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Abstract
With the exponential growth in Android apps, Android based devices are becoming victims of target attackers in the “silent 
battle” of cybernetics. To protect Android based devices from malware has become more complex and crucial for academi-
cians and researchers. The main vulnerability lies in the underlying permission model of Android apps. Android apps demand 
permission or permission sets at the time of their installation. In this study, we consider permission and API calls as features 
that help in developing a model for malware detection. To select appropriate features or feature sets from thirty different 
categories of Android apps, we implemented ten distinct feature selection approaches. With the help of selected feature sets 
we developed distinct models by using five different unsupervised machine learning algorithms. We conduct an experiment 
on 5,00,000 distinct Android apps which belongs to thirty distinct categories. Empirical results reveals that the model build 
by considering rough set analysis as a feature selection approach, and farthest first as a machine learning algorithm achieved 
the highest detection rate of 98.8% to detect malware from real-world apps.

Keywords Android apps · Permissions model · API calls · Unsupervised · Feature selection · Intrusion detection · Cyber 
security · Smartphone

1 Introduction

Detection of malware from smartphones has become a major 
concern for the research community. At the end of 2019, 
the number of Android users will be 3.3 billions throughout 
the world.1 Android is based on the Linux kernel and pro-
vide useful services such as security configuration, process 
management and others. The primary reason for the growth 
of Android operating system is due to its open-nature and 
freely available apps. At the end of July 2019,2 Android had 
2.7 billion free and paid apps in its play store. There is an 
increase of 13%,3 in downloading of apps from Google play 
store with respect to previous years. Android operating sys-
tem is based on the principle of privilege-separated where 
each app has its own distinct system identity, i.e., group-ID 

and Linux user-ID. Each app run in a procedure sandbox and 
access permission to use the resources which are not present 
in its sandbox. Depending on the permission sensitivity, the 
system automatically grants permission or may prompt users 
to approve or reject requests for permission. Permissions 
granted by users include, access to the calendar, camera, 
body sensors, microphone, contacts, location, SMS, stor-
age of the device. To defend Google official market4 from 
malware-infected apps, Google introduced Google Bouncer 
in the year 2012, which scans new apps at the time of their 
launch. But, Google Bouncer has limitation, it can easily 
be fingerprint.5 It is not very difficult for malware apps to 
bypass Google’s security check and enter to Google official 
market6 and ultimately to users’ devices. By taking advan-
tage of these permissions, cyber-criminals build malware 
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apps on a daily basis and invite users to install these appli-
cations. More than two billion active Android devices are 
present in the market.7 To overcome the drawback of the 
bouncer and to protect Android devices, Google introduced 
Google play protect in the market. Google play protect have 
the capability to protect data in real-time. However, accord-
ing to a study in,8 G-Data Security expert counted 4.18 mil-
lions malware applications until the end of the year 2019 and 
discovered over 7,50,000 new malware applications during 
the first quarter of 2020.

Android apps work on the permission-based model [15]. 
Android operating system provides protection at four levels, 
that categorize permissions as9 “signature”, “signature or 
system”, “normal” and “dangerous”. In our study, we do not 
consider “signature” and “signature or system” because they 
are system granted. We only consider “normal” and “dan-
gerous” permissions which are granted by the user. Normal 
permissions does not pay any risk to the user’s privacy. If the 
permission is listed in the manifest file, then system grants 
permission automatically. On the other hand, dangerous per-
mission give access to the user’s confidential data. However, 
it is purely dependent upon the user to give access or revoke 
the use of permission or set of permissions.

Selection of right feature or feature sets pay great effect 
on the performance of malware detection [45, 46, 49, 62]. 
Feature selection approach is based on the procedure to 
select appropriate features from total available features. 
Feature selection approaches are classified into two distinct 
groups i.e., one group contains feature ranking methods and 
second group contains feature subset selection methods [45, 
46, 49, 62]. Feature ranking approach is based on ordering 
the feature on the basis of its scoring function [49, 62]. On 
the other hand, feature subset selection is to discover the 
optimal feature subset [46]. In our study, we implemented 
ten distinct feature selection approaches to select best fea-
tures and hold only those feature sets which have excellent 
discriminatory power.

In the literature [45, 46, 49, 62], researchers and academi-
cians had applied distinct machine learning algorithms that 

were based on classification, regression and clustering to 
develop Android malware detection model. The main flaw 
in their work is that they used labelled data set to develop 
malware detection model. So to overcome this issue, in this 
study, we consider five distinct unsupervised machine learn-
ing algorithms [i.e., K-mean, farthest first clustering , filtered 
clustering, density-based clustering and self-organizing map 
(SOM)] to develop a model for Android malware detection.

List of phases followed by us in developing malware 
detection model is demonstrated in Fig. 1. In the first stage, 
we collect Android application packages (.apk) files from 
different repositories and identify their classes. In the second 
stage of our experiment, we extract permissions and API 
calls from collected .apk files and consider them as features. 
Further in third stage, we select best features by using ten 
different feature selection approaches. Next, with the help 
of selected features we trained five different unsupervised 
machine learning algorithms and build models. We compare 
our developed models with the help of distinct performance 
parameters i.e., intra-cluster distance, inter-cluster distance, 
accuracy and F-measure. At the last stage, we validate our 
proposed model with the help of existing techniques avail-
able in the literature.

The novel and unique contribution of this research paper 
are:

– To the best of our knowledge, this is the first work in 
which 5,00,000 unique apps are collected which belongs 
to 30 different categories of Android apps. Extracted fea-
tures are publicly available for researchers and academi-
cians.10 To build effective and efficient malware detection 
model we extract permissions, rating of an app, number 
of the user download the app, and API calls, as a feature 
and achieved a detection rate of 98.8% when compared 
to distinct anti-virus scanners.

– We proposed a new approach which works on the prin-
ciple of unsupervised machine learning algorithm by 
selecting relevant features using feature selection. Our 
empirical result reveals that our suggested model is able 
to detect 98.4% unknown malware from real-world apps.

Fig. 1  Flow chart of the pro-
posed work
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– Proposed framework is able to detect malware from 
Android apps by using 100% unlabelled data set.

– In this study, we applied t test analysis to investigate that 
features selected by feature selection approaches are hav-
ing significant difference or not.

– Proposed malware detection approach is able to detect 
malware in less time when compared to distinct anti-
virus scanners available in the market.

The rest of the paper is summarized as follows. In Sect. 2, 
we discuss about the work related to Android malware detec-
tion. In Sect. 3, we discuss about the Android permission 
model. In Sect. 4, we present the formulation of data set. 
Section 5 presents the features selection approaches imple-
mented in this study. In Sect. 6, we discuss about the dif-
ferent machine learning algorithms. In Sect. 7, we present 
the different techniques which are used in the literature to 
detect malware from real-world apps. Section 8 represent the 
performance parameters and experimental setup is presented 
in Sect. 9. Section 10, contains the experimental results i.e., 
which model is best in detecting malware from real-world 
apps. At last in Sect. 11, we discuss about the threats to 
validity and conclusion of this empirical study is presented 
in Sect. 12.

2  Related work

Enck et al. [28] proposed Kirin framework which helps in 
detecting malware apps based on permissions requested by 
them during their installation time. Kirin is based on set of 
rules which helps to mitigate the effect of malware from 
Android apps. Suarez-Tangil et al. [65] examined out of 
cloud based detection or on-device detection method, which 
method is more power saving. They suggested a power model 
to compare both the methods with the help of machine learn-
ing algorithms. Empirical results reveals that cloud based 
detection method is more effective and better choice to detect 
malware. Cui et al. [26] proposed a malware detection model 
based on cloud computing by using network packets. They 
used the principles of data mining to reduce the branches of 
packets by gathering knowledge of packets whether it is use-
ful for malware detection or not. They proposed SMMDS in 
their study which work on the principles of machine learning 
algorithms to detect malware. Chen et al. [23] proposed a 
solution which monitor the behavior of smartphones when 
they are sending user’s private information to an external 
source. But the solution provided in their study is not effec-
tive, because it cannot support real-time detection. Narudin 
et al. [53] proposed STREAM which automatically installs 
and runs Android apps and extract features from them. Fur-
ther, the extracted features are used to train with the help of 
machine learning classifiers to detect malware from Android 

apps. STREAM has a disadvantage, it takes a lot of system 
resources and time to load the data. Wei et al. [73] build 
a malware detection model based on anomaly behavior of 
Android apps. They developed a model by considering net-
work information as a feature by using Naïve Bayes and 
Logistic machine learning algorithms and achieved higher 
accuracy rate. Ali et al. [11] suggested a malware detection 
model based on Gaussian mixture. They collected features 
based on hardware utilization such as CPU, memory, battery 
and so on and trained it with the help of Gaussian mixture. 
But the model proposed by them has a limitation, it needs a 
remote server for computation. Dixon et al. [27] developed 
a model by using the behaviors of battery life of smartphone 
when infected by malware. But, the model proposed by them 
is not able to detect some sophisticated malware.

Tong and Yan [67] proposed hybrid approach to detect 
malware from Android by using individual system call and 
sequential system calls related to accessing the files and 
networks. Their approach is able to detect the behavior of 
unknown app and achieved the detection rate of 91.76%. But, 
the presented approach has a limitation, it cannot support 
real-time detection. Quan et al. [59] used three different fea-
ture sets i.e., native code, system calls and API calls to detect 
malware from Android. The detection rate depends upon the 
predefined threshold value. Ng et al. [54] developed model 
by using Dendritic Cell Algorithm and considered system 
call as a feature. They selected best features by implementing 
statistical methods and achieved the higher detection rate. 
Sheen et al. [63] proposed Android malware detection sys-
tem by considering API calls and permissions as features. 
They chose features by using Relief algorithm to train three 
different classifiers: J48, SVM and Naïve Bayes. Detection 
rate is good, but it also consumes number of resources and 
its computing burden is too high. Fung et al. [31] proposed 
a decision model RevMatch which work on the principle of 
malware detection history to make decision that Android app 
is infected with malware or not. This approach do not provide 
real-time detection. Babaagba and Adesanya [12] compared 
the performance of supervised and unsupervised machine 
learning algorithms, with and without using feature selec-
tion approaches. Empirical study were performed on 149 
Android apps and result reveals that model developed with 
feature selection approach and supervised machine learning 
algorithm achieved higher detection rate when compared to 
the model developed using unsupervised machine learning 
algorithm. Yewale and Singh [78] proposed malware detec-
tion model based on opcode frequency. Experiments were 
performed on 100 distinct files and achieved 96.67% detec-
tion rate by using SVM as a machine learning algorithm.

