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Abstract
q-rung orthopair fuzzy set (q-ROFS) is a useful tool to express uncertain information. With the parameter q increasing, 
q-ROFSs have broader space for describing uncertain information than intuitionistic fuzzy sets (IFSs) and Pythagorean fuzzy 
sets (PFSs). This paper extends the superiority and inferiority ranking (SIR) methods to solve multiple attribute decision 
making (MADM) problems within the q-ROF environment, named q-ROF-SIR methods. In the q-ROF-SIR methods, the 
possibility degree (PD) for q-rung orthopair fuzzy numbers (q-ROFNs) is introduced to improve the preference intensity. 
Further, the q-ROF entropy weight (q-ROF-EW) method is constructed to determine the attribute weights suppose the weights 
of attribute are unknown. Finally, the effectiveness and applicability of the q-ROF-SIR methods are verified.

Keywords Multiple attribute decision making (MADM) · Superiority and inferiority ranking (SIR) · q-rung orthopair 
fuzzy set (q-ROFS) · Possibility degree (PD) · Entropy

1 Introduction

In real life, people often need to rank alternatives or choose 
the best one among many different alternatives. In order 
to do it, the decision maker needs to supply the evaluation 
value of each alternative under different attributes. Some-
times, due to the complexity and uncertainty of the problems 
studied, it is too difficult for decision makers to give crisp 
evaluation values. To handle such fuzzy or uncertain phe-
nomenon in MADM problems, Bellman and Zadeh [1] uti-
lized membership degree rather than crisp value to describe 
uncertainty. The membership function is the key point of 
the famous fuzzy set (FS) theory. Atanassov [2] extended 
FSs into IFSs. Specially, the characteristic of IFSs is that the 
sum of the membership degree (MD) and non-membership 

degree (NMD) must be no more than 1. In 2014, Yager [3] 
further extended IFSs into PFSs, which are characterized 
that the square sum of MD and NMD is no more than 1. 
Obviously, there are more ordered pairs into PFSs than 
IFSs. Therefore, PFSs can express much wider application 
in fuzzy information. For example, someone is invited to 
assess the comfort of a house. She may use the Pythago-
rean fuzzy number (PFN) < 0.8, 0.6 > to express her opinion 
rather than the intuitionistic fuzzy number (IFN). The reason 
is that 0.8 + 0.6 = 1.4 > 1 while 0.82 + 0.62 ≤ 1.

More recently, Yager [4] further extended PFSs to 
q-ROFSs. The distinguishing feature of q-ROFSs is that the 
sum of the qth power of MD and NMD is no more than 
1. It shows that the q-ROFS is more widely used than the 
IFS and the PFS, because in q-ROFSs, q = 1 and q = 2 
denotes IFSs and PFSs, respectively. Take < 0.8, 0.7 > 
which is the attribute evaluation value for example, it can 
use the q-ROFN ( q ≥ 3 ) to express the data rather than the 
IFN and the PFN. Because 0.83 + 0.73 = 0.855 ≤ 1 while 
0.82 + 0.72 = 1.13 > 1 . In other words, q-ROFSs have more 
ordered pairs than PFSs and IFSs. Up to now, some scholars 
investigated the theory and application of q-ROFSs [4–10].

The superiority and inferiority ranking (SIR) method, 
proposed by Xu [11], is an import outranking method. In 
[11], Xu has proved that the SIR method is an extension of 
the classical PROMETHEE method [12, 13]. Since then, 
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some researchers have extended the SIR methods to deal 
with various fuzzy information [14–18]. At the same time, 
the PROMETHEE methods have been extended to deal with 
different MADM problems [12, 13, 19–29]. However, the 
existing extended SIR methods or PROMETHEE methods 
can only deal with FSs [25], IFSs [26], hesitate fuzzy sets 
(HFSs) [16], PFSs [17], linguistic term sets (LTSs) [27] or 
2-dimension linguistic term sets (2DLTSs) [29, 30]. In other 
words, PROMETHEE methods or the extended SIR methods 
can’t be directly applied to the MADM problems evaluated 
by q-ROFNs. Moreover, there are little investigation about 
the SIR methods or PROMETHEE methods with q-ROFSs.

The aim of this paper is to give a novel SIR method, 
named q-ROF-SIR method, to solve the MADM problems 
assessed by q-ROFNs. It is known that how to design the 
preference intensity is the key step of the SIR methods. In 
order to reasonably measure the difference of q-ROFNs, 
we propose the notion of PD of q-ROFNs to improve the 
preference intensity. At the same time, suppose the attribute 
weights are unknown, this paper develops the q-ROF-EW 
method to calculate the weights of attributes. Therefore, 
two new concepts, the entropy of q-ROFSs and the PD of 
q-ROFNs, are proposed to build foundations for the q-ROF-
EW method and the q-ROF-SIR method.

Although there are many academic achievements of 
q-ROFSs, it finds that few researches are about the entropy 
of q-ROFSs. Fuzzy entropy is a very useful tool to measure 
the uncertainty of any FSs. Many scholars have proposed the 
various entropy of FSs [31–35], IFSs [36–41], Hesitate FSs 
[42] and PFSs [43, 44]. Guo [41] defined a new intuitionistic 
fuzzy entropy, which includes the distance part between IFS 
and its complement and the hesitancy part. Further, in 2018, 
Xue et al. [44] developed the Pythagorean fuzzy entropy, 
which is based on the similarity part between a PFS and its 
complement and the hesitancy part. Inspired by the entropy 
of IFSs [41] and PFSs [44], this paper will introduce the 
entropy of q-ROFSs to measure the uncertainty and fuzzi-
ness of q-ROFSs. Next, the q-ROF-EW method is developed 
to compute the attribute weights.

On the other hand, PD is an important mathematical tool 
to measure two objects, which reflects the probability of one 
object relative to another object. There are many literatures 
about PD of different fuzzy numbers. Such as, Xu and Da 
[45] introduced PD of the interval numbers to rank objects. 
Wei and Tang [46] presented PD of the IFNs. Wan and Dong 
[47] proposed PD of interval-valued IFNs from the prob-
ability viewpoint. Chen [24] proposed PD of interval type-2 
fuzzy numbers. Gao [48] and Dammak et al. [49], respec-
tively, gave an overview of PD of interval-valued IFSs. Zhao 
et al. [29] introduced PD of 2-dimension linguistic elements 
(2DLEs). However, there are little research about PD of 
q-ROFNs. Hence it is necessary to build the concept of PD 
for q-ROFNs to compare different q-ROFNs.

