
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411
https://doi.org/10.1007/s13042-020-01238-9

ORIGINAL ARTICLE

SemiDroid: a behavioral malware detector based on unsupervised
machine learning techniques using feature selection approaches

Arvind Mahindru1,2 · A. L. Sangal1

Received: 22 October 2019 / Accepted: 5 November 2020 / Published online: 24 November 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
With the exponential growth in Android apps, Android based devices are becoming victims of target attackers in the “silent
battle” of cybernetics. To protect Android based devices from malware has become more complex and crucial for academi-
cians and researchers. The main vulnerability lies in the underlying permission model of Android apps. Android apps demand
permission or permission sets at the time of their installation. In this study, we consider permission and API calls as features
that help in developing a model for malware detection. To select appropriate features or feature sets from thirty different
categories of Android apps, we implemented ten distinct feature selection approaches. With the help of selected feature sets
we developed distinct models by using five different unsupervised machine learning algorithms. We conduct an experiment
on 5,00,000 distinct Android apps which belongs to thirty distinct categories. Empirical results reveals that the model build
by considering rough set analysis as a feature selection approach, and farthest first as a machine learning algorithm achieved
the highest detection rate of 98.8% to detect malware from real-world apps.

Keywords Android apps · Permissions model · API calls · Unsupervised · Feature selection · Intrusion detection · Cyber
security · Smartphone

1 Introduction

Detection of malware from smartphones has become a major
concern for the research community. At the end of 2019,
the number of Android users will be 3.3 billions throughout
the world.1 Android is based on the Linux kernel and pro-
vide useful services such as security configuration, process
management and others. The primary reason for the growth
of Android operating system is due to its open-nature and
freely available apps. At the end of July 2019,2 Android had
2.7 billion free and paid apps in its play store. There is an
increase of 13%,3 in downloading of apps from Google play
store with respect to previous years. Android operating sys-
tem is based on the principle of privilege-separated where
each app has its own distinct system identity, i.e., group-ID

and Linux user-ID. Each app run in a procedure sandbox and
access permission to use the resources which are not present
in its sandbox. Depending on the permission sensitivity, the
system automatically grants permission or may prompt users
to approve or reject requests for permission. Permissions
granted by users include, access to the calendar, camera,
body sensors, microphone, contacts, location, SMS, stor-
age of the device. To defend Google official market4 from
malware-infected apps, Google introduced Google Bouncer
in the year 2012, which scans new apps at the time of their
launch. But, Google Bouncer has limitation, it can easily
be fingerprint.5 It is not very difficult for malware apps to
bypass Google’s security check and enter to Google official
market6 and ultimately to users’ devices. By taking advan-
tage of these permissions, cyber-criminals build malware

 * Arvind Mahindru
 er.arvindmahindru@gmail.com

1 Department of Computer Science and Engineering,
Dr. B.R. Ambedkar National Institute of Technology,
Jalandhar 144011, India

2 Department of Computer Science and Applications,
D.A.V. University, Sarmastpur, Jalandhar 144012, India

1 https ://www.stati sta.com/stati stics /33069 5/numbe r-of-smart phone
-users -world wide/.
2 https ://www.appbr ain.com/stats .
3 https ://www.busin essof apps.com/data/app-stati stics /#1.
4 https ://en.wikip edia.org/wiki/Googl e_Play.
5 http://blog.trend micro .com/trend labs-secur ity-intel ligen ce/a-look-
at-googl e-bounc er/.
6 https ://play.googl e.com/store ?hl=en.

http://orcid.org/0000-0002-2129-4509
http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-020-01238-9&domain=pdf
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.appbrain.com/stats
https://www.businessofapps.com/data/app-statistics/#1
https://en.wikipedia.org/wiki/Google_Play
http://blog.trendmicro.com/trendlabs-security-intelligence/a-look-at-google-bouncer/
http://blog.trendmicro.com/trendlabs-security-intelligence/a-look-at-google-bouncer/
https://play.google.com/store?hl=en

1370 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

apps on a daily basis and invite users to install these appli-
cations. More than two billion active Android devices are
present in the market.7 To overcome the drawback of the
bouncer and to protect Android devices, Google introduced
Google play protect in the market. Google play protect have
the capability to protect data in real-time. However, accord-
ing to a study in,8 G-Data Security expert counted 4.18 mil-
lions malware applications until the end of the year 2019 and
discovered over 7,50,000 new malware applications during
the first quarter of 2020.

Android apps work on the permission-based model [15].
Android operating system provides protection at four levels,
that categorize permissions as9 “signature”, “signature or
system”, “normal” and “dangerous”. In our study, we do not
consider “signature” and “signature or system” because they
are system granted. We only consider “normal” and “dan-
gerous” permissions which are granted by the user. Normal
permissions does not pay any risk to the user’s privacy. If the
permission is listed in the manifest file, then system grants
permission automatically. On the other hand, dangerous per-
mission give access to the user’s confidential data. However,
it is purely dependent upon the user to give access or revoke
the use of permission or set of permissions.

Selection of right feature or feature sets pay great effect
on the performance of malware detection [45, 46, 49, 62].
Feature selection approach is based on the procedure to
select appropriate features from total available features.
Feature selection approaches are classified into two distinct
groups i.e., one group contains feature ranking methods and
second group contains feature subset selection methods [45,
46, 49, 62]. Feature ranking approach is based on ordering
the feature on the basis of its scoring function [49, 62]. On
the other hand, feature subset selection is to discover the
optimal feature subset [46]. In our study, we implemented
ten distinct feature selection approaches to select best fea-
tures and hold only those feature sets which have excellent
discriminatory power.

In the literature [45, 46, 49, 62], researchers and academi-
cians had applied distinct machine learning algorithms that

were based on classification, regression and clustering to
develop Android malware detection model. The main flaw
in their work is that they used labelled data set to develop
malware detection model. So to overcome this issue, in this
study, we consider five distinct unsupervised machine learn-
ing algorithms [i.e., K-mean, farthest first clustering , filtered
clustering, density-based clustering and self-organizing map
(SOM)] to develop a model for Android malware detection.

List of phases followed by us in developing malware
detection model is demonstrated in Fig. 1. In the first stage,
we collect Android application packages (.apk) files from
different repositories and identify their classes. In the second
stage of our experiment, we extract permissions and API
calls from collected .apk files and consider them as features.
Further in third stage, we select best features by using ten
different feature selection approaches. Next, with the help
of selected features we trained five different unsupervised
machine learning algorithms and build models. We compare
our developed models with the help of distinct performance
parameters i.e., intra-cluster distance, inter-cluster distance,
accuracy and F-measure. At the last stage, we validate our
proposed model with the help of existing techniques avail-
able in the literature.

The novel and unique contribution of this research paper
are:

– To the best of our knowledge, this is the first work in
which 5,00,000 unique apps are collected which belongs
to 30 different categories of Android apps. Extracted fea-
tures are publicly available for researchers and academi-
cians.10 To build effective and efficient malware detection
model we extract permissions, rating of an app, number
of the user download the app, and API calls, as a feature
and achieved a detection rate of 98.8% when compared
to distinct anti-virus scanners.

– We proposed a new approach which works on the prin-
ciple of unsupervised machine learning algorithm by
selecting relevant features using feature selection. Our
empirical result reveals that our suggested model is able
to detect 98.4% unknown malware from real-world apps.

Fig. 1 Flow chart of the pro-
posed work

9 https ://devel oper.andro id.com/train ing/permi ssion s/reque sting .html.

10 Mahindru, Arvind (2020), “Android permissions dataset, Android
Malware and benign Application Data set (consist of permissions and
API calls)”, Mendeley Data, V3, doi: 10.17632/b4mxg7ydb7.3.

7 https ://sourc e.andro id.com/secur ity/repor ts/Googl e_Andro id_Secur
ity_2017_Repor t_Final .pdf.
8 https ://www.gdata softw are.com/news/g-data-mobil e-malwa re-repor
t-2019-new-high-for-malic ious-andro id-apps.

https://developer.android.com/training/permissions/requesting.html
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://www.gdatasoftware.com/news/g-data-mobile-malware-report-2019-new-high-for-malicious-android-apps
https://www.gdatasoftware.com/news/g-data-mobile-malware-report-2019-new-high-for-malicious-android-apps

1371International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

– Proposed framework is able to detect malware from
Android apps by using 100% unlabelled data set.

– In this study, we applied t test analysis to investigate that
features selected by feature selection approaches are hav-
ing significant difference or not.

– Proposed malware detection approach is able to detect
malware in less time when compared to distinct anti-
virus scanners available in the market.

The rest of the paper is summarized as follows. In Sect. 2,
we discuss about the work related to Android malware detec-
tion. In Sect. 3, we discuss about the Android permission
model. In Sect. 4, we present the formulation of data set.
Section 5 presents the features selection approaches imple-
mented in this study. In Sect. 6, we discuss about the dif-
ferent machine learning algorithms. In Sect. 7, we present
the different techniques which are used in the literature to
detect malware from real-world apps. Section 8 represent the
performance parameters and experimental setup is presented
in Sect. 9. Section 10, contains the experimental results i.e.,
which model is best in detecting malware from real-world
apps. At last in Sect. 11, we discuss about the threats to
validity and conclusion of this empirical study is presented
in Sect. 12.

2 Related work

Enck et al. [28] proposed Kirin framework which helps in
detecting malware apps based on permissions requested by
them during their installation time. Kirin is based on set of
rules which helps to mitigate the effect of malware from
Android apps. Suarez-Tangil et al. [65] examined out of
cloud based detection or on-device detection method, which
method is more power saving. They suggested a power model
to compare both the methods with the help of machine learn-
ing algorithms. Empirical results reveals that cloud based
detection method is more effective and better choice to detect
malware. Cui et al. [26] proposed a malware detection model
based on cloud computing by using network packets. They
used the principles of data mining to reduce the branches of
packets by gathering knowledge of packets whether it is use-
ful for malware detection or not. They proposed SMMDS in
their study which work on the principles of machine learning
algorithms to detect malware. Chen et al. [23] proposed a
solution which monitor the behavior of smartphones when
they are sending user’s private information to an external
source. But the solution provided in their study is not effec-
tive, because it cannot support real-time detection. Narudin
et al. [53] proposed STREAM which automatically installs
and runs Android apps and extract features from them. Fur-
ther, the extracted features are used to train with the help of
machine learning classifiers to detect malware from Android

apps. STREAM has a disadvantage, it takes a lot of system
resources and time to load the data. Wei et al. [73] build
a malware detection model based on anomaly behavior of
Android apps. They developed a model by considering net-
work information as a feature by using Naïve Bayes and
Logistic machine learning algorithms and achieved higher
accuracy rate. Ali et al. [11] suggested a malware detection
model based on Gaussian mixture. They collected features
based on hardware utilization such as CPU, memory, battery
and so on and trained it with the help of Gaussian mixture.
But the model proposed by them has a limitation, it needs a
remote server for computation. Dixon et al. [27] developed
a model by using the behaviors of battery life of smartphone
when infected by malware. But, the model proposed by them
is not able to detect some sophisticated malware.

Tong and Yan [67] proposed hybrid approach to detect
malware from Android by using individual system call and
sequential system calls related to accessing the files and
networks. Their approach is able to detect the behavior of
unknown app and achieved the detection rate of 91.76%. But,
the presented approach has a limitation, it cannot support
real-time detection. Quan et al. [59] used three different fea-
ture sets i.e., native code, system calls and API calls to detect
malware from Android. The detection rate depends upon the
predefined threshold value. Ng et al. [54] developed model
by using Dendritic Cell Algorithm and considered system
call as a feature. They selected best features by implementing
statistical methods and achieved the higher detection rate.
Sheen et al. [63] proposed Android malware detection sys-
tem by considering API calls and permissions as features.
They chose features by using Relief algorithm to train three
different classifiers: J48, SVM and Naïve Bayes. Detection
rate is good, but it also consumes number of resources and
its computing burden is too high. Fung et al. [31] proposed
a decision model RevMatch which work on the principle of
malware detection history to make decision that Android app
is infected with malware or not. This approach do not provide
real-time detection. Babaagba and Adesanya [12] compared
the performance of supervised and unsupervised machine
learning algorithms, with and without using feature selec-
tion approaches. Empirical study were performed on 149
Android apps and result reveals that model developed with
feature selection approach and supervised machine learning
algorithm achieved higher detection rate when compared to
the model developed using unsupervised machine learning
algorithm. Yewale and Singh [78] proposed malware detec-
tion model based on opcode frequency. Experiments were
performed on 100 distinct files and achieved 96.67% detec-
tion rate by using SVM as a machine learning algorithm.

Enck et al. [29] proposed TaintDroid which work on
the principles of tracking information-flow in the network.
TaintDroid track malicious behavior of apps communica-
tion through files, program variables and inter-sectional

1372 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

messages. The process is too much time consuming to label
that app is benign or malware. Abawajy and Kelarev [2]
proposed ICFS which detect malware from Android by
incorporating feature selection approaches and machine
learning classifiers. Guo et al. [32] proposed smartphone
network behavior using Naïve Bayes as machine learning
algorithm. They build a pattern from benign and malware
apps to discover malware from unlabeled apps. In recent
study [68], Authors presented the mechanism that how an
app breaching user privacy to gain user private data. They
proposed a general and novel defence solution, to protect
resources and data in Android based devices. Rahman and
Saha [61] proposed StackDroid a multi-level architecture
which is used to minimize the error rate. They detected mal-
ware at two different levels, in the first level they consider
multi-;ayer perceptron, stochastic gradient descent, random
forest and extremely randomized tree and in the second level
they consider extreme gradient boosting as machine learn-
ing classifier to detect malware from Android. Barrera et al.
[13] proposed a methodology which work on the principles
of permission model by implementing self-organizing map
(SOM) on collected data set of 1,100 Android apps. They
analyzed the Android permission model which is used to
investigate the malware apps from Android. SOM imple-
mented by them, give a 2-dimensional visualization of high
dimension data.

Alazab et al. [4] proposed an effective classification
model that combines permission requests and API calls. Fur-
ther, API calls were divided into three different groups i.e.,
ambiguous group, risky group, and disruptive group. Experi-
ments were performed on 27,891 malware-infected Android
apps and proposed model achieved an F-measure of 94.3%.
Xiao et al. [75], proposed a novel detection approach based
on the principle of deep learning. In their studies, authors
consider semantic information in system call sequences as
the natural language and construct a classifier based on the
long short-term memory (LSTM) language model. Empiri-
cal result reveals that proposed approach achieved the detec-
tion rate of 96.6%. Yuxin and Siyi [79] proposed a malware
detection model based on the principle of Deep Belief Net-
work (DBN). In their study, they compare the performance
of proposed model with three baseline malware detection
models, which use support vector machines, decision trees,
and the k-nearest neighbor algorithm as classifiers. Experi-
mental results indicate that the autoencoder can effectively
model the underlying structure of input data and signifi-
cantly reduce the dimensions of feature vectors.

Vinayakumar et al. [69] proposed an effective zero-day
malware detection model based on the principle of image
processing technique with optimal parameters for machine
learning algorithms (MLAs) and deep learning architec-
tures. Experiments were performed on two distinct data
sets and they achieved a detection rate of 96.2% and 98.8%

with proposed detection model. Arora et al. [9] proposed a
framework named as PermPair, that constructs and com-
pares the graphs for malware and normal samples by extract-
ing the permission pairs from the manifest file of an app.
Empirical result reveals that proposed scheme is successful
in detecting malicious samples with an accuracy of 95.44%
when compared to mobile anti-malware apps. Lee et al. [42]
proposed a malware detection model that learns the general-
ized correlation between obfuscated string patterns from an
application’s package name and the certificate owner name.
Experimental results reveal that proposed model is robust in
obfuscation and sufficient lightweight for Android devices.

Alzaylaee et al. [6] proposed DL-Droid, based on the
principle of deep learning model. Experiments were per-
formed on 30,000 distinct Android apps. Empirical result
reveals that DL-Droid can achieve up to 97.8% detection
rate (with dynamic features only) and 99.6% detection rate
(with dynamic + static features) respectively. Ma et al. [44]
proposed a malware detection approach based on the con-
trol flow graph of the app to obtain API information. On
the basis of API information, they constructed three dif-
ferent data sets that is based on Boolean, frequency, and
time-series. By using these three data sets three different
malware detection models are constructed. Experiments
were conducted on 10010 benign applications and 10683
malicious applications. The result shows that detection
model achieves 98.98% detection precision. Jerbi et al. [36]
proposed artificial malware-based detection (AMD) that was
based on extracted malware patterns that were generated
artificially. Experiments were performed on balanced and
imbalanced data set and achieved an accuracy of 99.69%
for balanced data set and 99.64% for imbalanced data set.
Table 1 described the name of the framework or author name
whose proposed the approach developed in the literature
with its detection type, feature used, implemented algorithm,
place of analysis, and major observations in their study.

Previous research work mentioned above has the follow-
ing limitations: use of limited data set, higher detection rate
with limited data set, high computation burden, implemen-
tation of limited feature selection approaches, implementa-
tion of limited classification algorithms using 100% labelled
data set and unable to detect sophisticated malware. To over-
come the first limitations, in this study, we collect 5,00,000
Android apps which belong to thirty different categories
from different repositories mentioned in Sect. 4. Further,
to overcome other limitations, we implement ten distinct
feature selection approaches on extracted feature data set
(i.e., permissions and API calls consider as feature in this
study). Next, the selected features are considered as an input
to develop a model by using unsupervised machine learning
algorithms (means no labelled data is required to develop the
models) so that a suitable model is build to identify malware
from real-world apps.

1373International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

Table 1 Dynamic analysis based smartphone detection presented in literature

Author/framework Detection type Feature used Implemented algo. Place of analysis Observations

Yang et al. [77] Signature based Permissions Pattern matching On device High memory consump-
tion, not real-time
and unable to protect
privacy

Wei et al. [73] Anomaly based Network behavior Naïve Bayes and
logistic

Server Better performance

Dixon et al. [27] Anomaly based Battery Pattern matching Server Unable to detect sophis-
ticated malware

Rahman [60] Specification based API Markov logic network Server Low detection rate
Alam and Vuong [3] Signature Battery permissions

and CPU
Random forest Server Data not collected on

mobile devices
Amos et al. [7] Anomaly based Battery permissions

and CPU
Random forest, J48

and logistic
Server Detection is not real and

performance is not so
good

Shen et al. [64] Signature Topology VF2 algorithm graphs Server Achieved low accuracy
Ng et al. [54] Anomaly based System calls Dendritic cell algo-

rithm
Server Used three different clas-

sifiers with complex
classification

Quan et al. [59] Signature based API and system calls Pattern matching Server High detection accuracy
and unable to list all
sensitive behaviors

Sheen et al. [63] Specification based Permissions and API
call

J48,NB and SVM Server Good performance but
heavy computation
burden

Caviglione et al. [21] Specification based Convert channel NN and DT Server Feature not able to detect
all malware

Almin and Chatterjee
[5]

Signature based Permissions K-mean and NB On-device and server Not able to detect mal-
ware from unknown
family

Holland et al. [34] Signature based API and permissions Pattern matching Server Testing data-set is small
and performance is not
so good

Andriatsimandefitra
and Tong [8]

Specification based Information-flow N/A On-device and server Data set is too small

Tong and Yan [67] Anomaly based System call Pattern matching Server Not real and high power
consumption

Martinelli et al. [51] Signature System calls SVM On-device High detection but
consume many local
resouces

HinDroid [35] Specification based API call Multi-kernel learning Off-device Limited data set used
DroidCat [19] Specification based Interprocess commu-

nication
Supervised learning Off-device 34,343 apps were used

MalDozer [39] Anomaly based API calls Neural network Off-device Limited data set were
used

DroidDet [82] Static API calls and permis-
sions

Random forest Off-device 2130 Android apps were
considered.

DeepDroid [45] Anomaly based API calls and permis-
sions

Deep neural network Off-device 1,20,000 Android apps
were used

PerbDroid [49] Anomaly based System call and per-
missions

SVM, Deep neural
network

Off-device 2,00,000 distinct
Android apps utilized

GAdroid [48] Anomaly based System call and per-
missions

Deep neural network Off-device Consider 25,000
malware-infected apps

1374 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

2.1 Research questions

To develop a malware detection model for Android with
better detection rate and to cover the gaps that are present in
the literature, we consider the following research questions
in this research paper:

RQ1. Which malware detection model is most appropri-
ate to detect malware from real-world apps?

This question helps in finding the most appropriate model
which is suitable for malware detection in Android. In this
work, we build 50 distinct models by considering ten dis-
tinct feature selection approaches and five different machine
learning techniques. Further, to identify that which model
is more appropriate for malware detection we consider four
distinct performance parameters in our study.

RQ2. Whether the presented malware detection frame-
work is effective or not to detect malware from Android
devices?

The goal of this question is to investigate the performance
of our malware detection approach. For this, we compare
the performance of our developed model with some existing
techniques available in the literature.

RQ3. Does a subset of feature perform better than all the
extracted features for the task of detecting an app is mali-
cious or not?

The aim of this question, is to evaluate the features and
investigate their relationship among benign and malware
apps. Distinct kinds of feature reduction approaches are
being considered for finding subset of features which are
able to detect either the app is malicious or not.

RQ4. Among different implemented feature ranking
approaches which approach work best for the task to detect
that either an Android app belong to benign class or malware
class?

In feature ranking approach, efficiency of the machine
learning algorithms is affected by the characteristics and
nature of the malware data set. Distinct approaches are being
implemented with various criterions to rank the collected
feature sets. Four distinct performance criterions i.e., intra-
cluster, inter-cluster, F-measure and accuracy are considered
in this study, to compare distinct feature-ranking approaches.

RQ5. Among applied feature subset selection approaches,
which approach performs foremost for the task of detecting
malware from Android apps?

To determine the subset of features which are appropriate
to detect either the Android app is benign or malware we
consider feature subset selection approaches. In this work,
we compare distinct approaches by using four performance
criterions i.e., intra-cluster, inter-cluster, F-measure and
accuracy.

RQ6. How do the feature subset selection approaches are
compared with feature ranking approaches?

In this paper, pair-wise t test being used to determine
either the feature subset selection approaches are appropri-
ate than feature ranking approaches or both of them behave
equally well.

RQ7. Do the feature selection approaches effect the out-
come of the unsupervised machine learning approaches?

It is seen that number of feature selection approaches
perform extremely well with specific unsupervised machine
learning methods. Therefore, in this research work distinct
feature selection approaches are evaluated using distinct
unsupervised machine learning approaches to measure their
performance. Further, it also emphasis on variation of per-
formance of unsupervised machine learning approaches over
distinct unsupervised machine learning approaches.

3 Android permission model

Android security is dependent upon the permission based
model that access to functionality or features which could
pay impact on the user’s privacy. Android apps are written in
java language and run in a Dalvik virtual machine. Android
apps demand permissions during their installation and run-
time from the users. Permissions such as send messages or
making phone calls, access to vibrator or device screen on
are asked by an app. User can grant or reject the request
of permission made by an app. This facility of granting or
revoking the permission is available from Android 6.0 ver-
sion onwards. Currently in Android, there are more than 110
different features which are gaining access by using these
permissions. Android is designed in such a way, that if any
third-party app demand any new functionality, then it give
privilege to the developer to define new permission under
developer-defined permission or self-defined permission. By
taking the advantage of this, cyber-criminals define new per-
missions on regular basis so that they can access the user’s
private data for their own benefits.

For an in-depth analysis of permission model, we build
an app named as “ToGoHome”.11 Figure 2 represent the
class diagram of Android app by using the structure show-
ing its classes, attributes and methods involved in it. The
package contains 10 distinct classes which contain the
logic of cab reservation. In the very first step, when user
click on the “HomePage” menu and searching for the cab
it direct toward the class name “Pickup” that was collected
from the current location of the user by using Global Posi-
tioning System (GPS) and call the class name “myLo-
cationListener”. Further “Pickup” class is divided into
seven different attributes i.e., updateDisplayDate:void,
u p d a t e D i s p l ay T i m e : vo i d , G e t D i s t a n c e : vo i d ,

11 Testing were performed on local system.

1375International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

checkAddress;bool, onConfigurationChanged:void,
onActivityResult:void and onCreate:void. If user confirm
his pick up location through GPS then its booking will be
confirmed by calling “BookingDetails”. While travelling,
user track his live location by calling “Route” class.12 After
completing the journey, our app call the “Pay” class and
it will direct towards the payment website. Through out
this process following Android apps permissions are used
i.e., ACCESS_FINE_LOCATION, ACCESS_COARSE_
LOCATION, ACCESS_NETWORK_STATE, INTERNET,
SEND_SMS, and RECEIVE_SMS.

