parameters λ∗
µ, λ

∗
v

)
with element parameters λijk

µ , λijk
v

)
;

Step 4: Execute the iteration, and let G-CD(1) = G-CD∗, λiσ(j)k
µ(1) =λ∗

µ, λ
iσ(j)k
v(1) = λ∗

v;

Step 4.1-1: G-CD(1) < θ, then set





λijk
µ(1) = λ∗

µ, λ
ijk
v(1) = λ∗

v, j = 1, 2, 3

λijk
µ(1), λ

ijk
v(1) ∈ [0, 1] , j = 4

, and go to Step 4.2;

Step 4.2-1: Obtain G-CD(2) = 0.7948 by solving model M1. since 2 < n = 4, then go to Step 4.1 and let

z = 2

Step 4.1-2: G-CD(2) < θ, then set





λijk
µ(2) = λ∗

µ, λ
ijk
v(2) = λ∗

v, j = 1, 3

λijk
µ(2), λ

ijk
v(2) ∈ [0, 1] , j = 2, 4

, and go to Step 4.2;

Step 4.2-2: Obtain G-CD(3) = 0.8042 by solving model M1. Given that 3 < n = 4, go to Step 4.1 and let

z = 3;

Step 4.1-3: G-CD(3) > θ, then stop the iteration and output G-CD(z), and go to Step 5;

Step 5: Compute the collective matrix R̃c (Table 5).

Output: the consensus measure G-CD and the collective matrix R̃c.

Fig. 4  SmartWatch appearance design alternatives
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Stage 2. Obtain the collective evaluation values and rank-
ing orders of alternatives.

• Stage 2.1. Use the QROFWA operator to compute com-
prehensive values �i(i = 1,… , 10) . 

• Stage 2.2. Rank the comprehensive evaluation values 
�i(i = 1,… , 10) as follows: 

 Obtain the rank of Ai(i = 1,… , 10) : 

(47)

�1 = (0.7173, 0.3597), �2 = (0.5828, 0.5531),

�3 = (0.6131, 0.4918), �4 = (0.6558, 0.4216),

�5 = (0.6278, 0.4704), �6 = (0.6252, 0.4817),

�7 = (0.5640, 0.5145), �8 = (0.5811, 0.4896),

�9 = (0.6897, 0.4099), �10 = (0.5424, 0.5627)

(48)

s
(
𝛼1
)
= 0.3850, s

(
�̃�2
)
= 0.0337, s

(
�̃�3
)
= 0.1340,

s
(
�̃�4
)
= 0.2523, s

(
�̃�5
)
= 0.1729

s
(
�̃�6
)
= 0.1588, s

(
𝛼7
)
= 0.0534, s

(
�̃�8
)
= 0.0980,

s
(
�̃�9
)
= 0.3077, s

(
�̃�10

)
= 0.2523

(49)
A2 ≺ A7 ≺ A8 ≺ A3 ≺ A6 ≺ A5 ≺ A10 ∼ A4 ≺ A9 ≺ A1.

Thus, according to the proposed method, the suggested 
design alternative is A1.

The relationship between the parameters and consensus 
measure is analyzed according to Algorithm 2.

• According to Step 1, the consensus measure 
G-CD∗ = 0.7849  a n d  p a r a m e t e r  v a l u e s (
�∗
�
, �∗

v

)
= (1.0, 0.5) under the initial iteration state 

( z = 1 ) can be obtained. Attribute consensus measure 
G-CC

(1)

j
 and group CD G-CD(1) = 0.7849 obtained are 

lower than the threshold value � = 0.8 . The relevant 
results are presented in Table 6.

• Given that the consensus measure of the attribute C4 is 
the lowest ( G-CC(1)

4
= 0.7732 ), the parameters of C4 are 

first released with constraints �i4k
�(1)

, �i4k
v(1)

∈ [0, 1] . By solv-
ing the model M1, the new group consensus measure 
( G-CD(2) = 0.7948 ) and the corresponding consensus 
measure ( G-CC(2)

4
= 0.8130 ) of the attribute C4 are 

obtained. The relevant results can be found in Table 6. 
The parameter values �i2k

�(2)
 and �i2k

v(2)
 are shown in Table 7.