Enck et al. [29] proposed TaintDroid which work on 
the principles of tracking information-flow in the network. 
TaintDroid track malicious behavior of apps communica-
tion through files, program variables and inter-sectional 
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messages. The process is too much time consuming to label 
that app is benign or malware. Abawajy and Kelarev [2] 
proposed ICFS which detect malware from Android by 
incorporating feature selection approaches and machine 
learning classifiers. Guo et al. [32] proposed smartphone 
network behavior using Naïve Bayes as machine learning 
algorithm. They build a pattern from benign and malware 
apps to discover malware from unlabeled apps. In recent 
study [68], Authors presented the mechanism that how an 
app breaching user privacy to gain user private data. They 
proposed a general and novel defence solution, to protect 
resources and data in Android based devices. Rahman and 
Saha [61] proposed StackDroid a multi-level architecture 
which is used to minimize the error rate. They detected mal-
ware at two different levels, in the first level they consider 
multi-;ayer perceptron, stochastic gradient descent, random 
forest and extremely randomized tree and in the second level 
they consider extreme gradient boosting as machine learn-
ing classifier to detect malware from Android. Barrera et al. 
[13] proposed a methodology which work on the principles 
of permission model by implementing self-organizing map 
(SOM) on collected data set of 1,100 Android apps. They 
analyzed the Android permission model which is used to 
investigate the malware apps from Android. SOM imple-
mented by them, give a 2-dimensional visualization of high 
dimension data.

Alazab et al. [4] proposed an effective classification 
model that combines permission requests and API calls. Fur-
ther, API calls were divided into three different groups i.e., 
ambiguous group, risky group, and disruptive group. Experi-
ments were performed on 27,891 malware-infected Android 
apps and proposed model achieved an F-measure of 94.3%. 
Xiao et al. [75], proposed a novel detection approach based 
on the principle of deep learning. In their studies, authors 
consider semantic information in system call sequences as 
the natural language and construct a classifier based on the 
long short-term memory (LSTM) language model. Empiri-
cal result reveals that proposed approach achieved the detec-
tion rate of 96.6%. Yuxin and Siyi [79] proposed a malware 
detection model based on the principle of Deep Belief Net-
work (DBN). In their study, they compare the performance 
of proposed model with three baseline malware detection 
models, which use support vector machines, decision trees, 
and the k-nearest neighbor algorithm as classifiers. Experi-
mental results indicate that the autoencoder can effectively 
model the underlying structure of input data and signifi-
cantly reduce the dimensions of feature vectors.

Vinayakumar et al. [69] proposed an effective zero-day 
malware detection model based on the principle of image 
processing technique with optimal parameters for machine 
learning algorithms (MLAs) and deep learning architec-
tures. Experiments were performed on two distinct data 
sets and they achieved a detection rate of 96.2% and 98.8% 

with proposed detection model. Arora et al. [9] proposed a 
framework named as PermPair, that constructs and com-
pares the graphs for malware and normal samples by extract-
ing the permission pairs from the manifest file of an app. 
Empirical result reveals that proposed scheme is successful 
in detecting malicious samples with an accuracy of 95.44% 
when compared to mobile anti-malware apps. Lee et al. [42] 
proposed a malware detection model that learns the general-
ized correlation between obfuscated string patterns from an 
application’s package name and the certificate owner name. 
Experimental results reveal that proposed model is robust in 
obfuscation and sufficient lightweight for Android devices.

Alzaylaee et al. [6] proposed DL-Droid, based on the 
principle of deep learning model. Experiments were per-
formed on 30,000 distinct Android apps. Empirical result 
reveals that DL-Droid can achieve up to 97.8% detection 
rate (with dynamic features only) and 99.6% detection rate 
(with dynamic + static features) respectively. Ma et al. [44] 
proposed a malware detection approach based on the con-
trol flow graph of the app to obtain API information. On 
the basis of API information, they constructed three dif-
ferent data sets that is based on Boolean, frequency, and 
time-series. By using these three data sets three different 
malware detection models are constructed. Experiments 
were conducted on 10010 benign applications and 10683 
malicious applications. The result shows that detection 
model achieves 98.98% detection precision. Jerbi et al. [36] 
proposed artificial malware-based detection (AMD) that was 
based on extracted malware patterns that were generated 
artificially. Experiments were performed on balanced and 
imbalanced data set and achieved an accuracy of 99.69% 
for balanced data set and 99.64% for imbalanced data set. 
Table 1 described the name of the framework or author name 
whose proposed the approach developed in the literature 
with its detection type, feature used, implemented algorithm, 
place of analysis, and major observations in their study.

Previous research work mentioned above has the follow-
ing limitations: use of limited data set, higher detection rate 
with limited data set, high computation burden, implemen-
tation of limited feature selection approaches, implementa-
tion of limited classification algorithms using 100% labelled 
data set and unable to detect sophisticated malware. To over-
come the first limitations, in this study, we collect 5,00,000 
Android apps which belong to thirty different categories 
from different repositories mentioned in Sect. 4. Further, 
to overcome other limitations, we implement ten distinct 
feature selection approaches on extracted feature data set 
(i.e., permissions and API calls consider as feature in this 
study). Next, the selected features are considered as an input 
to develop a model by using unsupervised machine learning 
algorithms (means no labelled data is required to develop the 
models) so that a suitable model is build to identify malware 
from real-world apps.
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Table 1  Dynamic analysis based smartphone detection presented in literature

Author/framework Detection type Feature used Implemented algo. Place of analysis Observations

Yang et al. [77] Signature based Permissions Pattern matching On device High memory consump-
tion, not real-time 
and unable to protect 
privacy

Wei et al. [73] Anomaly based Network behavior Naïve Bayes and 
logistic

Server Better performance

Dixon et al. [27] Anomaly based Battery Pattern matching Server Unable to detect sophis-
ticated malware

Rahman [60] Specification based API Markov logic network Server Low detection rate
Alam and Vuong [3] Signature Battery permissions 

and CPU
Random forest Server Data not collected on 

mobile devices
Amos et al. [7] Anomaly based Battery permissions 

and CPU
Random forest, J48 

and logistic
Server Detection is not real and 

performance is not so 
good

Shen et al. [64] Signature Topology VF2 algorithm graphs Server Achieved low accuracy
Ng et al. [54] Anomaly based System calls Dendritic cell algo-

rithm
Server Used three different clas-

sifiers with complex 
classification

Quan et al. [59] Signature based API and system calls Pattern matching Server High detection accuracy 
and unable to list all 
sensitive behaviors

Sheen et al. [63] Specification based Permissions and API 
call

J48,NB and SVM Server Good performance but 
heavy computation 
burden

Caviglione et al. [21] Specification based Convert channel NN and DT Server Feature not able to detect 
all malware

Almin and Chatterjee 
[5]

Signature based Permissions K-mean and NB On-device and server Not able to detect mal-
ware from unknown 
family

Holland et al. [34] Signature based API and permissions Pattern matching Server Testing data-set is small 
and performance is not 
so good

Andriatsimandefitra 
and Tong [8]

Specification based Information-flow N/A On-device and server Data set is too small

Tong and Yan [67] Anomaly based System call Pattern matching Server Not real and high power 
consumption

Martinelli et al. [51] Signature System calls SVM On-device High detection but 
consume many local 
resouces

HinDroid [35] Specification based API call Multi-kernel learning Off-device Limited data set used
DroidCat [19] Specification based Interprocess commu-

nication
Supervised learning Off-device 34,343 apps were used

MalDozer [39] Anomaly based API calls Neural network Off-device Limited data set were 
used

DroidDet [82] Static API calls and permis-
sions

Random forest Off-device 2130 Android apps were 
considered.

DeepDroid [45] Anomaly based API calls and permis-
sions

Deep neural network Off-device 1,20,000 Android apps 
were used

PerbDroid [49] Anomaly based System call and per-
missions

SVM, Deep neural 
network

Off-device 2,00,000 distinct 
Android apps utilized

GAdroid [48] Anomaly based System call and per-
missions

Deep neural network Off-device Consider 25,000 
malware-infected apps
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2.1  Research questions

To develop a malware detection model for Android with 
better detection rate and to cover the gaps that are present in 
the literature, we consider the following research questions 
in this research paper:

RQ1. Which malware detection model is most appropri-
ate to detect malware from real-world apps?

This question helps in finding the most appropriate model 
which is suitable for malware detection in Android. In this 
work, we build 50 distinct models by considering ten dis-
tinct feature selection approaches and five different machine 
learning techniques. Further, to identify that which model 
is more appropriate for malware detection we consider four 
distinct performance parameters in our study.

RQ2. Whether the presented malware detection frame-
work is effective or not to detect malware from Android 
devices?

The goal of this question is to investigate the performance 
of our malware detection approach. For this, we compare 
the performance of our developed model with some existing 
techniques available in the literature.

RQ3. Does a subset of feature perform better than all the 
extracted features for the task of detecting an app is mali-
cious or not?

The aim of this question, is to evaluate the features and 
investigate their relationship among benign and malware 
apps. Distinct kinds of feature reduction approaches are 
being considered for finding subset of features which are 
able to detect either the app is malicious or not.

RQ4. Among different implemented feature ranking 
approaches which approach work best for the task to detect 
that either an Android app belong to benign class or malware 
class?

In feature ranking approach, efficiency of the machine 
learning algorithms is affected by the characteristics and 
nature of the malware data set. Distinct approaches are being 
implemented with various criterions to rank the collected 
feature sets. Four distinct performance criterions i.e., intra-
cluster, inter-cluster, F-measure and accuracy are considered 
in this study, to compare distinct feature-ranking approaches.

RQ5. Among applied feature subset selection approaches, 
which approach performs foremost for the task of detecting 
malware from Android apps?

To determine the subset of features which are appropriate 
to detect either the Android app is benign or malware we 
consider feature subset selection approaches. In this work, 
we compare distinct approaches by using four performance 
criterions i.e., intra-cluster, inter-cluster, F-measure and 
accuracy.

RQ6. How do the feature subset selection approaches are 
compared with feature ranking approaches?

In this paper, pair-wise t test being used to determine 
either the feature subset selection approaches are appropri-
ate than feature ranking approaches or both of them behave 
equally well.

RQ7. Do the feature selection approaches effect the out-
come of the unsupervised machine learning approaches?

It is seen that number of feature selection approaches 
perform extremely well with specific unsupervised machine 
learning methods. Therefore, in this research work distinct 
feature selection approaches are evaluated using distinct 
unsupervised machine learning approaches to measure their 
performance. Further, it also emphasis on variation of per-
formance of unsupervised machine learning approaches over 
distinct unsupervised machine learning approaches.

3  Android permission model

Android security is dependent upon the permission based 
model that access to functionality or features which could 
pay impact on the user’s privacy. Android apps are written in 
java language and run in a Dalvik virtual machine. Android 
apps demand permissions during their installation and run-
time from the users. Permissions such as send messages or 
making phone calls, access to vibrator or device screen on 
are asked by an app. User can grant or reject the request 
of permission made by an app. This facility of granting or 
revoking the permission is available from Android 6.0 ver-
sion onwards. Currently in Android, there are more than 110 
different features which are gaining access by using these 
permissions. Android is designed in such a way, that if any 
third-party app demand any new functionality, then it give 
privilege to the developer to define new permission under 
developer-defined permission or self-defined permission. By 
taking the advantage of this, cyber-criminals define new per-
missions on regular basis so that they can access the user’s 
private data for their own benefits.

