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Abstract
In recent years, algorithms to recovery low-rank matrix have become one of the research hotspots, and more corresponding 
optimization models with nuclear norm have also been proposed. However, nuclear norm is not a good approximation to the 
rank function. This paper proposes a matrix completion model and a low-rank sparse decomposition model based on truncated 
Schatten p-norm, respectively, which combine Schatten p-norm with truncated nuclear norm, so that the models are more 
flexible. To solve these models, the function expansion method is first used to transform the non-convex optimization models 
into the convex optimization ones. Then, the two-step iterative algorithm based on alternating direction multiplier method 
(ADMM) is employed to solve the models. Further, the convergence of the proposed algorithm is proved mathematically. The 
superiority of the proposed method is further verified by comparing the existing methods in synthetic data and actual images.

Keywords  Matrix completion · Matrix decomposition · Sparsity · Schatten p-norm · Truncated nuclear norm

1  Introduction

As a special case of matrix recovery, matrix completion 
addresses to complete the incomplete matrix according to 
the existing information, which has been widely applied in 
image restoration [1–4], video denoising [5], and recom-
mendation system [6, 7]. A typical example is Netflix prize 
problem [8], which can infer the user’s favorite degree for 
other films according to the user’s evaluation of some films, 
and then the movie recommendation is made for other users.

Assuming that M ∈ �
m×n is a given low rank or approxi-

mate low rank matrix and X ∈ �
m×n is a low rank matrix 

to be recovered, then the completion problem of X can be 
represented as the following optimization problem:

where  rank(⋅) denote s  t he  r ank  o f  ma t r ix , 
Ω ⊂ {1,… ,m} × {1,… , n} is a set of location coordinates 
for known data. If the sampling operator, PΩ(X),

is introduced, then the problem (1.1) can be denoted as

Another important problem of matrix recovery is low rank 
sparse decomposition, also known as robust principal com-
ponent analysis (RPCA), which has been widely applied in 
medical image processing [9, 10], video surveillance [11, 
12], pattern recognition [13–15], and so on. The main pur-
pose of RPCA is to decompose M into the sum of a low rank 
matrix X and a sparse matrix E, that is, M = X + E , where X 
and E are unknown matrices. In other words, the optimiza-
tion problem

needs to be solved, where ‖ ⋅ ‖0 denotes the �0 norm of 
matrix, and � ( > 0 ) is regularization parameter.

Since the rank function is non-convex and discontinuous, 
the optimization problems (1.3) and (1.4) are both NP hard 
problems, which cannot be solved directly by the commonly 
used optimization algorithms. Fazel [16] proposed a method 

(1.1)min
X

rank(X) s. t. Xij = Mij, (i, j) ∈ Ω,

(1.2)[PΩ(X)]ij =

{
Xij, (i, j) ∈ Ω;

0, otherwise,

(1.3)min
X

rank(X) s. t. PΩ(X) = PΩ(M).

(1.4)min
X,E

rank(X) + �‖E‖0 s. t. M = X + E *	 Feilong Cao 
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to replace the rank function in the optimization problems 
(1.3) and (1.4) by using the nuclear norm (NN) ‖ ⋅ ‖∗ , and 
the �1 norm instead of the �0 norm. Therefore, Eqs. (1.3) and 
(1.4) are converted to

and

r e s p e c t i v e l y .  H e r e  ‖X‖∗ = ∑min (m,n)

i=1
�i(X) 

( �1(X) ≥ �2(X) ≥ ⋯ ≥ �min (m,n)(X) ) is NN of matrix X, 
that is, the sum of all singular values of matrix X, and 
‖E‖1 = ∑m

i=1

∑n

j=1
�eij� is the �1 norm of matrix E, that is, 

the sum of all the absolute values of elements of matrix E.
Up to now, a series of studies [16–19] have shown that 

NN can be used as an approximate substitute for rank func-
tion. At the same time, some algorithms for solving con-
vex optimization with NN [20–23] have been proposed one 
after another. This is because in the rank function, all the 
non-zero singular values have the same effect, and NN adds 
all the non-zero singular values and minimizes them at the 
same time, so that the different singular values have differ-
ent contributions as much as possible. However, NN is not 
the best approximate substitute for rank function. Although 
the algorithms based on NN have strong theoretical guaran-
tee, these algorithms can only get the suboptimal solution 
in practical application.

In 2012, a non-convex minimum optimal substitution for 
NN is proposed, which is named as Schatten p-norm [6], and 
defined by ‖X‖p =

�∑min (m,n)

i=1
�
p

i
(X)

�1∕p

 ( 0 < p ≤ 1 ). Obvi-
ously, when p = 1 , it is equivalent to the NN. And when p 
approaches 0, the Schatten p-norm approximates the rank 
function. In 2013, Hu et al. [1] proposed a new norm called 
as truncated nuclear norm (TNN): ‖X‖r = ∑min (m,n)

i=r+1
�i(X) . 