• After the second iteration, the group consensus measure 
G-CD(2) = 0.7948 is lower than the threshold and the 
consensus measure of the attribute C2 is the lowest. 
Hence, the parameter constraints of attribute C2 are 
released ( �i2k

�(2)
, �i2k

v(2)
∈ [0, 1] ). By solving the model M1, 

the new group consensus measure ( G-CD(3) = 0.8042 ) 
and the cor responding consensus measure 
( G-CC(3)

2
= 0.8117 ) of the attribute C2 are obtained. The 

relevant results can be seen in Table 6. The parameter 
values �i2k

�(3)
 and �i2k

v(3)
 are shown in Table 8, respectively. 

The new group consensus G-CD(3) = 0.8042 is greater 
than the threshold, and thus, the iteration stops, and the 
calculation results are considered the output.

Table 1  Linguistic terms and their corresponding IVQROFNs [63]

Linguistic terms Corresponding IVQROFNs

Very good (VG) ([0.80,0.95], [0.00,0.15])
Good (G) ([0.70,0.80], [0.15,0.25])
Medium good (MG) ([0.55,0.70], [0.25,0.40])
Medium (M) ([0.45,0.55], [0.40,0.55])
Medium poor (MP) ([0.30,0.45], [0.55,0.70])
Poor (P) ([0.20,0.30], [0.70,0.80])
Very poor (VP) ([0.00,0.20], [0.80,0.95])

Table 2  Ratings of alternatives 
with respect to evaluation 
attribute

e1 C1 C2 C3 C4 e2 C1 C2 C3 C4

A1 VG M MP MG A1 G MP MG VG
A2 M MG VP P A2 VP M VG P
A3 MP VG M G A3 MP P MG G
A4 MG M G VG A4 MG VG MP MG
A5 G P VG M A5 VG M MG G
A6 MP P MP G A6 MP P MP M
A7 P VG M MG A7 M MP G P
A8 MG VP G P A8 G MG G P
A9 VG MG M VG A9 VG MP P G
A10 MG MP VG MP A10 MP VP MG P
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Table 3  Ratings of alternatives 
with respect to evaluation 
attribute

e3 C1 C2 C3 C4 e4 C1 C2 C3 C4

A1 G VG MP G A1 MP MG VG G
A2 P G VP MP A2 P MP G VG
A3 MG G MG M A3 VG P M P
A4 VG MG VG MP A4 M P G MG
A5 MP VP MP VG A5 G MP MG P
A6 M MP MG M A6 P VG VG MG
A7 MG P M G A7 M G MP P
A8 G M MP MG A8 P M MG MP
A9 P G MG G A9 MG G MP VG
A10 M VG G MG A10 VP P MG MP

Table 4  Ratings of alternatives 
with respect to evaluation 
attribute

e5 C1 C2 C3 C4 e6 C1 C2 C3 C4

A1 VG M P M A1 MG G G VG
A2 MP G P MG A2 P P MG MG
A3 G VG G MP A3 MP MP M MP
A4 G MP VG P A4 MG MP MG MP
A5 M M P G A5 G MP G P
A6 MG M G MP A6 P G G MP
A7 G G MP MG A7 MP MG P P
A8 VG VP MP MG A8 MG M G MG
A9 MP MG G M A9 G G P MP
A10 MG M MG MG A10 P MP G G

Table 5  Pythagorean fuzzy 
collective matrix R̃c

C1 C2 C3 C4

A1 (0.7089, 0.4242) (0.6242, 0.3732) (0.7566, 0.4022) (0.7702, 0.1933)

A2 (0.3354, 0.7431) (0.5495, 0.4834) (0.7089, 0.4869) (0.6647, 0.4479)

A3 (0.7450, 0.4160) (0.5326, 0.5765) (0.6265, 0.4136) (0.5220, 0.5395)

A4 (0.6865, 0.3702) (0.5463, 0.5392) (0.7681, 0.3314) (0.6003, 0.4165)

A5 (0.7842, 0.2945) (0.4042, 0.5958) (0.6910, 0.4040) (0.5662, 0.5292)

A6 (0.4301, 0.6569) (0.6633, 0.4515) (0.7728, 0.3715) (0.5827, 0.3934)

A7 (0.5690, 0.4952) (0.6727, 0.3750) (0.5466, 0.5520) (0.4443, 0.6067)

A8 (0.6452, 0.5086) (0.4859, 0.5141) (0.7018, 0.3693) (0.4538, 0.5474)

