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Abstract
In real-world applications, data can be represented using different units/scales. For example, weight in kilograms or pounds 
and fuel-efficiency in km/l or l/100 km. One unit can be a linear or non-linear scaling of another. The variation in metrics 
due to the non-linear scaling makes Anomaly Detection (AD) challenging. Most existing AD algorithms rely on distance- 
or density-based functions, which makes them sensitive to how data is expressed. This means that they are representation 
dependent. To avoid such a problem, we introduce a new anomaly detection method, which we call ‘usfAD: Unsupervised 
Stochastic Forest-based Anomaly Detector’. Our empirical evaluation in synthetic and real-world cybersecurity (spam detec-
tion, malicious URL detection and intrusion detection) datasets shows that our approach is more robust to the variation in 
units/scales used to express data. It produces more consistent and better results than five state-of-the-art AD methods namely: 
local outlier factor; one-class support vector machine; isolation forest; nearest neighbor in a random subsample of data; and, 
simple histogram-based probabilistic method.

Keywords Measurement scales and units · Anomaly detection · Outlier detection · Robust anomaly detection · Intrusion 
detection · Spam detection · And cyber security

1 Introduction

1.1  Background

Anomalies (also sometimes referred to as outliers) are data 
instances that are significantly different from most of the 
other data causing suspicions that they were generating 
from a different mechanism from the one that is normal 
or expected [23]. Anomaly Detection (AD) is the task of 
detecting anomalies in a given dataset automatically using 
computers and algorithms [16]. It has many applications 
such as [1]:

• Intrusion detection Detecting unauthorised access 
requests and malicious activities in computer networks.

• Fraud detection Detecting fraudulent and suspicious 
credit card and other financial transactions in banking.

• Spam detection Detecting malicious and phishing emails 
in electronic communications.

Most existing anomaly detection algorithms [3, 4, 15, 
26] assume that anomalies have feature values that are sig-
nificantly different from those of normal instances. In other 
words, anomalies are few and different and they lie in low 
density regions.

2  Motivation

In real-world applications, features of data objects can be 
measured in different units or recorded in different scales 
[5, 6, 19, 36]. For example: (1) patient’s weight can be 
measured in kilograms or pounds and temperature in °C or 
°F; (2) price of vehicles can be recorded in integer scale as 
x = 100, 000 or logarithmic scale of base 10 like x� = 5 , fuel 
efficiency in km/l as x = 9.0 or l/100 km as x� = 11.11 ; and 
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(3) sample variability can be measured in terms of standard 
deviation ( std ) or variance ( var ) ( std =

√
var or var = std2 ). 

Note that the different representations in Case (1) are linear 
scaling of one another whereas those in Cases (2) and (3) 
are non-linear scaling of each other.

Data representation can vary because of various reasons: 
(1) settings of devices used for measurement; (2) domain 
and/or user requirements; and (3) data compression to store 
and transmit using less bits. Such variation can be com-
mon in many application domains, such as cyber-physical 
systems, networks and communications, internet-of-things 
and healthcare, where different features of data objects are 
measured/recorded by different sensors.

The variation in metrics due to non-linear scaling makes 
automatic detection of anomalies a challenging task. Exist-
ing anomaly detection algorithms [4, 11, 15] rank instances 
in a database based on their densities or distances to near-
est neighbors (NNs). The instances with low densities 
or large distances to their NNs are flagged as anomalies. 
Because they use feature values to compute density or NN 
distances, they are sensitive to how features are measured. 
For example, the red data point in Fig. 1a clearly appears 
to be an anomaly, but when the same data is represented 
in the inverse scale as x� = x−1 , shown in Fig. 1b, the cor-
responding point looks like a normal data. Anomaly can be 
masked by the variation in data representation. Most existing 
anomaly detection algorithms cannot detect the anomaly in 
Fig. 1b.

When data is provided for anomaly detection only the 
magnitude (numbers) are available and the information 
about unit/scale used to measure/record them may not be 
available. Even if unit/scale used is known, we may not 
know whether the given form is appropriate for anomaly 
detection. Most existing algorithms do not consider such 
information and they can give misleading results if data is 
not given in the appropriate form. In critical applications, 
such as in cybersecurity and banking, the consequences of 
true negatives and/or false positives can be severe.

Data needs to be transformed into an appropriate form 
before using existing algorithms. The simplest way to 

identify the appropriate form is to try different representa-
tions (scaling/transformations) and test which one produces 
the best task specific result. Because there are infinite num-
ber of possible transformations to try for each feature, it is 
not feasible to find the best combination from trial and error 
even in low-dimensional problems with tens of features, let 
alone high-dimensional ones with hundreds and thousands 
of features.