Its main idea is to remove the larger singular values of r and 
add the remaining singular values of (min(m, n) − r) to 
reduce the influence of large singular values on low rank. 
Recently, Gu et al. [24] proposed to replace NN with the 
weigh ted  nuc lear  nor m (WNN) def ined  by 
‖X‖�,∗ = ∑min (m,n)

i=1
�i�i(X) in order to change the influence 

of singular value on rank function with different weights, 
and showed that the proposed WNN has a good approximate 
effect. In [25] and [26], a truncated Schatten p-norm (TSPN) 
is proposed, which sums only the p power of singular values 
of (min(m, n) − r) , that is, ‖X‖pr = ∑min (m,n)

i=r+1
�
p

i
(X) . In [25], a 

compression sensing model based on truncated Schatten 
p-norm is proposed, and the alternating direction multiple 
method (ADMM) was used to solve the model. The pro-
posed method in [25] has a good performance in image res-
toration. In [26], Chen et al. used truncated Schatten p-norm 
and proposed an optimization model of human motion 

(1.5)min
X

‖X‖∗ s. t. PΩ(X) = PΩ(M),

(1.6)min
X,E

‖X‖∗ + �‖E‖1 s. t. M = X + E,

recovery, and further showed that the truncated Schatten 
p-norm has a better effect of approximate rank function than 
other norms by using a series of experiments.

The motivations of the paper are as follows.

•	 In the rank function, all the non-zero singular values have 
the same effect. However, the different singular values 
should have different contributions as much as possible. 
So NN is not the best approximate substitute for rank 
function.

•	 The main idea of TNN is to remove the larger singu-
lar values of r and add the remaining singular values of 
(min(m, n) − r) to reduce the influence of large singular 
values on low rank. It was shown that TNN has better 
approximate effect than NN.

•	 When 0 < p < 1 , Schatten p-norm is a non-convex mini-
mum optimal substitution for NN, and when p = 1 , it 
is equivalent to the nuclear norm. Specially, when p 
approximates 0, the Schatten p-norm approximates the 
rank function.

•	 Truncated Schatten p-norm sums only the p power of 
singular values of (min(m, n) − r) , which combines TNN 
and Schatten p-norm advantages. It has been shown in 
[25, 26] that Schatten p-norm has a good performance in 
image restoration and a better effect of approximate rank 
function than other norms by using a series of experi-
ments.

The main contributions of this paper can be summarized 
as follows.

•	 The truncated Schatten p-norm based non-convex regu-
larization models, which are directed against matrix com-
pletion and RPCA problems, respectively, are proposed;

•	 The function expansion method is used to transform the 
non-convex optimization model into the convex opti-
mization model, and the two-step iterative algorithm of 
ADMM [27] is utilized to solve the model;

•	 The convergence of the proposed algorithm is proved 
mathematically;

•	 The advantages of the proposed methods are further illus-
trated by synthetic data, actual image restoration, and 
background separation experiments.

The contents of this paper are arranged as follows. In Sect. 2, 
we establish regularization models of matrix completion 
based on truncated Schatten p-norm, corresponding algo-
rithms, and convergence theorem. The corresponding RPCA 
regularization model and solution method based on trun-
cated Schatten p-norm are described in Sect. 3. Section 4 
describes and analyses the experimental results, and through 
the comparison of experimental results, the advantages of 
the proposed method are further explained. Section 5 makes 
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a summarization and reduces the conclusion of the whole 
article. Finally, the details of the proof of the convergence 
theorem are attached in “Appendix”.

2 � Regularization of matrix completion 
based on truncated Schatten p‑norm 
(TSPN‑MC)

2.1 � TSPN‑MC model

From [25] and [26], it follows that truncated Schatten 
p-norm can be written as

where A ∈ �
r×m , and B ∈ �

r×n . Further, we need the fol-
lowing lemma.

Lemma 2.1  ( see[25]) Suppose that the rank of matrix 
X ∈ �

m×n is r(r ≤ min(m, n)), and its singular value decom-
position is X = UΔV⊤, where U = (�1,… ,�m) ∈ �

m×m

,  Δ ∈ �
m×n ,  V = (�1,… , �n) ∈ �

n×n .  T h e n  w h e n 
A = (𝜇1,… ,𝜇r)

⊤ ∈ �
r×m,  B = (𝜈1,… , 𝜈r)

⊤ ∈ �
r×n,  and 

0 < p ≤ 1, the optimization problem:

has optimal solution.

From Eq. (2.1) and Lemma 2.1, we improve the model of 
matrix completion (1.3) and obtain the new model based on 
the truncated Schatten p-norm:

where A ∈ �
r×m , B ∈ �

r×n , AA⊤ = Ir×r , BB⊤ = Ir×r , and 
0 < p ≤ 1.

(2.1)

‖X‖p
r
=

min(m,n)�
i=r+1

(𝜎i(X))
p

= min
A,B

min(m,n)�
i=1

(1 − 𝜎i(B
⊤A))(𝜎i(X))

p, 0 < p ≤ 1,

(2.2)
‖X‖p

r
=min

A,B

min(m,n)�
i=1

(1 − 𝜎i(B
⊤A))(𝜎i(X))

p s. t. AA⊤

=Ir×r,BB
⊤ = Ir×r

(2.3)

min
X

min(m,n)∑
i=1

(1 − 𝜎i(B
⊤A))(𝜎i(X))

p s. t. PΩ(X) = PΩ(M),

2.2 � Solving TSPN‑MC

Since (2.3) is a non-convex optimization problem, it cannot 
be solved directly by the usual method. To this end, we first 
put our hand to transform the model (2.3).