A9 (0.7483, 0.3785) (0.6874, 0.3250) (0.5012, 0.6018) (0.7868, 0.2471)

A10 (0.4402, 0.6959) (0.4266, 0.6521) (0.7492, 0.2872) (0.4899, 0.5238)

Table 6  Consensus measure 
with the different iteration 
processes

Consensus measure First iteration z = 1 Second iteration z = 2 Third iteration z = 3 Threshold

G-CC
(z)

1
0.7980 0.7980 0.7980 0.80

G-CC
(z)

2
0.7742 0.7742 0.8117

G-CC
(z)

3
0.7941 0.7941 0.7941

G-CC
(z)

4
0.7732 0.8130 0.8130

G-CD(z) 0.7849<0.8 0.7948<0.8 0.8042>0.8
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6  Comparison analysis

6.1  Existing continuous interval‑valued fuzzy 
aggregation operators

• C-IVIFOWA and C-IVPFOWQA operators

Definition 22 [48, 49] Let �̃� = (�̃�, ṽ) =
([
𝜇−,𝜇+

]
,
[
v−, v+

])
 

be an IVIFN and the continuous interval-valued intuitionistic 

fuzzy ordered weighted averaging (C-IVIFOWA) operator 
A-FQ is defined as follows:

However, some examples show the C-IVIFOWA operator 
fails in boundary accessibility and monotonicity with respect 
to the BUM function, and the relevant details, which are 
not elaborated in this study, can be found in references [48, 
49]. The improved C-IVIFOWA operator B-FQ is proposed 
in [48, 49].

(50)
A-FQ(�̃�) =

(
f𝜆(�̃�), f𝜆(ṽ)

)
=
(
(1 − 𝜆)𝜇− + 𝜆𝜇+, (1 − 𝜆)v− + 𝜆v+

)
.

Table 7  Membership/non-membership element parameters 
(
�
ijk
� , �

ijk
v

)
 with respect to attribute C4

C4 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

e1 (1.0,1.0) (1.0,1.0) (0.5,0.5) (0.5,0.5) (1.0,1.0) (0.5,0.5) (0.5,0.5) (1.0,1.0) (0.5,0.5) (1.0,1.0)
e2 (0.5,0.5) (1.0,1.0) (0.5,0.5) (0.5,0.5) (0.5,0.5) (1.0,1.0) (1.0,1.0) (1.0,1.0) (0.87,0.5) (1.0,1.0)
e3 (0.7,0.59) (1.0,1.0) (0.72,0.5) (1.0,1.0) (0.5,0.5) (1.0,1.0) (0.5,0.5) (0.5,0.5) (0.87,0.5) (0.5,0.5)
e4 (0.5,0.99) (0.5,0.5) (1.0,1.0) (0.5,0.5) (1.0,1.0) (0.5,0.5) (1.0,1.0) (0.6,1.0) (0.5,0.5) (0.67,1.0)
e5 (1.0,1.0) (0.76,0.5) (1.0,1.0) (1.0,1.0) (0.5,0.5) (0.84,1.0) (0.5,0.5) (0.5,0.5) (1.0,1.0) (0.5,0.5)
e6 (0.5,0.5) (0.76,0.5) (1.0,1.0) (1.0,1.0) (1.0,1.0) (0.84,1.0) (1.0,1.0) (0.5,0.5) (1.0,1.0) (0.5,0.5)

Table 8  Membership/non-membership element parameters 
(
�
ijk
� , �

ijk
v

)
 with respect to attribute C2

C4 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

e1 (1.0,1.0) (0.5,0.5) (0.5,0.5) (0.96,0.5) (1.0,1.0) (1.0,1.0) (0.5,0.5) (1.0,1.0) (0.92,0.5) (0.84,0.5)
e2 (0.98,1.0) (0.99,0.5) (1.0,1.0) (0.5,0.5) (0.5,0.5) (1.0,1.0) (1.0,1.0) (0.5,0.5) (1.0,1.0) (1.0,1.0)
e3 (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) (1.0,1.0) (1.0,1.0) (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5)
e4 (0.5,0.5) (1.0,1.0) (1.0,1.0) (1.0,1.0) (0.54,0.72) (0.5,0.5) (0.5,0.5) (0.5,0.5) (0.5,0.5) (1.0,1.0)
e5 (1.0,1.0) (0.5,0.5) (0.5,0.5) (1.0,1.0) (0.5,0.5) (1.0,0.66) (0.5,0.5) (1.0,1.0) (0.92,0.5) (0.5,0.5)
e6 (0.5,0.5) (1.0,0.82) (1.0,1.0) (1.0,1.0) (0.68,0.68) (0.5,0.5) (0.82,0.5) (0.5,0.5) (0.5,0.5) (0.84,0.5)