The main contributions of this paper are divided into 
four parts. (1) The entropy for q-ROFNs is introduced to 
measure the uncertainty of q-ROFSs. (2) The notion of PD 
for q-ROFNs is proposed to measure the possibility of one 
q-ROFN no less than another. (3) The q-ROF-EW method is 
presented. (4) The q-ROF-SIR methods are developed. The 
rest of this paper is arranged as follows. Section 2 introduces 
the preliminaries of q-ROFSs. Section 3 gives a new entropy 
formula of q-ROFSs. Section 4 defines two notions of PD 
and PI for q-ROFNs. Section 5 proposes the q-ROF-EW 
method and the q-ROF-SIR I and II methods. Section 6 gives 
a practical example. Section 7 concludes.

2  q‑ROFSs

In this section, some notions of q-ROFSs [4] are introduced 
to provide a basis of this paper.

Definition 2.1 [4, 5] Let Y be a finite universe, the function 
uQF ∶ Y → [0, 1] be the degree of membership and 
vQF ∶ Y → [0, 1] be the degree of nonmembership. If for 
every y ∈ Y  , uq

QF
(y) + v

q

QF
(y) ≤ 1, where q ∈ N, q ≥ 1 , then 

a set QF, which has the form

is called a q-ROFS. < uQF(y), vQF(y) > is called a q-rung 
orthopair fuzzy number (q-ROFN), denoted by < uQF, vQF > . 
�QF(y) =

q

√
1 − u

q

QF
(y) − v

q

QF
(y) denotes the indeterminacy 

degree of of QF.

Yager [4] have proved that a q-ROFS with q = 1 is an IFS 
and a q-ROFS with q = 2 is a PFS. To help readers under-
stand the q-ROFN intuitively, a geometric explanation of the 
q-ROFS membership is shown in Fig. 1 [4, 6].

Given three q-ROFNs, Qi =< ui, vi > (i = 1, 2, 3) , then 
the operations are defined:

Let Q =< u, v > be a q-ROFN, then S(Q) = uq − vq and 
H(Q) = uq + vq are called the score function and accuracy 
function of Q, respectively [5]. According to the score and 
accuracy functions of any two q-ROFNs, we can compare 
two q-ROFNs.

QF = {< y, uQF(y), vQF(y) > |y ∈ Y},

(1) Q1 =< v1, u1 >,

(2) Q1 ⊕ Q2 =<
q

√
u
q

1
+ u

q

2
− u

q

1
u
q

2
, v1v2 >,

(3) Q1 ⊗ Q2 =< u1u2,
q

√
v
q

1
+ v

q

2
− v

q

1
v
q

2
>,

(4) 𝜆Q1 =<
q

√
1 − (1 − u

q

1
)𝜆, v𝜆

1
>,

(5) Q𝜆

1
=< u𝜆

1
, q

√
1 − (1 − v

q

1
)𝜆 > .
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Definition 2.2 [5] Let Qi =< ui, vi > (i = 1, 2) be any two 
q-ROFNs. 

(1) If S(Q1) > S(Q2) , then Q1 is better than Q2 , denoted by 
Q1 > Q2;

(2) If S(Q1) = S(Q2) and H(Q1) > H(Q2) , then Q1 is better 
than Q2 , denoted by Q1 > Q2;

(3) If S(Q1) = S(Q2) and H(Q1) = H(Q2) , then Q1 is equiva-
lent to Q2 , denoted by Q1 = Q2.

In [6], Liu et al. proposed the normalized Hamming dis-
tance between two q-ROFNs. Obviously, if q = 2 , it is the 
distance between two PFNs proposed by Zhang et al. [50].

Definition 2.3 [6] Let Qi =< ui, vi > (i = 1, 2) be two 
q-ROFNs, �i = q

√
1 − u

q

i
− v

q

i
 , (i = 1, 2) . The function

is called the normalized Hamming distance between Q1 and 
Q2 , where q ≥ 1.

3  New entropy for q‑ROFSs

The entropy of FSs which can measure the fuzziness of 
information was firstly introduced by Zadeh [51]. After 
that, Luca et al. [31] gave the axioms of fuzzy entropy. 
Further, Szmidt et al. [37] extended the axioms of fuzzy 
entropy to IF environment. Inspired by the axioms of 
entropy for FSs and IFSs, we give the axioms of entropy 
for q-ROFSs.

d(Q1,Q2) =
1

2

(|uq
1
− u

q

2
| + |vq

1
− v

q

2
| + |�q

1
− �

q

2
|),

Definition 3.1 Let qROFS(X) be a set of all q-ROFSs. A 
function Eq ∶ qROFS(X) → [0, 1] is called an entropy on 
q-ROFSs if it satisfies that: 

(E1)  Eq(QF) = 0 if and only if QF is a crisp set;
(E2)  Eq(QF) = 1 if and only if uQF(y) = vQF(y);
(E3)  I f  uQF1

(y) ≤ uQF2
(y) ≤ vQF2

(y) ≤ vQF1
(y)  o r 

uQF1
(y) ≥ uQF2

(y) ≥ vQF2
(y) ≥ vQF1

(y)  ,  t h e n 
Eq(QF1) ≤  Eq(QF2).

(E4)  Eq(QF) = Eq(QF)  ,  w h e r e 
QF = {< y, vQF(y), uQF(y) > |y ∈ Y}.

Similar to the entropy for PFSs [44], we define a new 
entropy for q-ROFSs, which includes the similarity part 
and the indeterminacy part. Let QF be a q-ROFN, the sim-
ilarity part is equal to 1 − d(QF,QF) . The larger the simi-
larity part, the bigger the entropy for q-ROFNs. On the 
other hand, the indeterminacy part is based on the inde-
terminacy degree �QF . Let a q-ROFN QF =< uQF, vQF > , 
if uQF = vQF , then �QF = 1 . In such situation, we can learn 
less valuable information, therefore we suppose E(QF) = 1 
if and only if �QF = 1 . Similarly, the larger the indeter-
minacy degree �QF , the bigger the entropy for q-ROFNs.