Let F(𝜎(X)) =
∑min(m,n)

i=1
(1 − 𝜎i(B

⊤A))(𝜎i(X))
p , then its 

derivative with respect to �(X) is

Therefore, we can obtain that the first-order Taylor expan-
sion of F(�(X)):

L e t  𝜔i = p(1 − 𝜎i(B
⊤A))(𝜎i(Xk))

p−1   ,  t h e n 
F(�(X)) =

∑min(m,n)

i=1
�i�i(X) , where W ∶= {�i}

min(m,n)

i=1
 is a 

no decreasing weight sequence. As a result, the model (2.3) 
becomes a model based on weighted nuclear norm:

Consequently, we can use ADMM and divide into two steps 
to solve the convex optimization model (2.6):

•	 Step 1: Initialize X1 = M , and calculate Xs = UsΔsV
⊤
s

 
in the (s + 1)-th iteration. Then, As and Bs are calculated 
from Us and Vs;

•	 Step 2: Fix As and Bs , and calculate the weight 
W = {�i}

r
i=1

 of K-th iteration. Then, the ADMM algo-
rithm is used to solve (2.6).

We sort out the specific solution process, and obtain the fol-
lowing Algorithm 1.

(2.4)∇F(𝜎(X)) =

min(m,n)∑
i=1

p(1 − 𝜎i(B
⊤A))(𝜎i(X))

p−1.

(2.5)

F(𝜎(X)) = F(𝜎(Xk)) + ⟨∇F(𝜎(Xk)), 𝜎(X) − 𝜎(Xk)⟩
= ∇F(𝜎(Xk)) ⋅ 𝜎(X)

=

min(m,n)�
i=1

p(1 − 𝜎i(B
⊤A))(𝜎i(Xk))

p−1
⋅ 𝜎i(X).

(2.6)min
X

min(m,n)∑
i=1

�i�i s. t. PΩ(X) = PΩ(M).
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Algorithm 1 Two steps iterative algorithm for TSPN-MC
Require: Observation matrix M , coordinate set Ω, and threshold ε0.
1: Initialization: X1 = M .
2: In the (s+ 1)-th iteration:
3: Step 1: Calculate singular value decomposition of Xs: [Us,∆s, Vs] = SV D(Xs),

where Us = (µ1, . . . , µm) ∈ Rm×m, Vs = (ν1, . . . , νn) ∈ Rn×n. Compute As and Bs as
As = (µ1, . . . , µr) and Bs = (ν1, . . . , νr) .

4: Step 2: Solve the optimization sub-problem (2.6), and obtain Xs+1.
5: Until Xs+1 −Xs F ≤ ε0.

Ensure: Recovery matrix X.

The process of using ADMM to solve (2.6) is described 
in detail below. We first introduce the variable N and rewrite 
the model (2.6) as

Then, we construct augmented Lagrangian function of (2.7) 
as

where Y is a Lagrangian multiplier, and 𝜇 > 0 is a penalty 
factor.

Fixing X, and updating N follows

and

Then, fixing N and updating X follows

Let QX = M − Nk+1 +
1

�k

Yk , then (2.11) can be solved by the 
following Lemma 2.2.

(2.7)min
X

min(m,n)∑
i=1

�i�i s. t. X + N = M,PΩ(N) = 0.

(2.8)
Γ(X,N, Y ,�) =

min(m,n)�
i=1

�i�i + ⟨Y ,M − X − N⟩

+
�

2
‖M − X − N‖2

F
,

(2.9)

Nk+1 = argmin
N

�k

2

�����
N −

�
M − Xk +

1

�k

Yk

������

2

F

s. t. ‖PΩ(N)‖2F = 0,

(2.10)Nk+1 = M − Xk +
1

�k

Yk.

(2.11)

Xk+1 = argmin
X

1

�k

min(m,n)∑
i=1

�i�i

+
1

2

‖‖‖‖‖
X −

(
M − Nk+1 +

1

�k

Yk

)‖‖‖‖‖

2

F

.

Lemma 2.2  (see [24]) Suppose that the rank of matrix Q 
is r, and its singular value decomposition is Q = UΔV⊤, 
Δ = Diag(�i(Q)), 1 ≤ i ≤ r, then for any 𝜏 > 0, the optimiza-
tion problem

has optimum solution:

where S�,�(⋅) is weighted singular value shrink operator, 
(⋅)+ ∶= max(⋅, 0), and W = {�i}

r
i=1

.

Therefore, from Lemma 2.2 it follows the solution of 
(2.11):

So updating Y and � achieves

where 𝜌(> 1) is a constant.
Sorting out the above details obtains the following matrix 

completion regularization (TSPN-MC) algorithm based on 
truncated Schatten p-norm 2.

(2.12)X∗ = argmin
X

�

min(m,n)�
i=1

�i�i +
1

2
‖X − Q‖2

F
,

X∗ = S𝜔,𝜏(Q) ∶= U(Δ − 𝜏diag(W))+V
⊤,

(2.13)Xk+1 = S
�,

1

�k

(QX).