Fig. 5  IVIFN �̃� and its related B-FQ(�̃�)
Fig. 6  IVPFN 𝛽  and its related EQ

(
𝛽
)
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Definition 23 [48, 49] Let �̃� = (�̃�, ṽ) =
([
𝜇−,𝜇+

]
,
[
v−, v+

])
 

be an IVIFN and the improved C-IVIFOWA operator B-FQ 
is defined as follows:

For convenience, we let B-FQ(�̃�) = (𝜇, v) . According to 
Definition 23, the relationship between membership degree 
� and non-membership degree v can be obtained as follows:

The above results show all IFNs obtained by the operator 
B-FQ(�̃�) that form the line segment l1 when all parameters in 
the unit intervals are taken 0 ≤ � ≤ 1 . The details are illus-
trated in Fig. 5.

Definition 24 [52] Let 𝛽 = (�̃�, �̃�) =
([
𝜌−, 𝜌+

]
,
[
𝜎−, 𝜎+

])
 be 

an IVPFN and the continuous interval-valued Pythagorean 

(51)
B-FQ(�̃�) =

(
f𝜆(�̃�), f1−𝜆(ṽ)

)
=
(
(1 − 𝜆)𝜇− + 𝜆𝜇+, 𝜆v− + (1 − 𝜆)v+

)
.

(52)

�
�=(1 − �)�− + ��+

v = �v− + (1 − �)v+

⇒ l1 ∶

⎧
⎪⎨⎪⎩

v = −
v+ − v−

�+ − �−
× � +

�+v+ − �−v−

�+ − �−

� ∈
�
�−,�+

�
, v ∈

�
v−, v+

�

fuzzy ordered weighted averaging quadratic (C-IVI-
FOWQA) operator is defined as follows:

For convenience, we let EQ

(
𝛽
)
= (𝜌, 𝜎) . According to 

Definition 24, the relationship between membership degree 
� and non-membership degree � can be obtained as follows:

The above results show that all PFNs obtained by the opera-
tor EQ

(
𝛽
)
 form the curve l2 when all the parameters in the 

unit intervals are taken 0 ≤ � ≤ 1 . The details are demon-
strated in Fig. 6.

(53)

EQ

(
𝛽
)
=
(
g𝜆(�̃�), g1−𝜆(�̃�)

)

=

(√
(1 − 𝜆)(𝜌−)2 + 𝜆(𝜌+)2,

√
𝜆(𝜎−)2 + (1 − 𝜆)(𝜎+)2

)
.

(54)

⎧⎪⎨⎪⎩

� =

�
(1 − �)(�−)2 + �(�+)2

� =

�
�(�−)2 + (1 − �)(�+)2

⇒ l2 ∶

⎧⎪⎨⎪⎩

y =

�
−
(�+)2 − (�−)2

(�+)2 − (�−)2
�2 +

(�+)2(�+)2 − (�−)2(�−)2

(�+)2 − (�−)2

� ∈
�
�−, �+

�
, � ∈

�
�−, �+

�

Fig. 7  IVQROFN �̃� and its related G𝜆1,𝜆2
(�̃�)

Table 9  Comparative analysis of the three aggregation operators with given parameters

Weights/operators IVIFNs ( q = 1)/aggregation results IVIPNs ( q = 2)/aggregation results

w1 = 0.01 �̃�1=([1.0, 1.0], [0.0, 0.0]) 𝛽1=([1.0, 1.0], [0.0, 0.0])

w2 = 0.29 �̃�2=([0.1, 0.3], [0.6, 0.7]) 𝛽2=([0.5, 0.6], [0.8, 0.8])

w3 = 0.30 �̃�3=([0.2, 0.2], [0.7, 0.8]) 𝛽3=([0.3, 0.4], [0.7, 0.8])

w4 = 0.40 �̃�4=([0.0, 0.1], [0.8, 0.9]) 𝛽4=([0.2, 0.3], [0.6, 0.9])

