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Abstract
In the era of big data, the research on clustering technologies is a popular topic because they can discover the structure of 
complex data sets with minimal prior knowledge. Among the existing soft clustering technologies, as an extension of fuzzy 
c-means (FCM) algorithm, the intuitionistic FCM (IFCM) algorithm has been widely used due to its superiority in reduc-
ing the effects of outliers/noise and improving the clustering accuracy. In the existing IFCM algorithm, the measurement 
of proximity degree between a pair of objects and the determination of parameters are two critical problems, which have 
considerable effects on the clustering results. Therefore, we propose an improved IFCM clustering technique in this paper. 
Firstly, a novel weighted proximity measure, which aggregates weighted similarity and correlation measures, is proposed to 
evaluate not only the closeness degree but also the linear relationship between two objects. Subsequently, genetic algorithms 
are utilized for identifying the optimal parameters. Lastly, experiments on the proposed IFCM technique are conducted on 
synthetic and UCI data sets. Comparisons with other approaches in cluster evaluation indexes indicate the effectiveness and 
superiority of our method.

Keywords Intuitionistic fuzzy c-means (IFCM) algorithm · Intuitionistic fuzzification · Similarity measure · Correlation 
coefficient · Genetic algorithm (GA)

1 Introduction

As an extension of fuzzy set (FS) [1], intuitionistic FS (IFS), 
which consist of membership, non-membership and hesita-
tion degrees, were incepted in [2] to describe and process 
data with uncertainty. IFS has been continuously studied and 
applied to various fields, such as pattern recognition, image 
processing, decision making and clustering [3]. Out of all 
the applications, the clustering techniques of IFS are among 
the major domains that have been found to be highly useful 
but rarely investigated.

Clustering refers to an exploratory data analysis tool 
for discovering the data structure in multivariate data sets 
through association rules and grouping all data into multi-
ple clusters. A good clustering result requires that the items 
within the same cluster have a maximal degree of associa-
tion and minimal otherwise. With the arrival of the big data 
age, many realistic problems concerning taxonomical, geo-
logical, medical, engineering and business systems require 
clustering techniques to solve. Thus, the development of 
clustering technologies is gaining increasing attention from 
researchers. Traditional clustering techniques can be broadly 
classified into hard and soft clustering. Hard clustering algo-
rithms assume that a clear boundary exists among different 
clusters and assign each object to a single cluster exactly. 
However, in many real-world applications, a sharp bound-
ary does not necessarily exist among clusters; an object 
may belong to multiple clusters. For this reason, many soft 
clustering algorithms have been studied. Lingras et al. [4] 
introduced rough set theory into clustering and proposed the 
rough k-means clustering algorithm, which assigns objects 
to multiple clusters in accordance with the concept of upper 
and lower approximation of rough sets. Based on FS theory, 
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the fuzzy c-means (FCM) clustering algorithm, which allows 
each data to be subordinate to multiple clusters with vary-
ing membership degree that represents the proximity of the 
data to multiple cluster centres, has been developed [5]. As 
a conceptual bridge between rough set and FS, shadow set 
has also been successfully applied to clustering; for example, 
shadowed c-means [6] and k-means [7] clustering algorithms 
have been introduced. Inspired by three-way decision, Yu 
et al. [8, 9] proposed three-way clustering theory, which 
divides the entire area into three parts, namely, positive, 
negative and boundary areas, to represent the three states of 
an object: belong to, not belong to and uncertain.

Among several well-known soft clustering techniques, 
FCM algorithm is widely used in various fields due to its 
high efficiency and ease of use. However, the main short-
coming of this algorithm is that it is sensitive to noise and 
outliers [10]. IFSs can express more valuable information 
than crisp data sets, and using IFSs to represent a project 
may reduce the effect of noise/outliers on clustering results. 
Thus, the intuitionistic FCM (IFCM) clustering algorithm, 
which adopts the weighted Euclidean distance between IFSs 
in the objective function of FCM algorithm to cope with 
uncertainty, was firstly introduced in [11]. Many researchers 
have then used this IFCM algorithm to solve various prob-
lems, such as image segmentation [12], geodemographic 
analysis [13], customer segmentation [14] and forecasting 
[15]. All of these studies have concluded that compared 
with the conventional FCM, the IFCM algorithm can be 
less affected by noise, produces more accurate clustering 
results and requires fewer iterations. Nevertheless, two criti-
cal issues occur in the IFCM algorithm, and the specific 
analyses are as follows.