For an in-depth analysis of permission model, we build 
an app named as “ToGoHome”.11 Figure 2 represent the 
class diagram of Android app by using the structure show-
ing its classes, attributes and methods involved in it. The 
package contains 10 distinct classes which contain the 
logic of cab reservation. In the very first step, when user 
click on the “HomePage” menu and searching for the cab 
it direct toward the class name “Pickup” that was collected 
from the current location of the user by using Global Posi-
tioning System (GPS) and call the class name “myLo-
cationListener”. Further “Pickup” class is divided into 
seven different attributes i.e., updateDisplayDate:void, 
u p d a t e D i s p l ay T i m e : vo i d ,  G e t D i s t a n c e : vo i d , 

11 Testing were performed on local system.
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checkAddress;bool, onConfigurationChanged:void, 
onActivityResult:void and onCreate:void. If user confirm 
his pick up location through GPS then its booking will be 
confirmed by calling “BookingDetails”. While travelling, 
user track his live location by calling “Route” class.12 After 
completing the journey, our app call the “Pay” class and 
it will direct towards the payment website. Through out 
this process following Android apps permissions are used 
i.e., ACCESS_FINE_LOCATION, ACCESS_COARSE_
LOCATION, ACCESS_NETWORK_STATE, INTERNET, 
SEND_SMS, and RECEIVE_SMS.

4  Formulation of data set

Figure 3 demonstrates the phases which are followed in 
extracting features from Android apps. In the very first 
phase, we identify the URLs from which Android apps are 
to be collected (mentioned in Sect. 4.1). In the second phase, 

we take the help of an app crawler to download the apps 
from identified URLs. Our developed app crawler can down-
load as many apps as possible and do not pay any impact on 
the android app repository. To perform dynamic analysis 
of the collected Android apps, we use Android studio as an 
emulator (mentioned in Sect. 4.2). Further, we write a pro-
gram in java language and extract permissions and API calls 
from them and save into the .csv for developing Android 
malware detection model. Extracted features are publicly 
available for researchers and academicians.13.

4.1  Collection of .apk files

Pervious studies mentioned in Table 1, used only limited 
data sets of Android apps to examine its associations with 
malware or benign class and in addition to that in the lit-
erature [72, 80] academicians and researchers were not 

Fig. 2  Class diagram of com.
ToGoHome Android app

Fig. 3  Extraction of features from .apk files

12 Live location of user is seen on Google Maps. Google Maps are 
pre-installed on Android based devices.

13 Mahindru, Arvind (2020), “Android permissions dataset, Android 
Malware and benign Application Data set (consist of permissions 
and API calls)”, Mendeley Data, V3, doi: http://dx.doi.org/10.17632 
/b4mxg 7ydb7 .3

http://dx.doi.org/10.17632/b4mxg7ydb7.3
http://dx.doi.org/10.17632/b4mxg7ydb7.3
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mentioned the categories of the app to which it belongs. 
Therefore, it is not able to draw generic conclusion rel-
evant to all Android apps and its system. To overcome this 
gap, we collect apps of thirty different categories which 
are used to generalize and strengthen our outcomes. We 
collect the Android apps to build our data set from prom-
ise repository. We collect 5,50,000 of .apk files, from 
Google’s play store,14 hiapk,15 appchina,16 Android,17 
mumayi,18 gfan,19 slideme,20 and pandaapp.21 Among 
these 5,50,000 benign .apk files, 5,00,000 are distinct. 

Further, the features are extracted after deleting viruses 
infected apps, reported by VirusTotal22 and Microsoft 
Windows Defender.23 VirusTotal identify malware affected 
apps by using 70 different antivirus softwares simultane-
ously. A total of 55,000 malware samples, are collected 
from three different promised repositories. 1929, botnet 
samples were collected from [38], which further consist of 
14 distinct botnet families. Android Malware Genome pro-
ject [80] contains a data set of 1200 malware samples that 
cover the currently present Android malware families. We 

Table 2  Categories of .apk 
files belong to their respective 
classes (.apk)

ID Category Normal Trojan Backdoor Worms Botnet Spyware

D1 Arcade and action (AA) 16291 1440 100 204 130 600
D2 Books and reference (BR) 15235 2000 250 56 150 150
D3 Brain and puzzle (BP) 14928 1820 54 28 50 50
D4 Business (BU) 18308 1520 150 150 22 22
D5 Cards and casino (CC) 12886 760 65 81 100 44
D6 Casual (CA) 12010 3210 69 46 150 140
D7 Comics (CO) 17667 650 95 35 3 0
D8 Communication (COM) 18414 2500 50 500 3 3
D9 Education (ED) 18744 5600 68 50 50 68
D10 Entertainment (EN) 14222 5000 500 500 100 42
D11 Finance (FI) 13999 500 200 99 65 92
D12 Health and fitness (HF) 18551 98 65 45 140 140
D13 Libraries and demo (LD) 15655 70 100 100 6 500
D14 Lifestyle (LS) 17650 155 200 100 193 192
D15 Media and video (MV) 18019 100 123 162 450 71
D16 Medical (ME) 16000 12 13 12 24 25
D17 Music and audio (MA) 27057 65 100 65 165 165
D18 News and magazines (NM) 18164 100 100 100 100 32
D19 Personalization (PE) 14334 500 42 500 200 22
D20 Photography (PH) 19133 100 120 50 96 500
D21 Productivity (PR) 19850 100 516 250 250 62
D22 Racing (RA) 17766 50 100 210 100 180
D23 Shopping (SH) 12673 100 100 120 150 50
D24 Social (SO) 26159 100 50 210 150 150
D25 Sports (SP) 22669 100 240 100 450 112
D26 Sports games (SG) 13889 100 145 145 650 198
D27 Tools (TO) 13346 120 500 550 475 563
D28 Transportation (TR) 13796 2 500 100 100 20
D29 Travel and local (TL) 23180 500 220 150 48 100
D30 Weather (WR) 12841 120 23 700 50 25

14 https ://play.googl e.com/store ?hl=en.
15 http://apk.hiapk .com/.
16 http://www.appch ina.com/.
17 http://andro id.d.cn/.
18 http://www.mumay i.com/.
19 http://apk.gfan.com/.
20 http://slide me.org/.

21 http://downl oad.panda app.com/?app=soft&contr oller =andro 
id#.V-p3f4h 97IU.
22 https ://www.virus total .com/.
23 https ://www.micro soft.com/en-in/windo ws/compr ehens ive-secur 
ity.

https://play.google.com/store?hl=en
http://apk.hiapk.com/
http://www.appchina.com/
http://android.d.cn/
http://www.mumayi.com/
http://apk.gfan.com/
http://slideme.org/
http://download.pandaapp.com/?app=soft&controller=android#.V-p3f4h97IU
http://download.pandaapp.com/?app=soft&controller=android#.V-p3f4h97IU
https://www.virustotal.com/
https://www.microsoft.com/en-in/windows/comprehensive-security
https://www.microsoft.com/en-in/windows/comprehensive-security
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collected about 56,871 samples from AndroMalShare24 
along with their package names. After removing dupli-
cate packages from the collected data set, we have 50,000 
unique malware samples left in our study. Both benign and 
malware apps being collected from the above mentioned 
sources at the end of December 2018. Table 2 shows the 
number of .apk files belonging to different categories i.e., 
business, comics, communication, education and so on. To 
better differentiate between benign and malware apps we 
consider .apk files belonging to normal, trojan, backdoor, 
worms, botnet and spyware families25 are mentioned in 
Table 2.

4.2  Extraction of features

After collecting a unique samples of .apk files from various 
sources mentioned in previous subsection, we extract per-
missions and API calls from each of the .apk file. Extraction 
of permissions and API calls have been performed with the 
help of an emulator (in our study we use Android studio). 
Emulator provides the same API level and execution envi-
ronment as our smartphones provide to us. In our study, to 
extract permissions and API calls from Android apps we 
use Android system version 6.0 Marshmallow (i.e., API 
level 23) and form our data set for experiments. Previous 
developed frameworks or approaches used the previous ver-
sion of Android to extract features from them. There are two 
reasons for selecting this Android version: first, it asks the 

user to revoke or grant the permission to use the resources of 
smartphones and second it covers 28.1% of Android devices 
which is higher than other versions present in the market.26 
To extract features from collected .apk files, we execute each 
of them in an emulator and extract permissions by using self-
written code in java from “AndroidManifest.xml”. These 
permissions are demanded by apps during their installation 
and run-time. By using the same process again and again, 
we extract permissions from 5,00,000 different Android apps 
and record them in the .csv file format. This extracted data 
set listing the name of the permissions is publicly available 
for the researchers.27,28 Previous researchers used limited 
set of features to develop a model for malware detection. To 
overcome this gap, in this study we collect 1532 permissions 
and 310 API calls which helps in building an effective and 
efficient Android malware detection model. Hence, each of 
the collected app can be represented as a 1842-dimensional 
Boolean vector, where “1” implies that the app requires 
the permission and “0” implies that the permission is not 
required. It is very common that distinct apps may request 
the similar set of permissions for its execution. Permissions 
overview given by Google29 is used to describe the behavior 
of a permission i.e., “dangerous” or “normal”.

Table 3  Formulation of sets containing (permissions, API calls, number of users download an app, and rating of an app) as features

Set number Description Set number Description

S1 Related to SYNCHRONIZATION _DATA S2 Related to CONTACT_INFORMATION
S3 Related to PHONE_STATE and PHONE_CONNECTION S4 Related to AUDIO and VIDEO
S5 Related to SYSTEM_SETTINGS S6 Related to BROWSER_INFORMATION
S7 Related to BUNDLE S8 Related to LOG_FILE
S9 Related to LOCATION_INFORMATION S10 Related to WIDGET
S11 Related to CALENDAR_INFORMATION S12 Related to ACCOUNT_SETTINGS
S13 Related to DATABASE_INFORMATION S14 Related to IMAGE
S15 Related to UNIQUE_IDENTIFIER S16 Related to FILE_INFORMATION
S17 Related to SMS_MMS S18 Related to READ
S19 Related to ACCESS_ACTION S20 Related to READ_AND_WRITE
S21 Related to YOUR_ACCOUNTS S22 Related to STORAGE_FILE
S23 Related to SERVICES_THAT_COST_YOU_MONEY S24 Related to PHONE_CALLS
S25 Related to SYSTEM_TOOLS S26 Related to NETWORK_INFORMATION

and BLUETOOTH_INFORMATION
S27 Related to HARDWARE_CONTROLS S28 Related to Default group
S29 Contain info. Related to API calls S30 Contain info. Related to rating and downloads

25 Malware families are identified by VirusTotal.

26 https ://www.stati sta.com/stati stics /27177 4/share -of-andro id-platf 
orms-on-mobil e-devic es-with-andro id-os/.
27 https ://data.mende ley.com/datas ets/9b45k 4hkdf /1.
28 https ://githu b.com/Arvin dMahi ndru6 6/Compu ter-and-secur ity-
datas et.
29 https ://devel oper.andro id.com/guide /topic s/permi ssion s/overv iew.