4 Formulation of data set

Figure 3 demonstrates the phases which are followed in
extracting features from Android apps. In the very first
phase, we identify the URLs from which Android apps are
to be collected (mentioned in Sect. 4.1). In the second phase,

we take the help of an app crawler to download the apps
from identified URLs. Our developed app crawler can down-
load as many apps as possible and do not pay any impact on
the android app repository. To perform dynamic analysis
of the collected Android apps, we use Android studio as an
emulator (mentioned in Sect. 4.2). Further, we write a pro-
gram in java language and extract permissions and API calls
from them and save into the .csv for developing Android
malware detection model. Extracted features are publicly
available for researchers and academicians.13.

4.1 Collection of .apk files

Pervious studies mentioned in Table 1, used only limited
data sets of Android apps to examine its associations with
malware or benign class and in addition to that in the lit-
erature [72, 80] academicians and researchers were not

Fig. 2 Class diagram of com.
ToGoHome Android app

Fig. 3 Extraction of features from .apk files

12 Live location of user is seen on Google Maps. Google Maps are
pre-installed on Android based devices.

13 Mahindru, Arvind (2020), “Android permissions dataset, Android
Malware and benign Application Data set (consist of permissions
and API calls)”, Mendeley Data, V3, doi: http://dx.doi.org/10.17632
/b4mxg 7ydb7 .3

http://dx.doi.org/10.17632/b4mxg7ydb7.3
http://dx.doi.org/10.17632/b4mxg7ydb7.3

1376 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

mentioned the categories of the app to which it belongs.
Therefore, it is not able to draw generic conclusion rel-
evant to all Android apps and its system. To overcome this
gap, we collect apps of thirty different categories which
are used to generalize and strengthen our outcomes. We
collect the Android apps to build our data set from prom-
ise repository. We collect 5,50,000 of .apk files, from
Google’s play store,14 hiapk,15 appchina,16 Android,17
mumayi,18 gfan,19 slideme,20 and pandaapp.21 Among
these 5,50,000 benign .apk files, 5,00,000 are distinct.

Further, the features are extracted after deleting viruses
infected apps, reported by VirusTotal22 and Microsoft
Windows Defender.23 VirusTotal identify malware affected
apps by using 70 different antivirus softwares simultane-
ously. A total of 55,000 malware samples, are collected
from three different promised repositories. 1929, botnet
samples were collected from [38], which further consist of
14 distinct botnet families. Android Malware Genome pro-
ject [80] contains a data set of 1200 malware samples that
cover the currently present Android malware families. We

Table 2 Categories of .apk
files belong to their respective
classes (.apk)

ID Category Normal Trojan Backdoor Worms Botnet Spyware

D1 Arcade and action (AA) 16291 1440 100 204 130 600
D2 Books and reference (BR) 15235 2000 250 56 150 150
D3 Brain and puzzle (BP) 14928 1820 54 28 50 50
D4 Business (BU) 18308 1520 150 150 22 22
D5 Cards and casino (CC) 12886 760 65 81 100 44
D6 Casual (CA) 12010 3210 69 46 150 140
D7 Comics (CO) 17667 650 95 35 3 0
D8 Communication (COM) 18414 2500 50 500 3 3
D9 Education (ED) 18744 5600 68 50 50 68
D10 Entertainment (EN) 14222 5000 500 500 100 42
D11 Finance (FI) 13999 500 200 99 65 92
D12 Health and fitness (HF) 18551 98 65 45 140 140
D13 Libraries and demo (LD) 15655 70 100 100 6 500
D14 Lifestyle (LS) 17650 155 200 100 193 192
D15 Media and video (MV) 18019 100 123 162 450 71
D16 Medical (ME) 16000 12 13 12 24 25
D17 Music and audio (MA) 27057 65 100 65 165 165
D18 News and magazines (NM) 18164 100 100 100 100 32
D19 Personalization (PE) 14334 500 42 500 200 22
D20 Photography (PH) 19133 100 120 50 96 500
D21 Productivity (PR) 19850 100 516 250 250 62
D22 Racing (RA) 17766 50 100 210 100 180
D23 Shopping (SH) 12673 100 100 120 150 50
D24 Social (SO) 26159 100 50 210 150 150
D25 Sports (SP) 22669 100 240 100 450 112
D26 Sports games (SG) 13889 100 145 145 650 198
D27 Tools (TO) 13346 120 500 550 475 563
D28 Transportation (TR) 13796 2 500 100 100 20
D29 Travel and local (TL) 23180 500 220 150 48 100
D30 Weather (WR) 12841 120 23 700 50 25

14 https ://play.googl e.com/store ?hl=en.
15 http://apk.hiapk .com/.
16 http://www.appch ina.com/.
17 http://andro id.d.cn/.
18 http://www.mumay i.com/.
19 http://apk.gfan.com/.
20 http://slide me.org/.

21 http://downl oad.panda app.com/?app=soft&contr oller =andro
id#.V-p3f4h 97IU.
22 https ://www.virus total .com/.
23 https ://www.micro soft.com/en-in/windo ws/compr ehens ive-secur
ity.

https://play.google.com/store?hl=en
http://apk.hiapk.com/
http://www.appchina.com/
http://android.d.cn/
http://www.mumayi.com/
http://apk.gfan.com/
http://slideme.org/
http://download.pandaapp.com/?app=soft&controller=android#.V-p3f4h97IU
http://download.pandaapp.com/?app=soft&controller=android#.V-p3f4h97IU
https://www.virustotal.com/
https://www.microsoft.com/en-in/windows/comprehensive-security
https://www.microsoft.com/en-in/windows/comprehensive-security

1377International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

collected about 56,871 samples from AndroMalShare24
along with their package names. After removing dupli-
cate packages from the collected data set, we have 50,000
unique malware samples left in our study. Both benign and
malware apps being collected from the above mentioned
sources at the end of December 2018. Table 2 shows the
number of .apk files belonging to different categories i.e.,
business, comics, communication, education and so on. To
better differentiate between benign and malware apps we
consider .apk files belonging to normal, trojan, backdoor,
worms, botnet and spyware families25 are mentioned in
Table 2.

4.2 Extraction of features

After collecting a unique samples of .apk files from various
sources mentioned in previous subsection, we extract per-
missions and API calls from each of the .apk file. Extraction
of permissions and API calls have been performed with the
help of an emulator (in our study we use Android studio).
Emulator provides the same API level and execution envi-
ronment as our smartphones provide to us. In our study, to
extract permissions and API calls from Android apps we
use Android system version 6.0 Marshmallow (i.e., API
level 23) and form our data set for experiments. Previous
developed frameworks or approaches used the previous ver-
sion of Android to extract features from them. There are two
reasons for selecting this Android version: first, it asks the

user to revoke or grant the permission to use the resources of
smartphones and second it covers 28.1% of Android devices
which is higher than other versions present in the market.26
To extract features from collected .apk files, we execute each
of them in an emulator and extract permissions by using self-
written code in java from “AndroidManifest.xml”. These
permissions are demanded by apps during their installation
and run-time. By using the same process again and again,
we extract permissions from 5,00,000 different Android apps
and record them in the .csv file format. This extracted data
set listing the name of the permissions is publicly available
for the researchers.27,28 Previous researchers used limited
set of features to develop a model for malware detection. To
overcome this gap, in this study we collect 1532 permissions
and 310 API calls which helps in building an effective and
efficient Android malware detection model. Hence, each of
the collected app can be represented as a 1842-dimensional
Boolean vector, where “1” implies that the app requires
the permission and “0” implies that the permission is not
required. It is very common that distinct apps may request
the similar set of permissions for its execution. Permissions
overview given by Google29 is used to describe the behavior
of a permission i.e., “dangerous” or “normal”.

Table 3 Formulation of sets containing (permissions, API calls, number of users download an app, and rating of an app) as features

Set number Description Set number Description

S1 Related to SYNCHRONIZATION _DATA S2 Related to CONTACT_INFORMATION
S3 Related to PHONE_STATE and PHONE_CONNECTION S4 Related to AUDIO and VIDEO
S5 Related to SYSTEM_SETTINGS S6 Related to BROWSER_INFORMATION
S7 Related to BUNDLE S8 Related to LOG_FILE
S9 Related to LOCATION_INFORMATION S10 Related to WIDGET
S11 Related to CALENDAR_INFORMATION S12 Related to ACCOUNT_SETTINGS
S13 Related to DATABASE_INFORMATION S14 Related to IMAGE
S15 Related to UNIQUE_IDENTIFIER S16 Related to FILE_INFORMATION
S17 Related to SMS_MMS S18 Related to READ
S19 Related to ACCESS_ACTION S20 Related to READ_AND_WRITE
S21 Related to YOUR_ACCOUNTS S22 Related to STORAGE_FILE
S23 Related to SERVICES_THAT_COST_YOU_MONEY S24 Related to PHONE_CALLS
S25 Related to SYSTEM_TOOLS S26 Related to NETWORK_INFORMATION

and BLUETOOTH_INFORMATION
S27 Related to HARDWARE_CONTROLS S28 Related to Default group
S29 Contain info. Related to API calls S30 Contain info. Related to rating and downloads

25 Malware families are identified by VirusTotal.

26 https ://www.stati sta.com/stati stics /27177 4/share -of-andro id-platf
orms-on-mobil e-devic es-with-andro id-os/.
27 https ://data.mende ley.com/datas ets/9b45k 4hkdf /1.
28 https ://githu b.com/Arvin dMahi ndru6 6/Compu ter-and-secur ity-
datas et.
29 https ://devel oper.andro id.com/guide /topic s/permi ssion s/overv iew.

24 http://202.117.54.231:8080/.

https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://data.mendeley.com/datasets/9b45k4hkdf/1
https://github.com/ArvindMahindru66/Computer-and-security-dataset
https://github.com/ArvindMahindru66/Computer-and-security-dataset
https://developer.android.com/guide/topics/permissions/overview
http://202.117.54.231:8080/

1378 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

4.3 Formulation of feature sets

Several approaches had been developed for Android mal-
ware detection [1, 13, 45, 46, 49, 50, 74]. In this study, we
divide the extracted API calls and permissions in to thirty
different feature sets which helps in developing malware
detection model. Table 3 displays the basic descriptions of
the feature sets which are considered in our work.

5 Feature selection approaches

On the basis of previous studies, it is seen that in previ-
ous studies a number of authors applied different feature
ranking approaches to detect malware from Android apps
and achieved good detection rate. This indicates that the
outcome of malware detection model rely on the features
that are taken as an input to design a model. Selecting the
suitable feature sets is essential for data preprocessing task
in machine learning. In the field of malware detection, some
researchers have used selection approaches to select appro-
priate set of features. In this paper, we implemented ten
distinct types of feature selection approaches on a large col-
lection of 1842 features (divided in to thirty distinct feature
sets) to identify the best subset of features which assist us to
detect malware detection with better detection rate and also
minimize the figure of misclassification errors. Feature rank-
ing approaches and Feature subset selection approaches can
be defined in the following manner [45, 46, 49, 62]:

– Feature ranking approaches These approaches, use cer-
tain conclusive elements to rank the features. Further,
on the basis of their ranks appropriate features can be
selected to build the model [49, 62].

– Feature subset selection approaches These approaches
aim to search subset of features which can have good
detective capability [4, 46].

5.1 Feature ranking approaches

These approaches rank features separately without applying
any training algorithm. Ranking of features depends upon
their score. On the basis of our investigation of the previous
studies, the majority of approaches are capable to calculate
the grading of every feature. In this research, we employ six
different ranking approaches to rank the features. Various
feature ranking approaches are explained below:

5.1.1 Gain‑ratio feature selection

In this selection approach, feature ranking work on the predic-
tion of the gain-ratio in relation to the class [49, 55]. The “Z”
known as the gain-ratio of feature is determined as:

where Gain (Z) = I(X) − E(Z) and X depicts the set includ-
ing m numbers of instances with n different classes. The
forthcoming statistics necessary to categorize a given sam-
ple is calculated by utilizing succeeding equation:

Here in this equation Pi is the chance that a random sample
can be a member of class Ci and is measured by zi∕z.

The number of instances are given by zij of class Ci in subset
Nj. The foreseen knowledge rely on the partition of subsets by
F, and is presented by

SplitInfoF(X) is measured by utilizing following equation:

The value of SplitInfoF(X) show us the details achieved by
dividing the data set of training X into t portions equivalent
to t results of a test on the attribute Z.

5.1.2 Chi‑squared test

This test is employed to examine the self-determination among
two events [49, 57], and in our work, ranking of features is
predicted by the significance of its statistic in relation to the
class. Higher the calculated value implies the denial of the out-
liers and consequently these features can be analyzed as better
relevance to detect malware from Android apps. Chi-squared
attribute evaluation evaluates the worth of a feature by com-
puting the value of the chi-squared statistic with respect to the
class. The initial hypothesis H0 is the assumption that the two
features are unrelated, and it is tested by chi-squared formula:

where Oij is an observed frequency and Eij is an expected
(theoretical) frequency, asserted by the null hypothesis. The
greater the value of �2 evidence against the hypothesis H0.

5.1.3 Information‑gain feature selection

In Info-gain, features are selected on its relation with
respect to the class [49, 55]. In information-gain feature
selection approach, entropy is considered as a criterion of

(1)Gain-Ratio =
Gain(Z)

SplitInfoZ(X)
,

(2)I(X) = −

m∑

i=1

Pi log2(pi).

(3)E(Z) = −

M∑

i=1

I(X)
n1i + n2i +⋯ + nmi

n
.

(4)SplitInfoF(X) = −

t∑

i=1

|Xi|
X

log2(
|Xi|
X

)

(5)�2 =

r∑

i=1

c∑

j=1

(Oij − Eij)
2

Eij

1379International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

impurity in a training set S (data set), which can define a
measure reflecting additional information about Y (random
feature) provided by X (second random feature) that rep-
resents the amount by which the entropy of Y decreases.
It is given by

The information gained about Y after observing X is equal to
the information gained about X after observing Y. A weak-
ness of the IG criterion is that it is biased in favor of features
with more values even when they are not more informative
[49, 55].

5.1.4 OneR feature selection

OneR feature selection approach is used for grading the
features [49, 55]. To rank individual features it utilizes the
classification mechanism. In it valuable features are consid-
ered as constant ones and divide the set of values into a few
dissociate intervals made by straightforward method. In this
study, we consider features with better classification rates.

5.1.5 Principal component analysis (PCA)

Reduction of attribute is accomplished by implementing
PCA on our collected data set. PCA helps in transforming

(6)IG = H(Y) − H(Y|X) = H(X) − H(X|Y)

a high dimension data space into a low dimension data
space. Features which are present in low dimension have
extreme importance in detecting malware [49, 70]. Corre-
lation among several features are high, so PCA is utilized
to relocate these features that are not extremely correlated.
The features obtained are named as principal component
domain features. Further, to identify significant patterns in
the data a small value of principal components is sufficient.
The detailed phases of PCA are demonstrated in Fig. 4.

Feature data set is collected in the form of m × n matrix,
that contains n number of data sample and m number of
extracted features. In the second phase, normalization of the
feature data set is performed by using equation

and replace xj with (xj − �j) . Next, we calculate eigen value
and eigen vector by using matlab environment. Next, to
select first k number of principal components from the
covariance matrix we performed following steps

while (i = 1 to m) do evaluate cumvar =
∑k

i=1
�ii

cumvar denotes (cumulative variance) and (�) represents
eigen values sorted in descending order.

After evaluating this, reduced feature sets are selected for
training purpose.

5.1.6 Logistic regression analysis

For feature ranking, univariate logistic regression (ULR)
analysis is being considered to verify the degree of impor-
tance for every feature sets [25, 49]. In the current work, we
consider two benchmarks of LR model which consider to
discover the importance of every feature and also used to
rank each feature sets. Parameters for Logistic regression
analysis are as follows:

1. Value of regression coefficient The coefficient measure
of features indicates the degree of correlation of every
feature sets with malware.

2. p value p value i.e., level of significance shows the cor-
relation significance.

�j =
1

n

n∑

i=1

x
j

i

m∑

i=1

�ii

if (cumvar ≥ 0.99) or (1 − cumvar ≤ 0.01)

return k 99% of variance is retained

end if

end while

Fig. 4 Framework of PCA calculation

1380 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

5.2 Feature subset selection approaches

These approaches are employed to detect appropriate sub-
set of features which jointly have best detective capability.
These are established on the hypothesis that developed
model has better detection rate and lower value of misclas-
sification errors when linked with few other features or
when matched by itself. Several approaches are feasible to
identify the right subset of features which helps in detecting
malware. In this work, four distinct feature subset selection
approaches are considered to calculate the score of feature.
Implemented approaches are depicted below:

5.2.1 Correlation based feature selection

This approach is based on correlation approach which select
a subset of features that are particularly related to the class
(i.e., benign or malware). In this research paper, Pearson’s
correlation (r: Coefficient of correlation) has been used for
searching the dependency among features. If the value of “r”
is higher among the feature sets, it indicates a strong rela-
tion among these features. It implies that, there is a statisti-
cal reason to consider those classes which are having lower
(or highest) feature value with that have lower (or highest)
ranges of other highly correlated features [49].

5.2.2 Rough set analysis

This approach is an estimation of conventional set, in terms
of a joins of feature sets which provide the upper and the
lower estimation of the original data set [46, 56]. This formal
estimation, depicts the upper and lower limits of the original
data set. The application of this approach is in mining the

data from imperfect data. This approach is used to select
the reduced set of features from the extracted feature sets.
RSA used three distinct notations such as approximations,
reduced attributes and information system. The steps that
are pursued to get reduced subset by utilizing RSA are men-
tioned-below and also demonstrated in Fig. 5.

(i) Approximation Let A = (C, Z),X ⊆ Z and Y ⊆ C. X−
topmost (XY) and X− lowermost (< uline > X < ∕uline > Y)
approximations of X are utilized to estimate Y. The top-
most limit includes all the objects which maybe the part
to the set and the lowermost approximation includes of all
objects which certainly be a part of the set. The XY and
(< uline > X < ∕uline > Y) are computed by utilizing sub-
sequent equations:

where ∣ [yi]Ind(C) belongs to the same class of yi in connec-
tion Ind(C).

(ii) Reduced attributes Correctness evaluation of the
group Z (Acc(Z)) in A ⊆ B is determined as:

The number of features contained in the topmost or upper-
most approximation of the set Z is called the cardinality
of the set. Further, all possible feature sets are considered
whose accuracy is equivalent to the accuracy of extracted
feature sets.

(iii) Information system It is determined as Z = (C,B) ,
where C is a universe including non-empty set of confined

(7)X̄Y ={yi ∈ U ∣ [yi]Ind(B) ∩ Y ≠ 0}

(8)XY ={yi ∈ U ∣ [yi]Ind(B)∩Y},

(9)𝜇B(A) =
card(BZ)

card(B̄Z)

Fig. 5 Rough set theory frame-
work

1381International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

objects and B is the sets of attributes with a finite num-
ber of elements. For each b ∈ B , there exist a function
Fb ∶ C → Vb , where Vb denotes the value of attribute b. For
each A ⊂ B, there exists an equivalence relation known as
B-indiscerbility relation is (Ind(Z)). Ind(Z) can be defined as:

5.2.3 Consistency subset evaluation approach

This technique provides the importance of subset of attrib-
utes by their level of consistency appearing in class val-
ues, when the training instances are applied on the subset
of attributes. The consistency rate is calculated with the
help of inconsistency rate, where two data elements can be
considered as inconsistent if they belong to different class
labels (i.e., benign or malware) but have same feature val-
ues. For this work, destination variable i.e., apps having
two distinct characteristics (i.e., 0 for benign apps and 1 for
malware apps). A group of feature (GF) is having Z amount
of sample, there are z amount of instances in a manner that
Z = X1 + X2 +⋯ + Xz. Instance Xi seems in entirely A sam-
ples from which A0 numbers of samples are marked by 0 and
A1 number of samples are marked by 1, here A = A0 + A1. If
A1 is less than A0, then the difference count for the instance
Xi is INC = A − A0. The inconsistency rate (INCR) of feature
set is computed by utilizing succeeding equation:

5.3 Filtered subset evaluation

Filtered subset evaluation is based on the principle to select
random subset evaluator from data set that was gained by
applying arbitrary filtering approach [40]. The filtering
technique is not based on any induction algorithm. Filtered
subset evaluation technique is scalable and fast. Figure 6
demonstrates the steps followed to find subset of feature by
utilizing filter method.

6 Machine learning techniques

Various authors applied a number of unsupervised machine
learning classifiers like K-mean [18, 52] and Self-Organiz-
ing Maps (SOM) [18, 20] to detect Android malware. But,

(10)INDA(Z) = {(x, y) ∈ C2 ∣ ∀a ∈ Z, a(x) = a(y)}.

(11)INCR =

∑z

i=1
INCi

Z

they applied clustering algorithm on limited data set. To
overcome this gap, in this study, we implement five dif-
ferent clustering algorithms on our extracted data set i.e.,
SOM, K-mean, farthest first clustering, filtered clustering
and density-based clustering. The choice of clustering algo-
rithms are based on its performance in the literature [18, 20,
52, 74].

6.1 Self‑organizing maps (SOM)

SOM is a type of artificial neural network (ANN) that is
trained with the help of unsupervised learning to produce
a low-dimensional, discretized representation of the input
space of the training samples called map and is therefore a
method to do dimensionality reduction.30 SOM consists of
neurons, which have the same dimensionality as the input
space and is arranged in a rectangular or a hexagonal grid.
SOM neurons can be studied as pointers in the input space,
in which more neurons point to regions with high concen-
tration of inputs [13]. The training algorithm can be sum-
marized in four basic steps:

1. Initialize neuron weights Wi = [wi1,wi2,… ,wij]T ∈ Rj.

2. Input pattern x = [x1, x2,… , xj]
T ∈ Rj. Input pattern cor-

responding to an app in which permissions are expressed
in the form of a bit string. Calculate the distance between
pattern x and each neuron weight WR, Therefore, identify
the winning neuron or best matching neuron Z as follows

 In our study, we employed Euclidean distance as the
distance metric, normalized to the range [0, 1].

3. Adjust the weights of winning neuron Z and all neighbor
units

 where R is the index of the neighbor and t is an inte-
ger, the discrete time co-ordinate. Neighborhood kernel
hZR(t) is a function of time and the distance between
neighbor neuron r and winning neuron z. hRZ(t) defines
the region of influence that the input has on the SOM
and consists of two components it means that the neigh-
borhood function h(‖.‖, t) and the learning rate function
�(t) is

(12)‖x −Wz‖ = minR{‖x −WR‖}

(13)wR(t + 1)wR(t) + hZR(t)[x(t) −WR(t)],

Fig. 6 Feature selection by
utilizing filter approach

30 https ://towar dsdat ascie nce.com/self-organ izing -maps-ff585 3a118
d4.

https://towardsdatascience.com/self-organizing-maps-ff5853a118d4
https://towardsdatascience.com/self-organizing-maps-ff5853a118d4

1382 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

 where b is the location of the neurons.
 In our study, we used Gaussian neighborhood func-

tion and the first form of the neighborhood kernel with
Gaussian function is

 where �(t) defines the width of the kernel.
4. Repeat steps 2–3 until the convergence criterion is satis-

fied.

6.2 K‑mean

K-mean adopt the method of vector quantization. K-mean
clustering aims to partition n observations into k clusters
in which each observation belongs to the cluster with the
nearest mean, serving as a prototype of the cluster.31 The
working of K-mean algorithm is as follows:

1. Specify number of clusters K.
2. Initialize centroids by first shuffling the data set and then

randomly selecting K data points for the centroids with-
out replacement.

3. Keep iterating until there is no change to the centroids.
i.e assignment of data points to clusters isn’t changing.

– Compute the sum of the squared distance between
data points and all centroids.

– Assign each data point to the closest cluster (cen-
troid).

– Compute the centroids for the clusters by taking the
average of the all data points that belong to each
cluster.

6.3 Farthest first

Farthest first is based on the principle of a bounded metric
space in which first point is selected arbitrarily and each suc-
cessive point is as far as possible from the set of previously-
selected points.32 The working of farthest first clustering is
described below [41]:

For each Xi = [xi, 1, xi, 2, ...xi,m] in D that is described
by m categorical attributes, we use f (xi,j|D) to denote the
frequency count of attribute value xi,j in the data set. Then, a
scoring function is designed for evaluating each point, which
is defined as:

(14)hZR(t) = h(‖br − bz‖;t)�(t)

(15)hRZ(t) = exp
�‖br − bz‖2

2�2(t)

�
�(t),

 1. Farthest first traversal (D: data set, k: integer) {
 2. randomly select first center;
 3. select centers
 4. for (I = 2,…,k) {
 5. for (each remaining point) { calculate distance to the

current center set; }
 6. select the point with maximum distance as new center;

}
 7. assign remaining points
 8. for (each remaining point) {
 9. calculate the distance to each cluster center;
 10. put it to the cluster with minimum distance; } }

6.4 Filtered cluster

Filtered cluster is a special subset of a partially ordered set,
in which each cluster is labeled with an ID. If Cluster belong
to the first class then it will be labeled with 1 otherwise it
is labeled as 0. The working of filter clustering algorithm is
described below [37]:

1. In only one scan of the data set derive the l(l−1)
2

 con-
tingency tables necessary for computing the previously
presented adequacy indices

2. Run the Genetic Algorithm using the fitness function
fit(SA, SA∗)

33

– a chromosome codes (corresponds to) a subset of
SA;

– each gene of the chromosome codes an attribute of
SA (so, there are l genes);

– each gene of a chromosome has a binary value: the
gene value is 1 (resp. 0) if its associated attribute is
present (resp. absent) in the subset of SA coded by
the chromosome.

