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Abstract
In real world, multi-attribute group decision making (MAGDM) is a complicated cognitive process that involves expression, 
fusion and analysis of multi-source uncertain information. Among diverse soft computing tools for addressing MAGDM, 
the ones from granular computing (GrC) frameworks perform excellently via efficient strategies for multi-source uncertain 
information. However, they usually lack convincing semantic interpretations for MAGDM due to extreme information fusion 
rules and instabilities of information analysis mechanisms. This work adopts a typical GrC framework named multigranula-
tion probabilistic models to enrich semantic interpretations for GrC-based MAGDM approaches, and constructs MAGDM-
oriented multigranulation probabilistic models with dual hesitant fuzzy (DHF) information in light of the MULTIMOORA 
(Multi-Objective Optimization by Ratio Analysis plus the full MULTIplicative form) method. After reviewing several basic 
knowledge, we first put forward four types of DHF multigranulation probabilistic models. Then, according to the MULTI-
MOORA method, a DHF MAGDM algorithm is designed via the proposed theoretical models in the context of person-job 
(P-J) fit. Finally, an illustrative case study for P-J fit is investigated, and corresponding validity tests and comparative analysis 
are conducted as well to demonstrate the rationality of the presented models.

Keywords  Granular computing · MAGDM · Multigranulation probabilistic models · Dual hesitant fuzzy information · 
MULTIMOORA

1  Introduction

MAGDM consists of several decision matrices provided by 
a panel of decision makers, and each of them involves a 
set of finite alternatives that are depicted by finite attributes 

[40]. Until now, plenty of traditional approaches have been 
advised to handle MAGDM problems, and it is recognized 
that GrC-based methods act as quite effective representa-
tives among them [9, 25, 38, 46, 48]. Compared with classic 
MAGDM methods, GrC-based methods excel in simulating 
human thinking processes and intelligent behaviors by using 
approximate reasonings rather than precise reasonings. In 
addition, GrC-based methods are able to divide a compli-
cated problem into several fundamental components, then 
corresponding processing strategies for each component are 
employed to efficiently address the complicated problem. In 
the framework of GrC, lots of concrete theories were put for-
ward in succession, such as fuzzy sets, rough sets, three-way 
decisions (3WD), formal concept analysis, quotient spaces, 
cloud models, and so forth [13, 35, 41].

Recently, with the rapid progress of data acquisition 
techniques and the arrival of big data era, individuals are 
convenient to have a quick access to vast amounts of data 
for decision making. In the meantime, some inevitable 
limitations can be found in MAGDM that may affect the 
acquisition of high-quality decision making results, such 
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as various uncertainties existed in decision making data, 
individual subjectivity of decision makers, the absent of 
robust decision analysis tools, and so forth. Moreover, the 
addressing of MAGDM problems can be divided into three 
stages, i.e., information depiction, information fusion and 
information analysis [47, 49]. More specifically, the limi-
tation of various uncertainties existed in decision making 
data is usually processed in information depiction stage, 
the limitation of individual subjectivity of decision makers 
is usually processed in information fusion stage, and the 
limitation of lacking robust decision analysis tools is usu-
ally processed in information analysis stage. However, it is 
noteworthy that existing MAGDM approaches are likely to 
confront with great challenges when coping with the above-
mentioned limitations in three stages, thus it is imperative 
to construct novel GrC-based MAGDM approaches. In spe-
cific, the above-stated three challenges are listed as follows: 

(1)	 In information depiction stage, the acquisited data for 
decision making often presents various uncertainties 
such as fuzziness, imprecision, hesitation, and so forth, 
which enhance the complexity of problem solving to 
some extent. The establishment of classic fuzzy sets not 
only enables experts to describe lots of fuzzy concepts, 
but also promotes the study of fuzzy MAGDM to the 
depth direction. Afterwards, many kinds of general-
ized fuzzy sets are designed in succession to handle a 
wider variety of uncertainties [3]. Hence, it is signifi-
cant to select suitable generalized fuzzy sets to depict 
corresponding uncertainties and integrate them in the 
construction of MAGDM models.

(2)	 In information fusion stage, how to integrate individual 
preferences to group preferences is one of the core dif-
ficulties in this stage [24, 39, 42, 60]. The majority 
of current information fusion methods concentrate on 
efficient integrations of individual preferences but over-
look the influence triggered by individual subjectivity 
of decision makers. Hence, it is significant to design 
novel MAGDM information fusion schemes that can 
avoid the above-mentioned negative impacts.

(3)	 In information analysis stage, utilizing the presented 
theoretical models to choose, rank or sort different 
alternatives plays a vital role in this stage [8, 23, 31, 
32]. It is noted that if decision analysis tools lack strong 
stabilities, the final decision making results may vary 
according to decision risks, fault tolerance of models, 
differences of various decision making methods, etc. 
Hence, it is significant to construct robust decision 
analysis tools for analyzing MAGDM information.

For the sake of addressing the above-stated three chal-
lenges, the concept of DHF sets (DHFSs) [61, 62], multi-
granulation probabilistic rough sets (MGPRSs) [15, 59] and 

MULTIMOORA [1, 2] is scheduled to investigate MAGDM-
oriented DHF multigranulation probabilistic models based 
on MULTIMOORA. The detailed motivations of utilizing 
them to establish novel GrC-based MAGDM approaches can 
be summarized below: 

(1)	 DHFSs: DHFSs encompass several DHF elements 
(DHFEs) for corresponding alternatives, it is noted that 
each DHFE is equipped with a membership degree and 
a non-membership degree of an alternative to a pro-
vided set, and both of them own several finite values. 
For instance, a human resource expert may consume 
the value of membership degrees is 0.6 or 0.7 when 
evaluating the level of computer skills for an employee, 
and the value of non-membership degrees is 0.1 or 
0.2 when performing the same task. Then, a DHFE 
({0.6, 0.7}, {0.1, 0.2}) can handle the above-stated situ-
ation when the human resource expert shows a hesitat-
ing attitude between some values. Thus, DHFSs can 
depict fuzziness, imprecision and hesitation of uncer-
tain information simultaneously for MAGDM. More 
recently, many scholars have developed DHF MAGDM 
approaches from the aspect of information measures [5, 
6, 30], aggregation operators [33], traditional MAGDM 
tools [18, 22], rough set theories [52, 54, 55], 3WD [10, 
11, 14], and so forth.

(2)	 MGPRSs: MGPRSs take advantages of multigranula-
tion rough sets (MGRSs) [19–21, 26] and probabilistic 
rough sets (PRSs) [36, 43, 44] in information fusion 
and analysis, respectively. For one thing, multiple 
binary relations are arranged to be processed at the 
same time in light of the idea of parallel computing, 
and each binary relation can be regarded as a deci-
sion matrix offered by each decision maker. If we can 
process multiple binary relations together, it will be 
beneficial to study valid approaches to MAGDM with 
enhanced information fusion efficiencies. Moreover, 
MGRSs are also used to address risk-based MAGDM 
with the support of optimistic, pessimistic, adjustable 
and other explainable versions [28, 37, 45, 50, 51, 53, 
56–58]. For instance, Xu and Guo [37] put forward the 
idea of double-quantitative 3WD in generalized multi-
granulation spaces. Zhang et al. [50, 51, 53] explored 
MGRSs in several generalized hesitant fuzzy (HF) 
information systems along with related GrC-based 
MAGDM approaches. Zhan et al. [45, 56–58] devel-
oped a series of covering-based rough set models and 
further discussed their applications in decision mak-
ing. Sun et al. [28] considered a novel MGRS with 
diversified binary relations for solving fuzzy MAGDM 
problems. For another, noticing that the structure of 
rough approximations is rather strict in original rough 
sets, PRSs-based MAGDM methods own the ability 



1221International Journal of Machine Learning and Cybernetics (2021) 12:1219–1241	

1 3

of fault tolerance by easing the strict limitations and 
setting suitable thresholds [12, 16, 17, 25, 27, 29]. For 
instance, Sun et al. [25, 27] proposed novel 3WD-based 
MAGDM approaches in fuzzy and linguistic informa-
tion systems. Liang et al. [12] studied a method for 
3WD by using traditional pythagorean fuzzy decision 
making tools. Mandal and Ranadive [16, 17] discussed 
MGPRSs in bipolar-valued fuzzy and interval-valued 
fuzzy information systems along with their 3WD-based 
MAGDM approaches. Wang and Liang [29] presented 
the preference measure of multi-granularity proba-
bilistic linguistic term sets for addressing large-scale 
MAGDM problems.

(3)	 MULTIMOORA: For the sake of establishing a robust 
MAGDM method that is free from the influence of dif-
ferent MAGDM results, MULTIMOORA can gener-
ate the final ranking for alternatives by virtue of three 
subordinate rankings, i.e., ratio systems, reference point 
approaches and full multiplicative forms, and it has 
been confirmed that the final ranking by using MUL-
TIMOORA is more robust than traditional MAGDM 
approaches in which a single ranking is concluded. In 
the past few years, many scholars have utilized MULTI-
MOORA in numerous realistic fields such as materials 
selections [7], type 2 diabetes selections [4], and other 
typical ones.

Considering that DHFSs, MGPRSs and MULTIMOORA 
can address related challenges in information depiction, 
information fusion and information analysis of MAGDM 
respectively, and there lack adequate supports for a com-
prehensive MAGDM approach that combines DHFSs, 
MGPRSs with MULTIMOORA simultaneously. There-
fore, it is necessary to propose MGPRSs with MULTI-
MOORA in the DHF background and further construct a 
corresponding MAGDM approach. In addition, the fea-
sibility of the constructed MAGDM approach is verified 
by a systematic case study for P-J fit. It is expected that 
the proposed DHF MAGDM approach owns the follow-
ing advantages: (1) depicting various uncertain MAGDM 
information; (2) fusing multi-source MAGDM information 
that is incorporated into decision risks and fault tolerance 
abilities; (3) providing robust MAGDM results for com-
plicated DHF MAGDM problems. In light of the above 
study motivations, we sum up the critical contributions of 
the current paper as follows: 

(1)	 Four types of DHF membership degrees are put forward 
via optimistic/pessimistic tactics, DHF hybrid average 
(DHFHA) operators, DHF weighted Euclidean dis-
tances along with DHF hybrid geometric (DHFHG) 
operators, and related MAGDM-oriented DHF multi-
granulation probabilistic models are developed.

(2)	 A DHF MAGDM approach is constructed based on the 
developed theoretical models with MULTIMOORA.

(3)	 A P-J fit case study is studied along with validity tests 
and comparative analysis, the final conclusion shows 
the proposed MAGDM-oriented DHF multigranulation 
probabilistic models based on MULTIMOORA excel 
in providing reasonable and explainable results.

The remainder of the work is structured as follows. The 
next section plans to briefly revisit necessary preliminar-
ies of DHFSs, DHF MGRSs, and PRSs. In Sect. 3, four 
types of MAGDM-oriented DHF multigranulation proba-
bilistic models are put forward. In the following section, 
a DHF MAGDM approach based on MULTIMOORA is 
constructed. In Sect. 5, a realistic case study for P-J fit is 
explored together with validity tests and comparative analy-
sis. The last section concludes the paper with future research 
directions.