24 http://202.117.54.231:8080/.

https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://data.mendeley.com/datasets/9b45k4hkdf/1
https://github.com/ArvindMahindru66/Computer-and-security-dataset
https://github.com/ArvindMahindru66/Computer-and-security-dataset
https://developer.android.com/guide/topics/permissions/overview
http://202.117.54.231:8080/
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4.3  Formulation of feature sets

Several approaches had been developed for Android mal-
ware detection [1, 13, 45, 46, 49, 50, 74]. In this study, we 
divide the extracted API calls and permissions in to thirty 
different feature sets which helps in developing malware 
detection model. Table 3 displays the basic descriptions of 
the feature sets which are considered in our work.

5  Feature selection approaches

On the basis of previous studies, it is seen that in previ-
ous studies a number of authors applied different feature 
ranking approaches to detect malware from Android apps 
and achieved good detection rate. This indicates that the 
outcome of malware detection model rely on the features 
that are taken as an input to design a model. Selecting the 
suitable feature sets is essential for data preprocessing task 
in machine learning. In the field of malware detection, some 
researchers have used selection approaches to select appro-
priate set of features. In this paper, we implemented ten 
distinct types of feature selection approaches on a large col-
lection of 1842 features (divided in to thirty distinct feature 
sets) to identify the best subset of features which assist us to 
detect malware detection with better detection rate and also 
minimize the figure of misclassification errors. Feature rank-
ing approaches and Feature subset selection approaches can 
be defined in the following manner [45, 46, 49, 62]:

– Feature ranking approaches These approaches, use cer-
tain conclusive elements to rank the features. Further, 
on the basis of their ranks appropriate features can be 
selected to build the model [49, 62].

– Feature subset selection approaches These approaches 
aim to search subset of features which can have good 
detective capability [4, 46].

5.1  Feature ranking approaches

These approaches rank features separately without applying 
any training algorithm. Ranking of features depends upon 
their score. On the basis of our investigation of the previous 
studies, the majority of approaches are capable to calculate 
the grading of every feature. In this research, we employ six 
different ranking approaches to rank the features. Various 
feature ranking approaches are explained below:

5.1.1  Gain‑ratio feature selection

In this selection approach, feature ranking work on the predic-
tion of the gain-ratio in relation to the class [49, 55]. The “Z” 
known as the gain-ratio of feature is determined as:

where Gain (Z) = I(X) − E(Z) and X depicts the set includ-
ing m numbers of instances with n different classes. The 
forthcoming statistics necessary to categorize a given sam-
ple is calculated by utilizing succeeding equation:

Here in this equation Pi is the chance that a random sample 
can be a member of class Ci and is measured by zi∕z.

The number of instances are given by zij of class Ci in subset 
Nj. The foreseen knowledge rely on the partition of subsets by 
F,  and is presented by

SplitInfoF(X) is measured by utilizing following equation:

The value of SplitInfoF(X) show us the details achieved by 
dividing the data set of training X into t portions equivalent 
to t results of a test on the attribute Z.

5.1.2  Chi‑squared test

This test is employed to examine the self-determination among 
two events [49, 57], and in our work, ranking of features is 
predicted by the significance of its statistic in relation to the 
class. Higher the calculated value implies the denial of the out-
liers and consequently these features can be analyzed as better 
relevance to detect malware from Android apps. Chi-squared 
attribute evaluation evaluates the worth of a feature by com-
puting the value of the chi-squared statistic with respect to the 
class. The initial hypothesis H0 is the assumption that the two 
features are unrelated, and it is tested by chi-squared formula:

where Oij is an observed frequency and Eij is an expected 
(theoretical) frequency, asserted by the null hypothesis. The 
greater the value of �2 evidence against the hypothesis H0.

5.1.3  Information‑gain feature selection

In Info-gain, features are selected on its relation with 
respect to the class [49, 55]. In information-gain feature 
selection approach, entropy is considered as a criterion of 

(1)Gain-Ratio =
Gain(Z)

SplitInfoZ(X)
,

(2)I(X) = −

m∑

i=1

Pi log2(pi).

(3)E(Z) = −

M∑

i=1

I(X)
n1i + n2i +⋯ + nmi

n
.

(4)SplitInfoF(X) = −

t∑

i=1

|Xi|
X

log2(
|Xi|
X

)

(5)�2 =

r∑

i=1

c∑

j=1

(Oij − Eij)
2

Eij
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impurity in a training set S (data set), which can define a 
measure reflecting additional information about Y (random 
feature) provided by X (second random feature) that rep-
resents the amount by which the entropy of Y decreases. 
It is given by

The information gained about Y after observing X is equal to 
the information gained about X after observing Y. A weak-
ness of the IG criterion is that it is biased in favor of features 
with more values even when they are not more informative 
[49, 55].

5.1.4  OneR feature selection

OneR feature selection approach is used for grading the 
features [49, 55]. To rank individual features it utilizes the 
classification mechanism. In it valuable features are consid-
ered as constant ones and divide the set of values into a few 
dissociate intervals made by straightforward method. In this 
study, we consider features with better classification rates.

5.1.5  Principal component analysis (PCA)

Reduction of attribute is accomplished by implementing 
PCA on our collected data set. PCA helps in transforming 

(6)IG = H(Y) − H(Y|X) = H(X) − H(X|Y)

a high dimension data space into a low dimension data 
space. Features which are present in low dimension have 
extreme importance in detecting malware [49, 70]. Corre-
lation among several features are high, so PCA is utilized 
to relocate these features that are not extremely correlated. 
The features obtained are named as principal component 
domain features. Further, to identify significant patterns in 
the data a small value of principal components is sufficient. 
The detailed phases of PCA are demonstrated in Fig. 4.

Feature data set is collected in the form of m × n matrix, 
that contains n number of data sample and m number of 
extracted features. In the second phase, normalization of the 
feature data set is performed by using equation

and replace xj with (xj − �j) . Next, we calculate eigen value 
and eigen vector by using matlab environment. Next, to 
select first k number of principal components from the 
covariance matrix we performed following steps

while (i = 1 to m) do evaluate cumvar = 
∑k

i=1
�ii

cumvar denotes (cumulative variance) and (�) represents 
eigen values sorted in descending order.

After evaluating this, reduced feature sets are selected for 
training purpose.

5.1.6  Logistic regression analysis

For feature ranking, univariate logistic regression (ULR) 
analysis is being considered to verify the degree of impor-
tance for every feature sets [25, 49]. In the current work, we 
consider two benchmarks of LR model which consider to 
discover the importance of every feature and also used to 
rank each feature sets. Parameters for Logistic regression 
analysis are as follows: 

1. Value of regression coefficient The coefficient measure 
of features indicates the degree of correlation of every 
feature sets with malware.

2. p value p value i.e., level of significance shows the cor-
relation significance.

�j =
1

n

n∑

i=1

x
j

i

m∑

i=1

�ii

if (cumvar ≥ 0.99) or (1 − cumvar ≤ 0.01)

return k 99% of variance is retained

end if

end while

Fig. 4  Framework of PCA calculation
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5.2  Feature subset selection approaches

These approaches are employed to detect appropriate sub-
set of features which jointly have best detective capability. 
These are established on the hypothesis that developed 
model has better detection rate and lower value of misclas-
sification errors when linked with few other features or 
when matched by itself. Several approaches are feasible to 
identify the right subset of features which helps in detecting 
malware. In this work, four distinct feature subset selection 
approaches are considered to calculate the score of feature. 
Implemented approaches are depicted below:

5.2.1  Correlation based feature selection

This approach is based on correlation approach which select 
a subset of features that are particularly related to the class 
(i.e., benign or malware). In this research paper, Pearson’s 
correlation (r: Coefficient of correlation) has been used for 
searching the dependency among features. If the value of “r” 
is higher among the feature sets, it indicates a strong rela-
tion among these features. It implies that, there is a statisti-
cal reason to consider those classes which are having lower 
(or highest) feature value with that have lower (or highest) 
ranges of other highly correlated features [49].

5.2.2  Rough set analysis

This approach is an estimation of conventional set, in terms 
of a joins of feature sets which provide the upper and the 
lower estimation of the original data set [46, 56]. This formal 
estimation, depicts the upper and lower limits of the original 
data set. The application of this approach is in mining the 

data from imperfect data. This approach is used to select 
the reduced set of features from the extracted feature sets. 
RSA used three distinct notations such as approximations, 
reduced attributes and information system. The steps that 
are pursued to get reduced subset by utilizing RSA are men-
tioned-below and also demonstrated in Fig. 5.

(i) Approximation Let A = (C, Z),X ⊆ Z and Y ⊆ C. X− 
topmost (XY) and X− lowermost (< uline > X < ∕uline > Y) 
approximations of X are utilized to estimate Y. The top-
most limit includes all the objects which maybe the part 
to the set and the lowermost approximation includes of all 
objects which certainly be a part of the set. The XY and 
(< uline > X < ∕uline > Y) are computed by utilizing sub-
sequent equations:

where ∣ [yi]Ind(C) belongs to the same class of yi in connec-
tion Ind(C).

(ii) Reduced attributes Correctness evaluation of the 
group Z (Acc(Z)) in A ⊆ B is determined as:

The number of features contained in the topmost or upper-
most approximation of the set Z is called the cardinality 
of the set. Further, all possible feature sets are considered 
whose accuracy is equivalent to the accuracy of extracted 
feature sets.