According to the above analysis, we define an entropy 
for q-ROFNs as Eq(QF) = 1 − d(QF,QF) + �

q

QF
d(QF,QF), 

where the distance function d is the normalized Hamming 
distance described in Definition 2.3.

S i n c e  d(QF,QF) = |uq
QF

− v
q

QF
|,  w h e r e 

QF =< uQF, vQF > , according to Definition 2.3, an entropy 
for q-ROFN QF can be represented as follows:

where �QF = q

√
1 − u

q

QF
− v

q

QF
.

Let QF be a q-ROFS, then the entropy for QF can be 
defined as:

where QFi =< uQFi
, vQFi

> be q-ROFNs.

Theorem 3.1 Eq(QF) is an entropy measure for q-ROFSs 
which satisfies Definition 3.1.

Proof (E1)  Since 0 ≤ uQFi
≤ 1 and 0 ≤ vQFi

≤ 1 , then we 
have

  Eq(QF) = 0 ⟺ 1

n

∑n

i=1
�u2q

QFi
− v

2q

QFi
� = 1 ⟺ 

< uQFi
, vQFi

>=< 1, 0 >  o r 
< uQFi

, vQFi
>=< 0, 1 > .

(1)
Eq(QF) = 1 − |uq

QF
− v

q

QF
| + �

q

QF
|uq

QF
− v

q

QF
| = 1 − |u2q

QF
− v

2q

QF
|,

(2)Eq(QF) =
1

n

n∑
i=1

Eq(QFi) = 1 −
1

n

n∑
i=1

|u2q
QFi

− v
2q

QFi
|,

Fig. 1  Geometric space range of q-ROFS membership
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(E2)  Eq(QF) = 1 ⟺ 1
n

∑n

i=1
�u2q

QFi
− v

2q

QFi
� = 0 ⟺ 

uQFi
= vQFi

.

(E3)  If uQF1
(y) ≤ uQF2

(y) ≤ vQF2
(y) ≤ vQF1

(y) , then 
|u2q

QF1
− v

2q

QF1
| ≥ |u2q

QF2
− v

2q

QF2
| . It follows that 

 that is Eq(QF1) ≤ Eq(QF2).

  Similarly, if uQF1
(y) ≥ uQF2

(y) ≥ vQF2
(y) ≥ vQF1

(y) , 
then |u2q

QF1
− v

2q

QF1
| ≥ |u2q

QF2
− v

2q

QF2
| . Therefore we 

have Eq(QF1) ≤ Eq(QF2).
(E4)  Since |u2q

QF
− v

2q

QF
| = |v2q

QF
− u

2q

QF
| , then we have 

E(QF) = E(QF).

  ◻

4  Possibility degree measures for q‑ROFNs

To reasonably measure the difference between two 
q-ROFNs, we propose the PD for q-ROFNs in this section. 
The comparison method between two q-ROFNs can be 
improved through comparing two q-ROFNs in pairs. Sub-
sequently, suppose there is a set of q-ROFNs, the possibil-
ity degree outranking index (PI) for q-ROFNs is given to 
measure the prior degree of one q-ROFN against the other 
q-ROFNs.

4.1  PD of q‑ROFNs

Firstly, the concept of PD for q-ROFNs is proposed, which 
can compare any two q-ROFNs in probability senses. Then 
we investigate some properties of the PD for q-ROFNs.

Definition 4.1 Let Qi =< ui, vi > (i = 1, 2) be two q-ROFNs, 
�i =

q

√
1 − u

q

i
− v

q

i
(i = 1, 2) . If either �1 ≠ 0 or �2 ≠ 0 , then 

the possibility degree of q-ROFNs Q1 and Q2 , is proposed as

On the other hand, if �1 = 0 and �2 = 0 , then define

1 − |u2q
QF1

− v
2q

QF1
| ≤ 1 − |u2q

QF2
− v

2q

QF2
|,

(3)P(Q1 ≥ Q2) = min

{
max

(
u
q

1
+ �

q

1
− u

q

2

�
q

1
+ �

q

2

, 0

)
, 1

}
.

P(Q1 ≥ Q2) =

⎧
⎪⎪⎨⎪⎪⎩

0, u1 < u2,

0.5, u1 = u2,

1, u1 > u2.

Example 4.1 Let Q1 =< 0.6, 0.1 > , Q2 =< 0.7, 0.2 > be two 
q-ROFNs, where q = 2.

We can compute that P(Q1 ≥ Q2) = 0.4545 and 
P(Q2 ≥ Q1) = 0.5455 by Definition 4.1. It obtains that Q1 is 
not better than Q2 in probability sense, which conforms to 
human’s intuition. In other words, it is suitable to use Defini-
tion 4.1 for comparing two q-ROFNs.

Some properties of PD for q-ROFNs are given.

Proposition 4.1 Let Qi =< ui, vi > (i = 1, 2) be two 
q-ROFNs, then 

(1) 0 ≤ P(Q1 ≥ Q2) ≤ 1;
(2) If Q1 = Q2 , then P(Q1 ≥ Q2) = 0.5;
(3) P(Q1 ≥ Q2) + P(Q2 ≥ Q1) = 1.

Proof 

(1) According to Definition 4.1, 0 ≤ P(Q1 ≥ Q2) holds 
obviously. We only need to prove P(Q1 ≥ Q2) ≤ 1.

  Let � =
u
q

1
+ �

q

1
− u

q

2

�
q

1
+ �

q

2

 , then three cases are considered 

as follows: 

(a) if � ≥ 1 , then P(Q1 ≥ Q2) = min{max(�, 0), 1} = 1;

(b) if � ≤ 0 , then P(Q1 ≥ Q2) = min{max(�, 0), 1} = 0;

(c) if 0 < 𝜉 < 1 , then P(Q1 ≥ Q2) = min{max(�, 0), 1} = �.

  Therefore, we have P(Q1 ≥ Q2) ≤ 1.

(2) If Q1 = Q2 , then we have u1 = u2 and �1 = �2 . Let 

� =
u
q

1
+ �

q

1
− u

q

2

�
q

1
+ �

q

2

 , then � =
�
q

1

2�
q

1

= 0.5.

  Therefore we have P(Q1 ≥ Q2) = min{max(0.5, 0), 1} = 0.5.