2 � Preliminaries

The current section aims to present the basic knowledge of 
DHFSs, DHF MGRSs, and PRSs in a brief way.

2.1 � DHFSs

Definition 2.1  [62] Suppose U is a finite universe of dis-
course, a DHFS � over U is defined as follows:

where h
�
(x) and g

�
(x) are two independent sets that contain 

several possible values in [0, 1] , representing the membership 
degrees and non-membership degrees of x ∈ U to � , respec-
tively, and d(x) = (h

�
(x), g

�
(x)) is named a DHFE. In an 

arbitrary DHFS � , for each x ∈ U , let � ∈ h
�
(x) , � ∈ g

�
(x) , 

�+ = max{�||� ∈ h
�
(x)} and �+ = max{�||� ∈ g

�
(x)} , then 

we have 0 ≤ � , � ≤ 1 and 0 ≤ �+, �+ ≤ 1 . For the sake of 
convenience, a set that contains all DHFSs over U is repre-
sented by DHF(U).

In order to compare the magnitude of several DHFEs for 
MAGDM, Zhu et al. [62] developed the notion of score 
functions and accuracy functions for DHFEs.

Definition 2.2  [62] Given a DHFE d(x) =
(
h
�
(x) , g

�
(x)) , the 

score function and the accuracy function of d(x) are defined 
as follows:

(1)� = {⟨x, h
�
(x), g

�
(x)⟩�x ∈ U },

(2)s(d(x)) =

∑
�∈h

�
(x) �(x)

#h
�
(x)

−

∑
�∈g

�
(x) �(x)

#g
�
(x)

;
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where #h
�
(x) and #g

�
(x) represent the numbers of the values 

in h
�
(x) and g

�
(x) , respectively. For any two DHFEs d(x) and 

d�(x) , the concrete comparison laws are listed as follows: 

(1)	 If s(d(x)) > s
(
d�(x)

)
 , then d(x) ≻ d�(x);

(2)	 If s(d(x)) < s
(
d�(x)

)
 , then d(x) ≺ d�(x);

(3)	 If s(d(x)) = s
(
d�(x)

)
 and t(d(x)) > t

(
d�(x)

)
 ,  then 

d(x) ≻ d�(x);
(4)	 If s(d(x)) = s

(
d�(x)

)
 and t(d(x)) < t

(
d�(x)

)
 ,  then 

d(x) ≺ d�(x);
(5)	 If s(d(x)) = s

(
d�(x)

)
 and t(d(x)) = t

(
d�(x)

)
 ,  then 

d(x) ∼ d�(x).

In what follows, we introduce DHF operational laws 
that occupy a central role in constructing DHF MAGDM 
approaches. It is noteworthy that the values in a DHFE 
are usually provided in disorder and the number of values 
in diverse DHFEs may be different. In order to reduce 
the computational complexity of DHF MAGDM, Zhang 
et al. [55] put forward the following two assumptions for 
a DHFE d(x) = (h

�
(x), g

�
(x)) : 

(1)	 Suppose the values in h
�
(x) and g

�
(x) are placed in 

an increasing order, then the � th value in h
�
(x) is rep-

resented by ��(�)(x) , whereas the � th value in g
�
(x) is 

represented by ��(�)(x).
(2)	 For any two DHFEs, if the numbers of the values in 

h
�
(x) and g

�
(x) are different, we can make them own 

the same number by supplementing some largest ones 
to h

�
(x) and g

�
(x) with less number of values.

In light of the above-stated assumptions, some common 
updated DHF operational laws are presented below.

Definition 2.3  [55] For any two DHFSs �1 and �2 , the cor-
responding DHFEs for �1 and �2 are d1(x) and d2(x) , respec-
tively. For any x ∈ U , the following updated DHF opera-
tional laws are valid: 

(1)	 d1(x)⊞ d2(x) = {{𝛾
𝜏(𝜎)

1
(x) + 𝛾

𝜏(𝜎)

2
(x) − 𝛾

𝜏(𝜎)

1
(x)𝛾

𝜏(𝜎)

2
(x)},

{�
�(�)

1
(x)�

�(�)

2
(x)}};

(2)	 d1(x)⊠ d2(x) = {{𝛾
𝜏(𝜎)

1
(x)𝛾

𝜏(𝜎)

2
(x)}, {𝜂

𝜏(𝜎)

1
(x)+𝜂

𝜏(𝜎)

2
(x)

−�
�(�)

1
(x)�

�(�)

2
(x)}};

(3)	 d1(x)⊟ d2(x) = {max{0,
𝛾
𝜏(𝜎)

1
(x)−𝛾

𝜏(𝜎)

2
(x)

1−𝛾
𝜏(𝜎)

2
(x)

}, min{1,
𝜂
𝜏(𝜎)

1
(x)

𝜂
𝜏(𝜎)

2
(x)
}};

(4)	 d1(x)⊡ d2(x) = {min{1,
𝛾
𝜏(𝜎)

1
(x)

𝛾
𝜏(𝜎)

2
(x)
}, max{0,

𝜂
𝜏(𝜎)

1
(x)−𝜂

𝜏(𝜎)

2
(x)

1−𝜂
𝜏(𝜎)

2
(x)

}};

(5)	
(
d1(x)

)�
= {(�

�(�)

1
(x))

�
, 1 − (1 − �

�(�)

1
(x))

�
} , 𝜆 > 0;

(3)t(d(x)) =

∑
�∈h

�
(x) �(x)

#h
�
(x)

+

∑
�∈g

�
(x) �(x)

#g
�
(x)

,
(6)	 �

(
d1(x)

)
= {1 − (1 − �

�(�)

1
(x))

�
, (�

�(�)

1
(x))

�
} , 𝜆 > 0;

(7)	 the complement of �1 , represented by �1
c , is provided 

by ∼ d1(x) = {{�
�(�)

1
(x)}, {�

�(�)

1
(x)}};

(8)	 t h e  i n t e r s e c t i o n  o f  �1 a n d  �2  ,  r e p -
r e s e n t e d  by  �1 ⋒ �2  ,  i s  p r ov i d e d  by 
d1(x)∧d2(x) = {{�

�(�)

1
(x) ∧ �

�(�)

2
(x)}, {�

�(�)

1
(x) ∨ �

�(�)

2
(x)}};

(9)	 t h e  u n i o n  o f  �1  a n d  �2  ,  r e p r e -
s e n t e d  b y  �1 ⋓ �2  ,  i s  p r o v i d e d  b y 
d1(x)∨d2(x) = {{�

�(�)

1
(x) ∨ �

�(�)

2
(x)}, {�

�(�)

1
(x) ∧ �

�(�)

2
(x)}}.

2.2 � DHF MGRSs

MGRSs are known as a very useful tool in fusing tradi-
tional binary relations. For enlarging the application range 
of MGRSs, Zhang et al. [52] explored the concept of DHF 
MGRSs. Prior to the formal presentation of DHF MGRSs, 
the following concept of DHF relations (DHFRs) is presented.

Definition 2.4  [52] Suppose U and V are two finite universes 
of discourse, a DHFR ℝ over U × V  is defined as follows:

where h
ℝ
(x, y) and g

ℝ
(x, y) are two independent sets that 

contain several possible values in [0, 1] , representing the 
membership degrees and non-membership degrees of 
(x, y) ∈ U × V  to ℝ , respectively In an arbitrary DHFR 
ℝ , for each (x, y) ∈ U × V  , let � ∈ h

ℝ
(x, y) , � ∈ g

ℝ
(x, y) , 

�+ = max{�||� ∈ h
ℝ
(x, y)} and �+ = max{�||� ∈ g

ℝ
(x, y)} , 

then we have 0 ≤ � , � ≤ 1 and 0 ≤ �+, �+ ≤ 1 . For the sake 
of convenience, a set that contains all DHFRs over U × V  is 
represented by DHFR(U × V).

In what follows, the concept of DHF MGRSs can be con-
structed via the above-stated DHFRs.

Definition 2.5  [52] Suppose U and V are two finite universes 
of discourse, ℝi ∈ DHFR(U × V) are m DHFRs over U × V  . 
For any � ∈ DHF(V) , the optimistic DHF lower and upper 
approximations of � are defined as follows:

(4)ℝ = {⟨(x, y), h
ℝ
(x, y), g

ℝ
(x, y)⟩�(x, y) ∈ U × V},

(5)

m�
i=1

ℝi

O

(𝔻)

=

⎧
⎪⎨⎪⎩

�
x, h m∑

i=1

ℝi

O

(𝔻)

(x), g m∑
i=1

ℝi

O

(𝔻)

(x)

�
�x ∈ U

⎫
⎪⎬⎪⎭
;
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where

In a similar manner, the pessimistic DHF lower and upper 
approximations of � are defined as follows:

where

(6)

m�
i=1

ℝi

O

(𝔻)

=

⎧
⎪⎨⎪⎩

�
x, h

m∑
i=1

ℝi

O

(𝔻)

(x), g
m∑
i=1

ℝi

O

(𝔻)

(x)

�
�x ∈ U

⎫
⎪⎬⎪⎭
,

h m∑
i=1

ℝi

O

(𝔻)

(x) =
m

∨
i=1

∧y∈V{gℝi
(x, y)∨h

𝔻
(y)};

g m∑
i=1

ℝi

O

(𝔻)

(x) =

m

∧
i=1

∨
y∈V

{h
ℝi
(x, y)∧g

𝔻
(y)};

h
m∑
i=1

ℝi

O

(𝔻)

(x) =

m

∧
i=1

∨
y∈V

{h
ℝi
(x, y)∧h

𝔻
(y)};

g
m∑
i=1

ℝi

O

(𝔻)

(x) =
m

∨
i=1

∧y∈V{gℝi
(x, y)∨g

𝔻
(y)}.

(7)

m�
i=1

ℝi

P

(𝔻)

=

⎧
⎪⎨⎪⎩

�
x, h m∑

i=1

ℝi

P

(𝔻)

(x), g m∑
i=1

ℝi

P

(𝔻)

(x)

�
�x ∈ U

⎫
⎪⎬⎪⎭
;

(8)

m�
i=1

ℝi

P

(𝔻)

=

⎧
⎪⎨⎪⎩

�
x, h

m∑
i=1

ℝi

P

(𝔻)

(x), g
m∑
i=1

ℝi

P

(𝔻)

(x)

�
�x ∈ U

⎫
⎪⎬⎪⎭
,

h m∑
i=1

ℝi

P

(𝔻)

(x) =

m

∧
i=1

∧y∈V{gℝi
(x, y)∨h

𝔻
(y)};

g m∑
i=1

ℝi

P

(𝔻)

(x) =
m

∨
i=1

∨
y∈V

{h
ℝi
(x, y)∧g

𝔻
(y)};

h
m∑
i=1

ℝi

P

(𝔻)

(x) =
m

∨
i=1

∨
y∈V

{h
ℝi
(x, y)∧h

𝔻
(y)};

g
m∑
i=1

ℝi

P

(𝔻)

(x) =

m

∧
i=1

∧y∈V{gℝi
(x, y)∨g

𝔻
(y)},

t h e n  t h e  p a i r s  (
m∑
i=1

ℝi

O

(𝔻),
m∑
i=1

ℝi

O

(𝔻))  a n d 

(
m∑
i=1

ℝi

P

(𝔻),
m∑
i=1

ℝi

P

(𝔻)) are named an optimistic DHF MGRS 

and a pessimistic DHF MGRS of � , respectively.