(iii) Information system It is determined as Z = (C,B) , 
where C is a universe including non-empty set of confined 

(7)X̄Y ={yi ∈ U ∣ [yi]Ind(B) ∩ Y ≠ 0}

(8)XY ={yi ∈ U ∣ [yi]Ind(B)∩Y},

(9)𝜇B(A) =
card(BZ)

card(B̄Z)

Fig. 5  Rough set theory frame-
work
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objects and B is the sets of attributes with a finite num-
ber of elements. For each b ∈ B , there exist a function 
Fb ∶ C → Vb , where Vb denotes the value of attribute b. For 
each A ⊂ B, there exists an equivalence relation known as 
B-indiscerbility relation is (Ind(Z)). Ind(Z) can be defined as:

5.2.3  Consistency subset evaluation approach

This technique provides the importance of subset of attrib-
utes by their level of consistency appearing in class val-
ues, when the training instances are applied on the subset 
of attributes. The consistency rate is calculated with the 
help of inconsistency rate, where two data elements can be 
considered as inconsistent if they belong to different class 
labels (i.e., benign or malware) but have same feature val-
ues. For this work, destination variable i.e., apps having 
two distinct characteristics (i.e., 0 for benign apps and 1 for 
malware apps). A group of feature (GF) is having Z amount 
of sample, there are z amount of instances in a manner that 
Z = X1 + X2 +⋯ + Xz. Instance Xi seems in entirely A sam-
ples from which A0 numbers of samples are marked by 0 and 
A1 number of samples are marked by 1,  here A = A0 + A1. If 
A1 is less than A0, then the difference count for the instance 
Xi is INC = A − A0. The inconsistency rate (INCR) of feature 
set is computed by utilizing succeeding equation:

5.3  Filtered subset evaluation

Filtered subset evaluation is based on the principle to select 
random subset evaluator from data set that was gained by 
applying arbitrary filtering approach [40]. The filtering 
technique is not based on any induction algorithm. Filtered 
subset evaluation technique is scalable and fast. Figure 6 
demonstrates the steps followed to find subset of feature by 
utilizing filter method.

6  Machine learning techniques

Various authors applied a number of unsupervised machine 
learning classifiers like K-mean [18, 52] and Self-Organiz-
ing Maps (SOM) [18, 20] to detect Android malware. But, 

(10)INDA(Z) = {(x, y) ∈ C2 ∣ ∀a ∈ Z, a(x) = a(y)}.

(11)INCR =

∑z

i=1
INCi

Z

they applied clustering algorithm on limited data set. To 
overcome this gap, in this study, we implement five dif-
ferent clustering algorithms on our extracted data set i.e., 
SOM, K-mean, farthest first clustering, filtered clustering 
and density-based clustering. The choice of clustering algo-
rithms are based on its performance in the literature [18, 20, 
52, 74].

6.1  Self‑organizing maps (SOM)

SOM is a type of artificial neural network (ANN) that is 
trained with the help of unsupervised learning to produce 
a low-dimensional, discretized representation of the input 
space of the training samples called map and is therefore a 
method to do dimensionality reduction.30 SOM consists of 
neurons, which have the same dimensionality as the input 
space and is arranged in a rectangular or a hexagonal grid. 
SOM neurons can be studied as pointers in the input space, 
in which more neurons point to regions with high concen-
tration of inputs [13]. The training algorithm can be sum-
marized in four basic steps: 

1. Initialize neuron weights Wi = [wi1,wi2,… ,wij]T ∈ Rj.

2. Input pattern x = [x1, x2,… , xj]
T ∈ Rj. Input pattern cor-

responding to an app in which permissions are expressed 
in the form of a bit string. Calculate the distance between 
pattern x and each neuron weight WR, Therefore, identify 
the winning neuron or best matching neuron Z as follows 

 In our study, we employed Euclidean distance as the 
distance metric, normalized to the range [0, 1].

3. Adjust the weights of winning neuron Z and all neighbor 
units 

 where R is the index of the neighbor and t is an inte-
ger, the discrete time co-ordinate. Neighborhood kernel 
hZR(t) is a function of time and the distance between 
neighbor neuron r and winning neuron z. hRZ(t) defines 
the region of influence that the input has on the SOM 
and consists of two components it means that the neigh-
borhood function h(‖.‖, t) and the learning rate function 
�(t) is 

(12)‖x −Wz‖ = minR{‖x −WR‖}

(13)wR(t + 1)wR(t) + hZR(t)[x(t) −WR(t)],

Fig. 6  Feature selection by 
utilizing filter approach

30 https ://towar dsdat ascie nce.com/self-organ izing -maps-ff585 3a118 
d4.

https://towardsdatascience.com/self-organizing-maps-ff5853a118d4
https://towardsdatascience.com/self-organizing-maps-ff5853a118d4
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 where b is the location of the neurons.
  In our study, we used Gaussian neighborhood func-

tion and the first form of the neighborhood kernel with 
Gaussian function is 

 where �(t) defines the width of the kernel.
4. Repeat steps 2–3 until the convergence criterion is satis-

fied.

6.2  K‑mean

K-mean adopt the method of vector quantization. K-mean 
clustering aims to partition n observations into k clusters 
in which each observation belongs to the cluster with the 
nearest mean, serving as a prototype of the cluster.31 The 
working of K-mean algorithm is as follows: 

1. Specify number of clusters K.
2. Initialize centroids by first shuffling the data set and then 

randomly selecting K data points for the centroids with-
out replacement.

3. Keep iterating until there is no change to the centroids. 
i.e assignment of data points to clusters isn’t changing.

– Compute the sum of the squared distance between 
data points and all centroids.

– Assign each data point to the closest cluster (cen-
troid).

– Compute the centroids for the clusters by taking the 
average of the all data points that belong to each 
cluster.

6.3  Farthest first

Farthest first is based on the principle of a bounded metric 
space in which first point is selected arbitrarily and each suc-
cessive point is as far as possible from the set of previously-
selected points.32 The working of farthest first clustering is 
described below [41]:

For each Xi = [xi, 1, xi, 2, ...xi,m] in D that is described 
by m categorical attributes, we use f (xi,j|D) to denote the 
frequency count of attribute value xi,j in the data set. Then, a 
scoring function is designed for evaluating each point, which 
is defined as:

(14)hZR(t) = h(‖br − bz‖;t)�(t)

(15)hRZ(t) = exp
�‖br − bz‖2

2�2(t)

�
�(t),

 

 1. Farthest first traversal (D: data set, k: integer) {
 2. randomly select first center;
 3. select centers
 4. for (I = 2,…,k) {
 5. for (each remaining point) { calculate distance to the 

current center set; }
 6. select the point with maximum distance as new center; 

}
 7. assign remaining points
 8. for (each remaining point) {
 9. calculate the distance to each cluster center;
 10. put it to the cluster with minimum distance; } }

6.4  Filtered cluster

Filtered cluster is a special subset of a partially ordered set, 
in which each cluster is labeled with an ID. If Cluster belong 
to the first class then it will be labeled with 1 otherwise it 
is labeled as 0. The working of filter clustering algorithm is 
described below [37]: 

1. In only one scan of the data set derive the l(l−1)
2

 con-
tingency tables necessary for computing the previously 
presented adequacy indices

2. Run the Genetic Algorithm using the fitness function 
fit(SA, SA∗)

33

– a chromosome codes (corresponds to) a subset of 
SA;

– each gene of the chromosome codes an attribute of 
SA (so, there are l genes);

– each gene of a chromosome has a binary value: the 
gene value is 1 (resp. 0) if its associated attribute is 
present (resp. absent) in the subset of SA coded by 
the chromosome.

3. Select the best subspace found by the Genetic Algo-
rithm.

6.5  Density‑based cluster

Density-based cluster is based on the notion of den-
sity. It either grow clusters according to the density of 

(16)Score(Xi) =

m∑

j=1

f (xi,j|D).

33 A data set DS composed by a set (O) of n objects described by a 
set (SA) of l attributes.

31 https ://en.wikip edia.org/wiki/K-means _clust ering .
32 https ://en.wikip edia.org/wiki/Farth est-first _trave rsal.

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/Farthest-first_traversal
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neighborhood objects or according to some density func-
tion. The working of density-based clustering is described 
below [24]: 

 1. initialize tc = 0;
 2. initialize an empty hash table grid_list34;
 3. while data stream is active do
 4. read record x = (x1, x2, upto, xd);
 5. determine the density grid g that contains x;
 6. if(g not in grid_list ) insert g to grid_list;
 7. update the characteristic vector of g;
 8. if tc == gap then
 9. call initial_clustering(grid_list);
 10. end if
 11. if tc mod gap == 0 then
 12. detect and remove sporadic grids from grid_list;
 13. call adjust clustering(grid_list);
 14. end if
 15. tc = tc + 1;
 16. end while
 17.  end procedure

7  Comparison of proposed model 
with different existing techniques

To validate that our proposed framework is able to achieve 
higher detection rate or not, we compare the result of our 
proposed model with three different techniques mentioned 
below: 

(a) Comparison of results with previously used classifiers 
To validate that our proposed model is feasible to detect 
malware as equivalent to previous used classifiers or 
not, we calculate two performance parameters like 
Accuracy and F-measure for new proposed model and 
existing models. In addition to that, in this study, we 
also compared our proposed framework with existing 
frameworks that are present in the literature.

(b) Comparison of results with different anti-virus scanners 
To compare the performance of our model for mal-
ware detection, we chose ten available distinct anti-

virus scanners and compare their detection rate with 
the detection rate of the proposed model.

(c) Detection of known and unknown malware families Fur-
ther, to evaluate how much our proposed model is reli-
able to detect known and unknown malware families, 
we test known and unknown malware families with our 
proposed model and calculate the accuracy to detect the 
malware.

8  Evaluation of performance parameters

In this section of the paper, we discuss the fundamental defi-
nitions of the performance parameters utilized by us while 
evaluating our proposed model for malware detection. Con-
fusion matrix is used to calculate all these parameters. It 
consists of actual and detected classification information 
built by detection models. Table 4 demonstrates the con-
fusion matrix for malware detection model. In the present 
work, four performance parameters namely, inter-cluster 
distance, intra-cluster distance, F-measure and accuracy are 
utilized for measuring the performance of malware detec-
tion approaches.

Inter-cluster distance For each of these techniques, we 
first calculate centroid and then centroid Euclidian distance. 
In case of N,  d-dimensional data points in a cluster: {�i} 
where i = 1, 2, 3,…N, the centroid {�0} , as defined in35 is 
given by

Next, we define centroid Euclidian distance between the 
centroid of two clusters. Given the centroid of two clusters 
C01 and C02, the centroid Euclidian distance or inter-cluster 
distance between them is defined by

Intra-cluster distance To calculate the intra-cluster distance, 
we find root-mean-square-total-sample standard deviation 
(RMSSTD). This is defined by

where s̄j denotes the standard deviation of the attributes 
and p is the number of features. The smaller the value, 
the more homogenous the observations are with respect 
to the variables and vice-versa. Since root-mean-square is 
scalable dependent, it should only be used to compare the 

(17)�
�
=

∑N

i=1
�

�

N
.

(18)D0 = ((C01 − C02)
2)

1

2 .

(19)RMSSTD =

�∑p

j=1
s̄j
2

p
,

Table 4  Confusion matrix to classify a Android app is benign or mal-
ware (.apk)

Benign Malware

Benign Benign-> Benign Benign-> Malware
Malware Malware-> Benign Malware-> Malware

34 grid_list consist of attributes. 35 https ://en.wikip edia.org/wiki/Eucli dean_dista nce.

https://en.wikipedia.org/wiki/Euclidean_distance
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homogeneity of datasets whose variables are measured using 
similar scales.