As discussed in Baniya et al. [10], many psychologists 
argued that raw numbers can be misleading as they could 
have been measured/presented in different ways. One should 
not conclude anything from a given set of numbers without 
understanding where they come from and the underlying 
process of generating them [25, 28, 40, 41]. Velleman and 
Wilkinson [41] suggested that good data analysis does not 
make any assumption about data types/scales because data 
may not be what we see. Joiner [25] provided some exam-
ples of ‘lurking variables’—data appear to have one pattern, 
but in fact hide other information. However, in data mining, 
numeric data is assumed to be in ‘interval scale’ [19]—the 
meaning of a unit difference is same everywhere in the 
space. This assumption may not be true when data is repre-
sented as non-linear scaling such as logarithm and inverse.

Recently, the impact of units/scales has been studied in 
the context of pairwise similarity measurement of data and 
robust (dis)similarity measures have been introduced [5, 6, 
19]. These robust (dis)similarity measures have been shown 
to perform better than distance-based approaches (e.g., 
Euclidean and Cosine distances) in content-based informa-
tion retrieval and k-NN classification tasks. However, these 
robust (dis)similarity measures are not applicable in the 
anomaly detection task because of their implicit assumptions 
that are counter-intuitive for anomaly detection.

2.1  Contributions

In this research, we introduce an anomaly detection tech-
nique that is robust to data representation. Our work is 
motivated by ideas from ‘Unsupervised Stochastic For-
est’ (USF) [19] and Isolation Forest (iforest) [26]. USF 

Fig. 1  An example of the same 
data represented in two scales. 
The red data point in Case (a) 
looks like an anomaly, whereas 
the corresponding point in Case 
(b) is more like a normal data
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is a variant of Unsupervised Random Forest (URF) [14, 
34] used by Fernando and Webb [19] to develop a robust 
similarity measure. Iforest is a fast anomaly detection 
method based on a variant of random forest. It does not 
use distance/density and hence runs significantly faster 
than distance/density-based methods. However, its anom-
aly detection result is sensitive to the units/scales of data. 
This paper makes the following two main contributions:

1. Propose a new robust anomaly detection method by 
combining the ideas of USF and iforest. We extend USF 
to make it applicable in the anomaly detection task, by 
incorporating the iforest approach to rank data instances 
based on their anomaly scores. We call the proposed 
method as ‘usfAD’ (Unsupervised Stochastic Forest 
based Anomaly Detector).

2. Compare the anomaly detection performance of usfAD 
against five state-of-the-art methods using synthetic and 
real-world cybersecurity (spam detection, phishing URL 
detection and intrusion detection) datasets. To evaluate 
the robustness of methods to different representations of 
the same data ( x ), we use the non-linear scaling func-
tions: square ( x2 ); square root ( 

√
x ); logarithm ( log x ); 

and, inverse ( x−1).

2.2  Paper organization and notations

The rest of the paper is structured as follows. Prior works 
related to this paper are discussed in Sect. 2 and the pro-
posed usfAD is discussed in Sect. 3. Experimental setup 
and results are presented in Sect. 4 followed by related 
discussion in Sect. 5. The last section concludes the paper 
with potential directions for future research.

The list of key notations and symbols used in this paper 
are provided in Table 1.

3  Related works

The anomaly detection problem can be solved using three 
approaches: supervised, unsupervised or semi-supervised 
learning [16]. In the supervised approach, a classification 
model is learned from labelled training instances from 
both normal and anomalous classes, which is then used to 
predict class labels for test data (a mixture of normal data 
and anomalies). Labelled training samples from anoma-
lous class may not be available in many real-world appli-
cations [16]. In the unsupervised approach, instances in a 
database are ranked directly based on some outlier score. 
In the training process, a scoring model is learned (without 
using labels), which is used to compute anomaly score of 
test data to rank them in the testing phase. Anomalies are 
assumed to be few and different. This approach may not 
work well when the assumption does not hold, i.e., when 
there are far too many anomalies [13, 16]. In the semi-
supervised approach, a profile of normal data is learned 
using training data from the normal class only, but the 
label information is not used in the learning process. In 
this regard, it is different from the semi-supervised learn-
ing approach discussed in other machine learning prob-
lems, where a model is learned in the training phase using 
partially labelled training set (only a subset of training 
data is labeled). In the testing phase, instances are ranked 
based on how well they comply with the learned profile of 
normal data. It makes no assumptions about anomalies nor 
does it require any training samples from the anomalous 
class [13, 16]. Thus, the semi-supervised approach is more 
realistic in real-world applications.