2.3 � PRSs

The notion of PRSs [36, 43, 44] was explored towards a 
gradual loosening of strict restrictions for original rough 
sets, thereby application scopes of the rough set community 
were expanded.

Definition 2.6  [36] Let U, R, P be a finite universe of dis-
course, an equivalence relation and the probabilistic meas-
ures, respectively, and � and � be the thresholds. For any 
x ∈ U with 0 ≤ 𝛽 < 𝛼 ≤ 1 , the lower and upper approxima-
tions of X are defined as follows:

then the pair (R
�
(X),R�(X)) is named a PRS of X.

3 � MAGDM‑oriented DHF multigranulation 
probabilistic models

In light of unique merits owned by DHF MGRSs and PRSs, 
it is necessary to design hybrid models by integrating DHF 
MGRSs with PRSs. The core challenges of this section are 
to adopt reasonable semantic interpretations in information 
fusion schemes for the developed DHF multigranulation 
probabilistic models, and some common information fusion 
methods from MAGDM are selected to establish different 
types of MAGDM-oriented DHF multigranulation probabil-
istic models. Specifically, four MAGDM-oriented informa-
tion fusion schemes are used in constructing the following 
theoretical models: 

(1)	 According to the original definition of MGRSs [19, 20], 
two extreme information fusion tactics are designed 
to form MGRSs that correspond to the risk-based 
MAGDM with optimistic and pessimistic risk atti-
tudes. In this case, it is necessary to explore type-I 
DHF MGPRSs by virtue of optimistic and pessimistic 
information fusion tactics.

(9)R
�
(X) ={P

(
X||[x]R

)
≥ �|x ∈ U };

(10)R𝛽(X) ={P
(
X||[x]R

)
> 𝛽|x ∈ U },
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(2)	 One of the most common DHF MAGDM methods is 
the DHFHA operator that concentrates on accepting 
groups’ main views [33]. In this case, it is necessary 
to explore type-II DHF MGPRSs by virtue of DHFHA 
operators.

(3)	 Distance measures play a significant role in address-
ing various MAGDM problems from the standpoint of 
information measures [6]. In this case, it is necessary 
to explore type-III DHF MGPRSs by virtue of DHF 
weighted Euclidean distances.

(4)	 Another representative DHF aggregation operator is the 
DHFHG operator that gives attention to individuals’ 
main views [33]. In this case, it is necessary to explore 
type-IV DHF MGPRSs by virtue of DHFHG operators.

3.1 � Type‑I DHF MGPRSs

The initial works in terms of MGRSs include two subor-
dinate editions, i.e., the optimistic edition that is likely to 
utilize at least one granular composition for meeting the 
demands of inclusion relations, the pessimistic counter-
part that adopts all granular compositions for accomplish-
ing the identical mission. Based on the above-stated two 
classic information fusion rules, the notion of type-I DHF 
MGPRSs is intended to construct with optimistic and pessi-
mistic editions. In the context of typical MAGDM situations, 
the notion of single DHF membership degrees is designed 
at first that plays a significant role in formulating various 
multiple DHF membership degrees.

Suppose m decision makers in a group intend to make 
DHF MAGDM, and each of them is obliged to provide a 
decision matrix that is composed of a set of alternatives, 
a set of attributes along with a set of weights for attributes 
and decision makers. In specific, let U = {x1, x2,⋯ , xp} be 
the set of alternatives, V = {y1, y2,⋯ , yq} be the set of 
attributes, � =

{
�1,�2,⋯ , �q

}T be the set of weights for 

attributes with �k ∈ [0, 1] and 
q∑

k=1

�k = 1(k = 1, 2,⋯ , q) , 

� =
{
�1,�2,⋯ ,�m

}T  be the set of weights for decision 
makers with �i ∈ [0, 1] and 

m∑
i=1

�i = 1(i = 1, 2,⋯ ,m) . 

Based on the above illustrations, all decision makers 
should offer assessed values for all alternatives via all 
attributes, and the offered assessed values are character-
ized by DHFEs. Then, each constructed decision matrix 
can be viewed as DHFRs ℝi ∈ DHFR(U × V)(i = 1, 2,⋯ ,m) 
over U × V  . Next, a standard evaluation set � over V is 
established by means of all attributes, and � is character-
ized by DHFSs. At last, in accordance with the presented 
U, V, ℝi and � , a DHF information system 

(
U,V ,ℝi,𝔻

)
 is 

obtained for developing MAGDM-oriented DHF multi-
granulation probabilistic models and related MAGDM 

approaches with MULTIMOORA. In what follows, the 
notion of single DHF membership degrees is proposed 
based on 

(
U,V ,ℝi,𝔻

)
.

Definition 3.1  Given a DHF information sys-
tem (U,V , ℝi,𝔻

)
 .  For  any  xj ∈ U(j = 1, 2,⋯ , p) , 

yk ∈ V(k = 1, 2,⋯ , q) , the single DHF membership degree 
of xj in � with respect to ℝi , denoted by �ℝi

𝔻
(xj) , is defined 

as follows:

Based on the notion of single DHF membership 
degrees, it is necessary to expand single DHF membership 
degrees to the multigranulation context, thus the follow-
ing maximum and minimum multiple DHF membership 
degrees are put forward.

Definition 3.2  Given a DHF information system 
(U,V , ℝi,𝔻

)
 . For any xj ∈ U(j = 1, 2,⋯ , p) , the maximum 

and minimum multiple DHF membership degree of xj in � 

with respect to ℝi , denoted by �

m∑
i=1

ℝi

𝔻
(xj) and �

m∑
i=1

ℝi

𝔻
(xj) , are 

defined as follows:

With the support of maximum and minimum multiple 
DHF membership degrees, optimistic and pessimistic 
type-I DHF MGPRSs can be established conveniently.

Definition 3.3  Given a DHF information system 
(U,V , ℝi,𝔻

)
 , and let � and � be the thresholds that are char-

acterized by DHFEs. For any xj ∈ U(j = 1, 2,⋯ , p) and 
𝛽 < 𝛼 , the optimistic type-I DHF multigranulation probabil-
istic rough approximations of � with respect to ℝi , denoted 

by 
m∑
i=1

ℝi

�,�

(𝔻) and 
m∑
i=1

ℝi

�,�

(𝔻) , are defined as follows:

(11)�
ℝi

𝔻
(xj) =

�∑
yk∈V

�kℝi(xj, yk)(𝔻(yk))
c

∑
yk∈V

�kℝi(xj, yk)

�c

.

(12)�

m∑
i=1

ℝi

𝔻
(xj) =

m
max
i=1

{�
ℝi

𝔻
(xj)};

(13)�

m∑
i=1

ℝi

𝔻
(xj) =

m

min
i=1

{�
ℝi

𝔻
(xj)}.

(14)
m�
i=1

ℝi

�,�

(𝔻) =

⎧⎪⎨⎪⎩
�

m∑
i=1

ℝi

𝔻
(xj) ≥ ��xj ∈ U

⎫⎪⎬⎪⎭
;

(15)
m�
i=1

ℝi

𝜗,𝛽

(𝔻) =

⎧⎪⎨⎪⎩
𝜗

m∑
i=1

ℝi

𝔻
(xj) > 𝛽�xj ∈ U

⎫⎪⎬⎪⎭
.
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In a similar way, the pessimistic type-I DHF multigranula-
tion probabilistic rough approximations of � in terms of ℝi , 

denoted by 
m∑
i=1

ℝi

�,�

(𝔻) and 
m∑
i=1

ℝi

�,�

(𝔻) , are defined as 

follows:

then we name the pairs (
m∑
i=1

ℝi

�,�

(𝔻),
m∑
i=1

ℝi

�,�

(𝔻)) and 

(
m∑
i=1

ℝi

�,�

(𝔻),
m∑
i=1

ℝi

�,�

(𝔻)) an optimistic type-I DHF MGPRS 

and a pessimistic type-I DHF MGPRS of � , respectively.

3.2 � Type‑II DHF MGPRSs

It is noteworthy that optimistic and pessimistic type-I DHF 
MGPRSs act as two extreme information fusion strategies 
for DHF MAGDM, proposing more risk-neutral methods 
for completing the same task is necessary. In what follows, 
by means of DHFHA operators, we aim to put forward the 
corresponding multiple DHF membership degrees at first.

Definition 3.4  Given a DHF information system 
(U,V , ℝi,𝔻

)
 , let �i be the weight of ℝi , the � th value 

of membership degrees and non-membership degrees 
in �ℝi

𝔻
(xj) be ��(�)

i
(xj) and ��(�)

i
(xj) , respectively. For any 

xj ∈ U(j = 1, 2,⋯ , p) , the notion of multiple DHF member-
ship degrees by means of DHFHA operators of xj in � with 

respect to ℝi , denoted by �

m∑
i=1

ℝi

𝔻
(xj) , is defined as follows:

(16)
m�
i=1

ℝi

�,�

(𝔻) =

⎧
⎪⎨⎪⎩
�

m∑
i=1

ℝi

𝔻
(xj) ≥ ��xj ∈ U

⎫
⎪⎬⎪⎭
;

(17)
m�
i=1

ℝi

𝜌,𝛽

(𝔻) =

⎧
⎪⎨⎪⎩
𝜌

m∑
i=1

ℝi

𝔻
(xj) > 𝛽�xj ∈ U

⎫
⎪⎬⎪⎭
,

(18)

𝜉

m∑
i=1

ℝi

𝔻
(xj) =DHFWA(𝜃

ℝ1

𝔻
(xj), 𝜃

ℝ2

𝔻
(xj),⋯ , 𝜃

ℝm

𝔻
(xj))

=
m

⊞
i=1

(𝜔i𝜃
ℝi

𝔻
(xj))

=

��
1 −

m�
i=1

(1 − 𝛾
𝜏(𝜎)

i
(xj))

𝜔i

�
,

�
m�
i=1

(𝜂
𝜏(𝜎)

i
(xj))

𝜔i

��
.

Afterwards, the following formulation of type-II DHF 
MGPRSs can be obtained via multiple DHF membership 
degrees by means of DHFHA operators.

Definition 3.5  Given a DHF information system 
(U,V , ℝi,𝔻

)
 , and let � and � be the thresholds that are char-

acterized by DHFEs. For any xj ∈ U(j = 1, 2,⋯ , p) and 
𝛽 < 𝛼 , the type-II DHF multigranulation probabilistic rough 
approximations of � with respect to ℝi , denoted by 
m∑
i=1

ℝi

�,�

(𝔻) and 
m∑
i=1

ℝi

�,�

(𝔻) , are defined as follows:

then the pair (
m∑
i=1

ℝi

�,�

(𝔻),
m∑
i=1

ℝi

�,�

(𝔻)) is named a type-II 

DHF MGPRS of �.