(3) Let �1 =
u
q

1
+ �

q

1
− u

q

2

�
q

1
+ �

q

2

 and �2 =
u
q

2
+ �

q

2
− u

q

1

�
q

1
+ �

q

2

 , then we 

have 

There are three cases need considering: 

(a) if �1 ≤ 0 and �2 ≥ 1 , then
  P(Q1 ≥ Q2) + P(Q2 ≥ Q1) = 0 + 1 = 1;
(b) if �1 ≥ 1 and �2 ≤ 0 , then
  P(Q1 ≥ Q2) + P(Q2 ≥ Q1) = 1 + 0 = 1;
(c) if 0 < 𝜉1 < 1 and 0 < 𝜉2 < 1 , then
  P(Q1 ≥ Q2) + P(Q2 ≥ Q1) = �1 + �2 = 1.
  That is, in all cases, P(Q1 ≥ Q2) + P(Q2 ≥ Q1) = 1 

holds. ◻

�1 + �2 =
�
q

1
+ �

q

2

�
q

1
+ �

q

2

= 1.
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4.2  PI of q‑ROFNs

This subsection proposes the notion of PI for q-ROFNs. 
Given a set of q-ROFNs, the PI of q-ROFNs can measure 
the prior degree of one q-ROFN against others. Then some 
propositions of PI for q-ROFNs are investigated.

Definit ion 4.2  Let  A = {Q1,… ,QM} ,  in  which 
Qi =< ui, vi > is a q-ROFN, i = {1, 2,… ,M} , P(Qi ≥ Qk) 
be the PD between two q-ROFNs Qi and Qk . Then the pos-
sibility degree outranking index (PI) of the q-ROFN Qi , is 
defined as

E x a m p l e  4 . 2  A s s u m e  t h e r e  i s  a  s e t  o f 
q - R O F N s  {Q1,Q2,Q3,Q4,Q5}  ,  w h e r e 
Q1 =< 0.5, 0.2 >,Q2 =< 0.6, 0.3 >,Q3 =< 0.3, 0.4 >  , 
Q4 =< 0.7, 0.4 >,Q5 =< 0.7, 0.6 > and q = 3.

According to Definition 4.1, it can compute that 
P(Q

1
≥ Q

2
) = 0.4778,P(Q

1
≥ Q

3
) = 0.5434,P(Q

1
≥ Q

4
)

= 0.4445,P(Q
1
≥ Q

5
) = 0.4962  , P(Q

2
≥ Q

3
) = 0.5678, 

P(Q
2
≥ Q

4
) = 0.4667,P(Q

2
≥ Q

5
) = 0.5259,P(Q

3
≥ Q

4
) =

0.3948,P(Q
3
≥ Q

5
) = 0.4393,P(Q

4
≥ Q

5
) = 0.5735.

Then by Definition 4.2, we can compute that
PI(Q1) = 0.1981 , PI(Q2) = 0.2041 , PI(Q3) = 0.1861 , 

PI(Q4) = 0.2134 , PI(Q5) = 0.1983.
According to the outcomes of PI for q-ROFNs, we 

can compare these q-ROFNs. That is, the bigger the 
value of PI for q-ROFN, the better the q-ROFN. Because 
PI(Q4) > PI(Q2) > PI(Q5) > PI(Q1) > PI(Q3) in Definition 
4.2, it can get that the prior order of Qi (i = 1, 2, 3, 4, 5) is 
Q4 > Q2 > Q5 > Q1 > Q3.

Finally, we give the proposition of PI for q-ROFNs as 
follows.

Proposition 4.2 Let A = {Q1,… ,QM} be a set of 
q-ROFNs ,  in which Qi =< ui, vi > is a q-ROFN , 
{i = 1, 2,… ,M}, (M ≥ 2) . Then 

(1) 0 ≤ PI(Qi) ≤ 1;
(2) PI(Q1) + PI(Q2) +⋯ + PI(QM) = 1.

Proof 

(1) According  to  Propos i t ion  4 .1 ,  we  have 
0 ≤ P(Qi ≥ Qk) ≤ 1.

  Let � =
∑M

k=1
P(Qi ≥ Qk) +

M

2
− 1 , then we have 

0 ≤
M

2
− 1 ≤ � ≤ (M − 1) +

M

2
.

(4)PI(Qi) =
1

M(M − 1)

(
M∑
k=1

P(Qi ≥ Qk) +
M

2
− 1

)
.

  According to  Def ini t ion 4.2 ,  we have 
PI(Qi) =

�

M(M − 1)
 , that is 0 ≤

�

M(M − 1)
≤

1

M
+

1

2(M − 1)
≤ 1.

  Therefore the conclusion holds.
(2) According to Proposition 4.1, we have P(Qi ≥ Qi) = 0.5 

and P(Qi ≥ Qk) + P(Qk ≥ Qi) = 1.

L e t  � =
∑M

i=1

∑M

k=1
P(Qi ≥ Qk)  ,  t h e n  w e  h ave 

� =
M(M − 1)

2
+

M

2
.

Since

and � +M(
M

2
− 1) =

M(M − 1)

2
+

M

2
+M(

M

2
− 1) = M(M − 1) , we 

have 
∑M

i=1
PI(Qi) = 1 .   ◻

5  q‑ROF‑SIR methods to MADM with q‑ROF 
information

In order to address MADM problems evaluated by q-ROFNs, 
this section presents the q-ROF-SIR methods. Firstly, based 
on the PI of q-ROFNs, we improve the preference inten-
sity in the classical SIR methods [11] to obtain the supe-
riority matrix (S-matrix) and inferiority matrix (I-matrix). 
Subsequently, when considering the weight vector of the 
attributes, superiority flow (S-flow) and inferiority flow 
(I-flow) are developed to establish the q-ROF-SIR methods. 
If the attribute weights are unknown, we give the q-ROF-
EW method which is based on the entropy of q-ROFSs to 
obtain the attribute weights. Finally, we compare the scores 
of S-flow and I-flow to determine q-ROF-SIR partial rank-
ing order or q-ROF-SIR total ranking order of alternatives.