3. Select the best subspace found by the Genetic Algo-
rithm.

6.5 Density‑based cluster

Density-based cluster is based on the notion of den-
sity. It either grow clusters according to the density of

(16)Score(Xi) =

m∑

j=1

f (xi,j|D).

33 A data set DS composed by a set (O) of n objects described by a
set (SA) of l attributes.

31 https ://en.wikip edia.org/wiki/K-means _clust ering .
32 https ://en.wikip edia.org/wiki/Farth est-first _trave rsal.

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/Farthest-first_traversal

1383International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

neighborhood objects or according to some density func-
tion. The working of density-based clustering is described
below [24]:

 1. initialize tc = 0;
 2. initialize an empty hash table grid_list34;
 3. while data stream is active do
 4. read record x = (x1, x2, upto, xd);
 5. determine the density grid g that contains x;
 6. if(g not in grid_list) insert g to grid_list;
 7. update the characteristic vector of g;
 8. if tc == gap then
 9. call initial_clustering(grid_list);
 10. end if
 11. if tc mod gap == 0 then
 12. detect and remove sporadic grids from grid_list;
 13. call adjust clustering(grid_list);
 14. end if
 15. tc = tc + 1;
 16. end while
 17. end procedure

7 Comparison of proposed model
with different existing techniques

To validate that our proposed framework is able to achieve
higher detection rate or not, we compare the result of our
proposed model with three different techniques mentioned
below:

(a) Comparison of results with previously used classifiers
To validate that our proposed model is feasible to detect
malware as equivalent to previous used classifiers or
not, we calculate two performance parameters like
Accuracy and F-measure for new proposed model and
existing models. In addition to that, in this study, we
also compared our proposed framework with existing
frameworks that are present in the literature.

(b) Comparison of results with different anti-virus scanners
To compare the performance of our model for mal-
ware detection, we chose ten available distinct anti-

virus scanners and compare their detection rate with
the detection rate of the proposed model.

(c) Detection of known and unknown malware families Fur-
ther, to evaluate how much our proposed model is reli-
able to detect known and unknown malware families,
we test known and unknown malware families with our
proposed model and calculate the accuracy to detect the
malware.

8 Evaluation of performance parameters

In this section of the paper, we discuss the fundamental defi-
nitions of the performance parameters utilized by us while
evaluating our proposed model for malware detection. Con-
fusion matrix is used to calculate all these parameters. It
consists of actual and detected classification information
built by detection models. Table 4 demonstrates the con-
fusion matrix for malware detection model. In the present
work, four performance parameters namely, inter-cluster
distance, intra-cluster distance, F-measure and accuracy are
utilized for measuring the performance of malware detec-
tion approaches.

Inter-cluster distance For each of these techniques, we
first calculate centroid and then centroid Euclidian distance.
In case of N, d-dimensional data points in a cluster: {�i}
where i = 1, 2, 3,…N, the centroid {�0} , as defined in35 is
given by

Next, we define centroid Euclidian distance between the
centroid of two clusters. Given the centroid of two clusters
C01 and C02, the centroid Euclidian distance or inter-cluster
distance between them is defined by

Intra-cluster distance To calculate the intra-cluster distance,
we find root-mean-square-total-sample standard deviation
(RMSSTD). This is defined by

where s̄j denotes the standard deviation of the attributes
and p is the number of features. The smaller the value,
the more homogenous the observations are with respect
to the variables and vice-versa. Since root-mean-square is
scalable dependent, it should only be used to compare the

(17)�
�
=

∑N

i=1
�

�

N
.

(18)D0 = ((C01 − C02)
2)

1

2 .

(19)RMSSTD =

�∑p

j=1
s̄j
2

p
,

Table 4 Confusion matrix to classify a Android app is benign or mal-
ware (.apk)

Benign Malware

Benign Benign-> Benign Benign-> Malware
Malware Malware-> Benign Malware-> Malware

34 grid_list consist of attributes. 35 https ://en.wikip edia.org/wiki/Eucli dean_dista nce.

https://en.wikipedia.org/wiki/Euclidean_distance

1384 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

homogeneity of datasets whose variables are measured using
similar scales.

F-measure The F-measure is harmonic mean of the preci-
sion and recall values used in information retrieval [16]. Pre-
cision shows how many applications are in the right cluster
w.r.t. the cluster size. Recall shows that how many applica-
tions are in the right cluster w.r.t. the total applications. Let
i denotes the class label and j denotes the cluster, then the
Precision and recall for class i and cluster j are defined as:

where ni,j is the number of applications with class label i in
cluster j, ni is the number of applications with class label i
and nj denotes the number of applications in cluster j. The
F-measure for class i and cluster j is given as:

(20)Recall(i, j) =
ni,j

nj

(21)Precision(i, j) =
ni,j

ni

(22)F(i, j) =
2 ∗ Recall(i, j) ∗ Precision(i, j)

Recall(i, j) + Precision(i, j)
.

The total F-measure of clustering process is given by:

where n is the total number of applications.
Accuracy Let ni,j is the number of applications with class

label i in cluster j, nj,i is the number of applications with class
label j in cluster i, ni is the number of applications with class
label i and nj denotes the number of applications in cluster j.
Then Accuracy becomes:

9 Experimental setup

In the present section, we introduce the experimental setup
done to find the performance of our developed malware
detection models. Five distinct unsupervised machine
learning algorithms are implemented on thirty different
categories of android apps mentioned in Table 2. All these

(23)F =
∑ ni

n
∗ maxF(i, j)

(24)Accuracy =
xij + xji

xij + xji + xi + xj
.

Fig. 7 Proposed framework i.e., SemiDroid

1385International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

data sets have varying number of benign or malware apps
which are adequate to perform our analysis. Figure 7 dem-
onstrates the framework of our proposed model named
as SemiDroid. In the very first step, feature ranking and
feature subset selection approaches are applied on the
extracted features data set. In the next step, we use the
Min-max normalization approach to normalize the data.
This approach is based on the principle of linear transfor-
mation, which bring each data point Dqi

 of feature Q to a
normalized value Dqi

, that lie in between 0 − 1. Following
equation is considered to find the normalized value of Dqi

∶

where min(Q) and max(Q) are the minimum and maximum
significance of attribute Q, respectively. In the third step,
we trained significant features by implementing distinct
machine learning techniques. In the next step, we construct
a confusion matrix and calculate the performance param-
eters i.e., Accuracy and F-measure. Next, we compare the
performance of the developed malware detection model and
select the best malware detection model. At last, we compare
the performance of our proposed malware detection model
with existing techniques available in the literature and dis-
tinct anti-virus scanners. If the performance of our proposed
malware detection model is better than existing techniques
then it is useful and in reverse of it if the performance is not
enhanced than the proposed malware model is not useful.

The subsequent measures are pursued at the time of
selecting a subset of features to built the malware detec-
tion model that detects either an app is benign or malware.
Feature selection approaches are implemented on 30 dif-
ferent data sets of Android apps. Hence, a total of 1650
((1 selecting all extracted features + 10 feature selection
approaches) × 30 data sets (subsets of different feature sets
particular to data sets determined after conducting feature
selection) × 5 detection methods) different detection mod-
els have been build in this work. Below we provide step by
step details of our approach:

1. In the present work, four feature subset selection
approaches and six feature ranking approaches are
implemented on 30 different feature sets to select the
right set of features for malware detection.

2. The subsets of features obtained from aforementioned
procedure are given as an input to machine learning
classifiers. To compare the developed models, we use
20 fold cross-validation method. Cross-validation is a
statistical learning approach that is utilized to classify
and match the models by dividing the data into two dif-
ferent portions [40]. One portion is utilized to train and
the remaining portion of data is utilized to verify the

Normalized(Dqi
) =

Dqi
− min(Q)

max(Q) − min(Q)
,

build model, on the basis of training [40]. The data is
initially separated into K same sized segments. K-1 folds
are utilized to train the model and the rest one fold is
utilized for testing intention. K-fold cross-validation is
having important significance in utilizing the data set
for the both testing and training. For this study, 20-fold
cross-validation is utilized to analyze the models, i.e.,
data sets are segregated into 20 portions. The outcomes
of all build malware detection models are matched with
each other by employing two distinct performance meas-
ure parameters: F-measure and accuracy.

3. SemiDroid i.e., proposed model build by utilizing above
two steps are validated with the existing techniques
developed in the literature to review whether the build
malware detection model is useful or not.

10 Results of performed experiment

In the current section of the paper, the relationship among
different feature sets and malware detection at the class level
is submitted. Set of features are used as an input and present
the ratio of benign and malware apps within an experiment.
intra-cluster distance, inter-cluster distance, F-measure and
accuracy are used as performance assessment parameters to
match the performance of malware detection model build
by using five different unsupervised machine learning algo-
rithms. To depict the experimental results we utilize the
abbreviations as given in Table 5 corresponding to their
actual names.

10.1 Feature ranking approaches

Six feature ranking approaches: gain-ratio feature evalua-
tion, Chi-squared test, information gain feature evaluation,
logistic regression analysis, information gain, oneR feature

Table 5 Used naming convention in this study

Abbreviation Corresponding name

DS Data set
FS1 Correlation best feature selection
FS2 Classifier subset evaluation
FS3 Filtered subset evaluation
FS4 Rough set analysis (RSA)
FR1 Chi squared test
FR2 Gain ratio feature evaluation
FR3 Filtered subset evaluation
FR4 Information gain feature evaluation
FR5 Logistic regression analysis
FR6 Principal component analysis (PCA)
AF All extracted features

1386 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

evaluation and principal component analysis are imple-
mented on a distinct feature sets. Each approach utilizes
distinct performance parameters to rank the feature. Moreo-
ver, top ⌈log2 a⌉ set of features from “a” number of features
being measured to build a model for detecting malware. For
initial four feature ranking approaches (gain-ratio feature
evaluation, Chi-squared test, OneR feature evaluation and
Information gain), top ⌈log2 a⌉ are selected as subset of fea-
tures, where a is the number of features in the original data
set (for this work a = 20). However, in the case of ULR,
those features are selected which posses a positive value of
regression co-efficient, i.e., p value measure is below 0.05,
and in matter of PCA, only those features are selected which
have eigenvalue greater than 1. Considered features using
feature ranking approaches are demonstrated in Fig. 8.

10.2 Feature subset selection approaches

In the present work, four distinct kinds of feature subset
selection approaches are implemented on thirty data sets

of Android apps one after another. Feature subset selection
approaches work on the principle of hypothesis which make
models with better accuracy and make less amount of mis-
classified errors, while selecting the best features from avail-
able number of features. Searching principles are based on
heuristic search [17] (for correlation based feature selection,
rough set analysis), best first search [14] (for consistency
subset evaluation and filtered subset evaluation). Later, these
isolation subset of features has been selected as an input for
building a model to detect either the app is benign or mal-
ware. Considered set of features after feature subset selection
approaches are demonstrated in Fig. 9.

10.3 Machine learning techniques

Eleven subsets of features (1 considering all set of extracted
features + 10 resulting by implemented feature selection
approaches) are used as an input to build a model for mal-
ware detection. Hardware utilized to carry out this study is
Core i7 processor having storage capacity of 1TB hard disk

Fig. 8 Feature ranking
approaches

1387International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

and 8GB RAM. Detection models are build by using the
MATLAB environment. Figure 6 demonstrates the imple-
mented unsupervised machine learning algorithms on our
collected data set. Red-cross represents the normal permis-
sions and blue-cross represents the dangerous permissions.
From Fig. 10, we analysis that clusters formed by using
SOM, density-based clustering, K-mean, and filter cluster-
ing have overlapping of normal and dangerous permissions.
Only farthest first clustering performed the cluster without
overlapping of the permissions. Further, the performance of
each detection model is measured by using four performance
parameters: intra-cluster distance, inter-cluster distance,
F-measure and accuracy.

Tables 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15, present the
performance values obtained for distinct data sets by utiliz-
ing SOM, K-mean, farthest first clustering, filtered clustering
and density based clustering. On the basis of Tables 6, 7, 8,
9, 10, 11, 12, 13, 14 and 15, it may be concluded that:

– Bold values indicate the highest detection rate when com-
pared to other values in a specific row.

– Value of inter-cluster and intra-cluster distance are cal-
culated by using Eqs. 18 and 19.

– F-measure and accuracy are measured by using Eqs. 22
and 24.

– Models developed by considering features selected by
feature selection approaches as an input is able to detect
malware more effectively rather than model developed
by using all extracted feature sets.

– Model constructed by considering FS4, as an input
achieved higher detection rate when compared to other
models developed by using different feature selection
approaches.

– Model build by considering farthest first clustering by
selecting FS4, as an input achieved higher detection rate
when compared to other models developed by using dif-
ferent feature selection approaches.

In this research paper, five distinct unsupervised machine
learning algorithms and ten distinct feature selection
approaches are considered to select features which helps
in identify Android malware more effectively. To find out
which developed model is more capable to detect malware,
we construct box-plot diagrams of the individual model.
Box-plot diagrams helps in identify which model is best
suitable for malware detection on the basis of few number
of outliers and better value of median. Figures 11 and 12
demonstrate the box-plot diagrams for F-measure and accu-
racy for every developed model. The x-axis of the diagrams
presents the feature selection techniques. Figures include
eleven box-plot diagrams: one box-plot diagram consists of
all extracted feature sets, four box-plot consist of feature sub-
set selection approaches and six box-plot consist of feature
ranking approaches. On the basis of the box-plot diagram,
we find following observations:

– Model constructed by considering five distinct unsuper-
vised machine learning algorithms and FS4 achieved

Fig. 9 Feature subset selection
approaches

1388 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

higher median value in addition to few outliers. On the
basis of box-plot diagrams demonstrated in Figs. 11
and 12, model developed by considering FS4 as fea-
ture selection approach gives better detection rate when
compared to other developed approaches.

– From box-plot diagrams, we observed that model build
by considering farthest first machine learning algorithm
and FS4, is having few outliers and higher median value.
It means that model developed by using RSA for detect-
ing malware and benign apps achieved better results
when compared to others.

Fig. 10 Unsupervised machine learning algorithms

1389International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

Ta
bl

e
6

 In
tra

 a
nd

 in
te

r c
lu

ste
r d

ist
an

ce
 u

si
ng

 S
O

M

In
te

r
In

tra

ID
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4

D
1

0.
26

8
0.

38
1

0.
38

8
0.

40
0.

42
0.

42
0.

43
0.

45
0.

47
0.

47
7

0.
48

−
 1

.1
−

 2
.0

−
 2

.8
−

 2
.1

−
 3

.1
−

 3
.1

−
 3

.8
−

 3
.2

−
 3

.0
−

 3
.8

−
 3

.9
D

2
0.

28
0.

38
0.

39
0.

40
0.

43
0.

44
0.

43
0.

46
0.

49
0.

48
0.

48
−

 1
.8

−
 2

.7
−

 2
.9

−
 2

.0
−

 2
.8

−
 2

.1
−

 2
.7

−
 2

.2
−

 3
.0

−
 2

.8
2.

7
D

3
0.

28
0.

31
0.

32
8

0.
34

0.
41

0.
34

0.
40

0.
40

0.
42

0.
42

0.
45

−
 1

.1
−

 2
.0

−
 2

.8
−

 2
.1

−
 2

.1
−

 2
.1

−
 2

.8
−

 2
.2

−
 2

.0
−

 2
.8

−
 2

.9
D

4
0.

20
0.

22
0.

23
0.

34
0.

34
0.

31
0.

33
0.

35
0.

37
0.

37
0.

38
−

 1
.1

−
 1

.0
−

 1
.8

−
 2

.1
−

 2
.1

−
 2

.1
−

 2
.8

−
 2

.2
−

 2
.0

−
 2

.8
−

 2
.9

D
5

0.
22

0.
32

0.
38

0.
34

0.
32

0.
32

0.
34

0.
35

0.
37

0.
37

0.
39

−
 1

.1
−

 2
.8

−
 2

.8
−

 2
.1

−
 2

.5
−

 2
.2

−
 2

.8
−

 2
.2

−
 3

.0
−

 3
.8

−
 3

.9
D

6
0.

29
9

0.
38

1
0.

38
8

0.
41

0.
40

0.
45

0.
43

0.
45

0.
45

0.
46

0.
47

−
 1

.0
−

 1
.3

−
 1

.8
−

 1
.6

−
 1

.8
−

 1
.6

−
 1

.8
−

 1
.2

−
 1

.0
−

 1
.8

−
 1

.9
D

7
0.

21
0.

31
0.

36
0.

34
0.

32
0.

33
0.

35
0.

35
0.

37
0.

37
0.

38
−

 1
.6

−
 2

.2
−

 2
.8

−
 2

.1
−

 2
.1

−
 2

.1
−

 2
.8

−
 2

.2
−

 3
.0

−
 2

.8
−

 3
.1

D
8

0.
25

0.
37

0.
38

0.
42

0.
44

0.
41

0.
40

0.
46

0.
48

0.
47

0.
49

−
 1

.3
−

 1
.7

−
 2

.0
−

 2
.1

−
 2

.9
−

 2
.5

−
 2

.8
−

 2
.2

−
 2

.0
−

 2
.8

−
 2

.9
D

9
0.

22
0.

30
0.

35
0.

46
0.

47
0.

48
0.

48
0.

46
0.

46
0.

45
0.

49
−

 2
.9

−
 3

.8
−

 3
.8

−
 3

.1
−

 3
.3

−
 3

.8
−

 3
.8

−
 3

.2
−

 3
.0

−
 3

.8
−

 3
.9

D
10

0.
21

0.
29

0.
28

0.
30

0.
32

0.
32

0.
33

0.
35

0.
37

0.
36

0.
38

−
 1

.1
−

 2
.0

−
 2

.8
−

 2
.1

−
 2

.1
−

 2
.1

−
 2

.8
−

 2
.2

−
 2

.0
−

 2
.8

−
 2

.9
D

11
0.

25
0.

31
0.

36
0.

40
0.

39
0.

41
0.

42
0.

42
0.

43
0.

44
0.

45
−

 3
.1

−
 3

.0
−

 3
.8

−
 3

.1
−

 4
.1

−
 4

.1
−

 4
.8

−
 4

.2
−

 4
.0

−
 4

.8
−

 4
.9

D
12

0.
28

0.
38

0.
39

0.
43

0.
45

0.
45

0.
41

0.
43

0.
45

0.
46

0.
47

−
 1

.1
−

 2
.0

−
 2

.8
−

 2
.1

−
 2

.1
−

 2
.2

−
 2

.8
−

 2
.2

−
 3

.0
−

 3
.1

−
 3

.2
D

13
0.

18
0.

21
0.

23
0.

31
0.

32
0.

32
0.

33
0.

35
0.

37
0.

37
0.

38
−

 2
.1

−
 2

.0
−

 2
.8

−
 3

.1
−

 3
.1

−
 3

.1
−

 3
.8

−
 3

.2
−

 3
.5

−
 3

.8
−

 3
.9

D
14

0.
28

0.
31

0.
35

0.
41

0.
43

0.
44

0.
45

0.
46

0.
48

0.
49

0.
50

−
 3

.1
−

 3
.9

−
 3

.8
−

 3
.8

−
 4

.1
−

 4
.1

−
 4

.8
−

 4
.2

−
 4

.2
−

 4
.2

−
 4

.3
D

15
0.

21
0.

29
0.

30
0.

32
0.

32
0.

33
0.

34
0.

35
0.

37
0.

36
0.

38
−

 1
.1

−
 3

.0
−

 3
.8

−
 3

.8
−

 3
.7

−
 3

.8
−

 3
.8

−
 4

.2
−

 4
.0

−
 4

.8
−

 4
.9

D
16

0.
19

0.
27

0.
28

0.
30

0.
32

0.
33

0.
35

0.
36

0.
37

0.
38

0.
4

−
 2

.1
−

 3
.0

−
 3

.8
−

 3
.9

−
 3

.8
−

 3
.6

−
 3

.8
−

 4
.0

−
 4

.0
−

 4
.1

−
 4

.2
D

17
0.

18
0.

81
0.

88
0.

89
0.

87
0.

86
0.

83
0.

85
0.

87
0.

87
0.

88
−

 1
.1

−
 2

.0
−

 2
.8

−
 2

.1
−

 2
.1

−
 2

.3
−

 2
.8

−
 2

.5
−

 2
.6

−
 2

.8
−

 2
.9

D
18

0.
20

0.
28

0.
29

0.
30

0.
32

0.
33

0.
38

0.
39

0.
32

0.
33

0.
38

−
 1

.1
−

 2
.0

−
 2

.1
−

 2
.1

−
 2

.2
−

 2
.3

−
 2

.3
−

 2
.4

−
 2

.5
−

 2
.8

−
 2

.9
D

19
0.

28
0.

33
0.

38
0.

34
0.

37
0.

38
0.

41
0.

42
0.

45
0.

45
0.

46
−

 1
.8

−
 2

.8
−

 2
.6

−
 2

.6
−

 2
.8

−
 2

.0
−

 2
.7

−
 2

.2
−

 2
.3

−
 2

.8
−

 2
.9

D
20

0.
18

0.
28

0.
28

0.
24

0.
26

0.
27

0.
28

0.
26

0.
27

0.
21

0.
29

−
 0

.1
−

 1
.2

−
 1

.8
−

 1
.1

−
 1

.1
−

 1
.1

−
 1

.8
−

 1
.2

−
 1

.0
−

 1
.8

−
 1

.9
D

21
0.

00
8

0.
07

1
0.

08
8

0.
08

7
0.

08
9

0.
0.

09
1

0.
02

1
0.

35
0.

17
0.

27
0.

28
−

 1
.1

−
 2

.0
−

 2
.8

−
 2

.5
−

 2
.5

−
 2

.7
−

 2
.8

−
 2

.2
−

 2
.0

−
 2

.8
−

 2
.9

D
22

0.
20

0.
26

0.
28

0.
27

0.
29

0.
21

0.
27

0.
27

0.
28

0.
29

0.
30

−
 1

.1
−

 2
.2

−
 2

.3
−

 2
.5

−
 2

.6
−

 2
.7

−
 2

.5
−

 2
.2

−
 2

.0
−

 2
.7

−
 2

.8
D

23
0.

00
2

0.
06

0
0.

02
0

0.
05

7
0.

07
9

0.
08

1
0.

08
7

0.
08

7
0.

08
8

0.
09

2
0.

09
9

−
 0

.9
−

 1
.2

−
 1

.3
−

 1
.5

−
 1

.6
−

 1
.7

−
 1

.5
−

 1
.2

−
 1

.0
−

 1
.7

−
 1

.8
D

24
0.

12
0.

18
0.

20
0.

22
0.

26
0.

27
0.

28
0.

28
0.

29
0.

22
0.

22
−

 1
.0

−
 1

.5
−

 1
.3

−
 1

.5
−

 1
.6

−
 1

.7
−

 1
.5

−
 1

.2
−

 1
.8

−
 1

.7
−

 1
.3

D
25

0.
17

0.
20

0.
22

0.
23

0.
23

0.
23

0.
25

0.
21

0.
21

0.
27

0.
28

−
 0

.9
−

 1
.2

−
 1

.3
−

 1
.2

−
 1

.3
−

 1
.4

−
 1

.3
−

 1
.3

−
 1

.4
−

 1
.7

−
 1

.8
D

26
0.

19
0.

26
0.

25
0.

24
0.

27
0.

28
0.

29
0.

28
0.

25
0.

24
0.

29
−

 0
.3

−
 1

.2
−

 1
.0

−
 0

.9
−

 0
.9

−
 1

.7
−

 1
.5

−
 1

.2
−

 1
.0

−
 1

.7
−

 1
.8

D
27

0.
17

0.
23

0.
24

0.
26

0.
24

0.
25

0.
23

0.
23

0.
25

0.
27

0.
28

−
 0

.9
−

 1
.2

−
 1

.3
−

 1
.5

−
 1

.2
−

 1
.4

−
 1

.5
−

 1
.2

−
 1

.0
−

 1
.7

−
 1

.8
D

28
0.

