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Abstract
Nowadays smart cities towards software defined network (SDN) approach will become better flexibility and manageability. 
A stronger, more dynamic network is an SDN network, which is precisely what a smart city network must be if it wants to 
be viable on a real-world scale. SDN architecture is developed to implement a learning framework for network optimiza-
tion. The proposed method is called mixed-integer and reinforcement learned network optimization (MI-RLNO) for SDN 
monitoring. In the first phase, mixed-integer programming formulation is used as an optimization formulation for latency and 
convergence time. In the second phase, a reinforced Q Learning model is designed that uses communication and computation 
time as input state vector. Optimization formulation is used as the actions and strategies to be followed during the design 
and operation of communication networks, therefore contributing fairness and throughput. Simulation results improved the 
efficiency of the MI-RLNO method.

Keywords  Software defined network · Mixed integer · Reinforcement · Q learning · Network optimization

1  Introduction

With the inception of the 5G wireless communication sys-
tem, a fully connected and well-established society is said 
to persist, provide different types of business structures, 
domain expertise, and services, connected with different 
types of traffic patterns and intense prerequisites. Besides, 
several network models and different types of user equip-
ment (UE) in turn coordinate with several potentialities 

comprising ultra-dense network (UDN) disposals, thus 
promising the comprehensive future of wireless communi-
cations even more demanding.

With the era of the inceptive stage of 5th generation 
(5G), this type of heterogeneous framework forces the users 
or devices in an abstract resource pool, shifting the move 
from the conventional cell notion. Also, exhibit the network 
administrator with the cooperative resources in terms of 
time, frequency, and space. A crucial requirement is thus 
produced, to acquire an outline of the network to acknowl-
edge optimally.

The abstractions of SDN and software defined radio 
(SDR), also called cross-layer controller (CLC) [1], were 
an exercise in a harmonized and coordinated and enlight-
ened pattern, therefore contributing to optimize bandwidth 
utilization. However, fairness during resource allocation was 
not concentrated. In this work, throughput optimization is 
addressed by proposing a reinforcement machine learning 
that stops learning only when the convergence is attained.

SDN is distinguished by the network programmabil-
ity and 5G control centralization in the controller with 
which fine-grained network management (NM) is said to 
be ensured. Intelligent probing (IPro) was utilized in [2] 
knowledge defined networking (KDN) standard and rein-
forcement learning. With the KDN-based architecture, 
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probing interval tuning was said to be optimized by also 
maintaining an admissible monitoring accuracy (MA) and 
optimal bandwidth. Despite the accuracy and optimal band-
width achieved, the network optimization factors were not 
concentrated. In this work, network optimization is arrived 
at by proposing a mixed integer programming formulation. 
It uses latency and convergence time as optimization factors.

Motivated by the above works, the proposed MI-RLNO 
is introduced for SDN monitoring with network optimiza-
tion. By combining SDN with machine learning technique, 
a network optimized method is introduced in 5G-SDN. The 
major idea of the method is to divide the network into the 
data plane, control plane, and application plane.

The data plane is for data transmission and the control 
plane controlling the input user equipment. With the intro-
duction of machine learning techniques in the control plane, 
decision making is optimal via global knowledge of network 
states. The method achieves efficient network management 
and optimizes network utilization, thus results in lesser con-
vergence time and higher throughput.

Our contributions are summarized as follows:

•	 To achieve network-wide optimization, the MI-RLNO 
method is introduced by monitoring the real dataset of 
sensors.

•	 We integrate Mixed Integer Programming and Q Learn-
ing to optimize the network in terms of latency, through-
put, and convergence time.

•	 To verify the feasibility of the MI-RLNO method, com-
munication time, and computation time is calculated 
based on transmission power and bandwidth. Simulations 
are performed to illustrate convergence time, latency, and 
throughput.

The remainder of the article is ordered as follows. In 
Sect. 2, related works are reviewed. The MI-RLNO method 
is described in Sect. 3 with the aid of diagrams and algo-
rithms. In Sect. 4 simulation setup is provided and a detailed 
analysis of the discussion is included. The article is con-
cluded in Sect. 5.

2 � Literature review

With rising developments in wireless networks, a large vol-
ume of data is generated at a faster rate than could be han-
dled by the server. A three-parameter Weibull Cumulative 
Distribution was presented in [3] through SDN to scrutinize 
latency in a cyber-physical system. However, with the rapid 
spectrum shortage faced due to the voluminous increase dur-
ing wireless communication, optimal spectrum utilization 
was not ensured.