In this paper, we focus on the semi-supervised approach 
where a model is learned from a training set D of n 
instances belonging to the normal class only and evaluated 
on a test set Q of q instances from a mixture of normal and 

Table 1  Notations
x = ⟨x1, x2,⋯ , x

d
⟩ A vector representing a data instance in an d-dimensional continuous space ( ℝd)

xi ∈ ℝ The value of x in the ith dimension (feature)
D(|D| = n) A training set of n normal instances
Q(|Q| = q) A test set of q instances that is a mixture of normal and anomalous data
D ⊂ D(|D| = 𝜓 ≪ n) A small subset of training data D
kNN(⋅,D) The set of k nearest neighbours of a test instance in D using Euclidean distance
Tj( j = 1, 2,… , t) A tree in an ensemble of t  trees
h The parameter that defines the height of a tree
𝓁j(⋅) The pathlength of a test instance in tree Tj
Lj(⋅) The leaf node in tree Tj where a test instance reached
m(⋅) The data mass in a region (e.g., a node of a tree)
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anomalous data. In this section, we review some widely 
used existing anomaly detection methods that are applica-
ble for the semi-supervised approach.

3.1  Nearest neighbor based methods

In Nearest Neighbor (NN)-based methods, the anomaly 
score of a test instance x ∈ Q is estimated based on the dis-
tances to its k NNs in D . Local Outlier Factor (LOF) [15] 
and kth NN distance [11] are the most widely used semi-
supervised and unsupervised methods. Being different from 
normal instances, anomalies are expected to have larger dis-
tances to their kNNs than normal instances. To compute the 
anomaly score of x ∈ Q , NN-based methods require to com-
pute its distances with all instances in D . It is computation-
ally expensive if the size of training set D is large. Sugiyama 
and Borgwardt [37] showed that the nearest neighbor search 
in a small subset D ⊂ D, |D| = 𝜓 ≪ n is enough for anom-
aly detection. They proposed a simple, but very fast, anom-
aly detector called Sp. The anomaly score of x ∈ Q is its 
distances to the nearest neighbor (1NN) in D . It has been 
shown that Sp with � as small as 25 produces competitive 
results to LOF but runs several orders of magnitude faster 
[37]. Ting et al. [39] used an ensemble approach using mul-
tiple subsamples Dj ⊂ D,

|||Dj
||| = 𝜓 ≪ n(j = 1, 2,… , t) and 

computed the anomaly score of x ∈ Q as the average dis-
tance to the nearest neighbor (1NN) in t subsamples [39].

3.2  Support vector based methods

These methods define the boundary around normal 
(expected) data and identify a set of data instances lying in 
the boundary called Support Vectors (SVs) using the kernel 
trick. They compute the pairwise similarities of instances in 
the training set D using a kernel function. Gaussian kernel 
that uses Euclidean distance is a popular choice. In the test-
ing phase, the anomaly score of x ∈ Q is estimated based on 
its kernel similarities with the SVs. One-Class Support Vec-
tor Machine (SVM) [33] and Support Vector Data Descrip-
tion (SVDD) [38] are widely used methods in this class. The 
training process is computationally expensive in the case of 
large D because of the pairwise similarity calculations. In 
the testing phase, the runtime is linear to the size of SVs. 
Different approaches have been suggested to speed up the 
training and testing process [24, 32]

3.3  Isolation based methods

This class of methods are based on the assumption that 
anomalies are more susceptible to isolation. Isolation Forest 
(iforest) [26] uses an ensemble of t random trees. Each tree 
Tj ( j = 1, 2,… , t ) is constructed from a small subsample of 

training data ( Dj ⊂ D,
|||Dj

||| = 𝜓 ≪ n ). The idea is to isolate 
every instance in Dj by random partitioning of data space 
into two non-empty sets in each node. Anomalies are 
expected to isolate early and have shorter average path-
lengths than normal data. Aryal et al. [7] used the average 
relative data mass in the leaf nodes and their immediate par-
ents as the anomaly score of a test instance [7]. These meth-
ods are very efficient as they do not require any distance/
similarity calculations. Isolation using nearest neighbor 
ensemble (iNNE) [9] uses a different mechanism of isolation 
in Dj . It creates a hypersphere centered at each instance in 
Dj with the radius equal to the distance to its nearest neigh-
bor (NN). Anomalies are expected to fall in hyperspheres 
with a large radius.