One critical issue in the IFCM algorithm is the proxim-
ity measurement among objects. In many studies, the dis-
tance/similarity measures between IFSs have been adopted 
to determine the proximity degree between a pair of items. 
Xu’s IFCM algorithm uses the Euclidean distance between 
IFSs as a proximity measure. However, the Euclidean dis-
tance often results in low clustering accuracy when noise 
exists in data sets [16]. Therefore, many scholars have dedi-
cated efforts to find a suitable proximity measure for cluster 
analysis. In [17], the author compared the performance of 
several IFCM algorithms with different intuitionistic fuzzy 
similarity measures on UCI data sets. In [18], several well-
known intuitionistic fuzzy distance metrics were reviewed 
and experimented on a synthetic data set and real data sets. 
Moreover, many new distance/similarity measures of IFSs 
for clustering techniques have been introduced in recent 
studies [19–21]. In accordance with the experimental results 
on various data sets, all of the above-mentioned clustering 
algorithms with different new intuitionistic fuzzy distance/

similarity measures have been proved to perform better than 
clustering algorithms with traditional Euclidean distance. 
However, the use of distance/similarity measures to find the 
proximity degree between a pair of objects only evaluates 
the closeness degree between the two projects and ignores 
the linear relationship between them. That is, it cannot iden-
tify the correlations between projects with similar trends. In 
this case, some valuable information will be lost during the 
clustering process, which will affect the precision of cluster-
ing results.

The other critical issue is the determination of parameters. 
In the IFCM algorithm, the user should set many parameters 
in advance, and suitable parameters can promote the suc-
cess of the clustering algorithm [22]. In the conventional 
algorithm, these parameters are often subjectively set, but 
this condition may lead to unreasonable clustering results 
due to problem complexity and the lack of knowledge of the 
user. Therefore, many studies have adopted several optimi-
zation algorithms, such as grid search, stochastic gradient 
descent and adaptive approach, to find optimal parameters 
objectively [20]. The experimental results show that deter-
mining parameters with objective methods is more robust 
than that with subjective methods. Nonetheless, the per-
formance of the optimization algorithms mentioned above 
remains unideal in terms of calculation speed and accuracy, 
and they will not assist the IFCM algorithm in producing the 
best clustering result.

After clearly recognizing that the aforementioned two key 
issues will weaken the clustering effect of the IFCM algo-
rithm, this study aims to find a suitable method to improve 
the existing IFCM algorithm from the two aspects.

For the first issue, we consider correlation measure as one 
of the most widely used metrics that can compensate for the 
defect of distance/similarity measures. In statistical analysis, 
the correlation coefficient, which evaluates the strength and 
direction of the linear relationship between two sets of data, 
can consider the trend of each set of data. The method of 
correlation measurement in various fuzzy environments has 
been greatly developed and applied in many fields. The con-
cept of correlation among IFSs was firstly proposed by [23] 
to measure the interrelation of IFSs. Later, various correla-
tion measures of IFSs [24–27] were developed and widely 
used in clustering. The superiority of combining similarity 
and correlation measures for cluster analysis has been illus-
trated in [28].

For the second issue, many studies have proved that 
heuristic optimization algorithms can perform better than 
other optimization algorithms (such as grid search, random 
search and stochastic gradient descent), especially on com-
plex issues [29]. Thus, we believe that heuristic optimiza-
tion algorithms have remarkable advantages in terms of 
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objectively determining parameters. Several heuristic opti-
mization algorithms, such as genetic algorithm (GA) [30], 
particle swarm optimization (PSO) [31] and artificial bee 
colony (ABC) [14], have been widely used in many studies 
on account of their excellent performance in dealing with 
highly complicated problems. Among these optimization 
algorithms, GA is a random search algorithm that simulates 
the biological evolutionary process and is applied most fre-
quently because of its proven powerful global search capa-
bilities. In [32, 33], the authors adopted GA to select the 
optimal parameters of their extended IFCM algorithm, and 
the results demonstrated the efficiency of GA in improving 
the performance of clustering algorithms.

Inspired by the preceding analysis, we propose a new 
IFCM algorithm which improves the existing IFCM algo-
rithm from two aspects: proximity measurement among 
objects and parameter determination.