19
0.

23
0.

27
0.

24
0.

25
0.

26
0.

23
0.

23
0.

24
0.

25
0.

27
−

 0
.1

−
 0

.8
−

 0
.8

−
 0

.5
−

 0
.6

−
 0

.7
−

 0
.5

−
 0

.7
−

 0
.7

−
 0

.7
−

 0
.8

D
29

0.
11

0.
20

0.
22

0.
24

0.
22

0.
20

0.
26

0.
25

0.
25

0.
25

0.
29

−
 0

.8
−

 1
.2

−
 1

.3
−

 1
.5

−
 1

.6
−

 1
.7

−
 1

.5
−

 1
.2

−
 1

.0
−

 1
.7

−
 1

.9
D

30
0.

13
0.

16
0.

18
0.

17
0.

19
0.

20
0.

23
0.

24
0.

25
0.

23
0.

29
−

 0
.9

−
 1

.6
−

 1
.3

−
 1

.5
−

 1
.6

−
 1

.7
−

 2
.0

−
 2

.0
−

 2
.1

−
 2

.3
−

 2
.4

1390 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

Ta
bl

e
7

 In
tra

 a
nd

 in
te

r c
lu

ste
r d

ist
an

ce
 u

si
ng

 K
-m

ea
n

In
te

r
In

tra

ID
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4

D
1

0.
29

0.
31

0.
38

0.
34

0.
34

0.
40

0.
42

0.
41

0.
42

0.
44

0.
45

−
 1

.2
−

 2
.2

−
 2

.3
−

 2
.2

−
 3

.0
−

 3
.0

−
 3

.1
−

 3
.0

−
 3

.0
−

 3
.3

−
 3

.4
D

2
0.

23
0.

28
0.

29
0.

30
0.

33
0.

34
0.

33
0.

36
0.

39
0.

38
0.

38
−

 1
.1

−
 1

.7
−

 1
.9

−
 2

.0
−

 2
.3

−
 2

.3
−

 2
.4

−
 2

.4
−

 2
.8

−
 2

.2
2.

3
D

3
0.

28
0.

31
0.

32
0.

34
0.

41
0.

34
0.

40
0.

40
0.

42
0.

42
0.

44
−

 1
.1

−
 2

.0
−

 2
.8

−
 2

.1
−

 2
.1

−
 2

.1
−

 2
.4

−
 2

.2
−

 2
.0

−
 2

.3
−

 2
.9

D
4

0.
20

0.
25

0.
24

0.
29

0.
30

0.
31

0.
32

0.
32

0.
33

0.
33

0.
35

−
 1

.5
−

 1
.7

−
 1

.9
−

 2
.2

−
 2

.1
−

 2
.1

−
 2

.1
−

 2
.2

−
 2

.0
−

 2
.1

−
 2

.3
D

5
0.

28
0.

35
0.

38
0.

36
0.

37
0.

38
0.

34
0.

38
0.

37
0.

39
0.

40
−

 1
.7

−
 2

.2
−

 2
.5

−
 2

.3
−

 2
.5

−
 2

.2
−

 2
.5

−
 2

.6
−

 2
.9

−
 2

.8
−

 3
.0

D
6

0.
30

0.
38

0.
39

0.
42

0.
43

0.
44

0.
45

0.
46

0.
47

0.
46

0.
48

−
 1

.5
−

 1
.8

−
 1

.9
−

 1
.9

−
 2

.0
−

 2
.6

−
 2

.8
−

 2
.2

−
 2

.0
−

 2
.8

−
 2

.9
D

7
0.

27
0.

33
0.

33
0.

38
0.

33
0.

33
0.

37
0.

35
0.

38
0.

39
0.

40
−

 1
.8

−
 2

.8
−

 2
.7

−
 2

.6
−

 2
.5

−
 2

.5
−

 2
.7

−
 2

.6
−

 3
.1

−
 3

.2
−

 3
.3

D
8

0.
27

0.
38

0.
39

0.
45

0.
42

0.
46

0.
45

0.
47

0.
44

0.
43

0.
48

−
 1

.1
−

 1
.7

−
 2

.2
−

 2
.3

−
 2

.9
−

 2
.7

−
 2

.9
−

 2
.5

−
 2

.6
−

 2
.5

−
 3

.0
D

9
0.

22
0.

30
0.

35
0.

36
0.

37
0.

38
0.

38
0.

36
0.

36
0.

35
0.

39
−

 1
.9

−
 2

.8
−

 2
.8

−
 2

.1
−

 2
.3

−
 2

.8
−

 2
.8

−
 2

.2
−

 2
.0

−
 2

.8
−

 2
.9

D
10

0.
21

0.
29

0.
28

0.
38

0.
39

0.
38

0.
38

0.
37

0.
39

0.
38

0.
45

−
 1

.3
−

 2
.8

−
 2

.8
−

 2
.6

−
 2

.6
−

 2
.7

−
 2

.9
−

 2
.9

−
 2

.8
−

 2
.6

−
 3

.4
D

11
0.

28
0.

33
0.

38
0.

43
0.

49
0.

42
0.

43
0.

44
0.

42
0.

41
0.

45
−

 2
.8

−
 3

.0
−

 3
.6

−
 3

.5
−

 4
.2

−
 4

.9
−

 4
.2

−
 4

.1
−

 4
.0

−
 4

.0
−

 4
.0

D
12

0.
28

0.
38

0.
39

0.
43

0.
45

0.
45

0.
43

0.
46

0.
47

0.
48

0.
49

−
 1

.6
−

 2
.4

−
 2

.8
−

 2
.6

−
 2

.6
−

 2
.7

−
 2

.8
−

 2
.6

−
 3

.3
−

 3
.3

−
 3

.6
D

13
0.

18
0.

29
0.

27
0.

35
0.

36
0.

37
0.

38
0.

39
0.

39
0.

39
0.

40
−

 1
.9

−
 2

.2
−

 2
.9

−
 3

.5
−

 3
.3

−
 3

.4
−

 3
.9

−
 3

.7
−

 3
.7

−
 3

.9
−

 4
.0

D
14

0.
20

0.
30

0.
35

0.
41

0.
43

0.
44

0.
45

0.
46

0.
48

0.
49

0.
49

−
 3

.1
−

 3
.9

−
 3

.8
−

 3
.8

−
 4

.1
−

 4
.1

−
 4

.8
−

 4
.2

−
 4

.2
−

 4
.2

−
 4

.3
D

15
0.

23
0.

31
0.

38
0.

36
0.

35
0.

37
0.

35
0.

37
0.

36
0.

37
0.

40
−

 2
.1

−
 3

.0
−

 3
.8

−
 3

.8
−

 3
.7

−
 3

.8
−

 3
.8

−
 4

.2
−

 4
.0

−
 4

.8
−

 4
.9

D
16

0.
23

0.
29

0.
32

0.
33

0.
36

0.
36

0.
37

0.
37

0.
38

0.
39

0.
42

−
 2

.3
−

 3
.2

−
 3

.8
−

 3
.9

−
 3

.8
−

 3
.6

−
 3

.8
−

 4
.0

−
 4

.0
−

 4
.1

−
 4

.3
D

17
0.

22
0.

67
0.

78
0.

80
0.

82
0.

85
0.

83
0.

85
0.

87
0.

87
0.

88
−

 1
.7

−
 2

.7
−

 2
.8

−
 2

.7
−

 2
.7

−
 2

.9
−

 2
.8

−
 2

.5
−

 2
.6

−
 2

.8
−

 3
.0

D
18

0.
27

0.
30

0.
31

0.
32

0.
33

0.
34

0.
38

0.
39

0.
32

0.
33

0.
40

−
 1

.7
−

 2
.2

−
 2

.1
−

 2
.1

−
 2

.2
−

 2
.5

−
 2

.6
−

 2
.5

−
 2

.6
−

 2
.7

−
 2

.8
D

19
0.

25
0.

30
0.

33
0.

37
0.

37
0.

39
0.

43
0.

42
0.

46
0.

46
0.

47
−

 1
.9

−
 2

.8
−

 2
.6

−
 2

.6
−

 2
.8

−
 2

.0
−

 2
.7

−
 2

.9
−

 2
.9

−
 2

.8
−

 3
.0

D
20

0.
28

0.
38

0.
38

0.
34

0.
36

0.
37

0.
38

0.
36

0.
37

0.
31

0.
39

−
 0

.7
−

 1
.9

−
 1

.9
−

 2
.1

−
 2

.1
−

 2
.1

−
 2

.8
−

 2
.2

−
 2

.0
−

 2
.8

−
 2

.9
D

21
0.

81
0.

73
0.

88
0.

87
0.

89
0.

0.
91

0.
81

0.
85

0.
87

0.
87

0.
89

−
 1

.3
−

 2
.7

−
 2

.9
−

 2
.7

−
 2

.7
−

 2
.9

−
 2

.9
−

 2
.8

−
 2

.8
−

 2
.9

−
 3

.0
D

22
0.

20
0.

26
0.

28
0.

27
0.

29
0.

26
0.

27
0.

27
0.

28
0.

29
0.

30
−

 1
.1

−
 2

.2
−

 2
.3

−
 2

.5
−

 2
.6

−
 2

.7
−

 2
.5

−
 2

.2
−

 2
.0

−
 2

.7
−

 2
.8

D
23

0.
28

0.
60

0.
79

0.
77

0.
79

0.
81

0.
87

0.
87

0.
88

0.
89

0.
90

−
 0

.7
−

 1
.0

−
 1

.2
−

 1
.5

−
 1

.3
−

 1
.6

−
 1

.7
−

 1
.8

−
 1

.6
−

 1
.7

−
 1

.9
D

24
0.

32
0.

38
0.

36
0.

38
0.

38
0.

39
0.

40
0.

40
0.

49
0.

32
0.

32
−

 1
.0

−
 1

.8
−

 1
.9

−
 1

.7
−

 1
.7

−
 1

.8
−

 1
.9

−
 1

.6
−

 2
.8

−
 2

.7
−

 2
.3

D
25

0.
47

0.
48

0.
49

0.
48

0.
51

0.
40

0.
49

0.
47

0.
46

0.
47

0.
52

−
 0

.7
−

 1
.0

−
 1

.3
−

 1
.2

−
 1

.3
−

 1
.4

−
 1

.3
−

 1
.3

−
 1

.4
−

 1
.6

−
 1

.7
D

26
0.

19
0.

26
0.

25
0.

24
0.

27
0.

28
0.

29
0.

28
0.

25
0.

24
0.

32
−

 0
.7

−
 1

.2
−

 1
.0

−
 0

.9
−

 0
.9

−
 1

.7
−

 1
.5

−
 1

.2
−

 1
.0

−
 1

.7
−

 1
.9

D
27

0.
17

0.
23

0.
24

0.
26

0.
28

0.
25

0.
23

0.
23

0.
25

0.
29

0.
31

−
 0

.9
−

 1
.7

−
 1

.3
−

 1
.5

−
 1

.2
−

 1
.4

−
 1

.5
−

 1
.2

−
 1

.0
−

 1
.7

−
 1

.8
D

28
0.

29
0.

33
0.

37
0.

34
0.

35
0.

36
0.

33
0.

33
0.

44
0.

45
0.

47
−

 0
.1

−
 0

.8
−

 0
.8

−
 0

.5
−

 0
.6

−
 0

.7
−

 0
.5

−
 0

.7
−

 0
.7

−
 0

.7
−

 0
.9

D
29

0.
21

0.
32

0.
33

0.
34

0.
33

0.
33

0.
36

0.
35

0.
35

0.
35

0.
39

−
 0

.6
−

 1
.8

−
 1

.7
−

 1
.6

−
 1

.9
−

 1
.7

−
 1

.9
−

 1
.6

−
 1

.7
−

 1
.8

−
 1

.9
D

30
0.

23
0.

26
0.

28
0.

27
0.

29
0.

30
0.

33
0.

34
0.

35
0.

33
0.

39
−

 0
.8

−
 1

.8
−

 1
.9

−
 1

.9
−

 1
.9

−
 1

.9
−

 2
.7

−
 2

.7
−

 2
.8

−
 2

.8
−

 2
.9

1391International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

Ta
bl

e
8

 In
tra

 a
nd

 in
te

r c
lu

ste
r d

ist
an

ce
 u

si
ng

 fi
lte

re
d

cl
us

te
rin

g

In
te

r
In

tra

ID
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4

D
1

0.
27

0.
32

0.
38

0.
33

0.
35

0.
37

0.
38

0.
38

0.
39

0.
39

0.
40

−
 1

.2
−

 2
.0

−
 2

.2
−

 2
.3

−
 2

.7
−

 2
.6

−
 2

.7
−

 2
.5

−
 2

.5
−

 2
.6

−
 2

.8
D

2
0.

25
0.

28
0.

30
0.

32
0.

33
0.

34
0.

33
0.

38
0.

40
0.

39
0.

39
−

 1
.3

−
 1

.8
−

 1
.9

−
 2

.0
−

 2
.3

−
 2

.3
−

 2
.4

−
 2

.8
−

 2
.9

−
 2

.7
2.

6
D

3
0.

26
0.

33
0.

37
0.

34
0.

43
0.

40
0.

42
0.

43
0.

42
0.

43
0.

45
−

 1
.7

−
 2

.2
−

 2
.7

−
 2

.2
−

 2
.3

−
 2

.3
−

 2
.4

−
 2

.4
−

 2
.5

−
 2

.3
−

 2
.8

D
4

0.
22

0.
27

0.
28

0.
27

0.
31

0.
36

0.
35

0.
35

0.
36

0.
36

0.
39

−
 1

.7
−

 2
.2

−
 2

.1
−

 2
.2

−
 2

.3
−

 2
.3

−
 2

.3
−

 2
.3

−
 2

.5
−

 2
.3

−
 2

.7
D

5
0.

30
0.

37
0.

39
0.

38
0.

37
0.

39
0.

37
0.

39
0.

38
0.

39
0.

42
−

 1
.8

−
 2

.2
−

 2
.6

−
 2

.8
−

 2
.7

−
 2

.5
−

 2
.6

−
 2

.7
−

 2
.9

−
 2

.8
−

 3
.2

D
6

0.
32

0.
39

0.
39

0.
42

0.
42

0.
43

0.
47

0.
48

0.
47

0.
46

0.
49

−
 1

.7
−

 1
.9

−
 2

.2
−

 2
.3

−
 2

.5
−

 2
.7

−
 2

.8
−

 2
.2

−
 2

.0
−

 2
.9

−
 3

.0
D

7
0.

26
0.

33
0.

35
0.

39
0.

37
0.

38
0.

38
0.

38
0.

39
0.

39
0.

42
−

 1
.9

−
 2

.9
−

 2
.7

−
 2

.6
−

 2
.8

−
 2

.8
−

 2
.7

−
 2

.8
−

 3
.2

−
 3

.3
−

 3
.5

D
8

0.
29

0.
38

0.
39

0.
46

0.
45

0.
46

0.
47

0.
48

0.
44

0.
46

0.
49

−
 1

.3
−

 1
.6

−
 2

.5
−

 2
.6

−
 3

.0
−

 2
.9

−
 3

.0
−

 3
.0

−
 3

.0
−

 3
.1

−
 3

.2
D

9
0.

25
0.

32
0.

33
0.

36
0.

37
0.

38
0.

38
0.

36
0.

36
0.

38
0.

40
−

 1
.7

−
 2

.7
−

 2
.7

−
 2

.6
−

 2
.7

−
 2

.8
−

 2
.8

−
 2

.2
−

 2
.0

−
 2

.9
−

 3
.0

D
10

0.
21

0.
30

0.
38

0.
38

0.
39

0.
37

0.
38

0.
37

0.
39

0.
38

0.
41

−
 1

.7
−

 2
.8

−
 2

.8
−

 2
.8

−
 2

.8
−

 2
.9

−
 2

.9
−

 2
.9

−
 2

.8
−

 2
.6

−
 3

.1
D

11
0.

28
0.

33
0.

38
0.

43
0.

45
0.

42
0.

43
0.

44
0.

42
0.

41
0.

45
−

 2
.8

−
 3

.0
−

 3
.6

−
 3

.5
−

 4
.2

−
 4

.9
−

 4
.2

−
 4

.1
−

 4
.0

−
 4

.0
−

 4
.0

D
12

0.
28

0.
38

0.
39

0.
43

0.
45

0.
45

0.
43

0.
46

0.
47

0.
47

0.
48

−
 1

.9
−

 2
.6

−
 2

.8
−

 2
.6

−
 2

.6
−

 2
.7

−
 2

.8
−

 2
.6

−
 3

.3
−

 3
.3

−
 3

.4
D

13
0.

22
0.

29
0.

27
0.

38
0.

36
0.

37
0.

38
0.

39
0.

39
0.

39
0.

42
−

 1
.9

−
 2

.2
−

 2
.9

−
 3

.5
−

 3
.3

−
 3

.4
−

 3
.9

−
 3

.7
−

 3
.6

−
 3

.5
−

 4
.1

D
14

0.
25

0.
30

0.
38

0.
42

0.
43

0.
41

0.
42

0.
41

0.
44

0.
42

0.
45

−
 3

.1
−

 3
.9

−
 3

.8
−

 3
.8

−
 3

.1
−

 3
.1

−
 3

.8
−

 3
.2

−
 3

.2
−

 3
.2

−
 4

.0
D

15
0.

30
0.

33
0.

39
0.

38
0.

37
0.

37
0.

35
0.

37
0.

36
0.

37
0.

40
−

 2
.5

−
 3

.0
−

 3
.8

−
 3

.8
−

 3
.9

−
 3

.8
−

 3
.8

−
 4

.5
−

 4
.3

−
 4

.7
−

 4
.8

D
16

0.
28

0.
39

0.
32

0.
36

0.
37

0.
38

0.
39

0.
36

0.
38

0.
39

0.
40

−
 2

.6
−

 3
.6

−
 3

.8
−

 3
.9

−
 3

.8
−

 3
.6

−
 3

.8
−

 4
.1

−
 4

.0
−

 4
.2

−
 4

.3
D

17
0.

29
0.

62
0.

73
0.

82
0.

82
0.

81
0.

82
0.

84
0.

86
0.

87
0.

89
−

 1
.3

−
 2

.1
−

 2
.8

−
 2

.7
−

 2
.7

−
 2

.9
−

 2
.8

−
 2

.5
−

 2
.6

−
 2

.8
−

 3
.3

D
18

0.
29

0.
32

0.
31

0.
32

0.
33

0.
34

0.
38

0.
39

0.
37

0.
38

0.
40

−
 1

.9
−

 2
.5

−
 2

.7
−

 2
.1

−
 2

.9
−

 2
.5

−
 2

.6
−

 2
.5

−
 2

.6
−

 2
.9

−
 3

.2
D

19
0.

29
0.

32
0.

36
0.

39
0.

39
0.

39
0.

43
0.

42
0.

4
0.

43
0.

48
−

 1
.9

−
 2

.8
−

 2
.6

−
 2

.6
−

 2
.8

−
 2

.2
−

 2
.7

−
 2

.9
−

 2
.9

−
 2

.9
−

 3
.1

D
20

0.
28

0.
38

0.
38

0.
34

0.
36

0.
37

0.
38

0.
36

0.
37

0.
38

0.
40

−
 0

.9
−

 1
.9

−
 1

.9
−

 2
.1

−
 2

.6
−

 2
.6

−
 2

.8
−

 2
.7

−
 2

.6
−

 2
.9

−
 3

.2
D

21
0.

81
0.

73
0.

80
0.

81
0.

89
0.

88
0.

87
0.

85
0.

88
0.

88
0.

89
−

 1
.3

−
 2

.8
−

 2
.9

−
 2

.9
−

 2
.3

−
 2

.9
−

 2
.9

−
 2

.8
−

 2
.8

−
 2

.9
−

 3
.1

D
22

0.
27

0.
36

0.
38

0.
37

0.
39

0.
36

0.
37

0.
37

0.
38

0.
39

0.
40

−
 1

.6
−

 2
.3

−
 2

.6
−

 2
.7

−
 2

.6
−

 2
.7

−
 2

.8
−

 2
.2

−
 2

.0
−

 2
.7

−
 2

.9
D

23
0.

28
0.

60
0.

29
0.

57
0.

79
0.

81
0.

87
0.

87
0.

88
0.

86
0.

89
−

 0
.2

0
−

 1
.0

−
 1

.2
−

 1
.5

−
 1

.8
−

 1
.6

−
 1

.7
−

 1
.8

−
 1

.6
−

 1
.7

−
 1

.9
D

24
0.

32
0.

38
0.

36
0.

38
0.

38
0.

39
0.

40
0.

40
0.

49
0.

32
0.

32
−

 1
.0

−
 1

.8
−

 1
.9

−
 1

.7
−

 1
.7

−
 1

.8
−

 1
.9

−
 1

.6
−

 2
.8

−
 2

.7
−

 2
.3

D
25

0.
47

0.
48

0.
49

0.
47

0.
50

0.
40

0.
49

0.
47

0.
46

0.
47

0.
52

−
 0

.7
−

 1
.0

−
 1

.3
−

 1
.2

−
 1

.3
−

 1
.4

−
 1

.3
−

 1
.3

−
 1

.4
−

 1
.6

−
 1

.9
D

26
0.

19
0.

26
0.

25
0.

24
0.

28
0.

28
0.

29
0.

28
0.

25
0.

24
0.

30
−

 0
.9

−
 1

.8
−

 1
.7

−
 0

.9
−

 0
.9

−
 1

.7
−

 1
.5

−
 1

.2
−

 1
.0

−
 1

.7
−

 1
.9

D
27

0.
17

0.
23

0.
24

0.
26

0.
28

0.
25

0.
23

0.
23

0.
25

0.
29

0.
33

−
 0

.9
−

 1
.7

−
 1

.3
−

 1
.5

−
 1

.2
−

 1
.4

−
 1

.5
−

 1
.2

−
 1

.0
−

 1
.7

−
 1

.8
D

28
0.

29
0.

33
0.

37
0.

34
0.

35
0.

36
0.

33
0.

33
0.

41
0.

40
0.

42
−

 0
.1

−
 0

.8
−

 0
.8

−
 0

.5
−

 0
.6

−
 0

.7
−

 0
.5

−
 0

.7
−

 0
.7

−
 0

.7
−

 0
.9

D
29

0.
21

0.
32

0.
33

0.
34

0.
33

0.
33

0.
36

0.
35

0.
32

0.
33

0.
39

−
 0

.6
−

 1
.8

−
 1

.7
−

 1
.6

−
 1

.9
−

 1
.7

−
 1

.9
−

 1
.6

−
 1

.7
−

 1
.8

−
 2

.0
D

30
0.

23
0.

26
0.

28
0.

27
0.

29
0.

30
0.

33
0.

34
0.

35
0.

33
0.

40
−

 0
.8

−
 1

.8
−

 1
.9

−
 1

.9
−

 1
.9

−
 1

.9
−

 2
.7

−
 2

.8
−

 2
.8

−
 2

.9
−

 3
.0

1392 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

Ta
bl

e
9

 In
tra

 a
nd

 in
te

r c
lu

ste
r d

ist
an

ce
 u

si
ng

 d
en

si
ty

 b
as

ed
 c

lu
ste

r

In
te

r
In

tra

ID
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4

D
1

0.
29

0.
31

0.
38

0.
34

0.
34

0.
40

0.
42

0.
41

0.
42

0.
44

0.
45

−
 1

.2
−

 2
.2

−
 2

.3
−

 2
.2

−
 3

.0
−

 3
.0

−
 3

.1
−

 3
.0

−
 3

.0
−

 3
.3

−
 3

.4
D

2
0.

23
0.

28
0.

29
0.

30
0.

33
0.

34
0.

33
0.

36
0.

39
0.

38
0.

38
−

 1
.1

−
 1

.7
−

 1
.9

−
 2

.0
−

 2
.3

−
 2

.3
−

 2
.4

−
 2

.4
−

 2
.8

−
 2

.2
2.

3
D

3
0.

28
0.

31
0.

32
0.

34
0.

41
0.

34
0.

40
0.

40
0.

42
0.

42
0.

44
−

 1
.1

−
 2

.0
−

 2
.8

−
 2

.1
−

 2
.1

−
 2

.1
−

 2
.4

−
 2

.2
−

 2
.0

−
 2

.3
−

 2
.9

D
4

0.
20

0.
25

0.
24

0.
29

0.
30

0.
31

0.
32

0.
32

0.
33

0.
33

0.
35

−
 1

.5
−

 1
.7

−
 1

.9
−

 2
.2

−
 2

.1
−

 2
.1

−
 2

.1
−

 2
.2

−
 2

.0
−

 2
.1

−
 2

.3
D

5
0.

28
0.