3.4  Histogram based methods

Methods based on one-dimensional histograms [3, 4, 21] 
are another type of efficient methods. In each dimension, a 
fixed number of equal-width bins are created and the data 
mass (frequency) in each bin is recorded. Because anomalies 
are few and different, they are expected to fall in bins with 
lower frequencies (i.e., low density bins) in many dimen-
sions. Simple Probabilistic Anomaly Detector (SPAD) [4] 
is a histogram-based anomaly detector, where bin width 
in each dimension depends on the variance of data in that 
dimension.

4  usfAD: a robust anomaly detector based 
on unsupervised stochastic forest

All methods discussed in Sect. 2 are sensitive to how data 
is represented because they assume that anomalies have 
feature values significantly different from those of normal 
data. They often produce poor results in datasets where this 
assumption does not hold, such as when data is not given in 
the appropriate form (Fig. 1b). However, we may not know 
the appropriate form of data in many real-world applications. 
In this section, we propose a new anomaly detection method 
that is robust to the units/scales of data used. Our proposed 
method is motivated by the ideas of Unsupervised Stochastic 
Forest (USF) and Isolation Forest (iforest).

USF is a variant of random forest used by Fernando and 
Webb [19] to define a similarity measure that is robust to units/
scales of data. The similarity of two instances is defined as the 
number of shared leaves in the forest of t trees. With a user 
defined tree height parameter ( h ), each tree Tj in the ensemble 
is constructed from a small subsample of data, Dj ⊂ D 
( j = 1, 2,… , t ), where |||Dj

||| = 2h . The subsample of data is 
divided into two equal subsets at each internal node of a tree 
by splitting at the median of the sample values of an attribute 
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selected at random. The process is repeated until nodes have 
one instance each. It creates balanced binary tress with all leaf 
nodes at the same height h . The tree structure is robust to how 
data is measured because of the median splits.

As discussed in Sect. 2.3, iforest is a variant of random for-
est used for anomaly detection. Each tree Tj is constructed from 
a small subsample of data, Dj ⊂ D ( j = 1, 2,… , t ), where 
|||Dj

||| = 𝜓 ≪ n . Instances in Dj are isolated using random parti-
tion at each internal node. Both attribute and split point are 
selected at random. iforest is sensitive to how data is measured 
because of the random split. The probability of having a split 

between two consecutive data points is proportional to their 
distance. The random split results in unbalanced binary trees 
which are the core of iforest for anomaly detection. The aver-
age pathlengths of a test data instance in trees is used as its 
anomaly scores.

Because of the balanced binary trees, pathlength cannot 
be used as the anomaly score in USF. We propose the follow-
ing extensions to USF so that pathlength can be used. When 
a tree Tj is constructed from Dj ⊂ D , normal and anomalous 
regions are defined in each node using the entire training data 
D . Therefore, tree construction is a two-step process.

(a) Building T
j
 from D

j
 This is the same as in USF where 

instances in the subsample Dj are isolated using median 
splits in each node. The detailed procedure is provided 
in Algorithm 1.
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Fig. 2  An example of partitioning and definition of normal regions 
in leaf nodes with the training data D of 20 normal instances and 
h = 2 . Data point represented by red asterisks are subsamples D ⊂ D 
selected to build the tree ( |D| = 22 = 4 ). Orange rectangles represent 
normal regions in leaf nodes

b. Defining normal and anomalous regions in nodes 
of T

j
 using D Once Tj is built, the entire training data 

D is passed to Tj . The region defined by the bounding 
hyper-rectangle that covers the training data within a 
leaf node is considered as the “normal region” and the 
rest is considered as the “anomalous region”. An exam-
ple of space partitioning and the definition of “normal 
regions” in leaf nodes is shown in Fig. 2. The training 
data mass in each leaf node is stored. In internal nodes, 
only the attribute selected for partitioning the space is 
used to define the normal data range. The algorithm to 
update Tj to define normal and anomalous regions, and 
store data mass in leaf nodes is provided in Algorithm 2.