WC-IVIFOWA [48, 49] (with � = 0.5) (1.0, 0.0) ********
WC-IVPFOWQA [52] (with � = 0.5) (1.0, 0.0) (1.0, 0.0)

WC-IVQROFOWA (With �1 = �2 = 0.5) (0.1480, 0.7535) (0.3782, 0.7634)
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According to Figs. 5 and 6, we can summarize the short-
comings of the C-IVIFOWA and C-IVPFOWQA operators 
as follows:

• From Fig. 5, for all � ∈ l1 , a parameter value � ∈ [0, 1] 
always satisfy B-FQ(�̃�) = 𝛼 ; for all �∗ ∉ l1 and 𝛼∗ ∈ �̃� , 
no parameter value � ∈ [0, 1] can satisfy B-FQ(�̃�) = 𝛼∗ . 
However, all IFNs on all line l1 ( � ∈ l1 ) account for only 
a very small part of the region of IVIFN �̃� (Rectangular 
ABCD).

• From Fig. 6, for all � ∈ l2 , a parameter value � ∈ [0, 1] 
always satisfy EQ

(
𝛽
)
= 𝛽 ; for all �∗ ∉ l2 and 𝛽∗ ∈ 𝛽  , no 

parameter value � ∈ [0, 1] can satisfy EQ

(
𝛽
)
= 𝛽∗ . How-

ever, all PFNs on all line l2 ( � ∈ l2 ) account for only a 
very small part of the region of IVPFN 𝛽  (Rectangular 
ABCD).

Then, the continuous interval-valued q-rung orthopair 
fuzzy ordered weighted averaging (C-IVQROFOWA) 
operator constructed in this study is analyzed further. Let 
�̃� =

([
𝜇−,𝜇+

]
,
[
v−, v+

])
 be an IVQROFN solid at q. By 

using Definition 15, we have

First, the relationship between parameters ( �1, �2 ∈ [0, 1] ) 
and the C-IVQROFOWA operator is discussed in Theo-
rem 18. Figure 7 illustrates the results of Theorem 18.

Theorem 18 Let �̃� =
([
𝜇−,𝜇+

]
,
[
v−, v+

])
 be an IVQROFN 

solid at q, �1, �2 ∈ [0, 1] , then

(55)

G𝜆1,𝜆2
(�̃�) =

(
𝜙𝜆1

([
𝜇−,𝜇+

])
,𝜙d

𝜆2

([
v−, v+

]))

=
(((

1 − 𝜆1
)
(𝜇−)q + 𝜆1

(
𝜇+

)q)1∕q
,

(
𝜆2(v

−)q +
(
1 − 𝜆2

)(
v+
)q)1∕q )

.

( i )  ∀𝛼=(𝜇, v) ∈ �̃�,∃|𝜆1, 𝜆2 ∈ [0, 1]  , 

s.t.

⎧⎪⎨⎪⎩

� =
��
1 − �1

�
(�−)q + �1

�
�+

�q�1∕q
,

v =
�
�2(v

−)q +
�
1 − �2

��
v+
�q�1∕q

( i i )  ∀𝜆1, 𝜆2 ∈ [0, 1],∃|𝛼=(𝜇, v) ∈ �̃�  , 

s.t.

{
�1 = (�q − (�−)q)∕

((
�+

)q
− (�−)q

)

�2 =
((
v+
)q

− vq
)
∕
((
v+
)q

− (v−)q
).

P r o o f  A c c o r d i n g  t o  D e f i n i t i o n  1 1 , 
G𝜆1,𝜆2

(�̃�) =
(
𝜙𝜆1

([
𝜇−,𝜇+

])
,𝜙d

𝜆2

([
v−, v+

]))
 , where

and

(i) For any 𝛼=(𝜇, v) ∈ �̃� , given that � ∈
[
�−,�+

]
 and 

v ∈
[
v−, v+

]
 , we can find a two-tuple 

(
�1, �2

)
that satisfies

Assume that another two-tuple 
(
�̄�1, �̄�2

)
 exists to satisfy

Then,

Therefore, we have 𝜆1 = �̄�1, 𝜆2 = 𝜆2 .   ◻

�− ≤ ��1

([
�−,�+

])
=
(
�1
(
�+

)q

+
(
1 − �1

)
(�−)q

)1∕q ≤ �+

v− ≤ �d
�2

([
v−, v+

])

=
((
1 − �2

)(
v+
)q

+ �2(v
−)q

)1∕q ≤ v+.