5.1  q‑ROF‑SIR methods

Given a MADM problem, A = {A1,… ,An} represents a 
set of alternatives, where Ai denotes the ith alternative 
and C = {C1,… ,Cm} represents a set of attributes, where 
Cj denotes the jth attribute. In some uncertain environ-
ment, an expert prefers to assess the alternative Ai on the 
attribute Cj by using of q-ROFNs Qij =< uij, vij > . Then 

M∑
i=1

PI(Qi) =
1

M(M − 1)

M∑
i=1

(
M∑
k=1

P(Qi ≥ Qk) +
M

2
− 1

)

=
1

M(M − 1)

(
M∑
i=1

M∑
k=1

P(Qi ≥ Qk) +M(
M

2
− 1)

)

=
1

M(M − 1)

(
� +M(

M

2
− 1)

)
,
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a q-ROFN decision making matrix QR = (Qij)n×m can be 
established according to the assessments of the expert.

It is known that the higher the benefit attribute, the 
better the alternative, while the lower the cost attribute, 
the better the attribute. Assume the original assessment 
of alternative Ai on attribute Cj is represented by q-ROFN 
Qij =< uij, vij > , then Qij =< uij, vij > needs to be normal-
ized as follows:

In other words, if the attribute Cj is a benefit attribute, the 
evaluation value Qij =< uij, vij > does not change. While if 
the attribute Cj is a cost attribute, we must replace Qij with 
its complement Qij =< vij, uij >.

5.1.1  Improved preference intensity

Motivated by the preference intensity proposed in [11, 12], 
we define the improved preference intensity as follows:

where t = PI(Qij) − PI(Qkj) measures the PI difference of 
between alternatives Ai and alternatives Ak under the attrib-
ute Cj . Usually, the decision maker can select �j from the six 
various kinds of preference functions introduced by Brans 
and Mareschal [21] or define �j(t) by themselves.

5.1.2  Superiority matrix and inferiority matrix

According to the improved preference intensity, S-matrix 
S = (Sij)n×m and I-matrix I = (Iij)n×m can be obtained, where

5.1.3  The q‑ROF‑EW method

Assume wj be the weight of attribute Cj such that 0 ≤ wj ≤ 1 
and 

∑m

j=1
wj = 1 . Let (Eq)j =

1

n

∑n

i=1
Eq(Qij) , then a q-ROF 

entropy weight model based on the entropy of q-ROFSs 
can be defined as follows:

Qij =

{
< uij, vij >, Cj belongs to the benefit attribute set;

< vij, uij >, Cj belongs to the cost attribute set.

(5)Fj(Qij,Qkj) =�j(PI(Qij) − PI(Qkj)) = �j(t).

(6)Sij =

n∑
t=1

Fj(Qij,Qtj),

(7)Iij =

n∑
t=1

Fj(Qtj,Qij).

Such model to obtain the attribute weights is called the 
q-ROF-EW method.

5.1.4  S‑flow and I‑flow

According to the attribute weight wj , S-flow Δ+(Ai) and 
I-flow Δ−(Ai) can be defined as:

Now, S-flow and I-flow are respectively the exiting flows 
and the entering flows of PROMETHEE. As discussed in 
[11], if we select simple additive weighting (SAW) as the 
aggregation function to compute S-flow and I-flow, then 
the SIR method is the PROMETHEE method. Similarly, 
the decision maker can select other aggregation functions 
to obtain S-flow and I-flow according to the real situation or 
their experiences.

5.1.5  Superiority ranking rule and inferiority ranking rule

Superiority ranking (SR) rule can be defined as AiR
+Ak if 

and only if Δ+(Ai) ≥ Δ+(Ak) , while inferiority ranking (IR) 
rule R− is defined as AiR

−Ak if and only if Δ−(Ai) ≤ Δ−(Ak).
Obviously, R+ and R− are two complete ranking orders. 

The higher Δ+(Ai) the better alternative Ai , and the smaller 
Δ−(Ai) the better alternative Ai.

5.1.6  q‑ROF‑SIR partial ranking order

Finally, we establish the q-ROF-SIR partial ranking order 
R = R+ ∩ R− = (≥I ,∼I , ||I) as follows: 

(1) Ai outranks Ak , denoted by Ai ≥I Ak , if and only if 
AiR

+Ak and AiR
−Ak;

(2) Ai is incomparable to Ak , denoted by Ai||IAk , if and 
only if AiR

+Ak and AkR
−Ai or AkR

+Ai and AiR
−Ak .

(3) Ai is indifferent to Ak , denoted by Ai ∼I Ak , if and only 
if Δ+(Ai) = Δ+(Ak) and Δ−(Ai) = Δ−(Ak).

(8)wj =
1 − (Eq)j∑m

j=1

�
1 − (Eq)j

� .

(9)Δ+(Ai) =

m∑
j=1

wjSij,

(10)Δ−(Ai) =

m∑
j=1

wjIij.
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5.1.7   q‑ROF‑SIR total ranking order

Sometimes, we want to obtain the total relationships among 
alternatives in MADM problems. Firstly, we should compute 
the net flow (N-flow) which is the difference between S-flow 
and I-flow, denoted by ΔN(Ai),

Because the bigger the ΔN(Ai) , the better the alternative Ai , 
we can define the complete ranking order (>II ,∼II) to receive 
the total relationships of alternatives as follows: 

(1) Ai outranks Ak , denoted by Ai >II Ak , if and only if 
ΔN(Ai) > ΔN(Ak);

(2) Ai is indifferent to Ak , denoted by Ai ∼II Ak , if and only 
if ΔN(Ai) = ΔN(Ak).

In the end, we construct the q-ROF-SIR I method by the 
q-ROF-SIR partial ranking order, then the q-ROF-SIR II 
method by the q-ROF-SIR total ranking order to handle the 
MADM problems evaluated by q-ROFNs.

5.2  The procedures of the q‑ROF‑SIR methods

For the convenience of application, we summarize the pro-
cedures of the q-ROF-SIR methods in this subsection.

Algorithm I ( for the q-ROF-SIR method I )
   Step 1 According to real problem, select the appropriate 

q and the improved preference intensity .
   Step 2 Calculate the P(Qij ≥ Qkj) for each pair (Qij,Qkj) 

according to Definition 4.1.
   Step 3 Compute the PI(Qij) by Definition 4.2.
   Step 4 Calculate the values of Fj(Qij,Qkj) according to 

formula (5).
   Step 5 Compute S = (Sij)n×m and I = (Iij)n×m according 

to formulas (6) and (7).

(11)ΔN(Ai) = Δ+(Ai) − Δ−(Ai).

   Step 6 If wj(j = 1, 2,⋯ ,m) is unknown, compute wj in 
the light of the q-ROF-EW method ( formula (8) ).