F-measure The F-measure is harmonic mean of the preci-
sion and recall values used in information retrieval [16]. Pre-
cision shows how many applications are in the right cluster 
w.r.t. the cluster size. Recall shows that how many applica-
tions are in the right cluster w.r.t. the total applications. Let 
i denotes the class label and j denotes the cluster, then the 
Precision and recall for class i and cluster j are defined as:

where ni,j is the number of applications with class label i in 
cluster j,  ni is the number of applications with class label i 
and nj denotes the number of applications in cluster j. The 
F-measure for class i and cluster j is given as:

(20)Recall(i, j) =
ni,j

nj

(21)Precision(i, j) =
ni,j

ni

(22)F(i, j) =
2 ∗ Recall(i, j) ∗ Precision(i, j)

Recall(i, j) + Precision(i, j)
.

The total F-measure of clustering process is given by:

where n is the total number of applications.
Accuracy Let ni,j is the number of applications with class 

label i in cluster j,  nj,i is the number of applications with class 
label j in cluster i,  ni is the number of applications with class 
label i and nj denotes the number of applications in cluster j. 
Then Accuracy becomes:

9  Experimental setup

In the present section, we introduce the experimental setup 
done to find the performance of our developed malware 
detection models. Five distinct unsupervised machine 
learning algorithms are implemented on thirty different 
categories of android apps mentioned in Table 2. All these 

(23)F =
∑ ni

n
∗ maxF(i, j)

(24)Accuracy =
xij + xji

xij + xji + xi + xj
.

Fig. 7  Proposed framework i.e., SemiDroid
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data sets have varying number of benign or malware apps 
which are adequate to perform our analysis. Figure 7 dem-
onstrates the framework of our proposed model named 
as SemiDroid. In the very first step, feature ranking and 
feature subset selection approaches are applied on the 
extracted features data set. In the next step, we use the 
Min-max normalization approach to normalize the data. 
This approach is based on the principle of linear transfor-
mation, which bring each data point Dqi

 of feature Q to a 
normalized value Dqi

, that lie in between 0 − 1. Following 
equation is considered to find the normalized value of Dqi

∶

where min(Q) and max(Q) are the minimum and maximum 
significance of attribute Q,  respectively. In the third step, 
we trained significant features by implementing distinct 
machine learning techniques. In the next step, we construct 
a confusion matrix and calculate the performance param-
eters i.e., Accuracy and F-measure. Next, we compare the 
performance of the developed malware detection model and 
select the best malware detection model. At last, we compare 
the performance of our proposed malware detection model 
with existing techniques available in the literature and dis-
tinct anti-virus scanners. If the performance of our proposed 
malware detection model is better than existing techniques 
then it is useful and in reverse of it if the performance is not 
enhanced than the proposed malware model is not useful.

The subsequent measures are pursued at the time of 
selecting a subset of features to built the malware detec-
tion model that detects either an app is benign or malware. 
Feature selection approaches are implemented on 30 dif-
ferent data sets of Android apps. Hence, a total of 1650 
(( 1 selecting all extracted features + 10 feature selection 
approaches) × 30 data sets (subsets of different feature sets 
particular to data sets determined after conducting feature 
selection) × 5 detection methods) different detection mod-
els have been build in this work. Below we provide step by 
step details of our approach: 

1. In the present work, four feature subset selection 
approaches and six feature ranking approaches are 
implemented on 30 different feature sets to select the 
right set of features for malware detection.

2. The subsets of features obtained from aforementioned 
procedure are given as an input to machine learning 
classifiers. To compare the developed models, we use 
20 fold cross-validation method. Cross-validation is a 
statistical learning approach that is utilized to classify 
and match the models by dividing the data into two dif-
ferent portions [40]. One portion is utilized to train and 
the remaining portion of data is utilized to verify the 

Normalized(Dqi
) =

Dqi
− min(Q)

max(Q) − min(Q)
,

build model, on the basis of training [40]. The data is 
initially separated into K same sized segments. K-1 folds 
are utilized to train the model and the rest one fold is 
utilized for testing intention. K-fold cross-validation is 
having important significance in utilizing the data set 
for the both testing and training. For this study, 20-fold 
cross-validation is utilized to analyze the models, i.e., 
data sets are segregated into 20 portions. The outcomes 
of all build malware detection models are matched with 
each other by employing two distinct performance meas-
ure parameters: F-measure and accuracy.

3. SemiDroid i.e., proposed model build by utilizing above 
two steps are validated with the existing techniques 
developed in the literature to review whether the build 
malware detection model is useful or not.

10  Results of performed experiment

In the current section of the paper, the relationship among 
different feature sets and malware detection at the class level 
is submitted. Set of features are used as an input and present 
the ratio of benign and malware apps within an experiment. 
intra-cluster distance, inter-cluster distance, F-measure and 
accuracy are used as performance assessment parameters to 
match the performance of malware detection model build 
by using five different unsupervised machine learning algo-
rithms. To depict the experimental results we utilize the 
abbreviations as given in Table 5 corresponding to their 
actual names.

10.1  Feature ranking approaches

Six feature ranking approaches: gain-ratio feature evalua-
tion, Chi-squared test, information gain feature evaluation, 
logistic regression analysis, information gain, oneR feature 

Table 5  Used naming convention in this study

Abbreviation Corresponding name

DS Data set
FS1 Correlation best feature selection
FS2 Classifier subset evaluation
FS3 Filtered subset evaluation
FS4 Rough set analysis (RSA)
FR1 Chi squared test
FR2 Gain ratio feature evaluation
FR3 Filtered subset evaluation
FR4 Information gain feature evaluation
FR5 Logistic regression analysis
FR6 Principal component analysis (PCA)
AF All extracted features
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evaluation and principal component analysis are imple-
mented on a distinct feature sets. Each approach utilizes 
distinct performance parameters to rank the feature. Moreo-
ver, top ⌈log2 a⌉ set of features from “a” number of features 
being measured to build a model for detecting malware. For 
initial four feature ranking approaches (gain-ratio feature 
evaluation, Chi-squared test, OneR feature evaluation and 
Information gain), top ⌈log2 a⌉ are selected as subset of fea-
tures, where a is the number of features in the original data 
set (for this work a = 20 ). However, in the case of ULR, 
those features are selected which posses a positive value of 
regression co-efficient, i.e., p value measure is below 0.05, 
and in matter of PCA, only those features are selected which 
have eigenvalue greater than 1. Considered features using 
feature ranking approaches are demonstrated in Fig. 8.

10.2  Feature subset selection approaches

In the present work, four distinct kinds of feature subset 
selection approaches are implemented on thirty data sets 

of Android apps one after another. Feature subset selection 
approaches work on the principle of hypothesis which make 
models with better accuracy and make less amount of mis-
classified errors, while selecting the best features from avail-
able number of features. Searching principles are based on 
heuristic search [17] (for correlation based feature selection, 
rough set analysis), best first search [14] (for consistency 
subset evaluation and filtered subset evaluation). Later, these 
isolation subset of features has been selected as an input for 
building a model to detect either the app is benign or mal-
ware. Considered set of features after feature subset selection 
approaches are demonstrated in Fig. 9.

10.3  Machine learning techniques

Eleven subsets of features (1 considering all set of extracted 
features + 10 resulting by implemented feature selection 
approaches) are used as an input to build a model for mal-
ware detection. Hardware utilized to carry out this study is 
Core i7 processor having storage capacity of 1TB hard disk 

Fig. 8  Feature ranking 
approaches
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and 8GB RAM. Detection models are build by using the 
MATLAB environment. Figure 6 demonstrates the imple-
mented unsupervised machine learning algorithms on our 
collected data set. Red-cross represents the normal permis-
sions and blue-cross represents the dangerous permissions. 
From Fig. 10, we analysis that clusters formed by using 
SOM, density-based clustering, K-mean, and filter cluster-
ing have overlapping of normal and dangerous permissions. 
Only farthest first clustering performed the cluster without 
overlapping of the permissions. Further, the performance of 
each detection model is measured by using four performance 
parameters: intra-cluster distance, inter-cluster distance, 
F-measure and accuracy.

Tables 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15, present the 
performance values obtained for distinct data sets by utiliz-
ing SOM, K-mean, farthest first clustering, filtered clustering 
and density based clustering. On the basis of Tables 6, 7, 8, 
9, 10, 11, 12, 13, 14 and 15, it may be concluded that:

– Bold values indicate the highest detection rate when com-
pared to other values in a specific row.

– Value of inter-cluster and intra-cluster distance are cal-
culated by using Eqs. 18 and 19.

– F-measure and accuracy are measured by using Eqs. 22 
and 24.

– Models developed by considering features selected by 
feature selection approaches as an input is able to detect 
malware more effectively rather than model developed 
by using all extracted feature sets.

– Model constructed by considering FS4, as an input 
achieved higher detection rate when compared to other 
models developed by using different feature selection 
approaches.

– Model build by considering farthest first clustering by 
selecting FS4, as an input achieved higher detection rate 
when compared to other models developed by using dif-
ferent feature selection approaches.

In this research paper, five distinct unsupervised machine 
learning algorithms and ten distinct feature selection 
approaches are considered to select features which helps 
in identify Android malware more effectively. To find out 
which developed model is more capable to detect malware, 
we construct box-plot diagrams of the individual model. 
Box-plot diagrams helps in identify which model is best 
suitable for malware detection on the basis of few number 
of outliers and better value of median. Figures 11 and 12 
demonstrate the box-plot diagrams for F-measure and accu-
racy for every developed model. The x-axis of the diagrams 
presents the feature selection techniques. Figures include 
eleven box-plot diagrams: one box-plot diagram consists of 
all extracted feature sets, four box-plot consist of feature sub-
set selection approaches and six box-plot consist of feature 
ranking approaches. On the basis of the box-plot diagram, 
we find following observations:

– Model constructed by considering five distinct unsuper-
vised machine learning algorithms and FS4 achieved 

Fig. 9  Feature subset selection 
approaches
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higher median value in addition to few outliers. On the 
basis of box-plot diagrams demonstrated in Figs. 11 
and 12, model developed by considering FS4 as fea-
ture selection approach gives better detection rate when 
compared to other developed approaches.

– From box-plot diagrams, we observed that model build 
by considering farthest first machine learning algorithm 
and FS4, is having few outliers and higher median value. 
It means that model developed by using RSA for detect-
ing malware and benign apps achieved better results 
when compared to others.

Fig. 10  Unsupervised machine learning algorithms
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10.4  Comparison of results

To identify that out of implemented feature selection 
approaches and machine learning algorithms which 

technique work well or all of the techniques perform equally 
well, we employed pair-wise t test in our study.