3.3 � Type‑III DHF MGPRSs

DHF distance measures are quite essential in fusing various 
discrete DHF information systems, hence it is necessary to 
develop corresponding multiple DHF membership degrees. 
In what follows, we aim to put forward the multiple DHF 
membership degrees by virtue of DHF weighted Euclidean 
distances at first.

Definition 3.6  Given a DHF information system 
(U,V , ℝi,𝔻

)
 , let �i be the weight of ℝi , the � th value of 

membership degrees and non-membership degrees in �ℝi

𝔻
(xj) 

be ��(�)
i

(xj) and ��(�)
i

(xj) , respectively, ({1}, {0}) be the posi-
tive ideal point. For any xj ∈ U(j = 1, 2,⋯ , p) , the notion 
of multiple DHF membership degrees by means of DHF 
weighted Euclidean distances of xj in � with respect to ℝi , 

denoted by �

m∑
i=1

ℝi

𝔻
(xj) , is defined as follows:

(19)
m�
i=1

ℝi

�,�

(𝔻) =

⎧
⎪⎨⎪⎩
�

m∑
i=1

ℝi

𝔻
(xj) ≥ ��xj ∈ U

⎫
⎪⎬⎪⎭
;

(20)
m�
i=1

ℝi

𝜉,𝛽

(𝔻) =

⎧⎪⎨⎪⎩
𝜉

m∑
i=1

ℝi

𝔻
(xj) > 𝛽�xj ∈ U

⎫⎪⎬⎪⎭
,

(21)

�

m∑
i=1

ℝi

𝔻
(xj) =

⎡
⎢⎢⎣

m�
i=1

�i

⎛
⎜⎜⎝
1

2

⎛
⎜⎜⎝

1

#h
𝔻i
(xj)

#h
𝔻i
(xj)�

�=1

���(�)
i

(xj) − 1�2

+
1

#g
𝔻i
(xj)

#g
𝔻i
(xj)�

�=1

���(�)
i

(xj)�2
⎞⎟⎟⎠

⎞⎟⎟⎠

⎤⎥⎥⎦

1

2

.
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Definition 3.7  Given a DHF information system 
(U,V , ℝi,𝔻

)
 , and let � and � be the thresholds that are char-

acterized by DHFEs. For any xj ∈ U(j = 1, 2,⋯ , p) and 
𝛽 < 𝛼 , the type-III DHF multigranulation probabilistic rough 
approximations of � with respect to ℝi , denoted by 
m∑
i=1

ℝi

� ,�

(𝔻) and 
m∑
i=1

ℝi

� ,�

(𝔻) , are defined as follows:

then the pair (
m∑
i=1

ℝi

� ,�

(𝔻),
m∑
i=1

ℝi

� ,�

(𝔻)) is named a type-III 

DHF MGPRS of �.

3.4 � Type‑IV DHF MGPRSs

Different from DHFHA operators that give high priorities 
on groups’ main views, as another typical DHF aggregation 
operators, DHFHG operators emphasis on individuals’ main 
views, hence developing multiple DHF membership degrees 
based on DHFHG operators is a useful supplement of DHF 
multigranulation probabilistic models. In what follows, by 
means of DHFHG operators, the corresponding multiple 
DHF membership degrees are presented at first.

Definition 3.8  Given a DHF information system 
(U,V , ℝi,𝔻

)
 , let �i be the weight of ℝi , the � th value 

of membership degrees and non-membership degrees 
in �ℝi

𝔻
(xj) be ��(�)

i
(xj) and ��(�)

i
(xj) , respectively. For any 

xj ∈ U(j = 1, 2,⋯ , p) , the notion of multiple DHF member-
ship degrees by means of DHFHG operators of xj in � with 

respect to ℝi , denoted by �

m∑
i=1

ℝi

𝔻
(xj) , is defined as follows:

(22)
m�
i=1

ℝi

� ,�

(𝔻) =

⎧
⎪⎨⎪⎩
�

m∑
i=1

ℝi

𝔻
(xj) ≥ ��xj ∈ U

⎫
⎪⎬⎪⎭
;

(23)
m�
i=1

ℝi

𝜓 ,𝛽

(𝔻) =

⎧
⎪⎨⎪⎩
𝜓

m∑
i=1

ℝi

𝔻
(xj) > 𝛽�xj ∈ U

⎫
⎪⎬⎪⎭
,

Next, we formulate the notion of type-IV DHF MGPRSs 
by using multiple DHF membership degrees by means of 
DHFHG operators.

Definition 3.9  Given a DHF information system 
(U,V , ℝi,𝔻

)
 , and let � and � be the thresholds that are char-

acterized by DHFEs. For any xj ∈ U(j = 1, 2,⋯ , p) and 
𝛽 < 𝛼 , the type-IV DHF multigranulation probabilistic 
rough approximations of � with respect to ℝi , denoted by 
m∑
i=1

ℝi

� ,�

(𝔻) and 
m∑
i=1

ℝi

� ,�

(𝔻) , are defined as follows:

then the pair (
m∑
i=1

ℝi

� ,�

(𝔻),
m∑
i=1

ℝi

� ,�

(𝔻)) is named a type-IV 

DHF MGPRS of �.

4 � MAGDM based on DHF MGPRSs 
with MULTIMOORA

The key point of interest of the current section is to design 
a comprehensive MAGDM method in light of the pre-
sented four types of DHF MGPRSs with MULTIMOORA. 
In addition, for the sake of better illustrating the applica-
bility of the designed MAGDM method, the context of 
MAGDM in this section is scheduled to adopt P-J fit situ-
ations, and the specific problem statement for P-J fit is 
shown in the text below.

(24)

𝜁

m∑
i=1

ℝi

𝔻
(xj) =DHFWG(𝜃

ℝ1

𝔻
(xj), 𝜃

ℝ2

𝔻
(xj),⋯ , 𝜃

ℝm

𝔻
(xj))

=
m

⊠
i=1

((𝜃
ℝi

𝔻
(xj))

𝜔i

)

=

��
m�
i=1

(𝛾
𝜏(𝜎)

i
(xj))

𝜔i

�
,

�
1 −

m�
i=1

(1 − 𝜂
𝜏(𝜎)

i
(xj))

𝜔i

��
.

(25)
m�
i=1

ℝi

� ,�

(𝔻) =

⎧⎪⎨⎪⎩
�

m∑
i=1

ℝi

𝔻
(xj) ≥ ��xj ∈ U

⎫⎪⎬⎪⎭
;

(26)
m�
i=1

ℝi

𝜁 ,𝛽

(𝔻) =

⎧⎪⎨⎪⎩
𝜁

m∑
i=1

ℝi

𝔻
(xj) > 𝛽�xj ∈ U

⎫⎪⎬⎪⎭
,
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4.1 � Problem statement

It is widely recognized that human resource is the most 
precious resource for the survival and the development 
of enterprises, and acts as the heart of competitions in the 
modern society. In the area of human resource management, 
managers have paid close attention to the core issue that 
how to fully mobilize the enthusiasm of the staff to achieve 
their talent and play the role of employees better for making 
the best use of the staff. Hence, only by letting individuals 
fully display their talents, will it be possible for business 
organizations to cultivate an increasing number of excellent 
innovation employees.

As a significant research branch of human resource man-
agement, P-J fit has gradually become the new hotspot in the 
enterprise management research that is subjected to more 
and more concerns of scholars. P-J fit aims to arrange appro-
priate talents to appropriate posts according to the relation-
ship between posts and capabilities of talents. In a word, 
talents and posts are two fundamental factors of P-J fit, the 
key issue of P-J fit is to solve reasonable person and post 
matching. In view of the great significance of P-J fit, plenty 
of scholars have put forward a series of P-J fit methods. 
However, some challenges, such as reasonable depiction of 
uncertain information and integration of experts’ preferences 
without individual subjectivity, still remain in the majority 
of current P-J fit methods. Thus, in light of several merits 
of the proposed theoretical models mentioned in previous 
sections, it is meaningful to explore efficient P-J fit methods 
by taking advantages of them.

4.2 � Application model

For the sake of effectively utilizing the proposed four types 
of DHF MGPRS to address a real-world P-J fit situation, it 
is noted that the conclusion of P-J fit is largely dependent 
on the relationships between posts and capabilities of talents 
provided by human resource experts, thus transforming a 
complicated P-J fit situation into a typical MAGDM is con-
ducive to solving of a practical P-J fit problem. Similar to 
the general DHF information system 

(
U,V ,ℝi,𝔻

)
 presented 

in the last section, a DHF information system in the back-
ground of P-J fit should be given in the text below.

Suppose m human resource experts in an advisory panel 
intend to conduct P-J fit for an employee via DHF MAGDM, 
each of them is obliged to provide the relationship between 
posts and capabilities of the assessed employee, and each 
provided relationship is composed of a set of posts, a set of 
capabilities along with a set of weights for capabilities and 
human resource experts. In specific, let U = {x1, x2,⋯ , xp} 
be the set of posts, V = {y1, y2,⋯ , yq} be the set of capabili-
ties, � = {�1,�2,⋯ ,�q}

T  be the set of weights for 

capabilities with �k ∈ [0, 1] and 
q∑

k=1

�k = 1(k = 1, 2,⋯ , q) , 

� =
{
�1,�2,⋯ ,�m

}T  be the set of weights for human 
r e s o u r c e  e x p e r t s  w i t h  �i ∈ [0, 1]  a n d 
m∑
i=1

�i = 1(i = 1, 2,⋯ ,m) . Based on the above illustrations, 

all human resource experts should offer assessed values for 
each post via all capabilities, and the offered assessed values 
are characterized by DHFEs. Then, each constructed rela-
t i o n s h i p  c a n  b e  v i e w e d  a s  D H F R s 
ℝi ∈ DHFR(U × V)(i = 1, 2,⋯ ,m) over U × V  . Next, the 
assessed employee will be evaluated by virtue of all capabili-
ties, and the evaluation set � over V is established that is 
characterized by DHFSs. At last, in accordance with the 
above-stated U, V, ℝi and � , a DHF information system (
U,V ,ℝi,𝔻

)
 for P-J fit is prepared to handle P-J fit via the 

developed theoretical models with MULTIMOORA. In what 
follows, we present the specific scheme of the DHF 
MAGDM procedure.

Since the conclusion of P-J fit is usually obtained from 
the final ranking result of different posts for the assessed 
employee, and MULTIMOORA can generate a robust rank-
ing result from the aspect of information fusion, it is nec-
essary to integrate the developed theoretical models with 
MULTIMOORA to acquire a robust final ranking result for 
P-J fit. In specific, MULTIMOORA adopts three subordinate 
rankings, i.e., ratio systems, reference point approaches and 
full multiplicative forms, to complete the task of informa-
tion fusion. Moreover, it is noted that the proposed DHF 
membership degrees by means of DHFHA operators, 
DHF weighted Euclidean distances and DHFHG opera-
tors are in line with the notion of ratio systems, reference 
point approaches along with full multiplicative forms in the 
context of DHF MAGDM, hence it is convenient for us to 
develop a MAGDM method based on DHF MGPRSs with 
MULTIMOORA.