� = ��1

([
�−,�+

])
, v = �d

�2

([
v−, v+

])
.

𝜇 = 𝜙�̄�1

([
𝜇−,𝜇+

])
, v = 𝜙d

�̄�2

([
v−, v+

])
.

{
𝜆1
(
𝜇+

)q
+
(
1 − 𝜆1

)
(𝜇−)q = �̄�1

(
𝜇+

)q
+
(
1 − �̄�1

)
(𝜇−)q,(

1 − 𝜆2
)(
v+
)q

+ 𝜆2(v
−)q =

(
1 − �̄�2

)(
v+
)q

+ �̄�2(v
−)q.

Fig. 8  Construction ideas of the continuous fuzzy operators
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The above theorem shows that for any QROFN � in the 
IVQROFN �̃� ( 𝛼 ∈ �̃� ), it can be obtained by selecting the 
appropriate parameter values ( �1, �2 ∈ [0, 1] ) and using the 
operator G𝜆1,𝜆2

(�̃�) . Moreover, a one-to-one correspondence 
exists between this QROFN � and parameters �1 and �2.

The above analysis shows the proposed C-IVQROFOWA 
operator can overcome the shortcomings of the existing 
operators C-IVIFOWA and C-IVPFOWQA and the deci-
sion-makers can acquire the corresponding fuzzy numbers 
by combining the C-IVQROFOWA operator with its own 
attitude characteristics. The operator has strong flexibility.

• WC-IVPFOWQA and WC-IVPFOWQA operators

Definition 25 [48, 49] Let �̃�
i
=
(
�̃�
i
, ṽ

i

)
=
([
𝜇−
i
,𝜇+

i

]
,
[
v
−
i
, v+

i

])
(i = 1, 2,… , n) be a collection of IVIFNs and the weighted 
C-IVIFOWA (WC-IVIFOWA) operator is defined as follows:

Definition 26 [52] Let 𝛽
i
=
(
�̃�
i
, �̃�

i

)
=
([
𝜌−
i
, 𝜌+

i

]
,
[
𝜎−
i
, 𝜎+

i

])
(i = 1, 2,… , n) be a collection of IVPFNs and the weighted 
C-IVPFOWQA (WC-IVPFOWQA) operator is defined as 
follows:

The comparative analysis of the above two types of opera-
tors (WC-IVIFOWA and WC-IVPFOWQA) and the WC-
IVPFOWQA operator is carried out using a simple example. 
Three types of operators are used to aggregate a collection 
of IVIFNs and a collection of IVPFNs with the assumption 
that the parameters and weights have been given. The details 
are shown in Table 9.

According to Table 9, we have

Although w2 + w3 + w4 = 0.09 and w1 = 0.01 , the aggre-
gation results of operators WC-IVIFOWA and WC-IVP-
FOWQA are both (1.0, 0.0) . These results indicate IVIFNs 
( ̃𝛼i(i = 2, 3, 4) ) are ignored completely in the aggregation 
process. This phenomenon is clearly unreasonable. Simi-
larly, we have

(56)

�� − �������
(
�̃�1,… , �̃�n

)

=

(
1 −

n∏
i=1

(
1 − f𝜆

(
�̃�i

))wi
,

n∏
i=1

(
f1−𝜆

(
ṽi
)wi

))
.

(57)

�� − ��������
�
𝛽1,… , 𝛽n

�

=

⎛⎜⎜⎝

����1 −

n�
i=1

�
1 −

�
g𝜆
�
�̃�i
��2�wi

,

n�
i=1

�
g1−𝜆

�
�̃�i
�wi

�⎞⎟⎟⎠
.

�� − �������
(
�̃�1,… , �̃�n

)
= (1.0, 0.0),WC-IVPFOWQA

(
�̃�1,… , �̃�n

)
= (1.0, 0.0).

This aggregation result is also unreasonable.
However, the results obtained via the WC-IVQROFOWA 

are reasonable.