(2.14)Yk+1 =Yk + �k(M − Xk+1 − Nk+1),

(2.15)�k+1 =min(��k,�max),
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Algorithm 2 ADMM solving TSPN-MC
Require: Observation matrix M , coordinate set Ω, As, Bs, p, (0 < p ≤ 1), µ0, µmax, ρ,

and ε.
1: Initialization: X0 = M , N0 = 0, Y0 = 0, k = 0.
2: In the (k + 1)-th iteration:
3: Step 1: Calculate weight W ;
4: Step 2: Fix other variables and compute N from (2.10);
5: Step 3: Fix other variables and compute X from (2.13);
6: Step 4: From (2.14) update Lagrange multiplier Y , and from (2.15) update

penalty factor µ;
7: Until: Xk+1 −Xk F ≤ ε.
8: end while: X = Xk+1.

Ensure: Recovery matrix X.

As the end of this section, we give the convergence theo-
rem of Algorithm 2. The details of its proof will be given 
in  “Appendix”.

Theorem 2.1  {Xk} obtained by Algorithm 2 is convergent.

3 � Low rank sparse decomposition 
based on truncated Schatten p‑norm 
(TSPN‑RPCA)

In the previous section, we introduced the TSPN-MC model 
and presented solution algorithms. In this section, we build a 
matrix low-rank sparse decomposition model based on trun-
cated Schatten p-norm and its solution algorithm.

We can rewrite the model (1.4) as

Similarly, the TSPN-RPCA model can be solved by two-
steps iterative method. Because the first step solution pro-
cess is the same as the first step solution process of model 
TSPN-MC, we here only introduces the second step solving 
process with ADMM. Clearly, the Lagrangian functions of 
(3.1) can be represented as

(3.1)
min
X,E

min(m,n)�
i=1

(1 − 𝜎i(B
⊤A))(𝜎i(X))

p

+ 𝜆‖E‖1 s. t. M = X + E.

Applying ADMM obtains

Since the method of solving Xk+1 , Yk+1 , and �k+1 is the same 
as that of TSPN-MC model, it is not introduced here. For 
Ek1 , it can be solved by the following Lemma 3.1.

Lemma 3.1  (see [28]) For a given matrix C ∈ �
m×n, and any 

𝜏 > 0, the solution of optimization problem

is E∗ = Θ�[cij], where cij are the elements of matrixC, Θ�[⋅] 
is shrink operator defined by

Furthermore, the algorithm of TSPN-RPCA solved by 
ADMM can be summarized in following Algorithm 3.

(3.2)

Γ(X,E, Y ,𝜇) =

min(m,n)�
i=1

(1 − 𝜎i(B
⊤A))(𝜎i(X))

p + 𝜆‖E‖1

+ ⟨Y ,M − X − E⟩ + 𝜇

2
‖M − X − E‖2

F
.

(3.3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ek+1 = argminE
𝜆

𝜇k

‖E‖1 + 1

2

����E −
�
M − Xk +

1

𝜇k

Yk

�����
2

F

,

Xk+1 = argminX
1

𝜇k

∑min(m,n)

i=1
𝜔i𝜎i +

1

2

����X −
�
M − Ek+1 +

1

𝜇k

Yk

�����
2

F

,

Yk+1 = Yk + 𝜇k(M − Xk+1 − Ek+1),

𝜇k+1 = min(𝜌𝜇k,𝜇max), 𝜌 > 1.

(3.4)min
E

�‖E‖1 + 1

2
‖E − C‖2

F

(3.5)Θ�[cij] ∶= sgn(cij)max (|cij| − �, 0).
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Algorithm 3 ADMM solving TSPN-RPCA
Require: M , As, Bs, p, (0 < p ≤ 1), µ0, µmax, ρ, ε.
1: Initialization: X0 = 0, E0 = 0, Y0 = 0, k = 0.
2: In the (k + 1)-th iteration:
3: Step 1: Calculate weight W ;
4: Step 2: Fix other variables and compute Ek+1 = Θ λ

µk

(M −Xk + 1
µk
Yk);

5: Step 3: Fix other variables and compute Xk+1 = Sω, 1
µk

(M − Ek+1 + 1
µk
Yk);

6: Step 4: Update Lagrange multiplier Yk+1 = Yk + µk(M −Xk+1 − Ek+1);
7: Step 5: Update penalty factor µk+1 = min(ρµk, µmax);
8: Until: Xk+1 −Xk F ≤ ε, Ek+1 − Ek F ≤ ε.
9: and while: X = Xk+1, E = Ek+1.

Ensure: Matrix X and E.

Table 1   Error results of 
synthetic data recovery 
( ps = 0.1 , p = 0.4)

Rank (pr/r) 0.05/20 0.1/40 0.15/60 0.2/80 0.25/100 0.3/120

TSPN-MC 8.8939×10−9 1.8733×10−8 5.3379×10−8 8.7174×10−8 1.0051×10−7 1.6141×10−7

WNN-MC 6.1500×10−8 8.1654×10−8 1.1556×10−7 1.3454×10−7 1.4448×10−7 1.8280×10−7

TNN-MC 7.3857×10−5 1.0165×10−4 1.4211×10−4 1.4620×10−4 1.6815×10−4 1.9028×10−4

NN-MC 8.7735×10−5 1.3309×10−4 1.5073×10−4 1.6434×10−4 1.9248×10−4 2.1538×10−4

Table 2   Error results of 
synthetic data recovery 
( ps = 0.2 , p = 0.4)