Given a DHF information system 
(
U,V ,ℝi,𝔻

)
 for P-J fit, 

for any post xj ∈ U(j = 1, 2,⋯ , p) , multiple DHF member-
ship degrees by means of DHFHA operators of xj in � with 
respect to ℝi can be calculated according to Definition 3.4, 

which is denoted by �

m∑
i=1

ℝi

𝔻
(xj) . Then, we can acquire the first 

ranking result of different posts via the value of �

m∑
i=1

ℝi

𝔻
(xj) , 

and the value of �

m∑
i=1

ℝi

𝔻
(xj) is larger, the xj is better.

In a similar manner, multiple DHF membership degrees 
by means of DHF weighted Euclidean distances and 
DHFHG operators of xj in � with respect to ℝi can be cal-
culated according to Definitions 3.6 and  3.8, which are 

denoted by �

m∑
i=1

ℝi

𝔻
(xj) and �

m∑
i=1

ℝi

𝔻
(xj) respectively. Then, we 

can acquire the second ranking result of different posts via 
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the value of �

m∑
i=1

ℝi

𝔻
(xj) , and the value of �

m∑
i=1

ℝi

𝔻
(xj) is smaller, 

the xj is better. Finally, the third ranking result of different 

posts via the value of �

m∑
i=1

ℝi

𝔻
(xj) is further acquired, and the 

value of �

m∑
i=1

ℝi

𝔻
(xj) is larger, the xj is better.

In light of the MULTIMOORA method, the final ranking, 
also named as the MULTIMOORA ranking, is acquired 
from three previous subordinate rankings based on the domi-
nance theory. Afterwards, we aim to propose the concept of 
ranking order functions to find the optimal post for the 
assessed employee.  In specif ic,  for any post 
xj ∈ U(j = 1, 2,⋯ , p) , three types of ranking results of dif-

ferent posts have been obtained via the value of �

m∑
i=1

ℝi

𝔻
(xj) , 

�

m∑
i=1

ℝi

𝔻
(xj) and �

m∑
i=1

ℝi

𝔻
(xj) , and we arrange different posts from 

the best one to the worst one, then we denote ranking order 

functions for �

m∑
i=1

ℝi

𝔻
(xj) , �

m∑
i=1

ℝi

𝔻
(xj) and �

m∑
i=1

ℝi

𝔻
(xj) as Ind(�j) , 

Ind(�j) and Ind(�j) . Suppose Ind(max
p

j=1
�j) = 1 and 

Ind(min
p

j=1
�j) = p are fulfilled, the MULTIMOORA ranking 

is acquired via the value of Ind(�j) + Ind(�j) + Ind(�j) , then 
we name x∗ = min

p

j=1

(
Ind

(
�j
)
+ Ind

(
�j

)
+Ind

(
�j
))

 the opti-
mal post for the assessed employee.

Remark 4.1  In the construction of MAGDM based on DHF 
MGPRSs, the utilization of MULTIMOORA provides a rea-
sonable information fusion scheme for effectively integrat-
ing type-II, type-III with type-IV DHF MGPRSs. Moreover, 
the information fusion conclusion is characterized by the 
MULTIMOORA ranking, which is more robust than each 
of the subordinate rankings as presented above. In spe-
cific, the information fusion result obtained from type-II, 
type-III and type-IV DHF MGPRSs can be seen as three 
independent single-source results that may cause potential 
differences of decision conclusions. With the support of 
MULTIMOORA, a comprehensive decision conclusion can 
be obtained by taking advantages of the above three types 
of DHF MGPRSs, it is expected that the comprehensive 
decision conclusion will be immune to the volatility of dif-
ferent information fusion schemes. Hence, it is meaningful 
to sum up the following algorithm for MAGDM based on 
DHF MGPRSs with MULTIMOORA, and it is noteworthy 
that the summarized algorithm offers a one-stop scheme 
from the DHF information system 

(
U,V ,ℝi,𝔻

)
 for P-J fit 

to the optimal post x∗.

4.3 � Algorithm for MAGDM based on DHF MGPRSs 
with MULTIMOORA

In what follows, a P-J fit algorithm for MAGDM based on 
DHF MGPRSs with MULTIMOORA is summed up.

Input A DHF information system 
(
U,V ,ℝi,𝔻

)
 for P-J fit.

Output The optimal post x∗.
Step 1 Determine the weight value of each capability and 

the weight value of each human resource expert.
Step 2 Calculate single DHF membership degrees �ℝi

𝔻

(
xj
)
 

for each post xj in � with respect to ℝi.
Step 3 Calculate multiple DHF membership degrees 

�

m∑
i=1

ℝi

𝔻
(xj) and obtain the first ranking result of different posts 

via the value of �

m∑
i=1

ℝi

𝔻
(xj).

Step 4 Calculate multiple DHF membership degrees 

�

m∑
i=1

ℝi

𝔻
(xj) and obtain the second ranking result of different 

posts via the value of �

m∑
i=1

ℝi

𝔻
(xj).

Step 5 Calculate multiple DHF membership degrees 

�

m∑
i=1

ℝi

𝔻
(xj) and obtain the third ranking result of different 

posts via the value of �

m∑
i=1

ℝi

𝔻
(xj).

Step 6 Obtain the MULTIMOORA ranking according to 
ranking order functions Ind(�j) , Ind(�j) and Ind(�j).

Step 7 Determine the optimal post x∗ in light of 
x∗ = min

p

j=1
(Ind(�j) + Ind(�j) + Ind(�j)).

The flow diagram of the above-presented P-J fit algo-
rithm via MAGDM based on DHF MGPRSs with MULTI-
MOORA is summed up in Fig. 1.

5 � An illustrative case study for P‑J fit

This section plans to prove the applicability of the P-J fit 
algorithm via an illustrative case study at first. Moreover, 
corresponding validity tests and comparative analysis are 
arranged for better demonstrate the validity of the P-J fit 
algorithm as well.

5.1 � Case description

Suppose a software development enterprise intends to organ-
ize a P-J fit process for a new employee, and an advisory 
panel is set up that is composed of three human resource 
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Fig. 1   The summary of the 
P-J fit algorithm via MAGDM 
based on DHF MGPRSs with 
MULTIMOORA

Table 1   The first DHFR between posts and capabilities

ℝ1 y1 y2 y3 y4 y5

x1 ({0.6, 0.7}, {0.2, 0.3}) ({0.7, 0.8}, {0.1, 0.2}) ({0.5, 0.6}, {0.1, 0.2}) ({0.3, 0.4}, {0.5, 0.6}) ({0.4, 0.6}, {0.2, 0.3})

x2 ({0.2, 0.4}, {0.5, 0.6}) ({0.5, 0.7}, {0.2, 0.3}) ({0.3, 0.5}, {0.4, 0.5}) ({0.4, 0.5}, {0.2, 0.3}) ({0.3, 0.4}, {0.5, 0.6})

x3 ({0.3, 0.4}, {0.4, 0.5}) ({0.6, 0.7}, {0.2, 0.3}) ({0.3, 0.5}, {0.4, 0.5}) ({0.3, 0.4}, {0.5, 0.6}) ({0.5, 0.6}, {0.1, 0.2})

x4 ({0.2, 0.3}, {0.6, 0.7}) ({0.6, 0.7}, {0.1, 0.2}) ({0.7, 0.8}, {0.1, 0.2}) ({0.2, 0.3}, {0.5, 0.6}) ({0.3, 0.4}, {0.5, 0.6})

x5 ({0.7, 0.8}, {0.1, 0.2}) ({0.5, 0.7}, {0.1, 0.3}) ({0.6, 0.7}, {0.1, 0.2}) ({0.3, 0.5}, {0.4, 0.5}) ({0.3, 0.4}, {0.4, 0.5})
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experts. In order to overcome the challenges from various 
uncertain information, a DHF information system (
U,V ,ℝi,𝔻

)
(i = 1, 2, 3) for P-J fit is finally provided. In spe-

cific, let U =
{
x1, x2, x3, x4, x5

}
 be the set of posts, where 

xj(j = 1, 2, 3, 4, 5) represents algorithm engineer, administra-
tive assistant, marketing specialist, sales representative, and 
finance analyst. Moreover, let V =

{
y1, y2, y3, y4, y5

}
 be the 

set of capabilities, where yk(k = 1, 2, 3, 4, 5) represents math-
ematical skills, computer skills, foreign language skills, 
writing skills, and management skills. Additionally, let 
� = {�1,�2,�3,�4,�5}

T be the set of weights for capabilities 
w i t h  �k ∈ [0, 1]  a n d  

q∑
k=1

�k = 1(k = 1, 2, 3, 4, 5)  , 

� =
{
�1,�2,�3

}T be the set of weights for human resource 
experts with �i ∈ [0, 1] and 

m∑
i=1

�i = 1(i = 1, 2, 3) . Based on 

the above illustrations, all human resource experts offer 
assessed values for each post via all capabilities, and the 
offered assessed values are characterized by DHFEs. Then, 
each constructed relationship can be viewed as DHFRs 
ℝi ∈ DHFR(U × V) over U × V  that are presented in 
Tables  1,  2,  3 below. Afterwards, the assessed new 
employee will be evaluated by virtue of all capabilities, and 
the evaluation set � over V  is represented by 

� =
�⟨y1, {0.3}, {0.6}⟩, ⟨y2, {0.7}, {0.2}⟩, ⟨y3, {0.8}, {0.1}⟩,

⟨y4, {0.2}, {0.5}⟩, ⟨y5, {0.4}, {0.6}⟩
�
 . At last, in accordance 

with the above-stated U, V, ℝi and � , a DHF information 
system 

(
U,V ,ℝi,𝔻

)
 for P-J fit is established.

5.2 � The detailed P‑J fit process

Given the above-mentioned DHF information system (
U,V ,ℝi,𝔻

)
 for P-J fit, the detailed P-J fit process is shown 

as the following steps.
At first, for the sake of effectively conducting comparative 

analysis with other similar GrC-based MAGDM approaches, 
suppose five capabilities and three human resource experts 
share an identical weight, that is �k =

1

5
 and �i =

1

3
.

Then, the following single DHF membership degrees 
�
ℝi

𝔻

(
xj
)
 for each post xj in � with respect to ℝi is calculated.

In an identical manner, we can further obtain the remaining 
single DHF membership degrees as follows:

�
ℝ1

𝔻
(x1) =

�∑
yk∈V

�kR1

�
x1, yk

��
D
�
yk
��c

∑
yk∈V

�kR1

�
x1, yk

�
�c

=({0.082, 0.1265}, {0.6793, 0.77}).