1. Feature selection approaches In this study, for each 
of the feature selection approaches two sets are formed, 
each of feature selection approach have 150 distinct data 

Fig. 11  Box-plot diagram of accuracy
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points (5 machine learning techniques × 30 data set). t 
test is performed on distinct feature selection approaches 
and the respective p value to measure its statistical sig-
nificance is compared. The outcome of t test study is dem-
onstrated in Fig. 13b. In the figure, we used two different 
symbols to represent the p value i.e., circle filled with 

green color have p value > 0.05 (having no relevance dif-
ference) and circle filled with red color have p value ≤ 0.05 
(relevance difference). After observing the Fig. 13b it is 
clear that, majority of the cells are filled with green color 
circle. This means that there is no relevance difference 
among the employed feature selection approaches. Further, 

Fig. 12  Box-plot diagram of F-measure
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by determining the measure of mean difference given in 
Table 16, we have observed that feature sets obtained by 
considering FS4 give best outcomes when examined with 
other implemented feature selection approaches.

In the present work, we also compare the developed 
model on the basis of cost-benefit analysis. For every fea-
ture selection approach, cost-benefit analysis is computed 
by employing following equation:

Here, Basedcost is dependent on the correlation among the 
selected features set and error in the class. Basedcost can be 
calculated from the following equation:

Here, Accuracy (SM) is the classification accuracy to build 
a malware detection model by utilizing selected features set, 

(25)Cost-Benefit = (Basedcost + Benefitcost)∕2.

(26)Basedcost = Accuracy (SM) × �SM.fault.

�SM.fault is a multiple correlation coefficient among selected 
features set and error. The proposed model produces higher 
accuracy and as it have high multiple correlation coefficient 
so it will achieve a high Basedcost. NAM is considered as fea-
ture sets and NSM is considered as the number of selected 
features after implementing features selection approaches. 
Basedcost can be calculated from the following equation:

The feature selection approach which achieve higher value 
of cost-benefit is an foremost feature selection approach as 
proposed in [22]. Figure 14a, b demonstrates cost-benefit 
of distinct feature selection approaches. On the basis of 
Fig 14a, b we observed that FS4 achieved higher median 
Cost-benefit measure when matched with other approaches.

2. Machine learning techniques In our study, we imple-
mented eleven different features subsets (i.e., 1 consider-
ing all features + 10 feature selection approaches) on thirty 

(27)Basedcost = NAM − NSM∕NAM

Fig. 13  t test analysis (p value)

Table 16  Performance of 
distinct feature selection 
approaches after calculate its 
mean difference

Accuracy AF FR1 FR2 FR3 FR4 FR5 FR6 FS1 FS2 FS3 FS4

AF 0 − 1.9 − 0.96 − 0.78 − 1.91 − 1.90 − 4.89 − 1.77 − 1.80 − 0.87 − 5.8
FR1 1.8 0 0.77 0.87 − 0.78 − 0.80 − 3.8 0.07 0.32 0.80 − 3.89
FR2 0.87 − 0.78 0 0.5 − 2.0 − 2.0 − 3.89 − 0.9 − 0.32 0.20 − 4.54
FR3 0.67 − 0.68 − 0.2 0 − 1.32 − 1.32 − 4.08 − 0.8 − 0.45 0.07 − 4.88
FR4 1.88 0.77 1.22 1.36 0 0 − 2.99 0.77 0.8 1.7 − 3.66
FR5 1.88 0.77 1.22 1.36 0 0 − 2.99 0.75 0.8 1.7 − 3.66
FR6 4.5 3.88 3.22 4.09 2.88 2.88 0 3.55 3.67 4.19 − 0.50
FS1 1.65 − 0.09 0.61 0.77 − 0.80 − 0.81 − 3.88 0 0.21 0.80 − 3.98
FS2 1.09 − 0.29 0.39 0.51 − 0.9 − 0.9 − 3.81 − 0.22 0 0.8 − 4.21
FS3 0.87 − 0.88 − 0.21 − 0.09 − 1.8 − 1.8 − 3.8 − 0.08 − 0.7 0 − 4.89
FS4 6.0 3.9 4.89 4.88 3.88 3.88 0.48 3.88 4.16 4.77  0
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different Android app data set by examining four perfor-
mance parameters i.e., intra- cluster, inter-cluster, F-measure 
and accuracy, all with 330 data points [(1 considering all set 
of features + 10 feature selection method) × 30 data sets)]. 
Figure 13a demonstrates the outcomes of t test analysis. On 
the basis of Fig. 13a, it is noticeable that, there is no rel-
evance difference among these techniques because p value 
is smaller than 0.05. On the other hand, by determining the 
difference in their mean value as given in Table 17, Farthest 
first clustering gives best outcome when compared to other 
machine learning techniques.

3.  Feature subset selection and feature ranking 
approaches For this study, pair-wise t test is used to iden-
tify which feature selection approach work better. For 
both of the implemented approaches (i.e., feature subset 
selection and feature ranking) sample pairs of performance 
evaluation are studied. The performance of averaged fea-
ture subset selection and feature ranking techniques out-
comes of t test analysis are briefed in Table 18. In this 
research paper, five distinct kinds of machine learning 
algorithms are applied on thirty different Android catego-
ries by selecting Accuracy and F-measure as performance 
parameters, in accordance with each feature selection 

approaches an aggregate number of two sets are utilized. 
Feature subset selection with 360 distinct points (which 
means 4 feature subset selection approaches × 3 machine 
learning techniques × 30 data sets) and feature ranking 
with 540 distinct data points (3 machine learning tech-
niques × 6 feature ranking approaches × 30 data sets). On 
the basis of Table 18, it is seen that, there isn’t a relevant 
variation among two implemented approaches, because p 
value come out to be greater than 0.05. On the other side 
by calculating the mean difference value of feature subset 
selection approaches give best results when compare to 
feature ranking approaches. On the basis of Cost-Benefit 
analysis as demonstrated in Fig. 14, we can say that both 
feature subset selection and feature ranking have nearly 
similar Cost-Benefit value. It proves that the averaged cost 
and benefit of model build by considering selected set of 
features with feature subset selection approaches and fea-
ture ranking have nearly same value.

Fig. 14  Cost-benefit value

Table 17  Mean difference 
between performance of 
different Unsupervised methods

Accuracy SOM K-mean Filter clustering Density based 
clustering

Farthest 
first clus-
tering

SOM 0 − 2.2 − 3.98 − 3.88 − 4.01
K-mean 1.86 0 − 2.81 − 3.10 − 4.89
Filter clustering 2.88 2.51 0 − 2.88 − 3.10
Density based clustering 1.86 2.88 2.01 0 − 4.89
Farthest first clustering 5.77 3.78 2.99 2.77 0
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10.5  Evaluation of proposed framework i.e., 
SemiDroid

10.5.1  Comparison of results with previously used 
classifiers

In addition to the study done in finding the best approach to 
build a malware detection model accurately, this study also 

makes the comparison with different most often used super-
vised machine learning approaches present in literature such 
as SVM with three distinct kernels i.e., linear, polynomial 
and RBF, decision tree analysis, logistic regression, neural 
network and Naïve Bayes classifier. Figure 15 demonstrates 
the box-plot diagrams for F-measure and accuracy of com-
monly utilized classifiers and five distinct machine learn-
ing algorithms implemented in this paper. On the basis of 
Fig. 15, we observed that farthest first clustering have higher 
median value along with some number of outliers.

Pair-wise t test is also implemented to decide which 
machine learning approach yield best performance. The 
outcomes of t test study for distinct machine learning 
approaches are demonstrated in Fig. 16. On the basis of 
Fig. 16 it is seen that, in number of the cases there is a rel-
evance difference among these machine learning techniques 
because p value is smaller than 0.05. On the other hand by 
noticing the mean difference value in Table 19 it can be 

Fig. 15  Diagram of box-plot showing performance of different classifiers

Table 18  t test analysis among feature subset selection approaches 
and feature ranking approaches

Mean (FR-FS) p value t value

Accuracy
− 0.1908 0.899 − 0.3211
F-measure
− 0.0078 0.599 − 0.5251

Fig. 16  t test analysis (p value)
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seen that farthest first clustering achieved better results when 
compared to other supervised machine learning techniques.

In addition to that, in our study we compare our proposed 
malware detection model (i.e., SemiDroid) with existing 
frameworks or approaches that were developed in the litera-
ture. Table 20 shows the name, goal, methodology, deploy-
ment, data set and detection rate of suggested approaches 
or frameworks.

10.5.2  Comparison of results with different anti‑virus 
scanners

Although farthest first clustering gives a better performance 
as compared to the machine learning technique used in the 

literature, in the end it must be comparable with the com-
mon anti-virus products available in practice for Android 
malware detection. For this experiment, we select 10 dif-
ferent anti-viruses which are available in the market and 
applied them on our collected data set. The performance of 
proposed framework is comparatively better than many of 
the anti-viruses available in the experiment. Table 21 shows 
the results of the experiment with anti-virus scanners. The 
detection rate of the anti-viruses scanners varies consider-
ably. Also the best anti-virus scanners detected 96.2% of the 
Android malwares and certain scanners identified only 82% 
of the malicious samples, likely do not being specialized in 
detecting Android malware. By using 1000 Android apps, 
our proposed framework i.e., SemiDroid gives the detection 

Table 20  Comparison with previously developed frameworks/approaches

Detection rate of our proposed malware detection model (i.e., SemiDroid) is higher when compared to distinct frameworks/approaches available 
in the literature. Frameworks/approaches proposed in the literature developed and tested with limited data set. Experiments were performed on 
Drebin data set [10] and empirical result reveals that our proposed framework has achieved 2% higher detection rate when compared to distinct 
frameworks available in the literature with unlabelled data set

Framework/approach Goal Methodology Deployment Data set Detection rate Labelled data set used

Andromaly [62] Detection Dynamic and profile-
based

Distributed Very-limited High 100%

AndroSimilar [30] Detection Static Off-device Limited Moderate 100%
Andrubis [43] Analysis and detection Static, dynamic, 

profile-based and 
behavioural

Off-device Higher Moderate 100%

Aurasium [76] Detection Dynamic and behav-
ioural

Off-device Limited High 100%

CopperDroid [66] Analysis and detection Dynamic, system/API 
and VMI

Off-device Limited Moderate 100%

Crowdroid [18] Detection Dynamic, system call/
API and behavioural

Distributed Very-limited High 100%

Paranoid Android [58] Detection Dynamic and behav-
ioural

Off-device Limited – 100%

TaintDroid [29] Detection Dynamic system call/
API and behavioural

Off-device Very-limited Moderate 100%

HinDroid [35] Detection Dynamic and API Off-device Limited Moderate 100%
Mahindru and Singh 

[50]
Detection Dynamic Off-device Limited Moderate 100%

MalDozer [39] Detection Dynamic Off-device Limited Moderate 100%
HEMD [81] Detection Dynamic and permis-

sions
Off-device Limited Moderate 100%

DroidDet [82] Detection Static Off-device Limited Moderate 100%
Wei Wang [71] Detection Dynamic Off-device Limited Moderate 100%
MalInsight [33] Detection Dynamic Off-device Limited High 100%
DeepDroid [45] Detection Dynamic Off-device Limited Moderate 100%
PerbDroid [49] Detection Dynamic Off-device Limited High 100%
Mahindru and Sangal 

[47]
Detection Dynamic Off-device Limited High 100%

SemiDroid (our pro-
posed framework)

Detection Dynamic,permissions, 
API calls, user-rating 
and Number of user 
download app

Off-device Unlimited Higher No labelled data set 
is used
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rate of 98.8% and outperforms 1 out of 10 anti-virus scan-
ners. From this, we can say that our proposed framework 
is more efficient in detecting malware when compared to 
distinct anti-virus scanners.