Rank (pr/r) 0.05/20 0.1/40 0.15/60 0.2/80 0.25/100 0.3/120

TSPN-MC 5.4488×10−8 7.5490×10−8 1.0778×10−7 1.4423×10−7 2.0575×10−7 2.3046×10−7

WNN-MC 5.9772×10−8 8.3975×10−8 1.2259×10−7 1.5799×10−7 2.1432×10−7 2.5954×10−7

TNN-MC 1.1857×10−4 1.1754×10−4 1.4968×10−4 1.9382×10−4 2.4690×10−4 3.1079×10−4

NN-MC 1.2036×10−4 1.2072×10−4 1.8260×10−4 1.9133×10−4 2.5129×10−4 3.8911×10−4

Table 3   Error results of 
synthetic data recovery 
( ps = 0.3 , p = 0.3)

Rank (pr/r) 0.05/20 0.1/40 0.15/60 0.2/80 0.25/100 0.3/120

TSPN-MC 7.5754×10−8 1.1156×10−7 1.4874×10−7 2.0458×10−7 2.7272×10−7 3.2947×10−7

WNN-MC 8.5654×10−8 1.2263×10−7 1.6203×10−7 2.2088×10−7 2.7792×10−7 3.9079×10−7

TNN-MC 1.2672×10−4 1.7276×10−4 2.1905×10−4 2.5943×10−4 2.5086×10−3 7.3826×10−2

NN-MC 1.4677×10−4 1.7474×10−4 2.2842×10−4 2.8503×10−4 2.5764×10−3 8.4432×10−2

Table 4   Average run time of synthetic data recovery (in seconds/s)

Methods TSPN-MC WNN-MC TNN-MC NN-MC

Time 66.86 10.43 15.85 3.60

4 � Experiments

In this section, the effectiveness of the proposed model and 
algorithm are verified by a series of experiments on synthetic 
data and actual images. The simulations of all experiments 
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are carried out in a MATLAB R2014a environment running 
on an Intel(R), Core(TM) i3-4150, CPU @ 3.5GHz with 4 
GB main memory.

4.1 � Application of TSPN‑MC in image restoration

Firstly, the experiments results of the methods NN-MC [17], 
TNN-MC [1], WNN-MC [29], and TSPN-MC on synthetic 
data are compared, and the feasibility of the proposed algo-
rithm is illustrated. Then, the effectiveness of the four meth-
ods is compared by the experimental results on actual image 
restoration.

4.1.1 � Experimental results on synthetic data

Following the generated method of synthetic data in [29], 
the generated data obeys the Gaussian distribution N(0, 1) . 
We set the matrix size as m = n = 400 , and take ps = 0.1 , 
0.2, and 0.3, respectively. So the number of missing data 
in the matrix is (m × n × ps) . Then, we select the value of 
pr ∈ [0.05, 0.3] for each ps at an interval of 0.05, and cal-
culate the rank r = pr × m of the data matrix. In order to 
illustrate the performance of the model, the matrix recovery 
error is used as an evaluation index, which is defined by

For the data generated by each group of (ps, pr) values, we 
conduct 10 tests, and then take the average as the final result 
for that group. For the parameter p in TSPN-MC, depend-
ing on the different synthetic data, its specific value will be 
indicated in the results of the experiment.

From the error results shown in Tables 1, 2, and 3, we can 
see that TSPN-MC and WNN-MC are better than the other 
two methods in recovery. However, the recovery error of 

(4.1)Error =
‖X −M‖F
‖M‖F .

Fig. 1   Experimental images

Table 5   PSNR of test Fig. 1 (dB) ( p = 0.7 , r = 8)

Missing rate 20% 40% 60% 80% Text masking

TSPN-MC 40.0583 35.2583 31.7654 27.2461 35.3043
WNN-MC 37.4252 32.9813 29.7691 25.2748 33.1622
TNN-MC 33.3276 31.6651 29.2781 24.9428 31.6663
NN-MC 33.3000 31.5834 28.8288 23.9487 31.2169

Table 6   PSNR of test Fig. 2 (dB) ( p = 0.8 , r = 3)

Missing rate 20% 40% 60% 80% Text masking

TSPN-MC 43.7463 37.3943 32.6607 27.2417 37.6234
WNN-MC 43.5335 36.5248 31.8521 27.0981 37.1478
TNN-MC 38.0936 34.9655 31.7271 26.9170 35.0947
NN-MC 38.0575 35.0921 31.4123 25.9986 34.7401

Table 7   PSNR of test Fig. 3 (dB) ( p = 0.9 , r = 2)

Missing rate 20% 40% 60% 80% Text masking

TSPN-MC 52.7414 48.5528 44.0653 41.4364 50.5905
WNN-MC 50.2591 45.8884 41.5844 39.0805 48.8553
TNN-MC 42.2772 41.2904 38.9288 35.1127 41.9279
NN-MC 42.2459 40.9211 38.8400 30.7802 41.6521

Table 8   PSNR of test Fig. 4 (dB) ( p = 0.7 , r = 4)

Missing rate 20% 40% 60% 80% Text masking

TSPN-MC 37.6958 33.1144 30.0158 26.9119 35.3858
WNN-MC 34.1728 30.0972 27.0882 23.6073 32.7062
TNN-MC 25.3034 24.1951 23.0382 20.0014 25.2862
NN-MC 25.4173 24.0664 22.9235 19.9547 25.2516
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TSPN-MC is the smallest, and it has better performance than 
the other three methods. On the other hand, with the increase 
of missing data and the rank of synthetic data matrix, the 

error fluctuation of TSPN-MC is small and has certain sta-
bility. Table 4 shows the average time of four methods to run 
on synthetic data. Because the singular value decomposition 