To address the issue related to volume, Artificial Intel-
ligence-based data analytics was presented in [4] for both 
feature extraction and dimensionality reduction, therefore 
contributing to optimal spectrum allocation. But, it failed to 
consider the spectrum shortage problems. Besides, to ensure 
secure and optimal resource allocation, a blockchain empow-
ered AI model was proposed in [5] to minimize cumulative 
average system utility. However, the energy communication 
cost was higher.

In the current era, with the global vehicles reaching over 
1 billion, to guarantee ubiquitous and reliable communica-
tions, (5G) enabling technologies have been used in recent 
years. A 5G enabled SDN was proposed in [6] to ensure 
scalable networking. But, the convergence time was not 
minimized. Yet another software-defined space-air ground 
integrated moving cells contributing integrity and security 
was presented in [7]. Despite the improvement in scalability 
and security, transmission interference was not analyzed. 
A Euclidean planar graph along with an interference rela-
tionship graph was designed in [8] therefore improving the 
average throughput capacity. However, the end-to-end delay 
was not reduced.

In 5G communication systems, energy and spectrum 
resources play a significant role in continuous evolution. 
In [9], a Software-Defined Energy Harvesting Networking 
(SD-EHN) was designed to contribute to the energy schedul-
ing process. Besides, a stochastic inventory theory was also 
designed using the Nash bargaining gaming theory to opti-
mize energy utilization and energy saving also. However, for 
latency-sensitive businesses like the internet of things it is 
difficult to converge at an optimal rate and time. To address 
this issue, and Experience Weighted Attraction (EWA) algo-
rithm was presented in [10] resulting in optimal convergence 
time. But, the transmission delay was not reduced.

With the overall performance of the network being hin-
dered by its lifetime, the internet of things is highly sus-
ceptible to energy harvesting. A software-defined energy 
harvesting internet of things (SEANET) was designed in 
[11] to enhance the communication speed and lessen energy 
consumption. Though energy harvesting was attained the 
power consumption was not found to be optimal. An energy 
efficiency metric called Ratio for Energy Saving in SDN 
was proposed in [12] to both improve the link saving and 
traffic proportionality. But, the supervised and reinforcement 
machine learning techniques were not considered.

A load-balancing scheme called, genetic programming 
based load balancing (GPLB) was presented in [13] and 
significantly big improvement was observed in latency 
and throughput. However, the performance of the network 
was not improved. A self adaptive load balancing (SALB) 
scheme was investigated in [14] that performed the task of 
load balancing between multiple controllers with the mini-
mum number of packet drops. Though, flexibility is offered 
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in SDB. However, security remains one of the most com-
plicated metrics to be achieved. In [15] a recurrent neural 
network based on a new regularization technique was pro-
posed to enhance the network security. But, the throughput 
rate was not increased.

A Q-learning algorithm based on host weight and vulner-
ability success rate to reduce both complexity and improve 
security was presented in [16]. Though propagation latency 
was concentrated, however, the controller capacity and load 
switches were overlooked.

A Varna based optimization (VBO) technique was pre-
sented in [17] to address issues related to the controller 
placement problems. But, it failed to analyze the large-sized 
network’s capacity. An up-to-date review of security con-
cerns in SDN was proposed in [18]. However, the method 
was not discussing the DDoS attack on SDN. Yet another 
method called, Adaptively Adjusting and Mapping con-
trollers was investigated in [19] to minimize the delay and 
ensure robustness. However, the communication cost for 
obtaining flow information was not addressed. An integer 
linear programming model along with a heuristic technique 
was formulated in [20] to minimize the cost involved in com-
munication between flows. But, the computational complex-
ity was not minimized.

To cope with the problem, in this paper, we propose MI-
RLNO for SDN monitoring that addresses the limitations 
with low latency, convergence time while ensuring a high 
throughput.

3 � Materials and methods

From the above review of related literature, it is inferred 
that though the robust model of bringing cognitive structure 
into networks has been recommended in the past few years. 
With the shift into the 5G wireless communication systems, 
the idea has not yet found its way to a large-scale applica-
tion. With the ever-increasing demand for high data rates 
and mobility, 5G communications technologies have started 
revolutionizing the current network.