     Step 7 Calculate S-flow Δ+(Ai) and I-flow Δ−(Ai) , 
according to formulas (9) and (10).

   Step 8 Determine SR order R+ and IR order R−.
AiR

+Ak ⇔ Δ+(Ai) ≥ Δ+(Ak)  a n d 
AiR

−Ak ⇔ Δ−(Ai) ≤ Δ−(Ak).
   Step 9 Rank Ai in the light of the (>I ,∼I , ∣∣I) , which is 

the defined partial ranking order in Sect. 5.1.6.
Algorithm II ( for the q-ROF-SIR method II)
   Steps 1’–7’ is similar to Steps 1–7 of Algorithm I.
   Step 8’ Compute the N-flow ΔN(Ai) according to for-

mula (11).
   Step 9’ Rank Ai in the light of the (>II ,∼II) , which is 

the defined total ranking order in Sect. 5.1.7.
We further give the flow chart of q-ROF-SIR methods, 

shown in Fig. 2.

6  Illustrative example

This section utilizes the proposed q-ROF-SIR methods to 
solve the investment company selection problem [5]. After 
that, the sensitivity of the parameters q is discussed. Further, 
we compare the proposed methods with other aggregation 
methods [5–7, 10] and PF-SIR methods [17].

Example 6.1 [5] An investor plans to select one company 
from five potential companies ( A1,A2,A3,A4,A5 ) to invest 
it. The investor assesses the five companies regarding six 
attributes ( C1,C2,C3,C4,C5,C6 ), where the technical abil-
ity is denoted by C1 , the expected benefit C2 , the competi-
tive power on the market C3 , the ability to bear risk C4 , the 
management capability C5 and the innovative ability C6 . The 
investor prefers to evaluate each alternative Ai with respect to 
every attribute Cj by the q-ROFNs Qij =< uij, vij > . The cor-
responding q-ROFN decision making matrix QR = (Qij)5×6 
is listed as follows:

QR =

⎛
⎜⎜⎜⎜⎜⎝

< 0.5, 0.2 > < 0.8, 0.3 > < 0.8, 0.3 > < 0.7, 0.3 > < 0.4, 0.2 > < 0.4, 0.8 >

< 0.6, 0.3 > < 0.5, 0.8 > < 0.6, 0.5 > < 0.6, 0.5 > < 0.7, 0.4 > < 0.5, 0.6 >

< 0.3, 0.4 > < 0.8, 0.5 > < 0.7, 0.6 > < 0.6, 0.4 > < 0.6, 0.2 > < 0.4, 0.7 >

< 0.7, 0.4 > < 0.5, 0.6 > < 0.7, 0.4 > < 0.5, 0.5 > < 0.7, 0.6 > < 0.6, 0.5 >

< 0.7, 0.6 > < 0.6, 0.4 > < 0.4, 0.7 > < 0.4, 0.3 > < 0.7, 0.7 > < 0.5, 0.4 > .

⎞⎟⎟⎟⎟⎟⎠
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6.1  Illustration of the q‑ROF‑SIR methods

The proposed q-ROF-SIR methods are applied to rank the 
candidate companies, which are cited from literature [5]. In 
this example, all attributes are the benefit attributes.

In step 1, choose the parameter q=3 for q-ROF-SIR meth-
ods, and the improved preference intensity �j(t) for each 
attribute Cj , where

In Step 2, according to Definition 4.1, compute the 
P(Qij ≥ Qkj) , which are presented in Table 1.

In Step 3, according to Definition 4.2, we calculate the 
PI(Qij) , which are indicated in Table 2.

For example, in Table  2, one can compute 
PI(Q11) =

1

5 × (5 − 1)
[(0.5 + 0.4778 + 0.5434 + 0.4445 + 0.4962) 

+
5

2
− 1] = 0.198095 ≈ 0.198.

𝜓j(t) =

⎧⎪⎨⎪⎩

0, if t ≤ 0,
t

0.5
, if 0 < t ≤ 0.5,

1, if t > 0.5.

In Step 4, calculate the values of Fj(Qij,Qkj) = �j(t) 
according to formula (5). The results are shown as Table 3.

In Step 5, compute S-matrix and I-matrix according to 
formulas (6) and (7). The results are shown as follows:

In Step 6, because the attribute weights are unknown, we use 
formula (8) to calculate the attribute weights. The results are 
indicated in Table 4.

S =

⎛
⎜⎜⎜⎜⎜⎝

0.024 0.479 0.417 0.177 0.023 0

0.060 0 0.082 0.022 0.163 0.120

0 0.409 0.094 0.055 0.092 0.044

0.134 0.096 0.198 0 0.048 0.238

0.025 0.200 0 0.008 0 0.195

⎞
⎟⎟⎟⎟⎟⎠

I =

⎛⎜⎜⎜⎜⎜⎝

0.043 0 0 0.177 0.084 0.351

0.018 0.697 0.142 0.022 0 0.061

0.139 0.017 0.124 0.055 0.018 0.175

0 0.313 0.055 0 0.047 0

0.042 0.157 0.471 0.008 0.178 0.011

⎞⎟⎟⎟⎟⎟⎠

Fig. 2  The flow chart of q-ROF-SIR methods



603International Journal of Machine Learning and Cybernetics (2022) 13:595–607 

1 3

In Step 7, calculate S-flow and I-flow according to for-
mulas (9) and (10). The results are indicated in the second 
block of Table 5.

In Step 8, combine Table 5 with SR rule and IR rule, 
determine R+ and R− as follows:

A1 R+ A3 R+ A4 R+ A5 R+ A2  a n d 
A1 R− A3 R− A4 R− A5 R− A2.

In Step 9, according to the defined partial rank-
ing order in Sect.  5.1.6, we obtain the final results as 
A1 >I A3 >I A4 >I A5 >I A2 , shown in Fig.3.

Subsequently, we use the q-ROF-SIR II method to solve 
this problem.

Steps 1’–6’ are similar to Steps 1–6.
In Step 7’, we can compute N-flow ΔN(Ai) by formula 

(11), which are presented in the third block of Table 5.

In Step 8’, rank the alternatives Ai in the light of 
(>II ,∼II) , which is the defined total ranking order in 
Sect.  5.1.7. The final ranking order of alternatives is 
A1 >II A3 >II A4 >II A5 >II A2 , which is illustrated in Fig. 4.