Fig. 2   Restoration results of image with 40% missing

Fig. 3   Restoration results of image with 80% missing
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Fig. 4   Restoration results of text masking

Table 9   Error result of synthetic 
data recovery ( m = n = 100 , 
r = 0.1n , spr = 0.05)

Algorithm Rank Sparsity Totalerr LRerr SPerr Iterations Time

TSPN-RPCA 10 500 �.0644 × 10−�� �.4056 × 10−�� �.6351 × 10−�� 66 0.7712
LRSD-TNN 10 500 7.1300×10−12 8.2567×10−12 5.7247×10−12 52 0.3626
IALM 10 500 1.4074×10−5 1.1020×10−5 1.6618×10−5 16 0.1006
ALM 10 569 2.2319×10−6 2.0108×10−6 2.4350×10−6 4 0.2740
APG 10 610 1.7455×10−3 1.9036×10−3 1.5622×10−3 65 0.2448

Table 10   Error result of 
synthetic data recovery 
( m = n = 500 , r = 0.1n , 
spr = 0.05)

Algorithm Rank Sparsity Totalerr LRerr SPerr Iterations Time

TSPN-RPCA 50 12500 �.���� × ��
−�� �.���� × ��

−
�� �.���� × ��

−
�� 256 105.2832

LRSD-TNN 50 12500 1.2572×10−11 1.6712×10−11 8.8245×10−12 54 16.7335
IALM 50 12500 1.0831×10−5 9.0085×10−6 1.1883×10−5 15 1.4774
ALM 50 12831 1.9819×10−6 2.6286×10−6 1.3985×10−6 3 6.0768
APG 50 13791 1.7202×10−3 2.1184×10−3 1.3957×10−3 65 6.7533

Table 11   Error result of 
synthetic data recovery 
( m = n = 900 , r = 0.1n , 
spr = 0.05)

Algorithm Rank Sparsity Totalerr LRerr SPerr Iterations Time

TSPN-RPCA 90 40500 �.���� × ��
−��

�.���� × ��
−��

�.���� × ��
−�� 184 433.0768

LRSD-TNN 90 40500 1.2608×10−11 1.7063×10−11 8.6050×10−12 57 86.4996
IALM 90 40500 1.0334×10−5 8.5755×10−6 1.1320×10−5 15 7.6584
ALM 90 41113 1.1651×10−6 1.3543×10−6 1.0254×10−6 3 30.8631
APG 90 44267 1.7130×10−3 2.1293×10−3 1.3809×10−3 65 34.0963
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was used three times in the computation weight W, so the 
running time of TSPN-MC is longer than the other three 
methods.

4.1.2 � Experimental results on image restoration

We select four images with the size of 300 × 300 . By com-
paring the peak signal-to-noise ratio (PSNR), we verify the 
image restoration effect of TSPN-MC under the condition 
of missing rate of 20%, 40%, 60%, 80% , and text masking, 
respectively, to illustrate the performance advantages of 
TSPN-MC. As usual, the PSNR is defined by

where X ∈ �
m×n,M ∈ �

m×n represents the original image 
and the restored image, respectively. Since the parameter 
settings of different images are different, we will mark the 
parameter p and truncated rank r of each image in the experi-
mental results. The test images used in this article are shown 
in Fig. 1.

From PSNR shown in Tables 5, 6, 7 and 8, it can be con-
cluded that the restoration effect of TSPN-MC is better than 
that of the other three methods, and even with the increase 
of the missing rate, the PSNR value is still decreasing. On 
the whole, TSPN-MC’s PSNR is higher than other methods, 
and the recovery effect is better. In order to further illustrate 
the advantages of the proposed method, Figs. 2, 3, and 4 
show the restoration visual effects under different missing 
or masking conditions, respectively. From these Figures, 
we can clearly see that the image restored by TSPN-MC is 
closer to the original image and clearer than that of other 

(4.2)
PSNR = 20 log

255�
1

mn
‖X −M‖2

F

,

methods. To sum up, TSPN-MC model has better recovery 
performance.

4.2 � Application of TSPN‑RPCA in background 
subtraction

4.2.1 � Experimental results on synthetic data

In this section, the recovery effects of TSPN-RPCA and 
LRSD-TNN [30], IALM [21], ALM [21] and APG [31] are 
compared by generating synthetic data, and the effective-
ness of the proposed algorithm is illustrated. First of all, we 
are generating a synthetic matrix with rank r and Sparsity 
degree spr: M0 = X0 + E0 . Here the low rank matrix can be 
written as X0 = HG⊤ , where H ∈ �

m×r , and G ∈ �
n×r satis-

fies Gaussian distribution N(0, 1) . And the sparse matrix 
E0 is a pulse sparse matrix with uniformly distribution on 
[−t, t] , where t = max (|X0|) , and the number of elements in 
the matrix is (spr × m × n) . In the experiment, p is set as 0.2.

In order to illustrate the accuracy of synthetic data recov-
ery, we compare the errors of different methods, including 
recovery total error Totalerr, low rank matrix error LRerr, 
and sparse matrix error SPerr. These errors are defined by

respectively, where M, X, and E are restored matrices.