In this work, a 5G-enabled communication technology 
that possesses dual advantages, mixed integer programming 
for latency and converging time optimization, and reinforce-
ment learning for fair resource allocation or throughput 
improvement is presented.

The integrated framework enhances the overall net-
work by optimizing network-wide objectives like network 
throughput maximization, reducing convergence time, fair-
ness resource allocation, minimizing latency, or hop count. 
According to these premises, the MI-RLNO method concen-
trates on programming models, and in particular MI-RLNO 
as key enabling factors to network optimization. In the 

remainder of this section, the MI-RLNO method is detailed 
along with a system model and block diagram.

3.1 � System model

Consider an SDN system with a number of switches fixed in 
a designated area. Assume that switches have diverse traffic 
transmission demands with SDN connected with user equip-
ment (i.e. IoT devices, cloud users, nodes, and so on) and 
are authorized to select controllers from the distinct set. In 
this work, the controller placement problem of the network 
is studied. The number of switches in the SDN system is 
indicated as ‘ N ’ and ‘ S = S1, S2,… , SN ’ is set of switches, 
where ‘ Si ’ is the ‘ith’ switch. To differentiate link status 
among switches, a duplex identifier ‘ DID ’ is provided, 
where ‘ DIDij = 1 ’, if ‘ Si ’ is directly linked with ‘ Sj ’ in SDN, 
otherwise ‘ DIDij = 0’.

Let ‘ Ci ’ represent the ‘ ith ’ controller, then it is assumed 
that ‘ Ci ’ is combined with ‘ Si ’ with a maximum of ‘ M ’ con-
trollers. Let ‘ � = �1, �2,… ., �M ’ represent the controller set 
capacity, where ‘ �M ’ denotes the ‘ Mth ’ capacity that is said 
to be allocated to one controller. Let us further assume the 
User Equipment to be ‘ UE ’ (i.e., IoT device, Cloud comput-
ing users, mobile devices). In Fig. 1, the proposed 5G-ena-
bled SDN is presented.

As shown in the figure, data plane forward flows in 
observed SDN by network devices from user equipment 
‘ UE ’. The user equipment here includes the IoT devices, 
cloud users, mobile devices, and so on. Next, the control 
plane includes various controllers ‘ C ’ that translates the 
requirements from user equipment ‘ UE ’ to the application 
plane. Figure 2 shows the block diagram of the MI-RLNO 
method for 5G-enabled SDN optimization.

The diagram of the MI-RLNO is presented in Fig. 2. The 
agent is located within a control plane in SDN. It obtains the 
Key Performance Indicators (KPIs), i.e., the raw and aggre-
gated spectrum data from a list of all sensors that define the 

 

  (  ) ―  1, 2, …,

  ( ) ― 1, 2, …,

Fig. 1   Conceptual diagram of 5G-enabled SDN
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system state ‘ xT ’ at time T, and performs local action ‘ laT ’. 
The agent sends to new state ‘ xT+1 ’ and attains a reward 
‘ rT+1 ’. The KPI, in turn, stabilizes the control process in the 
control plane.

The Q-learning (QL) algorithm studies optimal policy 
which maps states to control actions. For continuous state 
space, we propose to use the MI-RLNO which combines 
Mixed Integer Programming with the QL algorithm. In the 
MI-RLNO method, the controlled system is presented as a 
communication and computation model. The cooperative 
learning model uses global reward includes rewards of each 
learning agent. In MI-RLNO nomenclature, we employ 
Labels ‘ L ’ that indicates discrete states, Actions ‘ A ’ cor-
responding to MIP rules. Through learning, the agents apply 
strategy by feeding the single MQ-table. In addition to a fast 
convergence time, this model benefits throughput via learn-
ing by the cooperating agents. Figure 3 given below shows 
the MQ-table.

The components of MI-RLNO are state, actions and 
strategy, and utility function. They are explained in the fol-
lowing sections. The input state vector to the MI-RLNO is 
defined as follows. The input state vector to the MI-RLNO 
is obtained from the communication and computation model 
given as below. Let us design a communication model where 
the ‘ UEs ’ communicate with the controllers ‘ Cs ’ using a 
one-hop network structure.