Table 2   The second DHFR between posts and capabilities

ℝ2 y1 y2 y3 y4 y5

x1 ({0.4, 0.6}, {0.2, 0.4}) ({0.6, 0.8}, {0.1, 0.2}) ({0.4, 0.6}, {0.2, 0.3}) ({0.3, 0.4}, {0.5, 0.6}) ({0.5, 0.7}, {0.2, 0.3})

x2 ({0.3, 0.4}, {0.5, 0.6}) ({0.5, 0.7}, {0.1, 0.2}) ({0.2, 0.4}, {0.4, 0.5}) ({0.3, 0.5}, {0.2, 0.4}) ({0.3, 0.4}, {0.5, 0.6})

x3 ({0.3, 0.4}, {0.4, 0.5}) ({0.5, 0.7}, {0.2, 0.3}) ({0.4, 0.5}, {0.3, 0.4}) ({0.3, 0.4}, {0.4, 0.6}) ({0.4, 0.6}, {0.1, 0.3})

x4 ({0.3, 0.4}, {0.5, 0.6}) ({0.6, 0.7}, {0.1, 0.2}) ({0.7, 0.8}, {0.1, 0.2}) ({0.1, 0.2}, {0.5, 0.6}) ({0.3, 0.4}, {0.4, 0.6})

x5 ({0.6, 0.8}, {0.1, 0.2}) ({0.4, 0.7}, {0.2, 0.3}) ({0.6, 0.7}, {0.1, 0.2}) ({0.2, 0.4}, {0.3, 0.4}) ({0.3, 0.4}, {0.4, 0.5})

Table 3   The third DHFR between posts and capabilities

ℝ3 y1 y2 y3 y4 y5

x1 ({0.6, 0.7}, {0.2, 0.3}) ({0.6, 0.7}, {0.1, 0.2}) ({0.5, 0.6}, {0.1, 0.3}) ({0.2, 0.3}, {0.5, 0.6}) ({0.4, 0.6}, {0.2, 0.4})

x2 ({0.3, 0.4}, {0.5, 0.6}) ({0.5, 0.7}, {0.2, 0.3}) ({0.5, 0.6}, {0.3, 0.4}) ({0.4, 0.6}, {0.2, 0.3}) ({0.4, 0.5}, {0.2, 0.4})

x3 ({0.3, 0.5}, {0.4, 0.5}) ({0.6, 0.7}, {0.2, 0.3}) ({0.2, 0.5}, {0.4, 0.5}) ({0.3, 0.4}, {0.5, 0.6}) ({0.5, 0.6}, {0.2, 0.4})

x4 ({0.1, 0.3}, {0.6, 0.7}) ({0.6, 0.7}, {0.1, 0.2}) ({0.7, 0.8}, {0.1, 0.2}) ({0.1, 0.3}, {0.5, 0.6}) ({0.2, 0.3}, {0.4, 0.6})

x5 ({0.6, 0.7}, {0.1, 0.2}) ({0.5, 0.7}, {0.1, 0.3}) ({0.6, 0.7}, {0.1, 0.3}) ({0.3, 0.5}, {0.4, 0.5}) ({0.2, 0.4}, {0.4, 0.5})
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In light of the above results, the following multiple DHF 

membership degrees �

3∑
i=1

ℝi

𝔻
(xj) are calculated.

In an identical manner, we can further obtain the remaining 

multiple DHF membership degrees �

3∑
i=1

ℝi

𝔻
(xj) as follows:

Afterwards, the score functions of �

3∑
i=1

ℝi

𝔻
(xj) can be obtained, 

that is s(�

3∑
i=1

ℝi

𝔻

�
x1
�
) = −0.6034 , s(�

3∑
i=1

ℝi

𝔻

�
x2
�
) = −0.5028 , 

s(�

3∑
i=1

ℝi

𝔻

�
x3
�
) = −0.5242  ,  s(�

3∑
i=1

ℝi

𝔻

�
x4
�
) = −0.3158  a n d 

s(�

3∑
i=1

ℝi

𝔻

�
x5
�
) = −0.6046 . Thus, the first ranking result of 

different posts shows 𝜉4 ≻ 𝜉2 ≻ 𝜉3 ≻ 𝜉1 ≻ 𝜉5.

�
ℝ1

𝔻
(x2) =({0.1059, 0.1576}, {0.5621, 0.664}),

�
ℝ1

𝔻
(x3) =({0.1057, 0.1558}, {0.6265, 0.6972}),

�
ℝ1

𝔻
(x4) =({0.1798, 0.2531}, {0.4951, 0.5913}),

�
ℝ1

𝔻
(x5) =({0.0736, 0.12}, {0.678, 0.767}),

�
ℝ2

𝔻
(x1) =({0.0838, 0.1458}, {0.6508, 0.77}),

�
ℝ2

𝔻
(x2) =({0.1034, 0.1828}, {0.5749, 0.6639}),

�
ℝ2

𝔻
(x3) =({0.0898, 0.1692}, {0.5948, 0.6972}),

�
ℝ2

𝔻
(x4) =({0.1485, 0.2309}, {0.5039, 0.5991}),

�
ℝ2

𝔻
(x5) =({0.0647, 0.1042}, {0.6251, 0.752}),

�
ℝ3

𝔻
(x1) =({0.082, 0.1414}, {0.6593, 0.7525}),

�
ℝ3

𝔻
(x2) =({0.0803, 0.1367}, {0.6123, 0.7092}),

�
ℝ3

𝔻
(x3) =({0.1155, 0.182}, {0.6285, 0.7202}),

�
ℝ3

𝔻
(x4) =({0.1645, 0.2531}, {0.387, 0.5593}),

�
ℝ3

𝔻
(x5) =({0.0736, 0.1216}, {0.6229, 0.7416}).

�

3∑
i=1

ℝi

𝔻
(x1) =DHFWA(�

ℝ1

𝔻

�
x1
�
, �

ℝ2

𝔻

�
x1
�
, �

ℝ3

𝔻

�
x1
�
)

=({0.0826, 0.1379}, {0.6631, 0.7641}).

�

3∑
i=1

ℝi

𝔻
(x2) =({0.0966, 0.1592}, {0.5827, 0.6787}),

�

3∑
i=1

ℝi

𝔻
(x3) =({0.1037, 0.1691}, {0.6164, 0.7048}),

�

3∑
i=1

ℝi

𝔻
(x4) =({0.1644, 0.2458}, {0.4588, 0.583}),

�

3∑
i=1

ℝi

𝔻
(x5) =({0.0706, 0.1153}, {0.6415, 0.7535}).

Next, the following multiple DHF membership degrees 

�

3∑
i=1

ℝi

𝔻
(xj) are further calculated.

In an ident ical  way,  we can fur ther  obtain 
�

3∑
i=1

ℝi

𝔻
(x2) = 0.7626 , �

3∑
i=1

ℝi

𝔻
(x3) = 0.77 , �

3∑
i=1

ℝi

𝔻
(x4) = 0.6754 

and �

3∑
i=1

ℝi

𝔻
(x5) = 0.8105 . Thus, the second ranking result of 

different posts shows 𝜓4 ≻ 𝜓2 ≻ 𝜓3 ≻ 𝜓1 ≻ 𝜓5.
Similar with the above steps, the following multiple DHF 

membership degrees �

3∑
i=1

ℝi

𝔻
(xj) are further calculated.

In an identical way, we can further obtain the remaining 
multiple DHF membership degrees �

3∑
i=1

ℝi

𝔻
(xj) as follows:

Afterwards, the score functions of �

3∑
i=1

ℝi

𝔻
(xj) can be obtained, 

that is s(�

3∑
i=1

ℝi

𝔻

�
x1
�
) = −0.6037 , s(�

3∑
i=1

ℝi

𝔻

�
x2
�
) = −0.5049 , 

s(�

3∑
i=1

ℝi

𝔻

�
x3
�
) = −0.5251 ,  s(�

3∑
i=1

ℝi

𝔻

�
x4
�
) = −0.3194  a n d 

s(�

3∑
i=1

ℝi

𝔻

�
x5
�
) = −0.6056 . Thus, the third ranking result of 

different posts shows 𝜁4 ≻ 𝜁2 ≻ 𝜁3 ≻ 𝜁1 ≻ 𝜁5.
In light of the above three ranking results of different 

posts, the following ranking order functions are determined.

�

3∑
i=1

ℝi

𝔻
(x1) =

�
3�
i=1

1

3

�
1

2

�
1

2

2�
�=1

���(�)
i

(x1) − 1�2

+
1

2

2�
�=1

���(�)
i

(x1)�2
��� 1

2

=0.8076.

�

3∑
i=1

ℝi

𝔻
(x1) =DHFWG(�

ℝ1

𝔻

�
x1
�
, �

ℝ2

𝔻

�
x1
�
, �

ℝ3

𝔻

�
x1
�
)

=({0.0826, 0.1376}, {0.6633, 0.7643}).

�

3∑
i=1

ℝi

𝔻
(x2) =({0.0958, 0.1579}, {0.5837, 0.6798}),

�

3∑
i=1

ℝi

𝔻
(x3) =({0.1031, 0.1687}, {0.6169, 0.7051}),

�

3∑
i=1

ℝi

𝔻
(x4) =({0.1638, 0.2455}, {0.4645, 0.5836}),

�

3∑
i=1

ℝi

𝔻
(x5) =({0.0705, 0.115}, {0.6429, 0.7538}).
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Fina l ly,  t he  MULTIMOORA rank ing  shows 
x4 ≻ x2 ≻ x3 ≻ x1 ≻ x5 , i.e., the optimal post is x4 (sales 
representative).

5.3 � Validity tests

For the study of MAGDM, another significant topic is how 
to prove the validity of the newly constructed MAGDM 
method in the related background. In order to complete the 
task of validity tests for various MAGDM methods, Wang 
and Triantaphyllou [34] established an efficient standard 
that mainly involves two kinds of tests. Afterwards, we 
intend to demonstrate the validity of the constructed DHF 
MAGDM method by virtue of test 1 and test 2.

In test 1, the standard indicates a valid MAGDM method 
should not alter the optimal alternative when substituting a 
sub-optimal alternative for a worse one. In light of the stand-
ard, let alternative x5 be the sub-optimal alternative, and �c 
be the worse alternative. Then, we substitute x5 for �c in 
Tables 1,  2, 3. Next, we calculate the updated values for 

multiple DHF membership degrees �

3∑
i=1

ℝi

𝔻

�
x5
�
 , �

3∑
i=1

ℝi

𝔻

�
x5
�
 and 

�

3∑
i=1

ℝi

𝔻

�
x5
�
 , the results show ({0.0004}, {0.9796}) , 0.9962 and 

({0.0004}, {0.9796}) , respectively, which indicate the ranking 
order of x5 remains the same as the one obtained in Sect. 5.2. 
Thus, the proposed DHF MAGDM method passes test 1.

In test 2, the standard shows that we first decompose 
a MAGDM problem into smaller ones, then the same 
MAGDM method is applied on smaller ones. Afterwards, 
we integrate the ranking order of smaller ones on the prem-
ise that the transitive property exists. Finally, the integrated 
result should be the same as the original result of the unde-
composed MAGDM problem. In light of this standard, 
we decompose the DHF MAGDM problem presented in 

Ind
(
�4
)
=Ind

(
�4

)
= Ind

(
�4
)
= 1,

Ind
(
�2
)
=Ind

(
�2

)
= Ind

(
�2
)
= 2,

Ind
(
�3
)
=Ind

(
�3

)
= Ind

(
�3
)
= 3,

Ind
(
�1
)
=Ind

(
�1

)
= Ind

(
�1
)
= 4,

Ind
(
�5
)
=Ind

(
�5

)
= Ind

(
�5
)
= 5.

previous sections into two smaller ones, i.e., 
{
x1, x2, x3, x4

}
 

and 
{
x2, x3, x4, x5

}
 . Then, we utilize the same DHF MAGDM 

method on them, and the MULTIMOORA ranking shows 
x4 ≻ x2 ≻ x3 ≻ x1 and x4 ≻ x2 ≻ x3 ≻ x5 , respectively. At last, 
the integrated result x4 ≻ x2 ≻ x3 ≻ x1 ≻ x5 can be obtained 
by integrate x4 ≻ x2 ≻ x3 ≻ x1 with x4 ≻ x2 ≻ x3 ≻ x5 , which 
is the same as the original result obtained in Sect. 5.2. Thus, 
the proposed DHF MAGDM method passes test 2.