35
0.

38
0.

36
0.

37
0.

38
0.

34
0.

38
0.

37
0.

39
0.

40
−

 1
.7

−
 2

.2
−

 2
.5

−
 2

.3
−

 2
.5

−
 2

.2
−

 2
.5

−
 2

.6
−

 2
.9

−
 2

.8
−

 3
.0

D
6

0.
30

0.
38

0.
39

0.
42

0.
43

0.
44

0.
45

0.
46

0.
47

0.
46

0.
48

−
 1

.5
−

 1
.8

−
 1

.9
−

 1
.9

−
 2

.0
−

 2
.6

−
 2

.8
−

 2
.2

−
 2

.0
−

 2
.8

−
 2

.9
D

7
0.

27
0.

33
0.

33
0.

38
0.

33
0.

33
0.

37
0.

35
0.

38
0.

39
0.

40
−

 1
.8

−
 2

.8
−

 2
.7

−
 2

.6
−

 2
.5

−
 2

.5
−

 2
.7

−
 2

.6
−

 3
.1

−
 3

.2
−

 3
.3

D
8

0.
27

0.
38

0.
39

0.
45

0.
42

0.
46

0.
45

0.
47

0.
44

0.
43

0.
48

−
 1

.1
−

 1
.7

−
 2

.2
−

 2
.3

−
 2

.9
−

 2
.7

−
 2

.9
−

 2
.5

−
 2

.6
−

 2
.5

−
 3

.0
D

9
0.

22
0.

30
0.

35
0.

36
0.

37
0.

38
0.

38
0.

36
0.

36
0.

35
0.

39
−

 1
.9

−
 2

.8
−

 2
.8

−
 2

.1
−

 2
.3

−
 2

.8
−

 2
.8

−
 2

.2
−

 2
.0

−
 2

.8
−

 2
.9

D
10

0.
21

0.
29

0.
28

0.
38

0.
39

0.
38

0.
38

0.
37

0.
39

0.
38

0.
45

−
 1

.3
−

 2
.8

−
 2

.8
−

 2
.6

−
 2

.6
−

 2
.7

−
 2

.9
−

 2
.9

−
 2

.8
−

 2
.6

−
 3

.4
D

11
0.

28
0.

33
0.

38
0.

43
0.

49
0.

42
0.

43
0.

44
0.

42
0.

41
0.

45
−

 2
.8

−
 3

.0
−

 3
.6

−
 3

.5
−

 4
.2

−
 4

.9
−

 4
.2

−
 4

.1
−

 4
.0

−
 4

.0
−

 4
.0

D
12

0.
28

0.
38

0.
39

0.
43

0.
45

0.
45

0.
43

0.
46

0.
47

0.
48

0.
49

−
 1

.6
−

 2
.4

−
 2

.8
−

 2
.6

−
 2

.6
−

 2
.7

−
 2

.8
−

 2
.6

−
 3

.3
−

 3
.3

−
 3

.6
D

13
0.

18
0.

29
0.

27
0.

35
0.

36
0.

37
0.

38
0.

39
0.

39
0.

39
0.

40
−

 1
.9

−
 2

.2
−

 2
.9

−
 3

.5
−

 3
.3

−
 3

.4
−

 3
.9

−
 3

.7
−

 3
.7

−
 3

.9
−

 4
.0

D
14

0.
20

0.
30

0.
35

0.
41

0.
43

0.
44

0.
45

0.
46

0.
48

0.
49

0.
49

−
 3

.1
−

 3
.9

−
 3

.8
−

 3
.8

−
 4

.1
−

 4
.1

−
 4

.8
−

 4
.2

−
 4

.2
−

 4
.2

−
 4

.3
D

15
0.

23
0.

31
0.

38
0.

36
0.

35
0.

37
0.

35
0.

37
0.

36
0.

37
0.

40
−

 2
.1

−
 3

.0
−

 3
.8

−
 3

.8
−

 3
.7

−
 3

.8
−

 3
.8

−
 4

.2
−

 4
.0

−
 4

.8
−

 4
.9

D
16

0.
23

0.
29

0.
32

0.
33

0.
36

0.
36

0.
37

0.
37

0.
38

0.
39

0.
42

−
 2

.3
−

 3
.2

−
 3

.8
−

 3
.9

−
 3

.8
−

 3
.6

−
 3

.8
−

 4
.0

−
 4

.0
−

 4
.1

−
 4

.3
D

17
0.

22
0.

67
0.

78
0.

80
0.

82
0.

85
0.

83
0.

85
0.

87
0.

87
0.

88
−

 1
.7

−
 2

.7
−

 2
.8

−
 2

.7
−

 2
.7

−
 2

.9
−

 2
.8

−
 2

.5
−

 2
.6

−
 2

.8
−

 3
.0

D
18

0.
27

0.
30

0.
31

0.
32

0.
33

0.
34

0.
38

0.
39

0.
32

0.
33

0.
40

−
 1

.7
−

 2
.2

−
 2

.1
−

 2
.1

−
 2

.2
−

 2
.5

−
 2

.6
−

 2
.5

−
 2

.6
−

 2
.7

−
 2

.8
D

19
0.

25
0.

30
0.

33
0.

37
0.

37
0.

39
0.

43
0.

42
0.

46
0.

46
0.

47
−

 1
.9

−
 2

.8
−

 2
.6

−
 2

.6
−

 2
.8

−
 2

.0
−

 2
.7

−
 2

.9
−

 2
.9

−
 2

.8
−

 3
.0

D
20

0.
28

0.
38

0.
38

0.
34

0.
36

0.
37

0.
38

0.
36

0.
37

0.
31

0.
39

−
 0

.7
−

 1
.9

−
 1

.9
−

 2
.1

−
 2

.1
−

 2
.1

−
 2

.8
−

 2
.2

−
 2

.0
−

 2
.8

−
 2

.9
D

21
0.

81
0.

73
0.

88
0.

87
0.

89
0.

0.
91

0.
81

0.
85

0.
87

0.
87

0.
89

−
 1

.3
−

 2
.7

−
 2

.9
−

 2
.7

−
 2

.7
−

 2
.9

−
 2

.9
−

 2
.8

−
 2

.8
−

 2
.9

−
 3

.0
D

22
0.

20
0.

26
0.

28
0.

27
0.

29
0.

26
0.

27
0.

27
0.

28
0.

29
0.

30
−

 1
.1

−
 2

.2
−

 2
.3

−
 2

.5
−

 2
.6

−
 2

.7
−

 2
.5

−
 2

.2
−

 2
.0

−
 2

.7
−

 2
.8

D
23

0.
28

0.
60

0.
29

0.
05

7
0.

79
0.

81
0.

87
0.

87
0.

88
0.

89
0.

90
−

 0
.7

−
 1

.0
−

 1
.2

−
 1

.5
−

 1
.3

−
 1

.6
−

 1
.7

−
 1

.8
−

 1
.6

−
 1

.7
−

 1
.9

D
24

0.
32

0.
38

0.
36

0.
38

0.
38

0.
39

0.
40

0.
40

0.
49

0.
32

0.
32

−
 1

.0
−

 1
.8

−
 1

.9
−

 1
.7

−
 1

.7
−

 1
.8

−
 1

.9
−

 1
.6

−
 2

.8
−

 2
.7

−
 2

.3
D

25
0.

47
0.

48
0.

49
0.

48
0.

51
0.

40
0.

49
0.

47
0.

46
0.

47
0.

52
−

 0
.7

−
 1

.0
−

 1
.3

−
 1

.2
−

 1
.3

−
 1

.4
−

 1
.3

−
 1

.3
−

 1
.4

−
 1

.6
−

 1
.7

D
26

0.
19

0.
26

0.
25

0.
24

0.
27

0.
28

0.
29

0.
28

0.
25

0.
24

0.
32

−
 0

.7
−

 1
.2

−
 1

.0
−

 0
.9

−
 0

.9
−

 1
.7

−
 1

.5
−

 1
.2

−
 1

.0
−

 1
.7

−
 1

.9
D

27
0.

17
0.

23
0.

24
0.

26
0.

28
0.

25
0.

23
0.

23
0.

25
0.

29
0.

31
−

 0
.9

−
 1

.7
−

 1
.3

−
 1

.5
−

 1
.2

−
 1

.4
−

 1
.5

−
 1

.2
−

 1
.0

−
 1

.7
−

 1
.8

D
28

0.
29

0.
33

0.
37

0.
34

0.
35

0.
36

0.
33

0.
33

0.
44

0.
45

0.
47

−
 0

.1
−

 0
.8

−
 0

.8
−

 0
.5

−
 0

.6
−

 0
.7

−
 0

.5
−

 0
.7

−
 0

.7
−

 0
.7

−
 0

.9
D

29
0.

21
0.

32
0.

33
0.

34
0.

33
0.

33
0.

36
0.

35
0.

35
0.

35
0.

39
−

 0
.6

−
 1

.8
−

 1
.7

−
 1

.6
−

 1
.9

−
 1

.7
−

 1
.9

−
 1

.6
−

 1
.7

−
 1

.8
−

 1
.9

D
30

0.
23

0.
26

0.
28

0.
27

0.
29

0.
30

0.
33

0.
34

0.
35

0.
33

0.
39

−
 0

.8
−

 1
.8

−
 1

.9
−

 1
.9

−
 1

.9
−

 1
.9

−
 2

.7
−

 2
.7

−
 2

.8
−

 2
.8

−
 2

.9

1393International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

Ta
bl

e
10

In

tra
 a

nd
 in

te
r c

lu
ste

r d
ist

an
ce

 u
si

ng
 fa

rth
es

t fi
rs

t c
lu

ste
r

In
te

r
In

tra

ID
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4

D
1

0.
30

0.
38

0.
48

0.
44

0.
44

0.
40

0.
42

0.
41

0.
42

0.
44

0.
48

−
 1

.8
−

 2
.8

−
 2

.9
−

 2
.8

−
 3

.3
−

 3
.3

−
 3

.5
−

 3
.7

−
 3

.5
−

 3
.3

−
 3

.9
D

2
0.

33
0.

38
0.

39
0.

39
0.

38
0.

39
0.

43
0.

46
0.

49
0.

48
0.

48
−

 1
.7

−
 1

.9
−

 2
.5

−
 2

.7
−

 2
.8

−
 2

.8
−

 2
.9

−
 2

.9
−

 3
.0

−
 2

.9
2.

7
D

3
0.

28
0.

41
0.

42
0.

44
0.

48
0.

44
0.

40
0.

45
0.

46
0.

46
0.

47
−

 1
.9

−
 2

.5
−

 2
.9

−
 2

.7
−

 2
.7

−
 2

.7
−

 2
.7

−
 2

.8
−

 2
.7

−
 2

.6
−

 3
.1

D
4

0.
27

0.
35

0.
34

0.
39

0.
40

0.
41

0.
42

0.
42

0.
43

0.
43

0.
45

−
 1

.8
−

 2
.0

−
 2

.3
−

 2
.5

−
 2

.5
−

 2
.7

−
 2

.7
−

 2
.8

−
 2

.9
−

 2
.9

−
 3

.3
D

5
0.

38
0.

45
0.

48
0.

46
0.

47
0.

48
0.

44
0.

48
0.

47
0.

49
0.

50
−

 1
.8

−
 2

.6
−

 2
.8

−
 2

.7
−

 2
.7

−
 2

.8
−

 2
.5

−
 2

.6
−

 2
.9

−
 2

.9
−

 3
.2

D
6

0.
30

0.
38

0.
39

0.
42

0.
43

0.
45

0.
45

0.
46

0.
48

0.
47

0.
49

−
 1

.8
−

 2
.8

−
 2

.9
−

 2
.9

−
 2

.8
−

 2
.6

−
 2

.8
−

 2
.8

−
 2

.7
−

 2
.9

−
 3

.1
D

7
0.

37
0.

43
0.

43
0.

48
0.

43
0.

43
0.

47
0.

45
0.

48
0.

49
0.

50
−

 1
.9

−
 2

.9
−

 2
.7

−
 2

.6
−

 2
.5

−
 2

.5
−

 2
.7

−
 2

.6
−

 3
.1

−
 3

.4
−

 3
.5

D
8

0.
27

0.
38

0.
39

0.
45

0.
42

0.
46

0.
45

0.
48

0.
44

0.
49

0.
51

−
 1

.7
−

 2
.9

−
 2

.8
−

 2
.7

−
 2

.9
−

 2
.7

−
 2

.9
−

 2
.5

−
 2

.9
−

 2
.5

−
 3

.3
D

9
0.

32
0.

40
0.

45
0.

46
0.

47
0.

48
0.

48
0.

46
0.

46
0.

45
0.

49
−

 2
.0

−
 3

.8
−

 3
.8

−
 3

.1
−

 3
.3

−
 3

.8
−

 3
.8

−
 3

.2
−

 3
.0

−
 3

.8
−

 3
.9

D
10

0.
31

0.
39

0.
38

0.
38

0.
39

0.
40

0.
48

0.
47

0.
49

0.
48

0.
50

−
 1

.9
−

 2
.9

−
 2

.8
−

 2
.6

−
 2

.6
−

 2
.7

−
 3

.1
−

 2
.9

−
 2

.8
−

 2
.6

−
 3

.6
D

11
0.

30
0.

43
0.

48
0.

43
0.

51
0.

42
0.

43
0.

44
0.

47
0.

46
0.

47
−

 2
.9

−
 3

.3
−

 3
.7

−
 3

.8
−

 4
.2

−
 4

.9
−

 4
.7

−
 4

.2
−

 4
.0

−
 4

.1
−

 4
.1

D
12

0.
38

0.
48

0.
49

0.
47

0.
48

0.
45

0.
43

0.
46

0.
47

0.
48

0.
53

−
 2

.6
−

 2
.7

−
 2

.9
−

 2
.6

−
 2

.6
−

 2
.9

−
 3

.1
−

 3
.6

−
 3

.3
−

 3
.7

−
 3

.8
D

13
0.

28
0.

39
0.

37
0.

45
0.

46
0.

47
0.

48
0.

49
0.

49
0.

49
0.

51
−

 2
.9

−
 3

.2
−

 3
.9

−
 3

.5
−

 3
.3

−
 3

.8
−

 3
.9

−
 3

.9
−

 3
.9

−
 4

.2
−

 4
.5

D
14

0.
30

0.
38

0.
45

0.
44

0.
45

0.
46

0.
48

0.
48

0.
48

0.
49

0.
56

−
 3

.1
−

 3
.9

−
 4

.8
−

 4
.8

−
 4

.7
−

 4
.7

−
 4

.8
−

 4
.7

−
 4

.7
−

 4
.2

−
 5

.1
D

15
0.

33
0.

38
0.

39
0.

46
0.

45
0.

47
0.

45
0.

47
0.

46
0.

47
0.

49
−

 2
.8

−
 3

.3
−

 3
.9

−
 4

.8
−

 4
.7

−
 4

.8
−

 4
.8

−
 4

.8
−

 4
.8

−
 4

.7
−

 5
.1

D
16

0.
33

0.
39

0.
38

0.
39

0.
39

0.
39

0.
38

0.
39

0.
41

0.
42

0.
47

−
 2

.9
−

 3
.7

−
 3

.9
−

 4
.1

−
 4

.3
−

 4
.2

−
 3

.8
−

 4
.0

−
 4

.0
−

 4
.1

−
 4

.7
D

17
0.

52
0.

67
0.

80
0.

80
0.

82
0.

85
0.

83
0.

85
0.

87
0.

87
0.

89
−

 2
.0

−
 2

.7
−

 2
.8

−
 2

.7
−

 2
.7

−
 2

.9
−

 2
.8

−
 2

.5
−

 2
.6

−
 2

.8
−

 3
.4

D
18

0.
40

0.
42

0.
43

0.
44

0.
45

0.
43

0.
47

0.
46

0.
47

0.
48

0.
49

−
 1

.9
−

 2
.3

−
 2

.4
−

 2
.5

−
 2

.8
−

 2
.5

−
 2

.6
−

 2
.7

−
 2

.8
−

 2
.9

−
 3

.0
D

19
0.

27
0.

31
0.

38
0.

35
0.

36
0.

39
0.

46
0.

47
0.

48
0.

48
0.

49
−

 1
.7

−
 2

.9
−

 2
.8

−
 2

.8
−

 2
.9

−
 2

.6
−

 2
.8

−
 2

.9
−

 2
.9

−
 2

.8
−

 3
.1

D
20

0.
30

0.
39

0.
39

0.
36

0.
38

0.
39

0.
39

0.
38

0.
37

0.
36

0.
41

−
 0

.9
−

 1
.9

−
 2

.3
−

 2
.4

−
 2

.3
−

 2
.1

−
 2

.8
−

 2
.8

−
 2

.0
−

 2
.8

−
 3

.0
D

21
0.

81
0.

73
0.

88
0.

87
0.

89
0.

0.
85

0.
81

0.
85

0.
87

0.
87

0.
89

−
 1

.8
−

 2
.9

−
 2

.9
−

 2
.7

−
 2

.7
−

 2
.9

−
 2

.9
−

 2
.8

−
 2

.8
−

 2
.9

−
 3

.2
D

22
0.

31
0.

36
0.

38
0.

37
0.

39
0.

36
0.

37
0.

37
0.

38
0.

39
0.

43
−

 1
.3

−
 2

.7
−

 2
.8

−
 2

.7
−

 2
.8

−
 2

.7
−

 2
.5

−
 2

.6
−

 2
.6

−
 2

.3
−

 2
.9

D
23

0.
30

0.
60

0.
38

0.
57

0.
79

0.
81

0.
87

0.
80

0.
88

0.
82

0.
90

−
 0

.9
−

 1
.1

−
 1

.3
−

 1
.7

−
 1

.9
−

 1
.9

−
 1

.8
−

 1
.8

−
 1

.9
−

 1
.7

−
 2

.0
D

24
0.

32
0.

39
0.

36
0.

38
0.

38
0.

39
0.

40
0.

40
0.

47
0.

40
0.

42
−

 1
.7

−
 2

.8
−

 2
.9

−
 2

.7
−

 2
.7

−
 2

.8
−

 2
.9

−
 2

.6
−

 3
.1

−
 3

.0
−

 3
.0

D
25

0.
37

0.
48

0.
49

0.
48

0.
51

0.
40

0.
49

0.
47

0.
46

0.
47

0.
50

−
 0

.7
−

 1
.0

−
 1

.3
−

 1
.2

−
 1

.3
−

 1
.4

−
 1

.3
−

 1
.3

−
 1

.4
−

 1
.6

−
 1

.9
D

26
0.

22
0.

36
0.

35
0.

34
0.

37
0.

38
0.

39
0.

38
0.

35
0.

34
0.

41
−

 0
.9

−
 1

.7
−

 1
.2

−
 1

.9
−

 1
.9

−
 1

.7
−

 1
.5

−
 1

.2
−

 1
.0

−
 1

.7
−

 2
.0

D
27

0.
27

0.
30

0.
34

0.
36

0.
38

0.
35

0.
33

0.
33

0.
35

0.
39

0.
41

−
 0

.9
−

 1
.9

−
 1

.8
−

 1
.7

−
 1

.8
−

 1
.7

−
 1

.8
−

 1
.9

−
 1

.6
−

 1
.8

−
 1

.9
D

28
0.

27
0.

33
0.

37
0.

34
0.

35
0.

36
0.

33
0.

33
0.

43
0.

42
0.

46
−

 0
.1

−
 0

.8
−

 0
.8

−
 0

.5
−

 0
.6

−
 0

.7
−

 0
.5

−
 0

.7
−

 0
.7

−
 0

.7
−

 1
.3

D
29

0.
21

0.
32

0.
33

0.
34

0.
33

0.
33

0.
36

0.
35

0.
35

0.
35

0.
39

−
 0

.6
−

 1
.8

−
 1

.7
−

 1
.6

−
 1

.9
−

 1
.7

−
 1

.9
−

 1
.6

−
 1

.7
−

 1
.8

−
 1

.9
D

30
0.

23
0.

26
0.

28
0.

27
0.

29
0.

30
0.

33
0.

34
0.

35
0.

33
0.

41
−

 0
.9

−
 1

.8
−

 1
.9

−
 1

.9
−

 1
.9

−
 1

.9
−

 2
.7

−
 2

.7
−

 2
.8

−
 2

.8
−

 2
.9

1394 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

Ta
bl

e
11

A

cc
ur

ac
y

an
d

F-
m

ea
su

re
 u

si
ng

 S
O

M

A
cc

ur
ac

y
F-

m
ea

su
re

ID
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4

D
1

62
.3

3
73

.3
3

75
.0

77
.3

7
77

.6
6

78
.4

77
78

.4
76

.6
77

.6
78

.4
0.

68
0.

79
0.

77
0.

76
0.

79
0.

72
0.

71
0.

79
0.

79
0.

79
0.

79
D

2
68

.1
8

70
72

.0
8

76
.2

7
72

.6
6

78
76

73
76

.6
77

.6
83

0.
63

0.
78

0.
72

0.
74

0.
73

0.
72

0.
76

0.
77

0.
76

0.
76

0.
82

D
3

70
.8

82
82

.8
83

.6
7

81
.0

6
84

83
82

82
.6

81
.6

89
.7

0.
72

0.
81

0.
82

0.
82

0.
83

0.
84

0.
83

0.
82

0.
84

0.
83

0.
88

D
4

62
.8

72
71

.0
8

72
.2

7
71

.6
0

76
75

72
75

.6
79

.6
82

0.
68

0.
73

0.
70

0.
72

0.
71

0.
70

0.
72

0.
79

0.
78

0.
77

0.
80

D
5

70
76

81
82

86
82

85
81

86
87

89
0.

67
0.

80
0.

84
0.

85
0.

83
0.

86
0.

84
0.

82
0.

84
0.

81
0.

89
D

6
68

.8
72

72
.0

8
76

.2
7

75
.6

6
78

76
81

86
.6

85
.6

88
0.

71
0.

78
0.

72
0.

74
0.

73
0.

72
0.

76
0.

80
0.

82
0.

83
0.

89
D

7
67

.8
71

.8
80

82
86

87
87

85
80

88
89

0.
71

0.
80

0.
80

0.
84

0.
83

0.
84

0.
82

0.
86

0.
88

0.
89

0.
90

D
8

67
72

78
79

.7
81

83
84

85
88

87
90

0.
71

0.
81

0.
80

0.
82

0.
81

0.
82

0.
82

0.
83

0.
83

0.
84

0.
87

D
9

78
82

87
89

89
90

90
.8

93
91

91
92

0.
78

0.
83

0.
86

0.
84

0.
91

0.
90

0.
92

0.
95

0.
90

0.
90

0.
94

D
10

66
.8

75
80

88
89

87
86

85
89

88
90

0.
68

0.
72

0.
78

0.
76

0.
73

0.
77

0.
75

0.
82

0.
84

0.
83

0.
89

D
11

69
78

80
84

84
.7

88
.7

88
81

85
87

89
0.

68
0.

77
0.

76
0.

80
0.

81
0.

84
0.

83
0.

83
0.

84
0.

83
0.

90
D

12
70

.8
81

86
85

88
87

85
88

82
85

89
0.

71
0.

84
0.

83
0.

86
0.

85
0.

84
0.

83
0.

86
0.

86
0.

88
0.

89
D

13
71

79
.9

84
.6

87
.3

88
.7

86
.7

87
88

88
.2

88
.1

89
.8

0.
67

0.
78

0.
82

0.
84

0.
83

0.
81

0.
85

0.
83

0.
84

0.
83

0.
89

D
14

77
.3

83
.8

86
.8

86
.3

82
85

87
86

87
.6

87
.3

89
.7

0.
71

0.
80

0.
86

0.
84

0.
83

0.
88

0.
83

0.
84

0.
83

0.
86

0.
88

D
15

70
88

84
88

89
89

89
.9

89
.8

91
.8

90
.7

92
.4

0.
73

0.
84

0.
85

0.
86

0.
83

0.
84

0.
85

0.
88

0.
88

0.
89

0.
91

D
16

67
75

85
86

85
83

82
80

84
85

88
0.

70
0.

78
0.

84
0.

83
0.

83
0.

86
0.

84
0.

85
0.

84
0.

83
0.

88
D

17
79

86
88

86
89

87
.7

88
88

.4
87

86
.8

89
.9

0.
76

0.
82

0.
80

0.
85

0.
83

0.
85

0.
86

0.
88

0.
86

0.
88

0.
89

D
18

79
82

87
89

89
.7

88
87

88
86

89
89

.9
0.

69
0.

80
0.

82
0.

85
0.

84
0.

83
0.

85
0.

86
0.

86
0.

86
0.

88
D

19
68

.9
73

76
80

81
82

83
84

.8
85

.8
86

.9
88

0.
72

0.
85

0.
82

0.
85

0.
86

0.
84

0.
81

0.
82

0.
80

0.
82

0.
87

D
20

68
76

77
78

.6
79

.8
80

81
.9

88
.3

 8
9.