10.5.3  Detection of known and unknown malware families

Detection of known malware families In this section, we 
check that our proposed framework is capable to detect 
malware of known family or not. For this experiment, we 
select 20 sample of each families (in our study, we consider 
sample of 81 different families shown in Table 22.) and train 
it with our selected model. Farthest first clustering is capable 
to detect average 98.8% malware apps. The name of fami-
lies and the samples used for each family can be found in 
Table 22 and the detection rate of our proposed framework 
for each family is illustrated in Fig. 17a, b.

Detection of unknown malware families To check whether 
the farthest first clustering is capable to detect unknown mal-
ware families or not, we trained, our proposed framework 
with the random selection of 10 different families obtained 
by principle of counting and test is applied on the rest of the 
remaining 71 families present in the data set. Table 23 shows 
the result of farthest first clustering when we train it with 10 
selected families. From Table 23, we can say that if we train 
farthest first clustering with few number of known families 
samples which are necessary to generalize the behavior of 
most malware families it gives better detection rate.

In summary, our proposed framework is capable to detect 
Android malware more effectively when compared with sev-
eral anti-virus scanners which regularly update their signa-
ture definition. In addition, our proposed framework is capa-
ble to identify Android malware more efficiently whenever 
we trained with limited number of malware families.

10.5.4  Experimental findings

The comprehensive conclusion of our experimental work is 
presented in this section. The empirical study was conducted 
for thirty different categories of Android apps by consider-
ing five different unsupervised machine learning techniques 
i.e., SOM, K-mean, filter clustering, density based clustering 
and farthest first clustering. On the basis of the experimental 
results, this research paper is able to answer the questions 
mentioned in Sect. 2.

RQ1. In this paper, we applied five distinct machine 
learning algorithms to build a model which help us to 
detect whether an app is benign or malware. On the basis of 
Tables 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15, it can be implicit 
that model build by employing farthest first clustering by 
using selected set of features obtained as a result of FS4 
as an input gives better outcome when compared to others.

RQ2. To respond the RQ2, Fig. 17 and Tables 20 and 21 
were analyzed. Here, it is found that model build by utilizing 
farthest first clustering is capable to detect malware from 
real-world apps.

RQ3. In the present paper, four distinct kind of feature 
subset selection approaches and six distinct kind of feature 
ranking approaches are used to identify the smaller subset 
of features. By utilizing these approaches, we considered 
best possible subsets of the features which help us to build 
a model to identify that either an app is benign or malware. 
On the basis of the Tables 6, 7, 8, 9, 10, 11, 12, 13, 14 and 
15, in number of cases there occurs a reduced subset of fea-
tures which are best for building a detection model when 
compared to all the extracted features.

RQ4. In the present paper, six distinct variants of feature 
ranking approaches are used to discover the reduced subset 
of features. On the basis of t test study, it is seen that feature 
selection by implementing PCA approach gives the better 
outcomes when matched to others approaches.

RQ5, For this paper, four distinct kind of feature subset 
selection approaches are used to find the reduced subset of 
features. On the basis of t test study, it is seen that feature 
selection by utilizing FS4 gives the outcomes which are per-
suasively better when compared to other approaches.

RQ6. For this work, pair-wise t test being utilized to 
identify whether feature subset selection approaches per-
form better than feature ranking approaches or both of them 
carried out equally well. On the basis of t test outcomes it 
is seen that, there is a relevance difference among feature 

Table 21  Comparison of proposed framework i.e., SemiDroid with 
distinct anti-virus scanners

Detection speed calculated on Android apps whose size is less or 
equivalent to 50MB. To compare the performance of SemiDroid we 
consider freely available anti-virus in the market. Speed is measured 
for a particular Android app taken from real-world. To see the effect 
of obfuscation and polymorphism techniques on the malware detec-
tion process. We consider 1000 distinct Android apps collected from 
Google play store and third party app store having the same package 
name

Name of the anti-virus Averaged detection 
rate (in %)

Speed to detect 
malware in sec

Cyren 82 60
Ikarus 82.68 62
VIPRE 89 40
McAfee 89 30
AVG 90 32
AVware 92.8 30
ESET NOD32 92.9 20
CAT QuickHeal 95.8 32
AegisLab 96.1 30
NANO Antivirus 96.2 20
SemiDroid (our proposed 

approach)
98.8 12
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subset selection and feature ranking approach. Moreover, the 
value of mean difference shows that feature subset selection 
approaches gives better results than the feature ranking.

RQ7. On the basis of Sect. 9, we can observe that the 
performance of the feature selection approaches vary by 

using the distinct machine learning techniques. Further, it 
also observed that selection of machine learning algorithm 
to build a malware detection model which detect either 
the app is malware or not is based on the feature selection 
approaches.

Table 22  Top malware families 
used in our data set

ID Family # of samples ID Family # of samples ID Family # of samples

A1 Airpush 150 A2 AndroRAT 140 A3 Andup 300
A4 Aples 120 A5 BankBot 100 A6 Bankun 133
A7 Boqx 130 A8 Boxer 122 A9 Cova 100
A10 Dowgin 100 A11 DroidKungFu 100 A12 Erop 120
A13 FakeAngry 110 A14 FakeAV 120 A15 FakeDoc 120
A16 FakeInst 110 A17 FakePlayer 120 A18 FakeTimer 120
A19 FakeUpdates 120 A20 Finspy 111 A21 Fjcon 123
A22 Fobus 102 A23 Fusob 181 A24 GingerMaster 192
A25 GoldDream 20 A26 Gorpo 120 A27 Gumen 20
A28 Jisut 62 A29 Kemoge 720 A30 Koler 200
A31 Ksapp 290 A32 Kuguo 100 A33 Kyview 500
A34 Leech 300 A35 Lnk 100 A36 Lotoor 20
A37 Mecor 29 A38 Minimob 330 A39 Mmarketpay 200
A40 MobileTX 500 A41 Mseg 230 A42 Mtk 200
A43 Nandrobox 100 A44 Obad 100 A45 Opfake 120
A46 Penetho 120 A47 Ramnit 120 A48 Roop 120
A49 RuMMS 100 A50 SimpleLocker 110 A51 SlemBunk 120
A52 SmsKey 120 A53 SMsZombie 110 A54 Spambot 115
A55 SpyBubble 120 A56 Stealer 300 A57 Steek 230
A58 Svpeng 20 A59 Tesbo 21 A60 Triada 200
A61 Univert 210 A62 UpdtKiller 100 A63 Utchi 300
A64 Vidro 92 A65 VikingHorde 230 A66 Vmvol 533
A67 Winge 190 A68 Youmi 689 A69 Zitmo 230
A70 Ztorg 1000 A71 Imlog 50 A72 SMSreg 50
A73 Gappusin 50 A74 Adrd 50 A75 Geinimi 100
A76 Kmin 157 A77 Plankton 125 A78 GingerMaster 100
A79 Iconosys 100 A80 SendPay 18 A81 GoldDream 200

Fig. 17  Detection rate of proposed framework farthest first clustering
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11  Threat to validity

In this section, threats to validity which are experienced 
at the time of performing the experiment are presented. 
Below we discuss them: 

 (i) Construct validity In this work, presented models for 
malware detection only detect either an app is benign 
or malware, but does not state that how many number 
of possible permissions and API calls are required to 
detect malware.

 (ii)  External validity Cyber-criminals develops malware 
on daily basis to misuse the user information. In this 
work, we considered 81 different malware families to 
train the model and our proposed model is capable to 
detect malware from known and unknown families. 
Further, research can be extended to train model with 
more malware families and which is capable to detect 
more malware apps from real-world.

 (iii) Internal validity The threat lies in the consistency of 
the data used in this study. We collected data from 
different sources mentioned in Sect. 4. Any error in 
the information not mentioned in the sources was 
not considered in this work. Also, we can not claim 
that the data considered for the experiment is 100% 
accurate, we believed that it has been collected con-
sistently.

12  Conclusion

This work emphasizes on designing a malware detection 
framework by using selected set of features which help us 
to identify that an Android app belongs to malware class or 
benign class. The execution process was performed by tak-
ing assistance of thirty different categories of Android apps.

Empirical results indicate that, it is feasible to determine 
a small subset of features. The malware detection model 
build by considering this determined set of features is able to 
detect malware and benign apps with inferior value of mis-
classified errors and better accuracy. Further, it is also seen 
that the results of malware detection model, is influenced by 
the feature selection approaches.

After performing in depth analysis, we found that AA, 
BU, LS, PE, RA, TO set of features are relevance detec-
tors for malware detection by utilizing feature selection 
approaches. Further, on the basis of mean difference, it is 
seen that model build by considering selected set of fea-
tures as an input gives better detection rate when compared 
to model build by considering all set of extracted features. 
Moreover, the model build by utilizing Farthest first clus-
tering gives better outcomes when compared to other 
techniques.

At last, on the basis of Cost-benefit analysis, we implicit 
that the selected features by utilizing FS4, achieved high 
median Cost-Benefit value when compared to other 

Table 23  Detection of 
SemiDroid to detect unknown 
malware families

Combination of Android malware families to trained the model Detection rate when 
trained farthest first 
clustering

{A1, A2, A3, A4, A5, A6, A7, A8, A9, A10} 66%
{A1, A3, A4, A5, A6, A7, A8, A8, A10, A11} 70%
: :
: :
{A2, A3, A4, A5, A6, A7, A8, A9, A10, A11} 59%
: :
: :
: :
: :
: :
{A7, A13, A42, A55, A67, A37, A68, A79, A22, A51} 98.4%
: :
: :
: :
: :
: :
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approaches and it is also seen that model build by utilizing 
Farthest first clustering is capable to detect 98.8% known 
and unknown malware from real-world apps.

In this work, proposed models for malware detection 
only detect that either the app is malware or benign. Fur-
ther, work can be extended to develop a model for malware 
detection which predict whether a particular feature is 
capable to detect malware or not. Moreover, this study can 
be replicated over other Android apps repository which 
utilized soft computing models to attain better detection 
rate for malware.
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