Remark 5.1  According to Literature [34], four classic mod-
els were examined to compare the decision results by using 
them respectively, i.e., the weighted sum model, the weighted 
product model, the analytic hierarchy process (AHP), and 
the revised AHP. Then, two tests were designed to seek the 
best method. In specific, test 1 aims to check the stability of a 
method in yielding the identical decision result when a sub-
optimal alternative is replaced by a worse one, whereas test 2 
aims to compare the decision result when using multi-dimen-
sional situations and single-dimensional situations respec-
tively. Finally, the two tests were conducted by using simulated 
decision problems with random numbers, and the usefulness 
of the two tests were proven to be effective.

5.4 � Comparative analysis and discussions

In this section, we intend to conduct the following com-
parative analysis from two aspects, i.e., the one from clas-
sic DHF MAGDM methods via the case study presented in 
Sect. 5.1; another one from a real-world application example 
in the background of bank credit ratings (take Industrial and 
Commercial Bank of China (ICBC) as an example). At first, 
we present the first comparative analysis from the aspect of 
classic DHF MAGDM methods below.

By utilizing optimistic, pessimistic and neutral informa-
tion fusion tactics, Literature [52] designed a DHF MAGDM 
method via the model of several DHF MGRSs. In what fol-
lows, the DHF MAGDM method proposed in Literature [52] 
is employed to address the same P-J fit situation expressed 
in Sect. 5.1. According to the formulation of DHF MGRSs 
presented in Definition 2.5, the optimistic and pessimistic 
DHF multigranulation rough approximations with respect 
to 
(
U,V ,ℝi,𝔻

)
 are calculated.
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Then, three comprehensive synthesized sets by virtue of 
optimistic, pessimistic and neutral information fusion tactics 
are further calculated.

3�
i=1

ℝ
i

O

(𝔻) =
�⟨x1, {0.3, 0.4}, {0.5, 0.6}⟩,

⟨x2, {0.2, 0.4}, {0.3, 0.5}⟩, ⟨x3, {0.4}, {0.4, 0.6}⟩,
⟨x4, {0.5, 0.6}, {0.2, 0.3}⟩, ⟨x5, {0.3}, {0.6}⟩

�
,

3�
i=1

ℝ
i

O

(𝔻) =
�⟨x1, {0.6, 0.7}, {0.2}⟩,

⟨x2, {0.5, 0.7}, {0.2, 0.3}⟩, ⟨x3, {0.5, 0.7}, {0.2, 0.3}⟩,
⟨x4, {0.7, 0.8}, {0.1, 0.2}⟩, ⟨x5, {0.6, 0.7}, {0.1, 0.3}⟩

�
,

3�
i=1

ℝ
i

P

(𝔻) =
�⟨x1, {0.3}, {0.6}⟩,

⟨x2, {0.2, 0.3}, {0.4, 0.5}⟩, ⟨x3, {0.4}, {0.5, 0.6}⟩,
⟨x4, {0.4, 0.6}, {0.3, 0.4}⟩, ⟨x5, {0.3}, {0.6}⟩

�
,

3�
i=1

ℝ
i

P

(𝔻) =
�⟨x1, {0.7}, {0.1, 0.2}⟩,

⟨x2, {0.5, 0.7}, {0.2}⟩, ⟨x3, {0.6, 0.7}, {0.2, 0.3}⟩.
⟨x4, {0.7, 0.8}, {0.1, 0.2}⟩, ⟨x5, {0.6, 0.7}, {0.1, 0.2}⟩

�
.

At last, in light of the above three comprehensive synthe-
sized sets, three kinds of ranking results can be obtained 
by calculating corresponding score functions. In spe-
cific, optimistic synthesized sets indicate the ranking 
result is x4 ≻ x1 ≻ x5 ≻ x3 ≻ x2 , pessimistic synthesized 
sets indicate the ranking result is x4 ≻ x1 ≻ x5 ≻ x3 ≻ x2 , 
neutral synthesized sets indicate the ranking result is 
x4 ≻ x1 ≻ x3 ≻ x5 ≻ x2 . Hence, all three kinds of ranking 
results show the optimal post is x4 (sales representative).

Remark 5.2  It is noteworthy that the three ranking results 
obtained from optimistic, pessimistic and neutral synthe-
sized sets show the optimal post is x4 , which is the same as 
the P-J fit result acquired from the MULTIMOORA ranking. 
Additionally, there exist differences between the order of x1 , 
x2 , x3 and x5 . The reason for their differences comes from 
the adoption of different information fusion strategies, which 
shows the one from the aspect of DHF MGRSs utilizes 
the intersection and union operators to fuse multi-source 

3�
i=1

ℝ
i

O

(𝔻)⊞

3�
i=1

ℝ
i

O

(𝔻) =

�⟨x1, {0.72, 0.82}, {0.1, 0.12}⟩,
⟨x2, {0.6, 0.82}, {0.06, 0.15}⟩,
⟨x3, {0.7, 0.82}, {0.08, 0.18}⟩,
⟨x4, {0.85, 0.92}, {0.02, 0.06}⟩,
⟨x5, {0.72, 0.79}, {0.06, 0.18}⟩

�
,

3�
i=1

ℝ
i

P

(𝔻)⊞

3�
i=1

ℝ
i

P

(𝔻) =

�⟨x1, {0.79}, {0.06, 0.12}⟩,
⟨x2, {0.6, 0.79}, {0.08, 0.1}⟩,
⟨x3, {0.76, 0.82}, {0.1, 0.18}⟩,
⟨x4, {0.82, 0.92}, {0.03, 0.08}⟩,
⟨x5, {0.72, 0.79}, {0.06, 0.12}⟩

�
,

(

3�
i=1

ℝ
i

O

(𝔻)⊞

3�
i=1

ℝ
i

O

(𝔻))⊞

(

3�
i=1

ℝ
i

P

(𝔻)⊞

3�
i=1

ℝ
i

P

(𝔻)) =

�⟨x1, {0.9412, 0.9622}, {0.006, 0.0144}⟩,
⟨x2, {0.84, 0.9622}, {0.0048, 0.015}⟩,
⟨x3, {0.928, 0.9676}, {0.008, 0.0324}⟩,
⟨x4, {0.973, 0.9936}, {0.0006, 0.0048}⟩,
⟨x5, {0.9216, 0.9559}, {0.0036, 0.0216}⟩

�
.
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uncertain information, and the final information fusion result 
is vulnerable to the impact of extreme or erroneous values. 
Different from DHF MGRSs, the developed DHF MAGDM 
method refers to three common DHF information fusion 
rules, it is accepted that the utilization of MULTIMOORA 
is conducive to obtaining a relatively robust decision mak-
ing result. Moreover, it is noted that the proposed theoretical 
models consider both the weight of attributes and decision 
makers, whereas traditional GrC-based DHF models, such 
as DHF MGRSs, overlook the above two kinds of weights, 
hence the proposed theoretical models can better address 
real-world MAGDM problems.

In what follows, we present another real-world applica-
tion example in the background of ICBC’s credit ratings 
for illustrating the applicability of the proposed theoretical 
models. In order to address a realistic decision making 
problem for ICBC’s credit ratings, Literature [56] explored 
a novel covering-based fuzzy rough set with classic deci-
sion making methods. By referring to the original data 
presented in Literature [56], we transform the original data 
to the following DHF information systems and solve the 
new DHF MAGDM problem by using our proposed theo-
retical models.

First, we present the case description for ICBC’s credit 
ratings. It is noted that ICBC plans to launch diverse pref-
erential services each year for better serving clients. In 
order to make an accurate assessment of different clients, 
ICBC usually uses several significant attributes to provide 
a ranking result for clients, hence it is conducive for banks 
to offer high-quality personalized services to different lev-
els of clients by conducting credit ratings. In view of the 
above-mentioned facts, several realistic data from the cli-
ent information database of ICBC in 2018 was extracted to 
explore a case study analysis in Literature [56]. In specific, 
let W = {kj|j = 1, 2,⋯ , 10} be the set of clients, another 
universe H = {Hl|l = 1, 2,⋯ , 6} be 6 attributes, where 
Hl(l = 1, 2, 3, 4, 5, 6) represents deposit situations, personal 
monthly incomes, degree of education, career situations, 

debt situations, and interview situations. In addition, Hl(kj) 
represents an actual assessment value of the alternative kj in 
terms of the attribute Hl , where Hl(kj) is a rational number. 
Then based on the universes W and H, the extracted client 
information for credit ratings is presented in Table 4 below.

It is noteworthy that Hl(kj) in Table 4 is outside the range 
of DHFEs which prevents the usage of the proposed theoreti-
cal models, thus it is necessary to transform it to a DHFE by 
using the following normalization methods.

For H1 , this attribute refers to more amount of depos-
its will bring to higher scores. In addition, due to possi-
ble policy adjustments of ICBC, the upper limit of deposit 
situations may vary between 250,000 RMB, 300,000 RMB 
and 350,000 RMB at different times, then the following 
fuzzy assessment values of the client k in terms of H1 can 
be obtained.

In above formulas, the symbol E refers to the assessment 
value of a client over a certain attribute.

For H2 , the upper limit of personal monthly incomes is set 
as 9,000 RMB, 10,000 RMB and 11,000 RMB respectively 
according to the change of policy adjustments at different 
times, then the following fuzzy assessment values of the 
client k in terms of H2 can be obtained.

(27)H1a(k) =

{ E

250000
, E ∈ [0, 250000),

1, E ∈ [250000,∞).

(28)H1b(k) =

{ E

300000
, E ∈ [0, 300000),

1, E ∈ [300000,∞).

(29)H1c(k) =

{ E

350000
, E ∈ [0, 350000),

1, E ∈ [350000,∞).

(30)H2a(k) =

{ E

9000
, E ∈ [0, 9000),

1, E ∈ [9000,∞).

Table 4   The extracted client 
information for credit ratings

R H1 H2 H3 H4 H5 H6

k1 300200 6400 1.5 5.58 29000 3.54
k2 168000 7600 1.74 5.82 50320 3.9
k3 264000 10000 4.26 4.68 20500 4.56
k4 198000 8300 7 4.02 26500 4.92
k5 300000 4800 4.92 3.24 15500 5.04
k6 117000 2600 5.7 6 500 5.76
k7 138000 9500 4.38 7.2 7500 3.18
k8 294000 6200 6 2.22 18000 3.06
k9 300800 4600 3.48 0.96 6000 3.36
k10 255000 5800 6 5.28 2000 3.66



1235International Journal of Machine Learning and Cybernetics (2021) 12:1219–1241	

1 3

For H3 , we notice that the score interval of H3 falls within 
[0, 10], and the upper limit of this attribute is usually set as 
5, 6, and 7 respectively, then the following fuzzy assessment 
values of the client k in terms of H3 can be obtained.