(4.3)Totalerr =
‖M −M0‖F

‖M0‖F ,

(4.4)LRerr =
‖X − X0‖F
‖X0‖F ,

(4.5)SPerr =
‖E − E0‖F
‖E0‖F ,

Table 12   Error result of 
synthetic data recovery 
( m = n = 500 , r = 0.1n , 
spr = 0.1)

Algorithm Rank Sparsity Totalerr LRerr SPerr Iterations Time

TSPN-RPCA 50 25000 �.���� × ��
−��

�.���� × ��
−��

�.���� × ��
−�� 228 95.3320

LRSD-TNN 50 25000 1.5299×10−11 2.3283×10−11 1.0527×10−11 67 19.1362
IALM 50 25000 1.4438×10−5 1.5334×10−5 1.4062×10−5 17 1.6279
ALM 50 26399 5.5170×10−6 8.4826×10−6 3.7189×10−6 3 8.3070
APG 50 27714 1.5834×10−3 2.0695×10−3 1.3404×10−3 67 6.6725

Table 13   Error result of 
synthetic data recovery 
( m = n = 500 , r = 0.05n , 
spr = 0.05)

Algorithm Rank Sparsity Totalerr LRerr SPerr Iterations Time

TSPN-RPCA 25 12500 �.���� × ��
−��

�.���� × ��
−��

�.���� × ��
−�� 70 29.9138

LRSD-TNN 25 12500 8.0121×10−12 1.0706×10−11 5.0889×10−12 43 14.0390
IALM 25 12500 4.9002×10−6 3.2649×10−6 5.8429×10−6 12 0.8867
ALM 25 12500 4.4272×10−7 5.5029×10−7 3.3888×10−7 3 3.8708
APG 25 12538 1.8928×10−3 2.0150×10−3 1.7942×10−3 64 6.5124
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We first fix the rank of matrix as r = 0.1n , sparsity degree 
as spr = 0.05 , and three sets of data of m = n = 100, 500, 900 
are generated respectively. The matrix recovery experi-
ments are then carried out in five methods, and the results 
are shown in Tables 9,  10, and 11. By analyzing the results 
in the Tables, we know that the error of TSPN-RPCA is the 
smallest, the accuracy is higher than the other four methods, 
and the original matrix can be recovered more accurately, 
and the rank and sparsity of the restored matrix are the same 
as those of the initial matrix. Even with the increase of 
matrix dimension, the recovery error of TSPN-RPCA can be 
maintained at a stable level. Because TSPN-RPCA involves 
matrix singular value decomposition many times, the time 
consumption is larger than other methods, especially when 
the matrix dimension is larger.

On the other hand, we fix matrix size as m = n = 500 . 
When setting r = 0.1n, spr = 0.1 and r = 0.05n, spr = 0.05 , 

we respectively illustrate the advantages of the proposed 
method. The results are shown in Tables 12 and 13. By com-
paring the results of Tables 10 and 12, we find that the recov-
ery accuracy of TSPN-RPCA decreases when the sparsity 
of matrix is reduced, but it is still superior to other methods. 
In addition, when the rank of matrix decreases, comparison 
Tables 10 and 13 finds that the recovery accuracy of TSPN-
RPCA does not fluctuate much, and time and the number of 
iterations are obviously reduced. In a word, TSPN-RPCA 
has better recovery effect and better performance than other 
methods.

4.2.2 � Experimental results on background subtraction

In this subsection, the background subtraction experiment 
is carried out through the actual video, and the superior 
performance of the proposed method is further verified by 

Fig. 5   Different video front and rear scene separation effect diagram (from top to bottom is Bootstrap, Hall, Lobby)
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the comparative experiment of LRSD-TNN, IALM, and 
TSPN-RPCA.

For a given video, each frame can be regarded as a col-
umn of elements of the matrix. We chose three different 
videos [30]: Bootstrap, Hall, and Lobby, respectively. We 
select 16 frames of each video and convert it into a matrix 
with (mn × 16) dimension, where m, n is the dimension size 
of each video. Due to the limited space of the article, this 
paper only shows the effect diagram of the separation pros-
pect. It can be seen from the visual diagram Fig. 5 that the 
moving target in the video can be clearly separated by the 
proposed method. The separation effect of the other two 
methods is relatively poor, and the light in the background 
and the “ghost shadow” formed by the moving target appear. 
In this experiment, the parameter value of TSPN-RPCA is 
set as p = 0.2 , and the truncation rank is taken as r = 3.

5 � Conclusion

This paper studied matrix completion (TSPN-MC) and 
matrix low rank sparse decomposition (TSPNR-PCA) 
based on truncated Schatten p-norm. Combined with the 
characteristics and advantages of truncated norm and Schat-
ten p-norm, the flexibility of the model and its effective-
ness in practical problems are enhanced by adjusting the 
value of p(0 < p ≤ 1) . We first used Taylor expansion to 
transform the proposed TSPN-MC and TSPN-RPCA non-
convex models into convex optimization models. Then, the 
popular alternating direction multiplier method (ADMM) 
was used to solve the models. In particular, the convergence 
of the proposed algorithm is proved. A series of comparative 
experiments further verified the effectiveness and superiority 
of the proposed method.