In the testing phase, the anomaly score of a test instance 
x in each tree Tj is computed as the pathlength of the first 
node where it falls outside of the normal region. As shown 
in Algorithm 3, x is traversed down the Tj in each internal 
node only if its value of the attribute selected to split the 
node is within the normal data range. Otherwise the tra-
versal is terminated, and the current height is returned as 
the score of x in Tj,�j(x) . If x reaches a leaf node, �j(x) is 
estimated based on whether it lies in the normal or anoma-
lous region: (1) if it lies in the anomalous region, �j(x) = h ; 
and, (2) if it lies in the normal region, the score is the height 
augmented by the training data mass in the leaf ( Lj(x) ), 
�j(x) = h + log2

(
m
(
Lj(x)

))
 , where m

(
Lj(x)

)
 is the data mass 

in the leaf where x falls in tree Tj . The second term is to 
ensure that leaf nodes with higher densities have a larger 
score than those with low densities. Similar adjustment was 
done in iforest [26]. The final anomaly score of x is the aver-
age score over the ensemble of t trees like in iforest [26]:

We call the proposed method ‘usfAD’ as it is based on 
the Unsupervised Stochastic Forest (USF). It uses the same 
idea of isolating anomaly regions from normal regions as 
in iforest [26] but using different mechanism of isolation. 
Anomalies will have smaller scores than normal instances. 
Because of the median splits, usfAD is robust to the change 
in units/scales of data measurement. It is based on the order-
ings or ranks of data which is either preserved or reversed if 

(1)s(x) =
1

t

t∑

j=1

�j(x)
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the data is measured in different scales. If a data point u lies 
between 

[
x, y

]
 in one scale, the corresponding point u′ lies in 

between 
[
x′, y′

]
 in another scale. As the median of even data 

samples is the mid-point of the two data in the middle, the 
definition of normal regions in leaf nodes can vary slightly if 
data is measured differently. It may cause small differences 
in the anomaly detection results.

Figure  3 shows the contour plots of anomaly scores 
of points in a two-dimensional space using iforest 
( t = 100,� = 256 ) and usfAD ( t = 100, h = 5 ) in a dataset 
in two scales: x and x� = x−1 . It is clear that the anomaly 
represented by the red dot is not identified as a strong anom-
aly by iforest in both representations. It appears to be an 
anomaly in the original scale (Fig. 3b) but the actual score 
is not significantly different from those of some blue points. 
It clearly appears to be a normal point in the inverse scale 
(Fig. 3e). The anomaly can be detected as a strong anomaly 
by usfAD in both scales (Fig. 3c and f).

In terms of runtime, usfAD runs slightly slower than 
iforest. In the training phase, it requires to define normal 
regions in nodes passing the entire training data in each tree. 
During testing, for each test data, it requires an overhead 
to check if it falls in the normal or anomaly region in each 

Fig. 3  An example dataset in two scales: x and x� = x
−1 and anomaly 

contours of iforest ( t = 100,� = 256 ) and usfAD ( t = 100, h = 5 ). 
Note that data is normalized to the unit range in both dimensions. The 
darker the color, the lower the anomaly score, i.e., higher the chances 

of being anomaly. Note that training data D or D′ does not include 
the red dot, only normal data points represented by blue asterisks are 
included

node. Its training runtime complexity is O(nth + t�d) , 
where � = 2h . The testing runtime complexity to rank a 
test instance is (t(h + d)) . It needs O(t�d) space to store the 
ensemble of trees. Like iforest, its testing time is independ-
ent of training data size n.

5  Empirical evaluation

This section presents the setup and results of experiments 
conducted to evaluate the performance of usfAD against 
existing anomaly detection methods. Five widely used state-
of-the-art methods of LOF, one-class SVM, iforest, Sp and 
SPAD were used as contenders for performance evaluation. 
Six two-dimensional synthetic datasets and four benchmark 
cybersecurity datasets were used. All experiments were con-
ducted in the semi-supervised setting. In each dataset, half 
of the normal instances were used as training data D and the 
remaining other half of normal data and all anomalies are 
considered as test data Q as done in [13]. Anomaly detection 
model was learned from D and tested on Q.
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The performance was evaluated in terms of the Area 
Under the ROC Curve (AUC). AUC is estimated using the 
rankings of test instances in Q based on their anomaly scores 
(anomalies are expected to have higher ranks than normal 
instances) and ground truth labels [22, 39]. It is equivalent 
to the probability that a randomly chosen anomaly will be 
ranked below a randomly chosen normal instance [22]. For 
the random methods of iforest, Sp and usfAD, each experi-
ment was repeated 10 times and reported the average AUC. 
The same training and test sets of a dataset were used for all 
experiments with the dataset.

In terms of implementation, the python implementations 
of LOF and SVM included in the Scikit-learn Machine 
Learning Library [31] were used. Other methods and 
experimental setups were also implemented in Python. All 
the experiments were conducted in a Linux machine with 
2.27 GHz processor and 8 GB memory. Parameters in algo-
rithms were set to suggested default values by respective 
authors as:

• LOF: Nearest Neighbour parameter k =
�√

n
�
;

• Sp: Subsample size � = 25;
• SPAD: Number of bins b = ⌊log2n⌋ + 1;
• iforest: Ensemble size t = 100 , and Subsample size 

� = 256;
• SVM: Default settings of all parameters ( kernel = ‘rbf’, 

� = 1∕d , � = 0.5 ); and
• usfAD: Tree height h = 5 , and Ensemble size t = 100.