6.2  The influence of parameter q on the final 
ranking order

Furthermore, the influence of different parameter q on the 
final results are discussed by using the q-ROF-SIR methods. 
The results with different parameter q are shown in Table 6 
and Fig. 5.

From Table 6, we find that when parameter q = 2, 3, 4, 5 , 
the ranking order are all the same if we use the q-ROF-
SIR II method. It can find that when q = 2 , alternative A3 

Table 1  Possibility degree 
under each attribute Cj

P(Qij ≥ Qkj) C
1

C
2

C
3

C
4

C
5

C
6

(A
1
,A

1
) 0.5 0.5 0.5 0.5 0.5 0.5

(A
1
,A

2
) 0.478 1 0.676 0.587 0.427 0.335

(A
1
,A

3
) 0.543 0.560 0.698 0.561 0.455 0.417

(A
1
,A

4
) 0.445 0.757 0.598 0.615 0.474 0.251

(A
1
,A

5
) 0.496 0.641 0.862 0.591 0.523 0.294

(A
2
,A

1
) 0.522 0 0.324 0.413 0.573 0.665

(A
2
,A

2
) 0.5 0.5 0.5 0.5 0.5 0.5

(A
2
,A

3
) 0.568 0 0.484 0.478 0.526 0.575

(A
2
,A

4
) 0.467 0.355 0.425 0.532 0.574 0.431

(A
2
,A

5
) 0.526 0.251 0.648 0.517 0.654 0.448

(A
3
,A

1
) 0.457 0.441 0.302 0.439 0.545 0.583

(A
3
,A

2
) 0.432 1 0.516 0.522 0.474 0.425

(A
3
,A

3
) 0.5 0.5 0.5 0.5 0.5 0.5

(A
3
,A

4
) 0.395 0.734 0.427 0.552 0.533 0.352

(A
3
,A

5
) 0.439 0.609 0.696 0.535 0.595 0.379

(A
4
,A

1
) 0.556 0.243 0.402 0.386 0.526 0.749

(A
4
,A

2
) 0.533 0.645 0.575 0.468 0.427 0.569

(A
4
,A

3
) 0.605 0.266 0.574 0.448 0.467 0.648

(A
4
,A

4
) 0.5 0.5 0.5 0.5 0.5 0.5

(A
4
,A

5
) 0.574 0.412 0.735 0.489 0.584 0.510

(A
5
,A

1
) 0.504 0.359 0.138 0.409 0.478 0.706

(A
5
,A

2
) 0.474 0.749 0.352 0.483 0.346 0.552

(A
5
,A

3
) 0.561 0.392 0.304 0.465 0.405 0.621

(A
5
,A

4
) 0.427 0.588 0.265 0.511 0.416 0.490

(A
5
,A

5
) 0.5 0.5 0.5 0.5 0.5 0.5

Table 2  Results of PI under 
each attribute Cj

PI(Qij) C
1

C
2

C
3

C
4

C
5

C
6

A
1

0.1987 0.248 0.242 0.218 0.194 0.165
A
2

0.204 0.130 0.194 0.197 0.216 0.206
A
3

0.186 0.239 0.197 0.202 0.207 0.187
A
4

0.213 0.178 0.214 0.190 0.200 0.224
A
5

0.198 0.204 0.153 0.193 0.182 0.218
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is incomparable to alternative A4 in accordance with the 
q-ROF-SIR I method, while when q = 4 and q = 5 , alterna-
tive A3 is incomparable to alternative A1 in accordance with 
the q-ROF-SIR I method.

Fig. 5 only shows that the ranking results of alternatives 
are solved by the proposed q-ROF-SIR II method with dif-
ferent value q. From Fig. 5, we find that when parameter q 

takes different value, the ranking results of alternatives are 
the same. However, the bigger the parameter q, the smaller 
the difference of the net flows of alternatives. In general, the 
decision makers can select the suitable parameter q accord-
ing to their preferences or experiences.

Table 3  Results of Fj(Qij,Qkj) 
under each attribute Cj

Fj(Qij,Qkj) C
1

C
2

C
3

C
4

C
5

C
6

(A
1
,A

1
) 0 0 0 0 0 0

(A
1
,A

2
) 0 0.235 0.095 0.041 0 0

(A
1
,A

3
) 0.024 0.017 0.089 0.030 0 0

(A
1
,A

4
) 0 0.139 0.055 0.056 0 0

(A
1
,A

5
) 0 0.087 0.178 0.049 0.023 0

(A
2
,A

1
) 0.012 0 0 0 0.045 0.082

(A
2
,A

2
) 0 0 0 0 0 0

(A
2
,A

3
) 0.036 0 0 0 0.018 0.038

(A
2
,A

4
) 0 0 0 0.015 0.032 0

(A
2
,A

5
) 0.012 0 0.082 0.007 0.068 0

(A
3
,A

1
) 0 0 0 0 0.027 0.044

(A
3
,A

2
) 0 0.218 0.006 0.011 0 0

(A
3
,A

3
) 0 0 0 0 0 0

(A
3
,A

4
) 0 0.122 0 0.026 0.014 0

(A
3
,A

5
) 0 0.070 0.088 0.018 0.05 0

(A
4
,A

1
) 0.031 0 0 0 0.012 0.118

(A
4
,A

2
) 0.018 0.096 0.041 0 0 0.036

(A
4
,A

3
) 0.054 0 0.035 0 0 0.074

(A
4
,A

4
) 0 0 0 0 0 0

(A
4
,A

5
) 0.030 0 0.123 0 0.036 0.011

(A
5
,A

1
) 0.0003 0 0 0 0 0.107

(A
5
,A

2
) 0 0.148 0 0 0 0.025

(A
5
,A

3
) 0.024 0 0 0 0 0.063

(A
5
,A

4
) 0 0.052 0 0.008 0 0

(A
5
,A

5
) 0 0 0 0 0 0

Table 4  Results of the attribute 
weights

Attributes C
1

C
2

C
3

C
4

C
5

C
6

Weights 0.098 0.326 0.232 0.076 0.093 0.175

Table 5  Results of S-flow, I-flow and N-flow

Alternatives S-flow I-flow N-flow

A
1

0.271 0.074 0.197
A
2

0.063 0.276 − 0.214
A
3

0.175 0.083 0.093
A
4

0.136 0.127 0.009
A
5

0.102 0.188 − 0.086

Fig. 3  Partial ranking by q-ROF-SIR I
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6.3  Comparative analysis

It has validated the practical applicability of the q-ROF-SIR 
methods through solving the investment company selection 
problem. We still use other seven methods based on the 
q-ROFWA [5], the q-ROFWG [5], the q-ROFPWA [6], the 
q-ROFWBM [7], q-ROFWGBM [7], q-ROFWGHM [10], 
q-ROFGWHM [10] and PF-SIR [17] to solve the same 
problem. The results are provided in Table 7. From Table 7, 
it shows that the ranking order of alternatives are all the 
same except the results solved by the q-ROFWG [5] and the 
q-ROFWGBM [7]. Furthermore, A1 is the best alternative 
solved by all the methods.