It should be pointed out that in the solution of the models, 
the singular value of the matrix needs to be decomposed and 
calculated, which is bound to increase the time cost of the 
experiment. Therefore, in the future research, we should pay 
attention to how to find new methods to reduce the time con-
sumption caused by singular value decomposition (SVD). In 
addition, for the selection of truncated rank, we will consider 
using adaptive method to determine its value in order to 
reduce the repetition times of the experiment.

Acknowledgements  This work was supported by the National Natural 
Science Foundation of China under Grant 61933013.

Appendix

The proof of Theorem 2.1  Let QX = M − Nk+1 +
1

�k

Yk , then 
in (k + 1)-th iteration, its singular value decomposition is 
[Uk,Δk,Vk] = SVD(QX) . From Lemma 2.2, it follows that 
Xk+1 = UkΛkV

⊤
k

 , where Λk = {(Δk −
1

�k

W)+} . So from (2.14) 
it follows that

which shows that {Yk} is bounded. Recalling the definition 
of augmented Lagrangian function (2.8), for the solution of 
(k + 1)-th iteration {Xk+1,Nk+1} , there is

Noticing Yk+1 = Yk + �k(M − Xk+1 − Nk+1) , we have

Therefore,

Since {Yk} is bound, and there is �k+1 = min(��k,�max) , 
Γ(Xk+1,Nk+1, Yk,�k) is bounded.

And because

(5.1)

‖Yk+1‖F = ��Yk + 𝜇k(M − Xk+1 − Nk+1)
��F

= 𝜇k

����
1

𝜇k

Yk +M − Xk+1 − Nk+1

����F
= 𝜇k

���UkΔkV
⊤

k
− UkΛkV

⊤

k

���F
= 𝜇k‖Δk − Λk‖F
≤ 𝜇k

����
W

𝜇k

����F
= ‖W‖F,

Γ(Xk+1,Nk+1, Yk,�k) ≤ Γ(Xk,Nk, Yk,�k).

(5.2)

Γ(Xk,Nk, Yk,�k)

= Γ(Xk,Nk, Yk−1,�k−1) +
�k − �k−1

2
‖M − Xk − Nk‖2F

+ ⟨Yk − Yk−1,M − Xk − Nk⟩
= Γ(Xk,Nk, Yk−1,�k−1) +

�k − �k−1

2

����
1

�k−1

(Yk − Yk−1)
����
2

F

+ ⟨Yk − Yk−1,
1

�k−1

(Yk − Yk−1)⟩

= Γ(Xk,Nk, Yk−1,�k−1) +
�k + �k−1

2�2
k−1

‖(Yk − Yk−1)‖2F.

(5.3)

Γ(Xk+1,Nk+1, Yk,�k)

≤ Γ(X1,N1, Y0,�0) +
�k + �k−1

2�2
k−1

‖(Yk − Yk−1)‖2F.
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{Xk} is bounded. From Nk+1 = M − Xk +
1

�k

Yk , it can be 
deduced that {Nk} is also bounded. So {Xk,Nk, Yk} has at 
least one point of accumulation, and

We prove the convergence of Xk below. Because

(5.4)

min(m,n)�
i=1

�i�i(Xk) = ‖Xk‖W,∗ = Γ(Xk,Nk, Yk−1,�k−1)

+
�k−1

2

�
1

�2
k−1

‖Yk−1‖2F − ‖M − Xk − Nk +
1

�k−1

‖Yk−1‖2F
�

= Γ(Xk,Nk, Yk−1,�k−1) −
1

2�k−1

(‖Yk‖2F − ‖Yk−1‖2F),

lim
k→+∞

‖M − Xk+1 − Nk+1‖F = lim
k→+∞

1

�k

‖Yk+1 − Yk‖F = 0.

we have

This completes the proof of Theorem 2.1. 	�  ◻

(5.5)

⎧
⎪⎪⎨⎪⎪⎩

Xk = Uk−1Λk−1V
⊤
k−1

,

Xk+1 = M − Nk+1 −
1

𝜇k

(Yk+1 − Yk),

Nk = M − Xk −
1

𝜇k−1

(Yk − Yk−1),

Nk+1 = M − Xk +
1

𝜇k

Yk.

(5.6)

lim
k→+∞

‖Xk+1 − Xk‖F
= lim

k→+∞

����M − Nk+1 −
1

�k

(Yk+1 − Yk) − Xk

����F
= lim

k→+∞

�����
M − Nk+1 −

1

�k

(Yk+1 − Yk) − Xk +

�
Nk +

1

�k−1

Yk−1

�
−

�
Nk +

1

�k−1

Yk−1

������F
≤ lim

k→+∞

����M +
1

�k−1

Yk−1 − Nk − Xk

����F
+
����Nk − Nk+1 +

1

�k

(Yk − Yk+1) −
1

�k−1

Yk−1)
����F

≤ lim
k→+∞

‖Δk−1 − Λk−1‖F + ‖Nk − Nk+1‖F
+
����
1

�k

(Yk − Yk+1) −
1

�k−1

Yk−1)
����F

= lim
k→+∞

‖Δk−1 − Λk−1‖F +
����

1

�k−1

(Yk−1 − Yk) −
1

�k

Yk)
����F

+
����
1

�k

(Yk − Yk+1) −
1

�k−1

Yk−1)
����F

= 0.
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