6
81

89
0.

68
0.

72
0.

76
0.

73
0.

80
0.

78
0.

79
0.

80
0.

81
0.

80
0.

79
D

21
67

79
78

80
80

.9
87

.8
88

.7
89

.8
90

89
.7

90
.7

0.
74

0.
82

0.
81

0.
82

0.
83

0.
84

0.
84

0.
83

0.
81

0.
80

0.
85

D
22

70
78

82
83

84
.7

86
81

82
84

85
88

0.
70

0.
80

0.
81

0.
83

0.
84

0.
83

0.
84

0.
83

0.
84

0.
85

0.
89

D
23

68
.9

78
81

80
.8

8
83

.7
6

88
.7

8
83

.7
1

83
.9

89
84

88
0.

66
0.

72
0.

79
0.

82
0.

80
0.

81
0.

87
0.

83
0.

82
0.

80
0.

81
D

24
65

78
80

80
.8

82
88

88
.2

89
.3

89
87

.7
82

0.
70

0.
78

0.
80

0.
81

0.
83

0.
84

0.
81

0.
87

0.
82

0.
85

0.
85

D
25

78
80

82
84

85
88

89
87

89
84

89
.8

0.
71

0.
80

0.
84

0.
86

0.
87

0.
85

0.
83

0.
82

0.
81

0.
80

0.
88

D
26

66
74

78
.7

76
.9

79
.6

80
.8

82
.1

84
85

85
88

0.
72

0.
78

0.
80

0.
82

0.
83

0.
85

0.
84

0.
85

0.
86

0.
86

0.
87

D
27

67
80

83
84

81
88

81
.9

89
.6

87
86

.9
89

0.
67

0.
78

0.
76

0.
80

0.
82

0.
81

0.
82

0.
83

0.
84

0.
82

0.
88

D
28

67
84

85
86

87
89

88
89

.8
86

81
88

0.
71

0.
78

0.
80

0.
83

0.
84

0.
86

0.
84

0.
81

0.
86

0.
85

0.
88

D
29

67
78

80
82

83
81

87
88

.9
85

84
81

.9
0.

67
0.

78
0.

80
0.

83
0.

85
0.

87
0.

86
0.

87
0.

88
0.

81
0.

82
D

30
60

76
82

84
83

84
89

89
88

81
 8

9.
8

0.
67

0.
72

0.
80

0.
81

0.
83

0.
84

0.
85

0.
86

0.
83

0.
81

0.
88

1395International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

Ta
bl

e
12

A

cc
ur

ac
y

an
d

F-
m

ea
su

re
 u

si
ng

 K
-m

ea
n

A
cc

ur
ac

y
F-

m
ea

su
re

ID
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4

D
1

72
.3

3
84

.3
3

85
.6

6
87

.5
7

81
.6

6
88

.4
81

88
.4

80
.6

80
.6

88
.4

0.
71

0.
89

0.
87

0.
86

0.
89

0.
82

0.
81

0.
89

0.
89

0.
79

0.
89

D
2

69
.1

8
78

.8
78

.0
8

79
.2

7
79

.6
6

80
81

83
86

.6
87

88
0.

69
0.

75
0.

78
0.

79
0.

83
0.

82
0.

86
0.

87
0.

86
0.

86
0.

89
D

3
72

.8
82

84
.8

87
.6

7
85

.0
6

87
82

84
83

.6
84

.6
86

.7
0.

68
0.

77
0.

80
0.

81
0.

84
0.

85
0.

86
0.

84
0.

85
0.

82
0.

85
D

4
72

.8
76

77
.0

8
78

.2
7

76
.6

0
78

80
81

79
.6

80
.6

81
.9

0.
62

0.
70

0.
73

0.
76

0.
77

0.
78

0.
79

0.
80

0.
79

0.
76

0.
81

D
5

76
79

83
86

88
85

83
84

83
84

88
.9

0.
69

0.
79

0.
82

0.
86

0.
81

0.
84

0.
82

0.
80

0.
81

0.
84

0.
85

D
6

71
.8

78
78

.0
8

79
.2

7
79

.6
6

79
80

82
85

.5
82

.9
87

0.
67

0.
78

0.
75

0.
74

0.
73

0.
71

0.
76

0.
80

0.
82

0.
82

0.
84

D
7

67
.8

72
.8

78
.9

82
83

84
85

86
88

89
89

.8
0.

77
0.

82
0.

81
0.

83
0.

84
0.

85
0.

81
0.

86
0.

87
0.

80
0.

89
D

8
67

72
78

79
.7

82
85

.8
84

85
88

87
89

0.
71

0.
81

0.
80

0.
82

0.
81

0.
82

0.
82

0.
83

0.
83

0.
84

0.
87

D
9

78
82

87
.7

89
89

90
90

.8
93

.7
91

91
93

0.
78

0.
83

0.
86

0.
84

0.
91

0.
90

0.
92

0.
95

0.
90

0.
90

0.
94

D
10

66
.8

75
80

88
89

.9
87

.8
86

85
89

88
89

0.
65

0.
71

0.
76

0.
76

0.
73

0.
77

0.
75

0.
82

0.
84

0.
83

0.
85

D
11

69
78

80
84

85
.7

86
.1

82
81

85
87

88
.7

0.
68

0.
72

0.
74

0.
80

0.
81

0.
84

0.
83

0.
81

0.
82

0.
83

0.
86

D
12

70
.8

80
.8

86
.8

85
.6

88
.6

87
.4

85
.1

88
.5

82
.3

85
.1

88
.9

0.
69

0.
74

0.
83

0.
80

0.
85

0.
81

0.
82

0.
85

0.
83

0.
87

0.
88

D
13

75
79

.9
82

.6
87

86
.7

86
.7

87
81

82
.2

87
.1

87
.8

0.
69

0.
76

0.
81

0.
83

0.
85

0.
80

0.
85

0.
81

0.
83

0.
80

0.
86

D
14

77
.3

83
.8

86
.8

86
.3

82
85

87
86

84
.6

85
.3

86
.7

0.
71

0.
82

0.
84

0.
84

0.
83

0.
88

0.
83

0.
84

0.
83

0.
86

0.
87

D
15

78
85

86
88

.8
89

.5
88

.7
88

.9
88

.8
81

.8
80

.7
89

.8
0.

70
0.

81
0.

86
0.

85
0.

86
0.

85
0.

80
0.

84
0.

88
0.

87
0.

89
D

16
67

75
85

86
85

83
82

80
84

85
88

0.
70

0.
78

0.
84

0.
83

0.
83

0.
86

0.
84

0.
85

0.
84

0.
83

0.
88

D
17

79
86

88
86

82
86

.7
88

86
.4

87
82

.8
89

0.
76

0.
82

0.
80

0.
85

0.
83

0.
85

0.
86

0.
88

0.
86

0.
88

0.
89

D
18

79
80

81
86

82
.7

83
85

82
86

81
86

.9
0.

69
0.

80
0.

82
0.

85
0.

84
0.

80
0.

81
0.

83
0.

82
0.

84
0.

85
D

19
68

.9
73

76
82

83
85

84
85

.8
86

.8
87

.9
88

.8
0.

70
0.

81
0.

82
0.

83
0.

85
0.

82
0.

80
0.

82
0.

80
0.

82
0.

86
D

20
68

76
77

78
.6

79
.8

80
.8

81
.9

84
.3

 8
6.

6
81

89
0.

68
0.

72
0.

74
0.

72
0.

78
0.

76
0.

77
0.

79
0.

80
0.

78
0.

79
D

21
67

79
78

80
82

.9
87

.8
87

.7
86

.8
87

.8
83

.7
89

.7
0.

72
0.

81
0.

83
0.

85
0.

87
0.

85
0.

87
0.

86
0.

87
0.

82
0.

88
D

22
70

78
82

83
84

.7
85

81
82

84
85

86
0.

70
0.

80
0.

81
0.

83
0.

84
0.

83
0.

84
0.

83
0.

84
0.

85
0.

89
D

23
68

.9
78

81
80

.8
8

83
.7

6
88

83
.7

1
83

.9
89

.2
84

88
0.

66
0.

72
0.

79
0.

82
0.

80
0.

81
0.

87
0.

83
0.

82
0.

80
0.

81
D

24
65

78
80

80
.8

82
86

88
.2

88
.6

89
85

.7
81

0.
70

0.
78

0.
80

0.
81

0.
83

0.
81

0.
83

0.
86

0.
82

0.
84

0.
83

D
25

78
80

82
84

85
82

84
83

87
84

87
.8

0.
71

0.
81

0.
82

0.
84

0.
85

0.
86

0.
85

0.
83

0.
80

0.
82

0.
87

D
26

66
74

78
.7

77
.9

79
.6

80
.8

82
.1

84
85

82
87

0.
72

0.
78

0.
81

0.
82

0.
82

0.
84

0.
84

0.
85

0.
81

0.
82

0.
85

D
27

67
80

83
84

81
82

80
.9

89
.2

81
85

.9
86

0.
67

0.
78

0.
76

0.
80

0.
82

0.
81

0.
82

0.
81

0.
84

0.
82

0.
86

D
28

67
84

85
86

84
83

85
87

.8
 8

9
81

88
0.

71
0.

78
0.

80
0.

83
0.

81
0.

84
0.

85
0.

81
0.

80
0.

84
0.

86
D

29
67

78
80

82
83

81
87

87
.9

85
84

83
.7

0.
67

0.
78

0.
82

0.
81

0.
83

0.
85

0.
81

0.
83

0.
87

0.
83

0.
84

D
30

60
76

81
82

83
84

.7
89

.6
89

.2
88

84
89

.8
0.

67
0.

72
0.

80
0.

81
0.

83
0.

84
0.

85
0.

82
0.

81
0.

84
0.

89

1396 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

Ta
bl

e
13

A

cc
ur

ac
y

an
d

F-
m

ea
su

re
 u

si
ng

 fi
lte

re
d

cl
us

te
rin

g

A
cc

ur
ac

y
F-

m
ea

su
re

ID
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4

D
1

78
.3

3
82

84
86

86
82

83
88

87
84

89
0.

72
0.

80
0.

83
0.

84
0.

85
0.

86
0.

87
0.

82
0.

88
0.

81
0.

89
D

2
72

.9
81

.8
8

83
85

84
83

86
87

89
89

90
0.

72
0.

80
0.

85
0.

83
0.

82
0.

80
0.

84
0.

80
0.

83
0.

85
0.

86
D

3
67

81
84

87
89

86
82

84
85

88
.9

89
.9

0.
78

0.
87

0.
86

0.
85

0.
83

0.
85

0.
86

0.
85

0.
84

0.
85

0.
88

D
4

72
.8

88
86

84
85

83
88

85
87

89
90

.9
0.

70
0.

82
0.

87
0.

85
0.

86
0.

86
0.

86
0.

88
0.

81
0.

88
0.

89
D

5
73

81
83

80
81

86
88

82
83

84
88

.7
0.

67
0.

80
0.

81
0.

82
0.

83
0.

83
0.

84
0.

85
0.

86
0.

82
0.

89
D

6
67

85
87

86
85

84
88

89
90

.8
90

91
0.

69
0.

88
0.

85
0.

86
0.

87
0.

87
0.

85
0.

88
0.

89
0.

89
0.

90
D

7
72

81
85

88
89

89
.6

88
.7

86
86

.8
89

.7
90

.8
0.

70
0.

86
0.

85
0.

84
0.

87
0.

89
0.

86
0.

87
0.

88
0.

81
0.

89
D

8
65

77
78

78
82

84
85

86
87

87
.9

90
.9

0.
67

0.
81

0.
81

0.
88

0.
85

0.
84

0.
83

0.
84

0.
84

0.
87

0.
88

D
9

68
84

87
90

88
83

84
89

89
87

89
0.

78
0.

89
0.

82
0.

84
0.

83
0.

82
0.

89
0.

90
0.

81
0.

82
0.

88
D

10
66

.8
78

86
86

88
82

89
89

87
.8

86
.7

89
.9

0.
70

0.
82

0.
81

0.
88

0.
82

0.
85

0.
88

0.
81

0.
82

0.
88

0.
89

D
11

79
88

88
86

86
89

89
80

86
88

91
0.

72
0.

87
0.

86
0.

87
0.

86
0.

87
0.

85
0.

84
0.

82
0.

85
0.

89
D

12
66

.8
82

88
82

86
81

83
87

88
89

.1
89

.8
0.

73
0.

81
0.

80
0.

82
0.

81
0.

83
0.

82
0.

86
0.

86
0.

84
0.

88
D

13
70

.1
78

81
80

82
82

87
82

86
88

89
.6

0.
60

0.
78

0.
80

0.
81

0.
80

0.
79

0.
81

0.
83

0.
85

0.
85

0.
89

D
14

67
81

80
86

82
85

82
81

86
86

87
.9

0.
67

0.
82

0.
86

0.
81

0.
80

0.
81

0.
83

0.
83

0.
84

0.
83

0.
86

D
15

69
.7

88
88

86
86

88
88

89
.8

88
.7

82
.9

88
.9

0.
69

0.
86

0.
78

0.
80

0.
86

0.
85

0.
83

0.
81

0.
82

0.
84

0.
87

D
16

67
71

80
87

86
82

83
.8

81
86

.9
87

.8
88

.1
0.

72
0.

82
0.

81
0.

81
0.

80
0.

82
0.

83
0.

80
0.

80
0.

81
0.

84
D

17
80

86
88

86
89

89
88

83
86

81
89

.7
0.

67
0.

86
0.

82
0.

85
0.

82
0.

78
0.

72
0.

80
0.

78
0.

88
0.

89
D

18
72

84
86

81
84

82
.8

85
82

.9
87

86
89

0.
74

0.
81

0.
85

0.
85

0.
87

0.
82

0.
85

0.
86

0.
84

0.
88

0.
9

D
19

78
83

86
88

88
89

87
86

87
89

89
.7

0.
72

0.
81

0.
81

0.
84

0.
84

0.
88

0.
81

0.
82

0.
80

0.
82

0.
88

D
20

68
88

86
86

88
89

85
88

85
81

82
0.

78
0.

81
0.

82
0.

81
0.

84
0.

83
0.

85
0.

86
0.

87
0.

82
0.

83
D

21
62

78
78

80
81

80
81

.7
82

.7
83

.4
84

.2
88

.7
0.

67
0.

82
0.

85
0.

84
0.

85
0.

87
0.

80
0.

81
0.

87
0.

86
0.

88
D

22
69

.8
83

82
85

86
86

83
81

82
85

86
.9

0.
68

0.
80

0.
83

0.
85

0.
81

0.
80

0.
82

0.
82

0.
85

0.
85

0.
86

D
23

68
.9

80
81

80
.8

8
82

.7
6

81
.7

8
85

.7
1

86
.9

89
.9

81
80

.1
0.

68
0.

72
0.

80
0.

84
0.

80
0.

82
0.

85
0.

83
0.

82
0.

80
0.

82
D

24
65

80
81

81
82

83
86

.4
88

.3
85

86
.7

82
0.

67
0.

72
0.

80
0.

81
0.

82
0.

83
0.

80
0.

84
0.

81
0.

82
0.

83
D

25
69

.9
86

84
84

84
87

85
83

86
87

88
.1

0.
77

0.
88

0.
81

0.
86

0.
88

0.
88

0.
82

0.
85

0.
86

0.
88

0.
89

D
26

69
.9

81
82

.7
83

.9
84

.6
84

.8
86

.1
84

87
81

87
.1

0.
73

0.
82

0.
83

0.
81

0.
82

0.
83

0.
81

0.
82

0.
86

0.
85

0.
89

D
27

67
82

82
84

80
80

.1
82

.9
83

.6
86

.8
85

.8
87

.9
0.

71
0.

82
0.

82
0.

84
0.

84
0.

85
0.

87
0.

85
0.

86
0.

87
0.

88
D

28
63

82
86

89
86

82
.8

81
.1

86
.5

82
81

.9
81

.9
0.

78
0.

78
0.

80
0.

82
0.

81
0.

84
0.

83
0.

85
0.

80
0.

81
0.

83
D

29
67

78
82

85
86

82
87

88
.9

85
84

88
.4

0.
77

0.
80

0.
81

0.
84

0.
86

0.
88

0.
87

0.
86

0.
87

0.
85

0.
86

D
30

60
76

82
84

87
89

81
82

85
81

 8
9.

6
0.

67
0.

72
0.

71
0.

82
0.

85
0.

86
0.

87
0.

85
0.

87
0.

87
0.

88

1397International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

Ta
bl

e
14

A

cc
ur

ac
y

an
d

F-
m

ea
su

re
 u

si
ng

 d
en

si
ty

-b
as

ed
 c

lu
ste

rin
g

A
cc

ur
ac

y
F-

m
ea

su
re

ID
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4

D
1

72
.3

3
84

.3
3

85
.6

6
87

.5
7

81
.6

6
88

.4
81

88
.4

80
.6

80
.6

88
.4

0.
71

0.
89

0.
87

0.
86

0.
89

0.
82

0.
81

0.
89

0.
89

0.
79

0.
89

D
2

69
.1

8
78

.8
78

.0
8

79
.2

7
79

.6
6

80
81

83
86

.6
87

88
0.

69
0.

75
0.

78
0.

79
0.

83
0.

82
0.

86
0.

87
0.

86
0.

86
0.

89
D

3
72

.8
82

84
.8

87
.6

7
85

.0
6

87
82

84
83

.6
84

.6
86

.7
0.

68
0.

77
0.

80
0.

81
0.

84
0.

85
0.

86
0.

84
0.

85
0.

82
0.

85
D

4
72

.8
76

77
.0

8
78

.2
7

76
.6

0
78

80
81

79
.6

80
.6

81
.9

0.
62

0.
70

0.
73

0.
76

0.
77

0.
78

0.
79

0.
80

0.
79

0.
76

0.
81

D
5

76
79

83
86

88
85

83
84

83
84

88
.9

0.
69

0.
79

0.
82

0.
86

0.
81

0.
84

0.
82

0.
80

0.
81

0.
84

0.
85

D
6

71
.8

78
78

.0
8

79
.2

7
79

.6
6

79
80

82
85

.5
82

.9
87

0.
67

0.
78

0.
75

0.
74

0.
73

0.
71

0.
76

0.
80

0.
82

0.
82

0.
84

D
7

67
.8

72
.8

78
.9

82
83

84
85

86
88

89
89

.8
0.

77
0.

82
0.

81
0.

83
0.

84
0.

85
0.

81
0.

86
0.

87
0.

80
0.

89
D

8
67

72
78

79
.7

82
85

.8
84

85
88

87
89

0.
71

0.
81

0.
80

0.
82

0.
81

0.
82

0.
82

0.
83

0.
83

0.
84

0.
87

D
9

78
82

87
.7

89
89

90
90

.8
93

.7
91

91
93

0.
78

0.
83

0.
86

0.
84

0.
91

0.
90

0.
92

0.
95

0.
90

0.
90

0.
94

D
10

66
.8

75
80

88
89

.9
87

.8
86

85
89

88
89

0.
65

0.
71

0.
76

0.
76

0.
73

0.
77

0.
75

0.
82

0.
84

0.
83

0.
85

D
11

69
78

80
84

85
.7

86
.1

82
81

85
87

88
.7

0.
68

0.
72

0.
74

0.
80

0.
81

0.
84

0.
83

0.
81

0.
82

0.
83

0.
86

D
12

70
.8

80
.8

86
.8

85
.6

88
.6

87
.4

85
.1

88
.5

82
.3

85
.1

88
.9

0.
69

0.
74

0.
83

0.
80

0.
85

0.
81

0.
82

0.
85

0.
83

0.
87

0.
88

D
13

75
79

.9
82

.6
87

86
.7

86
.7

87
81

82
.2

87
.1

87
.8

0.
69

0.
76

0.
81

0.
83

0.
85

0.
80

0.
85

0.
81

0.
83

0.
80

0.
86

D
14

77
.3

83
.8

86
.8

86
.3

82
85

87
86

84
.6

85
.3

86
.7

0.
71

0.
82

0.
84

0.
84

0.
83

0.
88

0.
83

0.
84

0.
83

0.
86

0.
87

D
15

78
85

86
88

.8
89

.5
88

.7
88

.9
88

.8
81

.8
80

.7
89

.8
0.

70
0.

81
0.

86
0.

85
0.

86
0.

85
0.

80
0.

84
0.

88
0.

87
0.

89
D

16
67

75
85

86
85

83
82

80
84

85
88

0.
70

0.
78

0.
84

0.
83

0.
83

0.
86

0.
84

0.
85

0.
84

0.
83

0.
88

D
17

79
86

88
86

82
86

.7
88

86
.4

87
82

.8
89

0.
76

0.
82

0.
80

0.
85

0.
83

0.
85

0.
86

0.
88

0.
86

0.
88

0.
89

D
18

79
80

81
86

82
.7

83
85

82
86

81
86

.9
0.

69
0.

80
0.

82
0.

85
0.

84
0.

80
0.

81
0.

83
0.

82
0.

84
0.

85
D

19
68

.9
73

76
82

83
85

84
85

.8
86

.8
87

.9
88

.8
0.

70
0.

81
0.

82
0.

83
0.

85
0.

82
0.

80
0.

82
0.

80
0.

82
0.

86
D

20
68

76
77

78
.6

79
.8

80
.8

81
.9

84
.3

 8
6.

6
81

89
0.

68
0.

72
0.

74
0.

72
0.

78
0.

76
0.

77
0.

79
0.

80
0.

78
0.

79
D

21
67

79
78

80
82

.9
87

.8
87

.7
86

.8
87

.8
83

.7
89

.7
0.

72
0.

81
0.

83
0.

85
0.

87
0.

85
0.

87
0.

86
0.

87
0.

82
0.

88
D

22
70

78
82

83
84

.7
85

81
82

84
85

86
0.

70
0.

80
0.

81
0.

83
0.

84
0.

83
0.

84
0.

83
0.

84
0.

85
0.

89
D

23
68

.9
78

81
80

.8
8

83
.7

6
88

83
.7

1
83

.9
89

.2
84

88
0.

66
0.

72
0.

79
0.

82
0.

80
0.

81
0.

87
0.

83
0.

82
0.

80
0.

81
D

24
65

78
80

80
.8

82
86

88
.2

88
.6

89
85

.7
81

0.
70

0.
78

0.
80

0.
81

0.
83

0.
81

0.
83

0.
86

0.
82

0.
84

0.
83

D
25

78
80

82
84

85
82

84
83

87
84

87
.8

0.
71

0.
81

0.
82

0.
84

0.
85

0.
86

0.
85

0.
83

0.
80

0.
82

0.
87

D
26

66
74

78
.7

77
.9

79
.6

80
.8

82
.1

84
85

82
87

0.
72

0.
78

0.
81

0.
82

0.
82

0.
84

0.
84

0.
85

0.
81

0.
82

0.
85

D
27

67
80

83
84

81
82

80
.9

89
.2

81
85

.9
86

0.
67

0.
78

0.
76

0.
80

0.
82

0.
81

0.
82

0.
81

0.
84

0.
82

0.
86

D
28

67
84

85
86

84
83

85
87

.8
 8

9
81

88
0.

71
0.

78
0.

80
0.

83
0.

81
0.

84
0.

85
0.

81
0.

80
0.

84
0.

86
D

29
67

78
80

82
83

81
87

87
.9

85
84

83
.7

0.
67

0.
78

0.
82

0.
81

0.
83

0.
85

0.
81

0.
83

0.
87

0.
83

0.
84

D
30

60
76

81
82

83
84

.7
89

.6
89

.2
88

84
89

.8
0.

67
0.

72
0.

80
0.

81
0.

83
0.

84
0.

85
0.

82
0.

81
0.

84
0.

89

1398 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

Ta
bl

e
15

A

cc
ur

ac
y

an
d

F-
m

ea
su

re
 u

si
ng

 fa
rth

es
t fi

rs
t c

lu
ste

rin
g

A
cc

ur
ac

y
F-

m
ea

su
re

ID
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4
A

F
FR

1
FR

2
FR

3
FR

4
FR

5
FR

6
FS

1
FS

2
FS

3
FS

4

D
1

68
.3

3
81

84
86

86
82

83
85

86
83

89
.8

0.
79

0.
81

0.
85

0.
83

0.
81

0.
83

0.
85

0.
82

0.
87

0.
81

0.
89

D
2

65
80

.8
8

84
87

86
85

82
85

86
89

91
.8

0.
75

0.
82

0.
86

0.
85

0.
84

0.
81

0.
85

0.
83

0.
85

0.
81

0.
87

D
3

67
81

84
87

82
85

83
81

84
89

90
.8

0.
78

0.
87

0.
86

0.
85

0.
83

0.
85

0.
86

0.
85

0.
84

0.
87

0.
89

D
4

62
.8

78
81

89
86

83
89

85
87

89
90

.7
0.