For H4 , the setting of this attribute is similar with H3 , thus 
bank staffs are likely to determine the score interval of H4 
as [0, 10], and the upper limit of this attribute is also set as 

(31)H2b(k) =

{ E

10000
, E ∈ [0, 10000),

1, E ∈ [10000,∞).

(32)H2c(k) =

{ E

11000
, E ∈ [0, 11000),

1, E ∈ [11000,∞).

(33)H3a(k) =

{ E

5
, E ∈ [0, 5),

1, E ∈ [5, 10].

(34)H3b(k) =

{ E

6
, E ∈ [0, 6),

1, E ∈ [6, 10].

(35)H3c(k) =

{ E

7
, E ∈ [0, 7),

1, E ∈ [7, 10].

5, 6, and 7 respectively, then the following fuzzy assessment 
values of the client k in terms of H4 can be obtained.

For H5 , this attribute refers to more amount of debts will 
bring to lower scores. In addition, the upper limit of debt 
situations may vary between 60,000 RMB, 50,000 RMB 
and 40,000 RMB at different times, then the following 
fuzzy assessment values of the client k in terms of H5 can 
be obtained.

(36)H4a(k) =

{ E

5
, E ∈ [0, 5),

1, E ∈ [5, 10].

(37)H4b(k) =

{ E

6
, E ∈ [0, 6),

1, E ∈ [6, 10].

(38)H4c(k) =

{ E

7
, E ∈ [0, 7),

1, E ∈ [7, 10].

(39)H5a(k) =

{
1 −

E

60000
, E ∈ [0, 60000),

0, E ∈ [60000,∞).

Table 5   The first transformed 
fuzzy client information for 
credit ratings

R1 H1 H2 H3 H4 H5 H6

k1 1 0.71 0.3 1 0.52 0.71
k2 0.67 0.84 0.35 1 0.16 0.78
k3 1 1 0.85 0.94 0.66 0.91
k4 0.79 0.92 1 0.8 0.56 0.98
k5 1 0.53 0.98 0.65 0.74 1
k6 0.47 0.29 1 1 0.99 1
k7 0.55 1 0.88 1 0.88 0.64
k8 1 0.69 1 0.44 0.7 0.61
k9 1 0.51 0.7 0.19 0.9 0.67
k10 1 0.64 1 1 0.97 0.73

Table 6   The second 
transformed fuzzy client 
information for credit ratings

R2 H1 H2 H3 H4 H5 H6

k1 1 0.64 0.25 0.93 0.42 0.59
k2 0.56 0.76 0.29 0.97 0 0.65
k3 0.88 1 0.71 0.78 0.59 0.76
k4 0.66 0.83 1 0.67 0.47 0.82
k5 1 0.48 0.82 0.54 0.69 0.84
k6 0.39 0.26 0.98 1 0.99 0.96
k7 0.46 0.95 0.73 1 0.85 0.53
k8 0.98 0.62 1 0.37 0.64 0.51
k9 1 0.46 0.58 0.16 0.88 0.56
k10 0.85 0.58 1 0.88 0.96 0.61
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For H6 , the setting of this attribute is similar with H3 and H4 , 
bank staffs will determine credit ratings of each clients via 
the collected personal information and on-site interviews. 
Thus bank staffs are likely to determine the score interval 
of H6 as [0, 10] as well, and the upper limit of this attribute 
is also set as 5, 6, and 7 respectively, then the following 
fuzzy assessment values of the client k in terms of H6 can 
be obtained.

Afterwards, by using the normalization schemes 
Hka(k = 1, 2, 3, 4, 5, 6) in light of the formulas (27), (30), 
(33), (36), (39) and (42), the first transformed fuzzy client 
information for credit ratings is presented in Table 5 below.

(40)H5b(k) =

{
1 −

E

50000
, E ∈ [0, 50000),

0, E ∈ [50000,∞).

(41)H5c(k) =

{
1 −

E

40000
, E ∈ [0, 40000),

0, E ∈ [40000,∞).

(42)H6a(k) =

{ E

5
, E ∈ [0, 5),

1, E ∈ [5, 10].

(43)H6b(k) =

{ E

6
, E ∈ [0, 6),

1, E ∈ [6, 10].

(44)H6c(k) =

{ E

7
, E ∈ [0, 7),

1, E ∈ [7, 10].

In a similar way, by using the normalization schemes 
Hkb(k = 1, 2, 3, 4, 5, 6) in light of the formulas (28), (31), 
(34), (37), (40) and (43), the second transformed fuzzy client 
information for credit ratings is presented in Table 6 below.

At last, by using the normalization schemes 
Hkc(k = 1, 2, 3, 4, 5, 6) in light of the formulas (29), (32), 
(35), (38), (41) and (44), the third transformed fuzzy client 
information for credit ratings is presented in Table 7 below.

In real world, experts may choose different normalization 
schemes to obtain transformed fuzzy client information for 
credit ratings. If they consume more than one normalization 
scheme is reasonable, then a hesitation attitude will emerge. 
For instance, if an expert chooses the transformed result of 
Tables 5,  6, then several hesitant fuzzy elements (HFEs) 
can be formulated. Afterwards, in order to express the cli-
ent information for credit ratings more accurately, we intro-
duce non-membership degrees for each formulated HFEs by 
using the complement of an HFE h, where the complement 
of h is denoted by hc =

⋃
�∈h{1 − �} . Finally, by combin-

ing formulated HFEs with their non-membership degrees, 
the form of DHFEs can be eventually constructed. In what 
follows, by virtue of the transformed result of Table 5 and 
Table 6, the following Table 8 can be obtained; by virtue of 
the transformed result of Table 5 and Table 7, the follow-
ing Table 9 can be obtained; by virtue of the transformed 
result of Table 6 and Table 7, the following Table 10 can 
be obtained.

In light of Tables 8,  9,  10, we use the notion of TOP-
SIS (Technique for Order Preference by Similarity to an 

Table 7   The third transformed 
fuzzy client information for 
credit ratings

R3 H1 H2 H3 H4 H5 H6

k1 0.86 0.58 0.21 0.8 0.28 0.51
k2 0.48 0.69 0.25 0.83 0 0.56
k3 0.75 0.91 0.61 0.67 0.49 0.65
k4 0.57 0.75 1 0.57 0.34 0.7
k5 0.86 0.44 0.7 0.46 0.61 0.72
k6 0.33 0.24 0.81 0.86 0.99 0.82
k7 0.39 0.86 0.63 1 0.81 0.45
k8 0.84 0.56 0.86 0.32 0.55 0.44
k9 0.86 0.42 0.5 0.14 0.85 0.48
k10 0.73 0.53 0.86 0.75 0.95 0.52
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ICBC’s credit ratings. Suppose six attributes and three 
experts share an identical weight, then by virtue of 
the algorithm for MAGDM based on DHF MGPRSs 
with MULTIMOORA, we obtain the ranking result as 
k3 ≻ k10 ≻ k1 ≻ k7 ≻ k5 ≻ k4 ≻ k8 ≻ k6 ≻ k2 ≻ k9 . Moreo-
ver, we extract some ranking results by using different 
methods in light of Table 4 from Literature [56], which are 
presented in Table 11 below.

According to Table 11, it is noted that the optimal cli-
ent remains the same by using diverse methods, i.e., k3 . 
The conclusion by using our method owns some similari-
ties with the TOPSIS-WAA method based on covering-
based fuzzy rough sets when ranking other non-optimal 
clients. Since our method can solve the problem of 
ICBC’s credit ratings from the aspect of group decision 
making with a stable information fusion tactic, whereas 
other classic decision making methods can only address 
single-expert decision making. Therefore, the proposed 
theoretical models perform excellently when solving real-
world application examples in the background of ICBC’s 
credit ratings.

6 � Conclusion

This paper concentrates on addressing three challenges 
in information depiction, fusion and analysis stages of a 
complicated MAGDM situation, and explores MAGDM-
oriented DHF multigranulation probabilistic models in 
light of MULTIMOORA in detail. First, four types of DHF 
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Table 11   Ranking results by 
using different methods

Different methods Ranking of all alternatives

The TOPSIS method k3 ≻ k10 ≻ k4 ≻ k7 ≻ k8 ≻ k1 ≻ k5 ≻ k2 ≻ k9 ≻ k6

The weighted arithmetic average (WAA) operator 
method

k3 ≻ k10 ≻ k4 ≻ k7 ≻ k5 ≻ k8 ≻ k1 ≻ k2 ≻ k6 ≻ k9

The TOPSIS-WAA method based on covering-based 
fuzzy rough sets

k3 ≻ k10 ≻ k1 ≻ k5 ≻ k8 ≻ k4 ≻ k7 ≻ k6 ≻ k2 ≻ k9

Our method k3 ≻ k10 ≻ k1 ≻ k7 ≻ k5 ≻ k4 ≻ k8 ≻ k6 ≻ k2 ≻ k9

MGPRSs are proposed via optimistic/pessimistic tactics, 
DHFHA operators, DHF weighted Euclidean distances 
and DHFHG operators. Afterwards, in light of the pro-
posed theoretical models, a DHF MAGDM approach is 
established based on MULTIMOORA. Finally, a practical 
P-J fit case study is studied along with validity tests and 
comparative analysis for showing the practicality and effi-
ciency of the established DHF MAGDM method. Overall, 
both the developed theoretical models and the established 
DHF MAGDM method show the following merits: 

(1)	 The context of DHFSs enables decision makers to 
describe complicated uncertain information that 
involves fuzziness, imprecision and hesitation, thus the 
scheme of information depiction lays solid foundations 
for establishing DHF MAGDM methods.

(2)	 The utilization of MGRSs and PRSs not only increases 
the computational efficiency for the information fusion 
stage, but also offers the fault tolerance ability. In light 
of the above-stated features, this work explores four 
types of DHF MGPRSs from the aspect of practical 
MAGDM situations, which overcome limitations of 
traditional MGRSs and PRSs.

(3)	 MULTIMOORA is fused with MAGDM-oriented 
multigranulation probabilistic models in the context 
of DHFSs, thereby helping to provide reasonable and 
explainable results for DHF MAGDM. Moreover, 
validity tests and comparative analysis have shown the 
applicability and efficiency in solving a P-J fit situation.

In light of the above summarized merits, the proposed 
DHF MGPRSs act as an effective tool for fusing and ana-
lyzing multi-source DHF information according to dif-
ferent risks of decision makers, and a stable information 
fusion tactic can be obtained by using the constructed 
MAGDM based on DHF MGPRSs with MULTIMOORA, 
which can provide a robust decision result for compli-
cated DHF MAGDM problems. In the future, there exist 
several interesting topics in the theoretical and realistic 
studies of MAGDM-oriented multigranulation probabil-
istic models. For one thing, the fusion of other general-
ized fuzzy contexts and decision-oriented soft computing 
tools can open a door for addressing more domain-specific 

MAGDM situations. For another, plenty of MAGDM sit-
uations emerge with features of large group of experts, 
high-dimensional attributes and dynamic decision con-
texts, hence it is necessary to study valid methods for these 
scenarios.
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