As the intervention from the controllers using the same 
channel with the transmitting device, the Spectrum Effi-
ciency ‘ SE ’ for the communication link between the ‘ jth’ 
controllers ‘ Cs ’ and the ‘ ith’ User Equipment ‘ UEs ’ is math-
ematically formulated as given below.

(1)SEC
ij
= Log2

�
1 +

ticgij∑
tjcgjk + �

�

Fig. 2   Block diagram of mixed-
integer and reinforcement 
learned network optimization

Application plane

Control plane

Data plane 

+ 1

+ 1

Fig. 3   Sample MQ table
( )
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From the above Eq. (1), ‘ ti ’ represents the transmission 
power of ‘ ith ’ User Equipment ‘ UEs ’, ‘ cgij ’ and ‘ cgjk ’ repre-
sents the channel gain between ‘ UEiCj ’ and ‘ UEjCk ’ respec-
tively and ‘ � ’ denotes the noise. In Eq. (1), the spectrum 
efficiency is the optimized use of spectrum or bandwidth. 
Then, the higher amount of data is broadcasting with the 
minimum error.

Then, the data rate ‘ DRj

C,i
 ’ of ‘ UEi ’ distributed by ‘ C ’ is 

mathematically formulated as given below.

From the above Eq. (2), ‘ BW  ’, refers to the bandwidth 
of the available spectrum between ‘ UE ’ and ‘ C ’. ‘ SEC

ij
 ’ 

denotes the Spectrum Efficiency. For the controller ‘ C ’ com-
puting model, the ‘ ith ’ UE transfer the computation task 
‘ Taski ’ to the controller ‘ C ’ through a wireless connection 
between UEs (i.e., IoT users, mobile users, cloud users) and 
controllers.

Then, the controllers evaluate the task for the ‘ UEs ’. 
Hence, the computational model for executing the task 
includes communication time and computation time. The 
communication time is measured based on the size of input 
data ‘ Dsize’and the data rate ‘ DRj

C,i
 ’ of ‘ UE ’ distributed by 

‘ C ’ and hence is mathematically formulated as given below.

In Eq. (3), ‘ TC
i,comm

 ’ represents the communication time. 
Let ‘ CRC,i ’ corresponds to the computation resource of the 
‘ C ’ assigned to UE ‘ i ’. Then, the computation time for task 
‘ Taski ’ is mathematically formulated as given below.

Therefore, the total execution time of the task of UE ‘ i ’ 
distributed by ‘ C ’ is mathematically formulated as given 
below.

From Eq. (5), ‘ TC
i

 ’ denotes the total execution time of 
each task. ‘ TC

i,comm
 ’ represents the communication model and 

‘ TC
i,comp

 ’ denotes the computation model. Then, the state vec-
tor is mathematically formulated as given below.

From the above Eq. (6), the input state vector ‘ XC ’ is 
formalized based on the spectrum efficiency ‘ SEC

ij
 ’, data rate 

‘ DRj

C,i
 ’ and the total execution time of each task ‘ TC

i
 ’ for the 

corresponding UE. With the obtained state value, the action 

(2)DR
j

C,i
= BWSEC

ij

(3)TC
i,comm

=
Dsize

DR
j

C,i

(4)TC
i,comp

=
Ai

CR
j

C,i

(5)TC
i
= TC

i,comm
+ TC

i,comp

(6)XC =

[
SEC

ij
,DR

j

C,i
, TC

i

]

is then deduced. The action is the reduced number of hops 
and convergence time allocated by a controller to the user 
equipment ‘ UE’.

The optimization problem (i.e. latency optimization and 
convergence time optimization) with a mixed integer pro-
gramming is given below. Our first action is to decrease the 
latency and the second action is to decrease the convergence 
time. The MIP model to minimize the latency to the control-
ler is mathematically formulated as given below.

Equation (7) ensures that the distance between user equip-
ment ‘ i ’ and user equipment ‘ j ’ is greater than the ‘ Pmax ’ 
at maximum power level. Then, this user equipment com-
municates with each other. Equation (8) refers to the user 
equipment flow ‘ f  ’ stabilizing restriction and states that for 
all devices ‘ Devi ’, the amount of data flowing is equal to the 
incoming flow ‘ Din ’ plus the outgoing flow ‘ Dout ’. Finally, 
Eq. (9) is utilized to measure the total number of latencies 
in SDN. The second model is used to minimize the conver-
gence time (CT). The MIP formulation for convergence time 
is given as follows.