72
0.

80
0.

88
0.

84
0.

87
0.

86
0.

86
0.

87
0.

81
0.

86
0.

88
D

5
68

.8
81

83
80

81
86

87
82

83
85

89
.8

0.
67

0.
80

0.
81

0.
82

0.
83

0.
83

0.
84

0.
85

0.
86

0.
87

0.
90

D
6

67
.9

85
87

86
85

84
88

89
92

94
96

.7
0.

69
0.

88
0.

85
0.

86
0.

87
0.

87
0.

85
0.

88
0.

87
0.

88
0.

90
D

7
78

81
85

88
89

89
.6

88
.7

86
86

.8
89

.7
93

.8
0.

70
0.

86
0.

85
0.

84
0.

87
0.

89
0.

86
0.

87
0.

82
0.

81
0.

89
D

8
65

78
75

78
82

84
85

86
87

88
91

0.
67

0.
81

0.
81

0.
88

0.
85

0.
84

0.
83

0.
84

0.
84

0.
88

0.
89

D
9

68
84

87
92

91
83

84
96

95
93

86
0.

78
0.

89
0.

92
0.

94
0.

93
0.

92
0.

96
0.

99
0.

91
0.

92
0.

91
D

10
66

.8
78

86
88

89
82

89
89

89
.8

89
.7

97
0.

70
0.

82
0.

81
0.

88
0.

86
0.

87
0.

85
0.

88
0.

82
0.

88
0.

96
D

11
79

88
88

86
86

89
89

80
86

88
98

0.
72

0.
87

0.
86

0.
86

0.
85

0.
87

0.
85

0.
84

0.
82

0.
85

0.
93

D
12

66
.8

82
88

82
86

81
83

88
87

89
90

0.
75

0.
80

0.
81

0.
82

0.
81

0.
81

0.
82

0.
86

0.
86

0.
84

0.
89

D
13

69
.1

78
81

81
82

82
87

82
86

88
89

.8
0.

60
0.

78
0.

80
0.

81
0.

80
0.

79
0.

81
0.

82
0.

80
0.

81
0.

88
D

14
67

81
80

86
82

85
82

81
86

86
90

.9
0.

67
0.

82
0.

86
0.

81
0.

80
0.

88
0.

83
0.

85
0.

81
0.

82
0.

89
D

15
70

.7
88

88
86

86
88

88
89

.8
91

92
97

0.
69

0.
86

0.
88

0.
83

0.
86

0.
85

0.
83

0.
84

0.
86

0.
86

0.
94

D
16

67
71

80
87

86
82

83
81

86
87

88
0.

72
0.

82
0.

81
0.

80
0.

80
0.

81
0.

83
0.

80
0.

80
0.

81
0.

83
D

17
80

86
88

86
89

90
92

93
96

91
98

0.
67

0.
86

0.
82

0.
85

0.
87

0.
88

0.
82

0.
85

0.
88

0.
98

1
D

18
72

87
89

91
90

92
.8

91
92

.9
95

96
98

.9
0.

70
0.

89
0.

85
0.

85
0.

87
0.

84
0.

85
0.

86
0.

88
0.

90
0.

93
D

19
77

86
87

89
91

92
93

92
95

96
97

0.
72

0.
89

0.
86

0.
87

0.
88

0.
92

0.
91

0.
92

0.
90

0.
88

0.
95

D
20

68
88

86
86

89
90

92
93

 9
5

91
92

0.
78

0.
82

0.
86

0.
83

0.
82

0.
85

0.
87

0.
88

0.
89

0.
84

0.
85

D
21

62
78

78
80

81
80

80
.7

82
83

84
85

.7
0.

67
0.

82
0.

85
0.

84
0.

85
0.

87
0.

88
0.

88
0.

87
0.

89
0.

9
D

22
69

.8
83

85
87

88
88

90
92

96
95

98
0.

68
0.

82
0.

88
0.

87
0.

85
0.

82
0.

85
0.

85
0.

88
0.

89
0.

91
D

23
68

.9
80

81
80

.8
8

83
.7

6
87

.7
8

87
.7

1
87

.9
91

90
90

.1
0.

68
0.

72
0.

80
9

0.
84

6
0.

80
0.

82
0.

85
0.

83
0.

82
0.

80
0.

82
D

24
65

81
80

82
83

89
89

.2
91

.3
90

89
.7

88
0.

67
0.

80
0.

81
0.

82
0.

86
0.

85
0.

82
0.

89
0.

82
0.

85
0.

85
D

25
69

.9
86

88
86

89
97

92
93

96
97

98
.8

0.
77

0.
88

0.
81

0.
86

0.
88

0.
88

0.
89

0.
89

0.
89

0.
88

1
D

26
69

.9
84

88
.7

86
.9

89
.6

94
.8

96
.1

94
97

95
97

.9
0.

73
0.

82
0.

83
0.

84
0.

85
0.

86
0.

86
0.

85
0.

88
0.

86
0.

92
D

27
67

82
85

86
81

90
.1

91
.9

93
.6

97
95

.8
97

.9
0.

71
0.

82
0.

86
0.

88
0.

89
0.

89
0.

87
0.

85
0.

86
0.

87
0.

91
D

28
63

82
86

89
86

92
91

98
86

81
91

0.
78

0.
78

0.
82

0.
85

0.
82

0.
85

0.
86

0.
89

0.
88

0.
85

0.
88

D
29

67
78

82
85

86
82

87
92

85
84

89
0.

77
0.

80
0.

81
0.

84
0.

86
0.

88
0.

87
0.

86
0.

87
0.

85
0.

88
D

30
60

76
82

84
87

89
91

92
95

91
 9

8
0.

67
0.

72
0.

71
0.

82
0.

85
0.

86
0.

87
0.

85
0.

87
0.

87
1

1399International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

10.4 Comparison of results

To identify that out of implemented feature selection
approaches and machine learning algorithms which

technique work well or all of the techniques perform equally
well, we employed pair-wise t test in our study.

1. Feature selection approaches In this study, for each
of the feature selection approaches two sets are formed,
each of feature selection approach have 150 distinct data

Fig. 11 Box-plot diagram of accuracy

1400 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

points (5 machine learning techniques × 30 data set). t
test is performed on distinct feature selection approaches
and the respective p value to measure its statistical sig-
nificance is compared. The outcome of t test study is dem-
onstrated in Fig. 13b. In the figure, we used two different
symbols to represent the p value i.e., circle filled with

green color have p value > 0.05 (having no relevance dif-
ference) and circle filled with red color have p value ≤ 0.05
(relevance difference). After observing the Fig. 13b it is
clear that, majority of the cells are filled with green color
circle. This means that there is no relevance difference
among the employed feature selection approaches. Further,

Fig. 12 Box-plot diagram of F-measure

1401International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

by determining the measure of mean difference given in
Table 16, we have observed that feature sets obtained by
considering FS4 give best outcomes when examined with
other implemented feature selection approaches.

In the present work, we also compare the developed
model on the basis of cost-benefit analysis. For every fea-
ture selection approach, cost-benefit analysis is computed
by employing following equation:

Here, Basedcost is dependent on the correlation among the
selected features set and error in the class. Basedcost can be
calculated from the following equation:

Here, Accuracy (SM) is the classification accuracy to build
a malware detection model by utilizing selected features set,

(25)Cost-Benefit = (Basedcost + Benefitcost)∕2.

(26)Basedcost = Accuracy (SM) × �SM.fault.

�SM.fault is a multiple correlation coefficient among selected
features set and error. The proposed model produces higher
accuracy and as it have high multiple correlation coefficient
so it will achieve a high Basedcost. NAM is considered as fea-
ture sets and NSM is considered as the number of selected
features after implementing features selection approaches.
Basedcost can be calculated from the following equation:

The feature selection approach which achieve higher value
of cost-benefit is an foremost feature selection approach as
proposed in [22]. Figure 14a, b demonstrates cost-benefit
of distinct feature selection approaches. On the basis of
Fig 14a, b we observed that FS4 achieved higher median
Cost-benefit measure when matched with other approaches.

2. Machine learning techniques In our study, we imple-
mented eleven different features subsets (i.e., 1 consider-
ing all features + 10 feature selection approaches) on thirty

(27)Basedcost = NAM − NSM∕NAM

Fig. 13 t test analysis (p value)

Table 16 Performance of
distinct feature selection
approaches after calculate its
mean difference

Accuracy AF FR1 FR2 FR3 FR4 FR5 FR6 FS1 FS2 FS3 FS4

AF 0 − 1.9 − 0.96 − 0.78 − 1.91 − 1.90 − 4.89 − 1.77 − 1.80 − 0.87 − 5.8
FR1 1.8 0 0.77 0.87 − 0.78 − 0.80 − 3.8 0.07 0.32 0.80 − 3.89
FR2 0.87 − 0.78 0 0.5 − 2.0 − 2.0 − 3.89 − 0.9 − 0.32 0.20 − 4.54
FR3 0.67 − 0.68 − 0.2 0 − 1.32 − 1.32 − 4.08 − 0.8 − 0.45 0.07 − 4.88
FR4 1.88 0.77 1.22 1.36 0 0 − 2.99 0.77 0.8 1.7 − 3.66
FR5 1.88 0.77 1.22 1.36 0 0 − 2.99 0.75 0.8 1.7 − 3.66
FR6 4.5 3.88 3.22 4.09 2.88 2.88 0 3.55 3.67 4.19 − 0.50
FS1 1.65 − 0.09 0.61 0.77 − 0.80 − 0.81 − 3.88 0 0.21 0.80 − 3.98
FS2 1.09 − 0.29 0.39 0.51 − 0.9 − 0.9 − 3.81 − 0.22 0 0.8 − 4.21
FS3 0.87 − 0.88 − 0.21 − 0.09 − 1.8 − 1.8 − 3.8 − 0.08 − 0.7 0 − 4.89
FS4 6.0 3.9 4.89 4.88 3.88 3.88 0.48 3.88 4.16 4.77 0

1402 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

different Android app data set by examining four perfor-
mance parameters i.e., intra- cluster, inter-cluster, F-measure
and accuracy, all with 330 data points [(1 considering all set
of features + 10 feature selection method) × 30 data sets)].
Figure 13a demonstrates the outcomes of t test analysis. On
the basis of Fig. 13a, it is noticeable that, there is no rel-
evance difference among these techniques because p value
is smaller than 0.05. On the other hand, by determining the
difference in their mean value as given in Table 17, Farthest
first clustering gives best outcome when compared to other
machine learning techniques.

3. Feature subset selection and feature ranking
approaches For this study, pair-wise t test is used to iden-
tify which feature selection approach work better. For
both of the implemented approaches (i.e., feature subset
selection and feature ranking) sample pairs of performance
evaluation are studied. The performance of averaged fea-
ture subset selection and feature ranking techniques out-
comes of t test analysis are briefed in Table 18. In this
research paper, five distinct kinds of machine learning
algorithms are applied on thirty different Android catego-
ries by selecting Accuracy and F-measure as performance
parameters, in accordance with each feature selection

approaches an aggregate number of two sets are utilized.
Feature subset selection with 360 distinct points (which
means 4 feature subset selection approaches × 3 machine
learning techniques × 30 data sets) and feature ranking
with 540 distinct data points (3 machine learning tech-
niques × 6 feature ranking approaches × 30 data sets). On
the basis of Table 18, it is seen that, there isn’t a relevant
variation among two implemented approaches, because p
value come out to be greater than 0.05. On the other side
by calculating the mean difference value of feature subset
selection approaches give best results when compare to
feature ranking approaches. On the basis of Cost-Benefit
analysis as demonstrated in Fig. 14, we can say that both
feature subset selection and feature ranking have nearly
similar Cost-Benefit value. It proves that the averaged cost
and benefit of model build by considering selected set of
features with feature subset selection approaches and fea-
ture ranking have nearly same value.

Fig. 14 Cost-benefit value

Table 17 Mean difference
between performance of
different Unsupervised methods

Accuracy SOM K-mean Filter clustering Density based
clustering

Farthest
first clus-
tering

SOM 0 − 2.2 − 3.98 − 3.88 − 4.01
K-mean 1.86 0 − 2.81 − 3.10 − 4.89
Filter clustering 2.88 2.51 0 − 2.88 − 3.10
Density based clustering 1.86 2.88 2.01 0 − 4.89
Farthest first clustering 5.77 3.78 2.99 2.77 0

1403International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

10.5 Evaluation of proposed framework i.e.,
SemiDroid

10.5.1 Comparison of results with previously used
classifiers

In addition to the study done in finding the best approach to
build a malware detection model accurately, this study also

makes the comparison with different most often used super-
vised machine learning approaches present in literature such
as SVM with three distinct kernels i.e., linear, polynomial
and RBF, decision tree analysis, logistic regression, neural
network and Naïve Bayes classifier. Figure 15 demonstrates
the box-plot diagrams for F-measure and accuracy of com-
monly utilized classifiers and five distinct machine learn-
ing algorithms implemented in this paper. On the basis of
Fig. 15, we observed that farthest first clustering have higher
median value along with some number of outliers.

Pair-wise t test is also implemented to decide which
machine learning approach yield best performance. The
outcomes of t test study for distinct machine learning
approaches are demonstrated in Fig. 16. On the basis of
Fig. 16 it is seen that, in number of the cases there is a rel-
evance difference among these machine learning techniques
because p value is smaller than 0.05. On the other hand by
noticing the mean difference value in Table 19 it can be

Fig. 15 Diagram of box-plot showing performance of different classifiers

Table 18 t test analysis among feature subset selection approaches
and feature ranking approaches

Mean (FR-FS) p value t value

Accuracy
− 0.1908 0.899 − 0.3211
F-measure
− 0.0078 0.599 − 0.5251

Fig. 16 t test analysis (p value)

1404 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

Ta
bl

e
19

M

ea
n

di
ffe

re
nc

e
be

tw
ee

n
pe

rfo
rm

an
ce

 o
f d

iff
er

en
t s

up
er

vi
se

d
m

ac
hi

ne
 le

ar
ni

ng
 te

ch
ni

qu
e

A
cc

ur
ac

y
D

ec
i-

si
on

 tr
ee

an

al
ys

is

Lo
gi

sti
c

re
gr

es
-

si
on

SV
M

 w
ith

lin

ea
r

ke
rn

el

SV
M

 w
ith

po

ly
no

m
ia

l
ke

rn
el

SV
M

w

ith
 R

B
F

ke
rn

el

N
eu

ra
l n

et
w

or
k

N
aï

ve

B
ay

es

cl
as

si
fie

r

SO
M

K
-m

ea
n

D
en

si
ty

 c
lu

ste
rin

g
Fi

lte
r c

lu
ste

rin
g

Fa
rth

es
t c

lu
ste

rin
g

D
ec

is
io

n
tre

e
an

al
ys

is
0

6.
77

6.
41

9.
81

5.
87

5.
99

10
.2

1
2.

10
−

 1
.1

1
−

 2
.8

8
−

 5
.7

7
−

 1
1.

77

Lo
gi

sti
c

re
gr

es
si

on
−

 6
.8

8
0

−
 0

.8
8

−
 4

.8
8

2.
88

−
 1

.8
9

3.
88

−
 4

.9
9

−
 5

.1
1

−
 5

.8
8

−
 8

.1
1

−
 9

.8
8

SV
M

 w
ith

 li
ne

ar

ke
rn

el
−

 6
.5

5
0.

77
0

−
 4

.8
1

3.
87

−
 0

.8
9

3.
21

−
 4

.1
0

−
 5

.7
7

−
 6

.1
7

−
 7

.8
−

 9
.4

1

SV
M

 w
ith

 p
ol

yn
o-

m
ia

l k
er

ne
l

−
 2

.8
8

4.
71

4.
41

0
7.

27
3.

29
8.

01
−

 0
.1

9
−

 2
.7

7
−

 3
.1

4
−

 3
.4

1
−

 5
.2

8

SV
M

 w
ith

 R
B

F
ke

rn
el

−
 9

.8
−

 2
.7

7
−

 3
.4

1
−

 7
.8

1
0

−
 4

.8
9

0.
29

−
 7

.1
0

−
 7

.9
9

−
 1

0.
77

−
 1

1.
01

−
 1

2.
78

N
eu

ra
l n

et
w

or
k

−
 5

.8
8

1.
77

0.
41

−
 4

.8
1

4.
17

0
4.

21
−

 3
.1

0
−

 5
.1

1
−

 6
.1

0
−

 7
.1

1
−

 8
.8

8
N

aï
ve

 B
ay

es
 c

la
s-

si
fie

r
−

 1
0.

78
−

 3
.7

7
−

 3
.4

1
−

 8
.1

0
−

 0
.8

7
−

 4
.9

9
0

−
 8

.1
0

−
 8

.8
8

−
 1

0.
1

−
 1

1.
1

−
 1

2.
80

SO
M

−
 2

.1
0

4.
97

4.
10

0.
81

7.
87

3.
99

8.
21

0
−

 2
.9

7
−

 3
 −

19
−

 3
.9

1
−

 5
.0

2
K

-m
ea

n
1.

99
8.

17
7.

17
3.

81
11

.7
1

7.
09

12
.1

3.
03

0
−

 1
.8

8
−

 2
.1

1
−

 3
.1

1
D

en
si

ty
 b

as
ed

cl

us
te

rin
g

2.
99

3.
17

5.
17

4.
81

7.
71

6.
09

10
.1

6.
03

5.
77

0
−

 2
.1

1
−

 3
.1

1

Fi
lte

r c
lu

ste
rin

g
2.

88
5.

17
6.

17
7.

81
7.

71
6.

09
10

.1
1.

03
1.

77
0.

77
0

−
 2

.0
Fa

rth
es

t fi
rs

t c
lu

s-
te

rin
g

 4
.9

9
9.

77
9.

41
5.

81
12

.8
7

8.
99

13
.2

1
4.

90
2.

99
1.

99
0.

99
0

1405International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

seen that farthest first clustering achieved better results when
compared to other supervised machine learning techniques.

In addition to that, in our study we compare our proposed
malware detection model (i.e., SemiDroid) with existing
frameworks or approaches that were developed in the litera-
ture. Table 20 shows the name, goal, methodology, deploy-
ment, data set and detection rate of suggested approaches
or frameworks.

10.5.2 Comparison of results with different anti‑virus
scanners

Although farthest first clustering gives a better performance
as compared to the machine learning technique used in the

literature, in the end it must be comparable with the com-
mon anti-virus products available in practice for Android
malware detection. For this experiment, we select 10 dif-
ferent anti-viruses which are available in the market and
applied them on our collected data set. The performance of
proposed framework is comparatively better than many of
the anti-viruses available in the experiment. Table 21 shows
the results of the experiment with anti-virus scanners. The
detection rate of the anti-viruses scanners varies consider-
ably. Also the best anti-virus scanners detected 96.2% of the
Android malwares and certain scanners identified only 82%
of the malicious samples, likely do not being specialized in
detecting Android malware. By using 1000 Android apps,
our proposed framework i.e., SemiDroid gives the detection

Table 20 Comparison with previously developed frameworks/approaches

Detection rate of our proposed malware detection model (i.e., SemiDroid) is higher when compared to distinct frameworks/approaches available
in the literature. Frameworks/approaches proposed in the literature developed and tested with limited data set. Experiments were performed on
Drebin data set [10] and empirical result reveals that our proposed framework has achieved 2% higher detection rate when compared to distinct
frameworks available in the literature with unlabelled data set

Framework/approach Goal Methodology Deployment Data set Detection rate Labelled data set used

Andromaly [62] Detection Dynamic and profile-
based

Distributed Very-limited High 100%

AndroSimilar [30] Detection Static Off-device Limited Moderate 100%
Andrubis [43] Analysis and detection Static, dynamic,

profile-based and
behavioural

Off-device Higher Moderate 100%

Aurasium [76] Detection Dynamic and behav-
ioural

Off-device Limited High 100%

CopperDroid [66] Analysis and detection Dynamic, system/API
and VMI

Off-device Limited Moderate 100%

Crowdroid [18] Detection Dynamic, system call/
API and behavioural

Distributed Very-limited High 100%

Paranoid Android [58] Detection Dynamic and behav-
ioural

Off-device Limited – 100%

TaintDroid [29] Detection Dynamic system call/
API and behavioural

Off-device Very-limited Moderate 100%

HinDroid [35] Detection Dynamic and API Off-device Limited Moderate 100%
Mahindru and Singh

[50]
Detection Dynamic Off-device Limited Moderate 100%

MalDozer [39] Detection Dynamic Off-device Limited Moderate 100%
HEMD [81] Detection Dynamic and permis-

sions
Off-device Limited Moderate 100%

DroidDet [82] Detection Static Off-device Limited Moderate 100%
Wei Wang [71] Detection Dynamic Off-device Limited Moderate 100%
MalInsight [33] Detection Dynamic Off-device Limited High 100%
DeepDroid [45] Detection Dynamic Off-device Limited Moderate 100%
PerbDroid [49] Detection Dynamic Off-device Limited High 100%
Mahindru and Sangal

[47]
Detection Dynamic Off-device Limited High 100%

SemiDroid (our pro-
posed framework)

Detection Dynamic,permissions,
API calls, user-rating
and Number of user
download app

Off-device Unlimited Higher No labelled data set
is used

1406 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

rate of 98.8% and outperforms 1 out of 10 anti-virus scan-
ners. From this, we can say that our proposed framework
is more efficient in detecting malware when compared to
distinct anti-virus scanners.

10.5.3 Detection of known and unknown malware families

Detection of known malware families In this section, we
check that our proposed framework is capable to detect
malware of known family or not. For this experiment, we
select 20 sample of each families (in our study, we consider
sample of 81 different families shown in Table 22.) and train
it with our selected model. Farthest first clustering is capable
to detect average 98.8% malware apps. The name of fami-
lies and the samples used for each family can be found in
Table 22 and the detection rate of our proposed framework
for each family is illustrated in Fig. 17a, b.

Detection of unknown malware families To check whether
the farthest first clustering is capable to detect unknown mal-
ware families or not, we trained, our proposed framework
with the random selection of 10 different families obtained
by principle of counting and test is applied on the rest of the
remaining 71 families present in the data set. Table 23 shows
the result of farthest first clustering when we train it with 10
selected families. From Table 23, we can say that if we train
farthest first clustering with few number of known families
samples which are necessary to generalize the behavior of
most malware families it gives better detection rate.

In summary, our proposed framework is capable to detect
Android malware more effectively when compared with sev-
eral anti-virus scanners which regularly update their signa-
ture definition. In addition, our proposed framework is capa-
ble to identify Android malware more efficiently whenever
we trained with limited number of malware families.

10.5.4 Experimental findings

The comprehensive conclusion of our experimental work is
presented in this section. The empirical study was conducted
for thirty different categories of Android apps by consider-
ing five different unsupervised machine learning techniques
i.e., SOM, K-mean, filter clustering, density based clustering
and farthest first clustering. On the basis of the experimental
results, this research paper is able to answer the questions
mentioned in Sect. 2.

RQ1. In this paper, we applied five distinct machine
learning algorithms to build a model which help us to
detect whether an app is benign or malware. On the basis of
Tables 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15, it can be implicit
that model build by employing farthest first clustering by
using selected set of features obtained as a result of FS4
as an input gives better outcome when compared to others.

RQ2. To respond the RQ2, Fig. 17 and Tables 20 and 21
were analyzed. Here, it is found that model build by utilizing
farthest first clustering is capable to detect malware from
real-world apps.

RQ3. In the present paper, four distinct kind of feature
subset selection approaches and six distinct kind of feature
ranking approaches are used to identify the smaller subset
of features. By utilizing these approaches, we considered
best possible subsets of the features which help us to build
a model to identify that either an app is benign or malware.
On the basis of the Tables 6, 7, 8, 9, 10, 11, 12, 13, 14 and
15, in number of cases there occurs a reduced subset of fea-
tures which are best for building a detection model when
compared to all the extracted features.

RQ4. In the present paper, six distinct variants of feature
ranking approaches are used to discover the reduced subset
of features. On the basis of t test study, it is seen that feature
selection by implementing PCA approach gives the better
outcomes when matched to others approaches.

RQ5, For this paper, four distinct kind of feature subset
selection approaches are used to find the reduced subset of
features. On the basis of t test study, it is seen that feature
selection by utilizing FS4 gives the outcomes which are per-
suasively better when compared to other approaches.