The above analysis shows the proposed WC-IVQROFOWA 
operator can overcome the shortcomings of WC-IVIFOWA 
and WC-IVPFOWQA operators, but the WC-IVQROFOWA 
operator can obtain more reasonable aggregation results 
in solving GDM problems. The construction ideas of the 
WC-IVIFOWA [47–49], WC-IVPFOWQA [52], and WC-
IVQROFOWA operators are summarized and the details 
presented in Fig. 8.

The advantages and advancement of the developed 
approach compared with existing work are summarized as 
below:

• The proposed fuzzy MAGDM method develops the 
methodology in the use of the IVROFS and the aggrega-
tion operators. This advances its degenerate used in [30] 
in which the ROFS has been implemented as the ROFS 
is a particular case of IVROFS.

• The C-IVIFOWA and C-IVPFOWQA operators proposed 
in the previous studies [47–49, 52] lay a solid foundation 
for this study. The developed C-IVQROFOWA operator 
not only covers the existing two types of operators, but 
also realizes the independence of attitude parameters(�� 
and �v ), which overcomes the shortcomings of the two 
types of operators as shown in Figs. 5 and 6 because of 
the same parameter values �� = �v.

• The comparative analysis in Table 9 shows that the pro-
posed WC-IVQROFOWA operator can overcome the 
shortcomings of the WC-IVIFOWA [48, 49] and WC-
IVPFOWQA [52] operators, and these operators are two 
special cases of the WC-IVQRFOWA operator with q = 1 
and q = 2 , respectively. Moreover, the IVQROFWA and 
Maclaurin symmetric mean operators developed by [35] 
and [36] aggregate directly the endpoints of the interval, 
which makes decision makers unable to obtain most of 
the information in the interval according to their attitude 
preferences. The proposed WC-IVQROFOWA operator 
and its counterpart can avoid successfully this deficiency 
as the information contained in the interval will be ade-
quately taken into account.

• Another advantage of the proposed method upon com-
parison with the existing methods is that it derives the 
consensus measure to develop the optimization model 
of operator parameters and, based on which, its iteration 
algorithm are constructed. The consensus measures can 

�� − ��������
(
𝛽1,… , 𝛽n

)
= (1.0, 0.0).

�� − ���������
(
�̃�1,… , �̃�n

)
= (0.1480, 0.7535)

�� − ���������
(
𝛽1,… , 𝛽n

)
= (0.3782, 0.7634)
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guide the change direction of the parameter constraints 
to obtain the parameter values that satisfy the threshold 
conditions.

7  Conclusions

In order to adapt to the rapid change of the complex 
MAGDM environment, the traditional fuzzy MAGDM 
methods have been expanded to interval-valued intuitionistic 
and Pythagorean fuzzy MAGDM methods. The emergence 
of IVQROFS greatly promotes the formation of general-
ized MAGDM paradigm and provides decision-makers with 
more flexible and broad application ideas.

This study proposes novel fusion strategies for continu-
ous IVQROF group information and multiple attribute 
information, and it integrates the attitudinal characteristics 
of decision makers and considers the degree of consensus 
among individuals in the group in a bid to enhance the reli-
ability of decision-making results. The work of this paper is 
mainly reflected in the following aspects. Firstly, this study 
revealed the shortcomings of existing operators in dealing 
with decision-making problems by clarifying the advantages 
and construction ideas of existing operators, and it proposed 
the WC-IVQROFOWA operator with a wider range of infor-
mation processing and more flexible attitude preference, so 
as to consolidate the decision-making framework under the 
IVQROF environment. Secondly, by integrating the con-
sensus measure between different individuals in the context 
of GDM, the dynamic adjustment mechanism of operator 
parameters is constructed, which enhances the adjustability 
of GDM process and improves the credibility of decision-
making results; last but not least, the GDM method pro-
posed in this study has been applied in quality assessment 
of SmartWatch appearance design with linguistic inputs, 
which shows the independence of the parameters in the WC-
IVQROFOWA operator and the positive effect of the group 
consensus measurement on the decision-making process.

In the case study, the original evaluation information of 
the alternatives is obtained by semantic difference method 
from experts, which constitutes the linguistic evaluation 
matrix, and is quantified by IVQROFNs solid at q = 2 . As 
regards to our future research, the applications of the devel-
oped models in this study can be used to other types of fuzzy 
models, for instance, the interval linguistic labels [64] and 
the basic uncertain information soft sets [65].
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