Equation  (10) is the user equipment flow stabilizing 
restriction. Each device generates a data packet ‘ D ’ at each 
round and during the convergence of learning generates ‘ n ’ 
amount of data packets. The strategy of a controller ‘ C ’, ‘ �C ’ 
is a mapping between the state of controller ‘ XC ’ and the 
action is the set of possible actions for the controller ‘ AC ’ is 
mathematically formulated as given below,

With the above-stated optimization problem for latency 
and convergence time, finally, the utility is derived. The 
controller of user equipment optimizing utility function 
described through the sum of discounted rewards. The opti-
mization problem is expressed as below.

From Eq. (12) ‘ �P ’ is a set of allowable policies for con-
troller ‘ C ’, ‘ rC

(
XCT ,ACT

)
 ’ is an instantaneous reward seen 

(7)
MinimizeLat

Subjecttof k
ij
= 0, ifDisij > Pmax

(8)
∑

f k
ij
−
∑

f k
ji
= Devi

[
Dout + Din

]

(9)f k
ij
= Lat

(10)
MinimizeCT
∑

f k
ij
−
∑

f k
ji
= Devin

[
Dout + Din

]

(11)�C ∶ XC → AC

(12)max
�C∈�P

∶ RC =

[
n∑

t=1

�rC
(
XCT ,ACT

)
]
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by controller ‘ C ’ in-state ‘ XCT ’ when taking action ‘ ACT ’ at 
a time ‘ T  ’ and ‘ � ’ refers to a cut-off factor varying between 
‘ [0,1] ’. When the cut-off factor ‘ � ’ is lesser, the significance 
given by the controller provides the rewards concerning 
future ones.

Finally, with throughput optimization, the solution to the 
maximization problem given in (12) utilizes the action-value 
function under the policy ‘ � ’. It is measured as the sum of 

discounted rewards when starting from state ‘ X0 = X ’ at ‘ T0 ’ 
and formulated as below.

The pseudo-code representation of mixed integer rein-
forcement learning is given below.

(13)Q�(X,A) =
[∑

�r
(
Xt,At

)
|X0 = X,A0 = A

]

Algorithm 1: Mixed Integer Reinforcement Learning 
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From the above mixed integer reinforcement learning 
algorithm, the objective of the work remains in network type 
optimization in terms of fairness, latency, convergence time. 
In this work, an integrated mixed integer programming func-
tion with the reinforcement Q learning is applied to attain 
the network optimization. First, the input state vector to the 
MI-RLNO is attained from the communication and compu-
tation model. The communication and computation model 
is designed along with the data rate for SDN to address the 
QoS requirement. Next, mixed integer programming is used 
to select the action and strategies for reducing the latency 
and convergence time. Next, the utility function is described 
by sum of discounted rewards. Finally, SDN with its action-
value function can achieve better network utilization via 
network-wide optimizations.

4 � Results and validation

In this section, the results of the MI-RLNO method is com-
pared with Cross-layer control based on SDN and SDR [1] 
and IPro [2] for SDN monitoring. In this section, experi-
ments are conducted with data retrieved for a sensor within 
a specified time window extracted from https​://elect​rosen​
se.org/api-spec. Similarly, the web API permits for retrieval 
of raw and aggregated spectrum data for a list of different 
sensors. Performance measures are made in terms of latency, 
convergence time, and throughput rate.

Experiments are conducted in python for network-wide 
optimization and comparative analysis is made with the 
proposed MI-RLNO for SDN monitoring with the exist-
ing, Cross-layer control based on SDN and SDR [1] and 
IPro [2]. In the simulation, SDN scenarios include sev-
eral SDN switches which are arbitrarily positioned in 
2000  km × 2000  km square region. In other words, the 
switches position follows uniform arbitrary distribution in 
the simulation region. Besides, it is assumed that a random 
connection between any two switches exists in the region. 
The link transmission rate is selected randomly from a set 
of values. The three-link characteristics are provided in 
Table 1.

For simulation, the data packet size in ‘ Din ’ is set as 160 
bytes and the arrival rate of packet message requests from 

user equipment is indicated as ‘ � ’. To observe the differ-
ence of ‘ � ’ three message request scenarios from user equip-
ment is presented as simulation. Table 2 lists the simulation 
parameters. Simulation results are averaged over 500 inde-
pendent processes and instances (Figs. 4, 5, 6, 7, 8).     