RQ6. For this work, pair-wise t test being utilized to
identify whether feature subset selection approaches per-
form better than feature ranking approaches or both of them
carried out equally well. On the basis of t test outcomes it
is seen that, there is a relevance difference among feature

Table 21 Comparison of proposed framework i.e., SemiDroid with
distinct anti-virus scanners

Detection speed calculated on Android apps whose size is less or
equivalent to 50MB. To compare the performance of SemiDroid we
consider freely available anti-virus in the market. Speed is measured
for a particular Android app taken from real-world. To see the effect
of obfuscation and polymorphism techniques on the malware detec-
tion process. We consider 1000 distinct Android apps collected from
Google play store and third party app store having the same package
name

Name of the anti-virus Averaged detection
rate (in %)

Speed to detect
malware in sec

Cyren 82 60
Ikarus 82.68 62
VIPRE 89 40
McAfee 89 30
AVG 90 32
AVware 92.8 30
ESET NOD32 92.9 20
CAT QuickHeal 95.8 32
AegisLab 96.1 30
NANO Antivirus 96.2 20
SemiDroid (our proposed

approach)
98.8 12

1407International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

subset selection and feature ranking approach. Moreover, the
value of mean difference shows that feature subset selection
approaches gives better results than the feature ranking.

RQ7. On the basis of Sect. 9, we can observe that the
performance of the feature selection approaches vary by

using the distinct machine learning techniques. Further, it
also observed that selection of machine learning algorithm
to build a malware detection model which detect either
the app is malware or not is based on the feature selection
approaches.

Table 22 Top malware families
used in our data set

ID Family # of samples ID Family # of samples ID Family # of samples

A1 Airpush 150 A2 AndroRAT 140 A3 Andup 300
A4 Aples 120 A5 BankBot 100 A6 Bankun 133
A7 Boqx 130 A8 Boxer 122 A9 Cova 100
A10 Dowgin 100 A11 DroidKungFu 100 A12 Erop 120
A13 FakeAngry 110 A14 FakeAV 120 A15 FakeDoc 120
A16 FakeInst 110 A17 FakePlayer 120 A18 FakeTimer 120
A19 FakeUpdates 120 A20 Finspy 111 A21 Fjcon 123
A22 Fobus 102 A23 Fusob 181 A24 GingerMaster 192
A25 GoldDream 20 A26 Gorpo 120 A27 Gumen 20
A28 Jisut 62 A29 Kemoge 720 A30 Koler 200
A31 Ksapp 290 A32 Kuguo 100 A33 Kyview 500
A34 Leech 300 A35 Lnk 100 A36 Lotoor 20
A37 Mecor 29 A38 Minimob 330 A39 Mmarketpay 200
A40 MobileTX 500 A41 Mseg 230 A42 Mtk 200
A43 Nandrobox 100 A44 Obad 100 A45 Opfake 120
A46 Penetho 120 A47 Ramnit 120 A48 Roop 120
A49 RuMMS 100 A50 SimpleLocker 110 A51 SlemBunk 120
A52 SmsKey 120 A53 SMsZombie 110 A54 Spambot 115
A55 SpyBubble 120 A56 Stealer 300 A57 Steek 230
A58 Svpeng 20 A59 Tesbo 21 A60 Triada 200
A61 Univert 210 A62 UpdtKiller 100 A63 Utchi 300
A64 Vidro 92 A65 VikingHorde 230 A66 Vmvol 533
A67 Winge 190 A68 Youmi 689 A69 Zitmo 230
A70 Ztorg 1000 A71 Imlog 50 A72 SMSreg 50
A73 Gappusin 50 A74 Adrd 50 A75 Geinimi 100
A76 Kmin 157 A77 Plankton 125 A78 GingerMaster 100
A79 Iconosys 100 A80 SendPay 18 A81 GoldDream 200

Fig. 17 Detection rate of proposed framework farthest first clustering

1408 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

11 Threat to validity

In this section, threats to validity which are experienced
at the time of performing the experiment are presented.
Below we discuss them:

 (i) Construct validity In this work, presented models for
malware detection only detect either an app is benign
or malware, but does not state that how many number
of possible permissions and API calls are required to
detect malware.

 (ii) External validity Cyber-criminals develops malware
on daily basis to misuse the user information. In this
work, we considered 81 different malware families to
train the model and our proposed model is capable to
detect malware from known and unknown families.
Further, research can be extended to train model with
more malware families and which is capable to detect
more malware apps from real-world.

 (iii) Internal validity The threat lies in the consistency of
the data used in this study. We collected data from
different sources mentioned in Sect. 4. Any error in
the information not mentioned in the sources was
not considered in this work. Also, we can not claim
that the data considered for the experiment is 100%
accurate, we believed that it has been collected con-
sistently.

12 Conclusion

This work emphasizes on designing a malware detection
framework by using selected set of features which help us
to identify that an Android app belongs to malware class or
benign class. The execution process was performed by tak-
ing assistance of thirty different categories of Android apps.

Empirical results indicate that, it is feasible to determine
a small subset of features. The malware detection model
build by considering this determined set of features is able to
detect malware and benign apps with inferior value of mis-
classified errors and better accuracy. Further, it is also seen
that the results of malware detection model, is influenced by
the feature selection approaches.

After performing in depth analysis, we found that AA,
BU, LS, PE, RA, TO set of features are relevance detec-
tors for malware detection by utilizing feature selection
approaches. Further, on the basis of mean difference, it is
seen that model build by considering selected set of fea-
tures as an input gives better detection rate when compared
to model build by considering all set of extracted features.
Moreover, the model build by utilizing Farthest first clus-
tering gives better outcomes when compared to other
techniques.

At last, on the basis of Cost-benefit analysis, we implicit
that the selected features by utilizing FS4, achieved high
median Cost-Benefit value when compared to other

Table 23 Detection of
SemiDroid to detect unknown
malware families

Combination of Android malware families to trained the model Detection rate when
trained farthest first
clustering

{A1, A2, A3, A4, A5, A6, A7, A8, A9, A10} 66%
{A1, A3, A4, A5, A6, A7, A8, A8, A10, A11} 70%
: :
: :
{A2, A3, A4, A5, A6, A7, A8, A9, A10, A11} 59%
: :
: :
: :
: :
: :
{A7, A13, A42, A55, A67, A37, A68, A79, A22, A51} 98.4%
: :
: :
: :
: :
: :

1409International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

approaches and it is also seen that model build by utilizing
Farthest first clustering is capable to detect 98.8% known
and unknown malware from real-world apps.

In this work, proposed models for malware detection
only detect that either the app is malware or benign. Fur-
ther, work can be extended to develop a model for malware
detection which predict whether a particular feature is
capable to detect malware or not. Moreover, this study can
be replicated over other Android apps repository which
utilized soft computing models to attain better detection
rate for malware.

References

 1. Aafer Y, Du W, Yin H (2013) Droidapiminer: mining api-level
features for robust malware detection in android. In: International
conference on security and privacy in communication systems,
Springer, pp 86–103

 2. Abawajy J, Kelarev A (2017) Iterative classifier fusion system for
the detection of android malware. IEEE Transactions on Big Data

 3. Alam MS, Vuong ST (2013) Random forest classification for
detecting android malware. In: 2013 IEEE international confer-
ence on green computing and communications and IEEE Internet
of Things and IEEE cyber, physical and social computing, IEEE,
pp 663–669

 4. Alazab M, Alazab M, Shalaginov A, Mesleh A, Awajan A (2020)
Intelligent mobile malware detection using permission requests
and API calls. Future Gener Comput Syst 107:509–521

 5. Almin SB, Chatterjee M (2015) A novel approach to detect
android malware. Procedia Comput Sci 45:407–417

 6. Alzaylaee MK, Yerima SY, Sezer S (2020) DL-droid: deep learn-
ing based android malware detection using real devices. Comput
Secur 89:101663

 7. Amos B, Turner H, White J (2013) Applying machine learning
classifiers to dynamic android malware detection at scale. In: 2013
9th international wireless communications and mobile computing
conference (IWCMC), IEEE, pp 1666–1671

 8. Andriatsimandefitra R, Tong VVT (2015) Detection and identifi-
cation of android malware based on information flow monitoring.
In: 2015 IEEE 2nd international conference on cyber security and
cloud computing, IEEE, pp 200–203

 9. Arora A, Peddoju SK, Conti M (2019) Permpair: Android mal-
ware detection using permission pairs. IEEE Trans Inf Forensics
Secur 15:1968–1982

 10. Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K, Sie-
mens C (2014) Drebin: effective and explainable detection of
android malware in your pocket. NDSS 14:23–26

 11. Attar AE, Khatoun R, Lemercier M (2014) A gaussian mixture
model for dynamic detection of abnormal behavior in smartphone
applications. In: 2014 global information infrastructure and net-
working symposium (GIIS), IEEE, pp 1–6

 12. Babaagba KO, Adesanya SO (2019) A study on the effect of fea-
ture selection on malware analysis using machine learning. In:
Proceedings of the 2019 8th international conference on educa-
tional and information technology, pp 51–55

 13. Barrera D, Kayacik HG, Oorschot PCV, Somayaji A (2010) A
methodology for empirical analysis of permission-based security
models and its application to android. In: Proceedings of the 17th
ACM conference on computer and communications security, pp
73–84

 14. Bibi KF, Banu MN (2015) Feature subset selection based on
filter technique. In: 2015 international conference on computing
and communications technologies (ICCCT), IEEE, pp 1–6

 15. Birendra C (2016) Android permission model. arXiv preprint
arXiv :16070 4256

 16. Blair DC (1979) Information retrieval, 2nd ed. C. J. van Rijsber-
gen. J Am Soc Inf Sci 30(6):374–375. https ://doi.org/10.1002/
asi.46303 00621 . https ://ideas .repec .org/a/bla/james t/v30y1
979i6 p374-375.html

 17. Blessie EC, Karthikeyan E (2012) Sigmis: a feature selection
algorithm using correlation based method. J Algorithms Com-
put Technol 6(3):385–394

 18. Burguera I, Zurutuza U, Nadjm-Tehrani S (2011) Crowdroid:
behavior-based malware detection system for android. In: Pro-
ceedings of the 1st ACM workshop on security and privacy in
smartphones and mobile devices, pp 15–26

 19. Cai H, Meng N, Ryder B, Yao D (2018) Droidcat: effective
android malware detection and categorization via app-level pro-
filing. IEEE Trans Inf Forensics Secur 14(6):1455–1470

 20. Canbek G, Baykal N, Sagiroglu S (2017) Clustering and visu-
alization of mobile application permissions for end users and
malware analysts. In: 2017 5th international symposium on
digital forensic and security (ISDFS), IEEE, pp 1–10

 21. Caviglione L, Gaggero M, Lalande JF, Mazurczyk W, Urbański
M (2015) Seeing the unseen: revealing mobile malware hidden
communications via energy consumption and artificial intel-
ligence. IEEE Trans Inf Forensics Secur 11(4):799–810

 22. Chaikla N, Qi Y (1999) Genetic algorithms in feature selection.
In: IEEE SMC’99 conference proceedings. 1999 IEEE interna-
tional conference on systems, man, and cybernetics (Cat. No.
99CH37028), IEEE, vol 5, pp 538–540

 23. Chen PS, Lin SC, Sun CH (2015) Simple and effective method
for detecting abnormal internet behaviors of mobile devices. Inf
Sci 321:193–204

 24. Chen Y, Tu L (2007) Density-based clustering for real-time
stream data. In: Proceedings of the 13th ACM SIGKDD inter-
national conference on knowledge discovery and data mining,
pp 133–142

 25. Cruz AEC, Ochimizu K (2009) Towards logistic regression
models for predicting fault-prone code across software projects.
In: 2009 3rd international symposium on empirical software
engineering and measurement, IEEE, pp 460–463

 26. Cui B, Jin H, Carullo G, Liu Z (2015) Service-oriented mobile
malware detection system based on mining strategies. Pervas
Mobile Comput 24:101–116

 27. Dixon B, Mishra S (2013) Power based malicious code detection
techniques for smartphones. In: 2013 12th IEEE international
conference on trust, security and privacy in computing and com-
munications, IEEE, pp 142–149

 28. Enck W, Ongtang M, McDaniel P (2009) On lightweight mobile
phone application certification. In: Proceedings of the 16th
ACM conference on computer and communications security,
pp 235–245

 29. Enck W, Gilbert P, Han S, Tendulkar V, Chun BG, Cox LP, Jung
J, McDaniel P, Sheth AN (2014) Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones. ACM Trans Comput Syst (TOCS) 32(2):1–29

 30. Faruki P, Ganmoor V, Laxmi V, Gaur MS, Bharmal A (2013)
Androsimilar: robust statistical feature signature for android
malware detection. In: Proceedings of the 6th international con-
ference on security of information and networks, pp 152–159

 31. Fung CJ, Lam DY, Boutaba R (2014) Revmatch: An efficient
and robust decision model for collaborative malware detection.
In: 2014 IEEE network operations and management symposium
(NOMS), IEEE, pp 1–9

http://arxiv.org/abs/160704256
https://doi.org/10.1002/asi.4630300621
https://doi.org/10.1002/asi.4630300621
https://ideas.repec.org/a/bla/jamest/v30y1979i6p374-375.html
https://ideas.repec.org/a/bla/jamest/v30y1979i6p374-375.html

1410 International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

 32. Guo DF, Sui AF, Shi YJ, Hu JJ, Lin GZ, Guo T (2014) Behavior
classification based self-learning mobile malware detection. JCP
9(4):851–858

 33. Han W, Xue J, Wang Y, Liu Z, Kong Z (2019) Malinsight: a
systematic profiling based malware detection framework. J Netw
Comput Appl 125:236–250

 34. Holland B, Deering T, Kothari S, Mathews J, Ranade N (2015)
Security toolbox for detecting novel and sophisticated android
malware. In: 2015 IEEE/ACM 37th IEEE international confer-
ence on software engineering, IEEE, vol 2, pp 733–736

 35. Hou S, Ye Y, Song Y, Abdulhayoglu M (2017) Hindroid: an
intelligent android malware detection system based on struc-
tured heterogeneous information network. In: Proceedings of
the 23rd ACM SIGKDD international conference on knowledge
discovery and data mining, pp 1507–1515

 36. Jerbi M, Dagdia ZC, Bechikh S, Said LB (2020) On the use
of artificial malicious patterns for android malware detection.
Comput Secur 92:101743

 37. Jouve PE, Nicoloyannis N (2005) A filter feature selection
method for clustering. In: International symposium on meth-
odologies for intelligent systems, Springer, pp 583–593

 38. Kadir AFA, Stakhanova N, Ghorbani AA (2015) Android bot-
nets: What URLs are telling us. In: International conference on
network and system security, Springer, pp 78–91

 39. Karbab EB, Debbabi M, Derhab A, Mouheb D (2018) Maldozer:
automatic framework for android malware detection using deep
learning. Digit Investig 24:S48–S59

 40. Kohavi R, John GH et al (1997) Wrappers for feature subset
selection. Artificial intelligence 97(1–2):273–324

 41. Kumar M, et al. (2013) An optimized farthest first clustering
algorithm. In: 2013 Nirma University international conference
on engineering (NUiCONE), IEEE, pp 1–5

 42. Lee WY, Saxe J, Harang R (2019) Seqdroid: obfuscated android
malware detection using stacked convolutional and recurrent
neural networks. In: Deep Learning applications for cyber secu-
rity, Springer, pp 197–210

 43. Lindorfer M, Neugschwandtner M, Weichselbaum L, Fratanto-
nio Y, Veen VVD, Platzer C (2014) Andrubis–1,000,000 apps
later: a view on current android malware behaviors. In: 2014
third international workshop on building analysis datasets and
gathering experience returns for security (BADGERS), IEEE,
pp 3–17

 44. Ma Z, Ge H, Liu Y, Zhao M, Ma J (2019) A combination method
for android malware detection based on control flow graphs and
machine learning algorithms. IEEE Access 7:21235–21245

 45. Mahindru A, Sangal A (2019) Deepdroid: feature selection
approach to detect android malware using deep learning. In: 2019
IEEE 10th international conference on software engineering and
service science (ICSESS), IEEE, pp 16–19

 46. Mahindru A, Sangal A (2020a) Feature-based semi-supervised
learning to detect malware from android. Automated software
engineering: a deep learning-based approach. Springer, Berlin,
pp 93–118

 47. Mahindru A, Sangal A (2020b) Feature-based semi-supervised
learning to detect malware from android. Automated software
engineering: a deep learning-based approach. Springer, Berlin,
pp 93–118

 48. Mahindru A, Sangal A (2020a) Gadroid: a framework for mal-
ware detection from android by using genetic algorithm as feature
selection approach. Int J Adv Sci Technol 29(5):5532–5543

 49. Mahindru A, Sangal A (2020b) Perbdroid: effective malware
detection model developed using machine learning classification
techniques. A journey towards bio-inspired techniques in software
engineering. Springer, Berlin, pp 103–139

 50. Mahindru A, Singh P (2017) Dynamic permissions based
android malware detection using machine learning techniques.

In: Proceedings of the 10th innovations in software engineering
conference, pp 202–210

 51. Martinelli F, Mercaldo F, Saracino A (2017) Bridemaid: an hybrid
tool for accurate detection of android malware. In: Proceedings of
the 2017 ACM on Asia conference on computer and communica-
tions security, pp 899–901

 52. Milosevic N, Dehghantanha A, Choo KKR (2017) Machine learn-
ing aided android malware classification. Comput Electr Eng
61:266–274

 53. Narudin FA, Feizollah A, Anuar NB, Gani A (2016) Evaluation
of machine learning classifiers for mobile malware detection. Soft
Comput 20(1):343–357

 54. Ng DV, Hwang JIG (2014) Android malware detection using the
dendritic cell algorithm. In: 2014 international conference on
machine learning and cybernetics, IEEE, vol 1, pp 257–262

 55. Novakovic J (2010) The impact of feature selection on the accu-
racy of naïve bayes classifier. In: 18th telecommunications forum
TELFOR, vol 2, pp 1113–1116

 56. Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11(5):341–356
 57. Plackett RL (1983) Karl pearson and the chi-squared test. Inter-

national Statistical Review/Revue Internationale de Statistique
59–72

 58. Portokalidis G, Homburg P, Anagnostakis K, Bos H (2010) Para-
noid android: versatile protection for smartphones. In: Proceed-
ings of the 26th annual computer security applications conference,
pp 347–356

 59. Quan D, Zhai L, Yang F, Wang P (2014) Detection of android
malicious apps based on the sensitive behaviors. In: 2014 IEEE
13th international conference on trust, security and privacy in
computing and communications, IEEE, pp 877–883

 60. Rahman M (2013) Droidmln: a markov logic network approach
to detect android malware. In: 2013 12th international conference
on machine learning and applications, IEEE, vol 2, pp 166–169

 61. Rahman SSMM, Saha SK (2018) Stackdroid: evaluation of a
multi-level approach for detecting the malware on android using
stacked generalization. In: International conference on recent
trends in image processing and pattern recognition, Springer, pp
611–623

 62. Shabtai A, Kanonov U, Elovici Y, Glezer C, Weiss Y (2012)
“Andromaly”: a behavioral malware detection framework for
android devices. J Intell Inf Syst 38(1):161–190

 63. Sheen S, Anitha R, Natarajan V (2015) Android based malware
detection using a multifeature collaborative decision fusion
approach. Neurocomputing 151:905–912

 64. Shen T, Zhongyang Y, Xin Z, Mao B, Huang H (2014) Detect
android malware variants using component based topology graph.
In: 2014 IEEE 13th international conference on trust, security and
privacy in computing and communications, IEEE, pp 406–413

 65. Suarez-Tangil G, Tapiador JE, Peris-Lopez P, Pastrana S (2015)
Power-aware anomaly detection in smartphones: an analysis of
on-platform versus externalized operation. Pervas Mobile Comput
18:137–151

 66. Tam K, Khan SJ, Fattori A, Cavallaro L (2015) Copperdroid: auto-
matic reconstruction of android malware behaviors. In: Ndss

 67. Tong F, Yan Z (2017) A hybrid approach of mobile malware
detection in android. J Parallel Distrib Comput 103:22–31

 68. Tramontana E, Verga G (2019) Mitigating privacy-related risks
for android users. In: 2019 IEEE 28th international conference on
enabling technologies: infrastructure for collaborative enterprises
(WETICE), IEEE, pp 243–248

 69. Vinayakumar R, Alazab M, Soman K, Poornachandran P, Ven-
katraman S (2019) Robust intelligent malware detection using
deep learning. IEEE Access 7:46717–46738

 70. Wang W, Wang X, Feng D, Liu J, Han Z, Zhang X (2014)
Exploring permission-induced risk in android applications for

1411International Journal of Machine Learning and Cybernetics (2021) 12:1369–1411

1 3

malicious application detection. IEEE Trans Inf Forensics Secur
9(11):1869–1882

 71. Wang W, Zhao M, Wang J (2019) Effective android malware
detection with a hybrid model based on deep autoencoder and
convolutional neural network. J Ambient Intell Humaniz Comput
10(8):3035–3043

 72. Wei F, Li Y, Roy S, Ou X, Zhou W (2017) Deep ground truth
analysis of current android malware. In: International conference
on detection of intrusions and malware, and vulnerability assess-
ment, Springer, pp 252–276

 73. Wei TE, Mao CH, Jeng AB, Lee HM, Wang HT, Wu DJ (2012)
Android malware detection via a latent network behavior analysis.
In: 2012 IEEE 11th international conference on trust, security and
privacy in computing and communications, IEEE, pp 1251–1258

 74. Wu DJ, Mao CH, Wei TE, Lee HM, Wu KP (2012) Droidmat:
Android malware detection through manifest and API calls trac-
ing. In: 2012 seventh Asia joint conference on information secu-
rity, IEEE, pp 62–69

 75. Xiao X, Zhang S, Mercaldo F, Hu G, Sangaiah AK (2019)
Android malware detection based on system call sequences and
LSTM. Multimed Tools Appl 78(4):3979–3999

 76. Xu R, Saïdi H, Anderson R (2012) Aurasium: practical policy
enforcement for android applications. In: Presented as part of the
21st {USENIX} security symposium ({USENIX} Security 12), pp
539–552

 77. Yang L, Ganapathy V, Iftode L (2011) Enhancing mobile malware
detection with social collaboration. In: 2011 IEEE third interna-
tional conference on privacy, security, risk and trust and 2011
IEEE third international conference on social computing, IEEE,
pp 572–576

 78. Yewale A, Singh M (2016) Malware detection based on opcode
frequency. In: 2016 international conference on advanced commu-
nication control and computing technologies (ICAC CCT), IEEE,
pp 646–649

 79. Yuxin D, Siyi Z (2019) Malware detection based on deep learning
algorithm. Neural Comput Appl 31(2):461–472

 80. Zhou Y, Jiang X (2012) Dissecting android malware: characteri-
zation and evolution. In: 2012 IEEE symposium on security and
privacy, IEEE, pp 95–109

 81. Zhu HJ, Jiang TH, Ma B, You ZH, Shi WL, Cheng L (2018)
Hemd: a highly efficient random forest-based malware detection
framework for android. Neural Comput Appl 30(11):3353–3361

 82. Zhu HJ, You ZH, Zhu ZX, Shi WL, Chen X, Cheng L (2018b)
Droiddet: effective and robust detection of android malware using
static analysis along with rotation forest model. Neurocomputing
272:638–646

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	SemiDroid: a behavioral malware detector based on unsupervised machine learning techniques using feature selection approaches
	Abstract
	1 Introduction
	2 Related work
	2.1 Research questions

	3 Android permission model
	4 Formulation of data set
	4.1 Collection of .apk files
	4.2 Extraction of features
	4.3 Formulation of feature sets

	5 Feature selection approaches
	5.1 Feature ranking approaches
	5.1.1 Gain-ratio feature selection
	5.1.2 Chi-squared test
	5.1.3 Information-gain feature selection
	5.1.4 OneR feature selection
	5.1.5 Principal component analysis (PCA)
	5.1.6 Logistic regression analysis

	5.2 Feature subset selection approaches
	5.2.1 Correlation based feature selection
	5.2.2 Rough set analysis
	5.2.3 Consistency subset evaluation approach

	5.3 Filtered subset evaluation

	6 Machine learning techniques
	6.1 Self-organizing maps (SOM)
	6.2 K-mean
	6.3 Farthest first
	6.4 Filtered cluster
	6.5 Density-based cluster

	7 Comparison of proposed model with different existing techniques
	8 Evaluation of performance parameters
	9 Experimental setup
	10 Results of performed experiment
	10.1 Feature ranking approaches
	10.2 Feature subset selection approaches
	10.3 Machine learning techniques
	10.4 Comparison of results
	10.5 Evaluation of proposed framework i.e., SemiDroid
	10.5.1 Comparison of results with previously used classifiers
	10.5.2 Comparison of results with different anti-virus scanners
	10.5.3 Detection of known and unknown malware families
	10.5.4 Experimental findings

	11 Threat to validity
	12 Conclusion
	References