To evaluate the robustness of algorithms with different 
representations of the same data, non-linear scaling using 
square ( x2 ), square root ( 

√
x ), logarithm ( log x ) and inverse 

( x−1 ) were used. To cater for log x and x−1 at x = 0 , all trans-
formations were applied on x̂ = c(x + 𝛿) , with � = 0.0001 
and c = 100 . Note that data was normalized to the unit range 
in each feature before rescaling to ensure the same effect 
of � and c in all features. Once data was rescaled, it was 
renormalized to be in the unit range again. This study used 

Fig. 4  Six two-dimensional synthetic datasets. Each has 2000 normal instances represented by blue asterisks and 12 anomalies represented by 
red dots
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the same procedure of rescaling as employed by Fernando 
and Webb [19].

Results in synthetic datasets and real-world cybersecu-
rity datasets are discussed separately in the following two 
subsections.

5.1  Synthetic datasets

To evaluate the effectiveness and robustness of usfAD and 
other contenders in detecting anomalies in various data dis-
tributions, six two-dimensional datasets as shown in Fig. 4 
were used. These datasets represent good examples of sce-
narios where normal or expected data (represented by blue 
asterisks) form complex structures and anomalies (repre-
sented by red dots) are added at various parts in the data 
space. In all cases, points represented by red dots clearly 
look like anomalies visually. We expect existing anomaly 
detection methods to detect them successfully.

AUCs of the contending methods in the six synthetic 
datasets in the scales of x, x−1, logx, x2 and 

√
x are presented 

in Fig. 5. It clearly shows that usfAD produced the best or 
equivalent to the best results in all datasets. It produced simi-
lar results with and without non-linear scaling of data. It 
shows that usfAD is robust to how data was measured. It is 

Fig. 5  AUC in the six synthetic datasets with and without non-linear scaling of data

Table 2  Characteristics of cybersecurity datasets used

Dataset #Dimen-
sions ( d)

#Training nor-
mal data ( n)

Test data

#Normal 
data

#Anomalies

Spambase 57 1394 1394 176
ISCX-URL 75 3889 3890 7570
NSL-KDD 38 38,527 38,527 71,463
UNSW-NB15 39 82,336 82,337 93,000
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clear that all five existing anomaly detection methods were 
sensitive to how data is expressed. It shows LOF is the least 
sensitive existing method, but its performance dropped with 
some scaling in some datasets, e.g., inverse and logarithmic 
scaling in Waves and Corners.

It is interesting to note that four existing methods (SVM, 
iforest, Sp and SPAD) did not rank all anomalies before nor-
mal instances even in the original scale ( x ) in most datasets. 

These results demonstrate their limitations. In many of these 
examples, it is not possible to learn the perfect boundary 
covering the normal data only without any error. Thus, SVM 
ranked some normal instances before anomalies resulting 
in poor AUC. Because some anomalies in these examples 
lie between normal data in both axes, they cannot be iso-
lated easily in trees. They have longer pathlengths than some 
instances at the fringe of data distribution in any axis that 

Fig. 6  AUC of contending methods in four widely used benchmark cybersecurity datasets with order preserving and order reversing scaling of 
data
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can be isolated early. Thus, iforest failed to detect these types 
of anomalies. Sp has high variance because of the use of a 
very small subsample of data resulting in poor performance 
in datasets with complex structures. Because SPAD com-
putes anomaly scores in each axis separately as it assumes 
the dimensions are independent. This results in it being una-
ble to detect anomalies that look normal when examined in 
any individual axis but would have appeared as anomalous 
when examined from both axes together.

Another interesting result to note is that some existing 
methods produced better results after rescaling than in the 
original space, e.g., SVM produced best results with the 
inverse scaling in Gaussians and Spiral.

5.2  Real‑world datasets: cybersecurity

In real-world datasets, four widely used benchmark cyberse-
curity datasets were used: Spambase1 (a publicly available 
emails collection to detect spams), NSL-KDD2 (a new ver-
sion of the traditional KDD99 intrusion detection dataset 
created by resolving some inherent issues and limitations), 
ISCX-URL3 (a dataset of benign and malicious URLs) and 
UNSW-NB154 (a widely used network intrusion detection 
dataset). The characteristics of the four datasets used are 
provided in Table 2.