4.1 � Scenario 1: convergence time

Convergence time is calculated as how fast a group of user 
equipment (provided with data as message request) to the 
controllers reaches a state of convergence. It is a significant 
performance indicator for network-wide optimization that 
runs the protocol to rapidly and reliably converge. It is meas-
ured as given below.

From Eq. (14), the convergence time ‘ CT  ’ is calcu-
lated depending on the number of controllers ‘ Ci ’ and 
time consumed for ‘ n ’ number of packets. It is measured 
in milliseconds (ms). Table 3 given below demonstrates 
the converging time tabulation results for the MI-RLNO 
method, cross-layer control based on SDN and SDR [1], 
and IPro [2].

Figure 9 shows the relationship between the conver-
gence time concerning 20 different controllers with three 
different methods. From the figure, it is inferred that for 
case 1 with 2 controllers, the convergence time decreases. 
However, with controllers in the network reaching a value 
(i.e. 20), the convergence time starts to increase when the 
number of controllers increases. This is due to the reason 
that the increase in the controller results in the increase 
in the inter-controller delay and therefore results in an 
increase in the convergence time. However, from the figure, 
the proposed method outperforms than the existing method 
[1, 2]. The reason is that the algorithm in [1, 2] mainly 
enhances the monitoring accuracy among controllers and 
switches and ignores the convergence time among control-
lers and switches. Also, the simulation results show that the 
convergence time with 2 controllers offers the best latency, 
while convergence time with 20 controllers offers the worst 
latency. This is because the service request of switches for 
2 controllers is low as compared to other higher numbers 
of controllers.

(14)CT =

n∑

i=1

Ci ∗ Time
[
Devin

[
Dout + Din

]]

Table 1   Link transmission rate

Link cases Link transmission rate (Mbps)

Case 1 50, 100, 150, 200, 300, 500

Case 2 50, 75, 100

Case 3 150, 200, 300

Table 2   Data packet request

Scenarios � ∈ [1k, 10k] � ∈ [10k, 100k] � ∈ [100k, 200k]

Scenario 1 100%Switches 0 0

Scenario 2 60%Switches 20%Switches 20%Switches

Scenario 3 70%Switches 20%Switches 10%Switches

https://electrosense.org/api-spec
https://electrosense.org/api-spec
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Fig. 4   Construction of electro sense Data API

Fig. 5   Apply control plane
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Fig. 6   Output of control plane

Fig. 7   Apply optimization
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•	 As a result, the proposed MI-RLNO method reduces the 
convergence time by 27% as compared to [1] and 22% as 
compared to [2].

4.2 � Scenario 2: throughput

Throughput refers to the percentage ratio of successfully 
received data packets by the controller to the total data pack-
ets being sent from the user equipment ‘ UE ’. The throughput 
is measured as given below.

From the above Eq. (15), throughput ‘ Tput ’ is measured 
based on the ‘ DC ’ and ‘ DUE ’. It is measured in terms of per-
centage (%). Table 4 given below demonstrates the through-
put tabulation results for the MI-RLNO method, cross-layer 
control based on SDN and SDR [1], and IPro [2].

Figure  10 given above illustrates the relationship 
between the throughput rate and data packets in the range 
of 15–150 sent by the different user equipment to the 
controller at different time intervals. Ten different simu-
lation runs were conducted. With data packet requests 
for scenario 2 considered as simulation, to start with an 
increase in the number of data packets causes a decrease 
in throughput and at the fifth simulation, runs start increas-
ing and so on. However, simulations conducted with 15 
data packets, throughput were observed to be 86.66% using 
the MI-RLNO method, 80% using [1], and 73.33% using 
[2]. From this simulation, it is inferred that fairness during 
the resource allocation is said to be improved by applying 
the MI-RLNO method and therefore increasing the overall 
system throughput. This is because of the application of 
Mixed Integer Programming as an input state in the Mixed 
Integer Reinforcement Learning algorithm. Thus in turn 
based on the communication and computation model per-
forms message request allocation to the corresponding user 
equipment.