The mentioned seven methods [5–7, 10] are completely 
dependent on the aggregation operators. These methods 
usually require the independence between attributes. While 
the proposed q-ROF-SIR methods belong to the outrank-
ing methods, which don’t care about the dependence or 
independence between the attributes. In Example 6.1, we 
find that it can not assure that the different attributes Cj 
(j = 1,… , 6) are independent from each other. Therefore, it 

produces more reasonable ranking result of alternatives by 
the q-ROF-SIR methods than the other methods.

On the other hand, from Table 7, it finds that the same 
ranking order of alternatives is solved by the PF-SIR method 
and the q-ROF-SIR method. However, the preference inten-
sity of the PF-SIR methods [17] is based on the distance of 
PFNs, and the preference intensity of the proposed meth-
ods is based on the PD of q-ROFNs. When compare two 
q-ROFNs, it is more suitable to use the possibility degree 
than the distance of q-ROFNs. Besides, the PF-SIR meth-
ods can only deal with PFNs while the proposed methods 
can handle q-ROFNs including PFNs. Therefore, from 
above comparison analysis, it can be seen that the proposed 
q-ROF-SIR methods are reasonable and flexible to solve 
MADM problems evaluated by q-ROFNs.

Fig. 4  Total ranking by q-ROF-SIR II

Table 6  Ranking values of 
different parameter q by the 
q-ROF-SIR methods

Parameter q  S-flow, I-flow and N-flow Ranking order

q=2 Δ+(A
i
) = {0.427, 0.132, 0.233, 0.241, 0.160}

Δ−(A
i
) = {0.136, 0.343, 0.171, 0.203, 0.341}

ΔN(A
i
) = {0.291,−0.211, 0.062, 0.039,−0.181}

A
1
>
I
A
3
>
I
A
5
>
I
A
2

A
1
>
I
A
4
>
I
A
5
>
I
A
2

A
3
||
I
A
4

A
1
>
II
A
3
>
II
A
4
>
II
A
5
>
II
A
2

q=3 Δ+(A
i
) = {0.271, 0.063, 0.175, 0.136, 0.102}

Δ−(A
i
) = {0.074, 0.276, 0.083, 0.127, 0.188}

ΔN(A
i
) = {0.197,−0.214, 0.093, 0.009,−0.086}

A
1
>
I
A
3
>
I
A
4
>
I
A
5
>
I
A
2

A
1
>
II
A
3
>
II
A
4
>
II
A
5
>
II
A
2

q=4 Δ+(A
i
) = {0.188, 0.038, 0.129, 0.089, 0.070}

Δ−(A
i
) = {0.051, 0.203, 0.049, 0.088, 0.124}

ΔN(A
i
) = {0.137,−0.165, 0.080, 0.001,−0.053}

A
1
>
I
A
4
>
I
A
5
>
I
A
2

A
3
>
I
A
4
>
I
A
5
>
I
A
2

A
1
||
I
A
3

A
1
>
II
A
3
>
II
A
4
>
II
A
5
>
II
A
2

q=5 Δ+(A
i
) = {0.140, 0.025, 0.101, 0.062, 0.051}

Δ−(A
i
) = {0.038, 0.157, 0.032, 0.066, 0.088}

ΔN(A
i
) = {0.102,−0.132, 0.070,−0.003,−0.037}

A
1
>
I
A
4
>
I
A
5
>
I
A
2

A
3
>
I
A
4
>
I
A
5
>
I
A
2

A
1
||
I
A
3

A
1
>
II
A
3
>
II
A
4
>
II
A
5
>
II
A
2

Fig. 5  Ranking values of different parameter q by the q-ROF-SIR 
method II 
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7  Conclusions

With the parameter q increasing, q-ROFSs have greater 
capability to express uncertain information than IFSs and 
PFSs. For the MADM problems with q-ROFSs, the q-ROF-
SIR methods are given. Firstly, the entropy of q-ROFSs was 
introduced to describe the uncertainty of q-ROFSs. Then we 
developed the PD of q-ROFNs to reasonably measure the 
possibility degree of one q-ROFN no less than another. Next 
we introduced the PI of q-ROFNs to improve the preference 
intensity. Subsequently, considering the weight vector of 
attributes, S-flow and I-flow were obtained to rank alterna-
tives. If the attribute weights were not given, the q-ROF-EW 
method was applied to determine the weights of attribute. 
After that, the scores of S-flow and I-flow were employed 
to determine the partial ranking order of alternatives in the 
q-ROF-SIR I method. Further, the scores of N-flow are com-
puted to acquire the total ranking order of alternatives in the 
q-ROF-SIR II method. Finally, a MADM example was con-
sidered to validate the practical applications of the proposed 
q-ROF-SIR methods.

Moreover, we analysed the sensitivity of parameter q in 
the proposed q-ROF-SIR methods. Further, we compared the 
proposed methods with other aggregation methods as well as 
PF-SIR methods. The final results show that the q-ROF-SIR 
methods have two main characteristics. Firstly, it is reason-
able to use the PD of q-ROFNs to compare two q-ROFNs. 
Secondly, the proposed methods are more reliable and pow-
erful than the other mentioned methods.

In the future, besides SAW, we will develop other aggre-
gation functions to compute S-flow and I-flow in the q-ROF-
SIR methods. Furthermore, we will apply the q-ROF-SIR 
methods to handle the MADM problems in many other fields 

under uncertain environment, such as risk analysis, financial 
market, contingency management, et al.
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