Cybersecurity datasets were used because their fea-
ture values can be measured or expressed in different 
forms. For example, in the ISCX-URL dataset, URLs are 

represented by Lexical features [29]. Several features are 
based on the ratios of the lengths of various components of 
URLs such as domain, path and arguments. Some of them 
are represented in such a way that the ratio is less than 1, 
whereas others are not. Length of a component (such as 
domain) is used in numerator in one ratio and as denomi-
nator in others, e.g., domain to URL length ratio, path to 
domain length ratio, argument to path length ratio, etc. 
Depending on how such features are measured, existing 
anomaly detectors produce different results.

Anomaly detection results in terms of AUC of existing 
methods and the proposed usfAD in the four cybersecurity 
datasets using the given form of data ( x ) and their non-
linear scalings using x−1, logx, x2 and 

√
x are presented in 

Fig. 6. As expected, all five existing methods were sensi-
tive to the scales of data used, their performances var-
ied significantly. Some existing methods produced better 
results with other scales. For example, in ISCX-URL, 
AUCs of all existing methods except LOF increased with 
the inverse scale. LOF produced better result with the 
inverse scaling than x in Spambase. The proposed method 
of usfAD produced the same results regardless of the scal-
ing used in all four datasets. It produced the best results in 
three datasets except in UNSW-NB15, where Sp produced 
slightly better results than usfAD. However, Sp produced 
significantly worse results than usfAD in the other three 
datasets. The results of usfAD were more consistent than 
any other contender across the four datasets.

In terms of runtime, as expected from the time complexi-
ties discussed in Sect. 3, we observed that usfAD was faster 
than LOF and SVM, and slower than iforest and Sp. For 
example, in the largest dataset of UNSW-NB15, the total 
runtime (including training and testing) of usfAD was 
437 s compared to 36 s (Sp), 60 s (SPAD), 84 s (iforest), 
606 s (LOF), and 1562 s (SVM). Note that we used the 

Fig. 7  Sensitivity of two parameters in usfAD: tree height ( h ) and number of trees ( t)

1 https ://archi ve.ics.uci.edu/ml/datas ets/spamb ase
2 https ://www.unb.ca/cic/datas ets/nsl.html
3 https ://www.unb.ca/cic/datas ets/url-2016.html
4 https ://www.unsw.adfa.edu.au/unsw-canbe rra-cyber /cyber secur ity/
ADFA-NB15-Datas ets/

https://archive.ics.uci.edu/ml/datasets/spambase
https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/url-2016.html
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
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implementations of LOF and SVM available in the Scikit-
learn Library which are optimized to run fast using efficient 
data structures. For other methods (iforest, Sp, SPAD and 
usfAD), we implemented them without ensuring code was 
optimized.

5.3  Sensitivity of parameters

There are two parameters in usfAD: tree height ( h ) and num-
ber of trees ( t ). Note that h determines the subsample size to 
build each tree, i.e., � = 2h . The sensitivity analysis of the 
two parameters were conducted in the ISCX-URL dataset. 
To analyze the effect of one parameter, the other parameter 
was set to the default value. When h was varied from 1 to 8, 
t was set to the default value of 100; and when t was varied 
from 10 to 1000, h was set to the default value of 5.

The AUCs of usfAD with different settings of h and t in 
the ISCX-URL dataset are provided in Fig. 7. In both cases, 
with the increase in the parameter value, the AUC of usfAD 
improved significantly for the first few lower values and then 
gradually flatten out towards the higher values. These results 
indicate that the parameters are not very sensitive as long 
as they are set to sufficiently large values. Note that higher 
values of h and t will increase the runtime linearly. We need 
to trade-off performance and efficiency. For a right balance, 
h and t were set to 5 and 100, respectively, as default values. 
The default settings were used in all experiments conducted 
in this study. The performance of usfAD can be further 
improved by proper tuning of the two parameters.

6  Discussion

Results in this research show that the given representa-
tion of data may not be appropriate for anomaly detection 
using existing distance or density-based methods. In the 
literature, representation learning techniques [12, 30, 43] 
were used to map data from the given input space into a 
latent space that maximizes the task specific performance 
of a given data mining algorithm. Representation learning 
can be viewed as learning appropriate transformations that 
best suits the dataset and algorithm at hand. It is primar-
ily used for unstructured data such as image, text, audio 
and video. Learning an appropriate representation for 
anomaly detection is very challenging because anomalies 
can be of different types and can appear anywhere in the 
data space, i.e., anomalies do not have a particular set 
of characteristics. Furthermore, representation learning 
has some other issues too: (1) requires extensive learn-
ing which can be computationally expensive in large and/
or high-dimensional data sets; (2) learns representation 
appropriate for the given algorithm, representation learned 

for one algorithm may not be appropriate for others in the 
same data set; and (3) one cannot interpret the meaning of 
new features and what type of information they capture.