(15)Tput =
DC

DUE

∗ 100

Fig. 8   Output of optimization

Table 3   Convergence time results

Number of 
controllers

Convergence time (ms)

MI-RLNO Cross layer control based 
on SDN and SDR

IPro

2 2.21 2.37 4.05
4 3.35 5.55 7.35
6 4.15 7.35 8.55
8 6.26 9.15 12.35
10 8.15 11.35 14.55
12 9.55 12.45 17.55
14 12.35 15.95 20.25
16 15.55 20.35 23.15
18 18.95 24.55 28.75
20 21.32 28.15 31.35
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•	 Thus, the throughput of the MI-RLNO method is 
improved by 7% when compared to [1] and 17% com-
pared to [2].

4.3 � Scenario 3: latency

Latency in terms of network optimization refers to the time 
taken for a request (i.e. data packet request) from the sender 
(i.e. user equipment) to the controller and for the controller 
to process that request. In other words, it is also referred to 
as the round trip time from the user equipment to the con-
troller in SDN.

(16)L =

n∑

i=1

Ci ∗ Time
(
DUE − DC − DUE

)

From the above Eq. (16), latency ‘ L ’ is measured based 
on the round trip time ‘ 

(
DUE − DC − DUE

)
 ’ and the number 

of controllers ‘ Ci ’. It is measured in terms of milliseconds 
(ms). Table 5 given below demonstrates the throughput tabu-
lation results for the MI-RLNO method, cross-layer control 
based on SDN and SDR [1], and IPro [2].

Figure 11 given above demonstrates the relationship 
between the number of controllers and latency. The per-
formance of latency is analyzed through the dataset with 
two existing methods. The same input is used to analyze the 
latency for proposed and existing methods. From that, the 
proposed work reduces the latency than the existing [1, 2]. 
From the figure, it is inferred that for case 1 with 2 control-
lers, the convergence time decreases. Latency in our work is 
measured based on the round-trip time. From the figure, it is 
inferred that increasing the number of controllers, the time 
consumed between the sender and receiver increases and 
therefore the latency also increases. But with the simulations 
conducted for 2 controllers, the latency was observed to be 
0.25 ms using the MI-RLNO method, 0.33 ms using [1] and 
0.41 ms using [2]. The latency improvement in the proposed 
method over [1, 2] is due to the application of the Mixed 
Integer Reinforcement Learning algorithm. By applying this 
algorithm, first, communication and computation model is 
used along with the data rate as input, therefore improving 
the bandwidth utilization. Next, utilizing MIP, actions, and 
strategies based on the optimization factors are used to form 
strategies. Finally, with the discounted rewards, the alloca-
tion is made by the controller.

•	 Therefore, the latency of the MI-RLNO method is 
reduced by 12% as compared to [1] and 26% as compared 
to [2].

Fig. 9   Convergence time

Table 4   Throughput results

Data packets (user 
equipments)

Throughput (%s)

MI-RLNO Cross layer control 
based on SDN and SDR

IPro

15 86.66 80 73.33
30 83.25 78.25 72.15
45 81.45 77.15 70.35
60 80.25 75.35 68.15
75 79.15 71.25 70.25
90 77.35 78.35 72.35
105 79.45 77.45 68.45
120 80.25 75.35 65.15
135 82.35 72.15 68.35
150 80.45 70.25 65.55
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5 � Conclusions

MI-RLNO method is proposed to improve the throughput 
of SDN and optimize system utility (i.e. latency and con-
vergence time). The controller placement mode of SDN is 
proposed in this algorithm and diverse traffic transmission 
demands are scrutinized based on the transmission process. 
The algorithm using Q Learning selects the user equipment 
to be allocated in the network with the required request 
based on the communication and computation time. Next, 
Mixed Integer Programming is used as a means of selecting 
the action and strategy according to the optimization factors. 
Finally, an optimal strategy is learned via the sum of dis-
counted rewards to maximize the utility benefits. From the 
simulation results, the MI-RLNO method provides enhanced 
performance than the others.

Fig. 10   Throughput

Table 5   Latency results

Number of 
controllers

Latency (ms)

MI-RLNO Cross layer control based 
on SDN and SDR

IPro

2 0.25 0.33 0.41
4 0.65 0.8 0.95
6 0.95 1.005 1.123
8 1.025 1.076 1.155
10 1.055 1.125 1.215
12 1.095 1.155 1.245
14 1.11 1.195 1.565
16 1.125 1.205 1.635
18 1.145 1.258 1.855
20 1.175 1.635 1.935
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