Another alternative suggested in the literature to 
address the issue of units and scales of measurement of 
data is rank transformation [18]. It is robust to how data is 
measured or represented because ranks/orders are either 
preserved or reversed when data is expressed differently. It 
has been shown that using ranks instead of actual values, 
distance or similarity based algorithms produces better 
results for tasks such as classification and clustering [5, 6, 
19]. Rank transformation, however does not work for the 
task of anomaly detection. Because the rank differences 
of consecutive values are always one irrespective of the 
magnitude difference, the transformed data is uniformly 
distributed making anomalies difficult to detect.

To address the above-mentioned issue of rank transfor-
mation, Baniya et al. [10] proposed a robust alternative 
to rank transformation that preserves differences between 
data instances in the transformed space to some extent. 
They use average ranks over multiple subsamples of data. 
Data transformation based on the Average Rank over 
an Ensemble of Subsamples (ARES) has been shown to 
improve classification accuracies of algorithms such as k
NN, Artificial Neural Networks and Logistic Regression 
[10]. However, the similar results could not be achieved 
in the anomaly detection task.

At the first glance, this work may appear to be related to 
multiscale data analysis [8, 42]. However, they are funda-
mentally different concepts and they are addressing different 
issues. In the literature, the term ‘multiscale’ is used in the 
context of applications/problems where data can be viewed 
at different hierarchical levels (scales). For example, (1) tem-
poral data (e.g., daily, monthly, yearly, etc.), images (pixels, 
shapes, objects, etc.), spatial data (various geographic reso-
lutions). Multiscale data analysis examines data at multiple 
levels (scales in time, frequency or resolution) and integrate 
the information in the learning process. There are several 
works using multiscale data for anomaly detection in spa-
tial and temporal domains [17, 20, 27, 35]. Multiscale data 
analysis does not address the issue related to the form/format 
when data is given for analysis. The issue is also applicable 
while recording data at different levels. Learning algorithms 
may not perform well if the data at each level are not pre-
sented in an appropriate form.

7  Conclusions and future work

In today’s world, data is recorded by sensors everywhere 
around us. The sensors’ readings are transferred to a server, 
and stored in a database before they are analyzed. In this 
process, the representation of data may have been changed 
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for various reasons such as sensors’ settings, compression 
to decrease communication and storage costs, and encod-
ing for security reasons. When data is given for analysis, 
we may not know how they are measured and stored. This 
makes anomaly detection very challenging. Anomalies can 
be masked and look like normal data in the given represen-
tation and existing anomaly detection algorithms that are 
primarily based on distance or density may give true nega-
tive or false positive results.

This is the first work studying the issue of data represen-
tation in the context of anomaly detection. It demonstrates 
that the fundamental assumption made by almost all existing 
methods that anomalies are few and different can be coun-
terproductive if data is represented inappropriately. Often in 
practice, we simply have a bunch of numbers and we may not 
know how they are represented. Therefore, we need anomaly 
detection algorithms that do not make such assumptions and 
are robust to data representation. We believe this work will 
change the way automatic anomaly detection problem has 
been studied in the past and lead to a potential paradigm 
shift in future anomaly detection research.

This paper introduces a simple robust anomaly detection 
algorithm based on unsupervised stochastic forest called 
usfAD. Experimental results in synthetic and real-world 
cyber security datasets with different scaling of data show 
that it is robust to how data is measured. Because of the 
median split used to construct trees in the forest, its results 
are consistent and stable across different scaling in all data-
sets. The implementation is based on the ordering of data 
and it is robust to how data is presented as the variation 
in units/scales either preserves or reverses the orderings. It 
outperforms most existing state-of-the-art anomaly detection 
methods even when using the given form of the data. This 
result shows that some features of the given datasets may not 
be recorded in the appropriate form for anomaly detection 
using existing methods, which are sensitive to units/scales 
of data measurement.

In future, we would like to extend this idea to work in 
the clustering problem, where most existing state-of-the-
art methods use distance or density. Also, we would like to 
explore a non-tree-based implementation of usfAD. Another 
potential avenue for future research would be to investigate 
on scale-invariant representation learning for anomaly 
detection..
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