Firstly, we propose a new weighted proximity measure for 
the IFCM algorithm, which aggregates weighted similarity 
and correlation measures to evaluate not only the closeness 
degree but also the linear relationship between two objects 
represented by IFSs. The weight of each feature in the 
weighted proximity measure is calculated using the maxi-
mizing deviation method to reduce information loss. Then, 
GA is applied to determine the optimal parameters of this 
clustering algorithm for avoiding the adverse effects of sub-
jectively setting parameters on clustering results. The time 
complexity of the improved GA-IFCM algorithm is also ana-
lysed. Lastly, we conduct three experiments on a synthetic 
data set and five UCI data sets to compare the improved GA-
IFCM algorithm based on the proposed weighted proximity 
measure and parameter optimization algorithms with other 
clustering methods in terms of accuracy rate, four validation 
indexes and time consumption.

The remainder of this paper is organized as follows. Sec-
tion 2 presents some basic concepts related to IFS and the 
process of the conventional IFCM algorithm. Section 3 
introduces an improved IFCM algorithm based on the pro-
posed novel weighted proximity measure and GA. Section 4 
discusses the experimental results of the proposed clustering 
technique on synthetic and UCI data sets. Lastly, the con-
clusions and future research directions are stated in Sect 5.

2  Preliminaries

In this section, we introduce some basic concepts related to 
IFS and the intuitionistic fuzzy clustering approach, which 
will be utilized hereinafter.

2.1  IFS

Definition 1 IFS [2]. An IFS A in a universe X  can 
be written as A =

�⟨x,�A(x), vA(x)⟩�x ∈ X
�

 ,  where 
�A(x) ∶ X → [0, 1] and vA(x) ∶ X → [0, 1][0, 1] , with the 
condition 0 ≤ �A(x) + vA(x) ≤ 1 , represent the member-
ship degree and non-membership degree of the element 
x to A . The hesitation degree of x to A is expressed as 
�A(x) = 1 − �A(x) − vA(x) , evidently, 0 ≤ �A(x) ≤ 1, x ∈ X.

2.1.1  Distance/similarity measures between IFSs

Definition 2 Distance measure between IFSs [34]. Let A 
and B be two IFSs on X , mapping D ∶ IFS × IFS → [0, 1] ; 
D(A,B) represents the distance between A and B , and it 
needs to satisfy the following properties: 

Definition 3 Similarity measure between IFSs [34]. Let A 
and B be two IFSs on X , mapping S ∶ IFS × IFS → [0, 1] ; 
S(A,B) represents the similarity between A and B , and it 
needs to satisfy the following properties:

The similarity measure is the complementary concept of the 
distance measure. Therefore, if D(A,B) denotes the distance 
between A and B , then S(A,B) = 1 − D(A,B) is the similarity 
measure between A and B.

Similarity and distance measurements among data points 
are important components of clustering algorithms. Many of 
them involving IFS have been proposed in previous literature. 
The weight of each element xi ∈ X contains important infor-
mation. Therefore, several well-known weighted similarity 

(P1) 0 ≤ D(A,B) ≤ 1

(P2)D(A,B) = 0 if and only if A = B

(P3)D(A,B) = D(B,A)

(P4) If A ⊆ B ⊆ C thenD(A,C) ≥ D(A,B)

(P1) 0 ≤ S(A,B) ≤ 1

(P2) S(A,B) = 1 if and only if A = B

(P3) S(A,B) = S(B,A)

(P4) If A ⊆ B ⊆ C then S(A,C) ≤ S(A,B)
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and distance measures that will be used later for comparative 
analysis are shown below.

We set � =
(
�1,�2,… ,�n

)
 as the weight vector 

of xi(i = 1, 2,… , n) , with �i ≥ 0(i = 1, 2,… , n) , and ∑n

i=1
�i = 1.

The weighted Hamming distance of A and B [35] is

The weighted Euclidean distance of A and B [35] is

The weighted cosine similarity of A and B [36] is

The weighted tangent similarity of A and B [37] is

These well-known similarity and distance measures have 
many shortcomings, such as the possibility of generating 
counter-intuitive results, zero division, graphical interpre-
tation and intelligibility. To solve these problems, a large 
number of studies on the distance/similarity metrics of IFSs 
have emerged in recent years. Amongst them, a new distance 
measure amongst IFSs based on transformed isosceles trian-
gles, which was proposed by [34], can represent higher dis-
cernibility than most existing methods. It can be expressed as

2.1.2  Correlation measure of IFSs

Definition 4 Correlation measure of IFSs [26]. Let A and B 
be two IFSs on X , mapping C ∶ IFS × IFS → [0, 1] ; C(A,B) 

(1)D�Ham(A,B) =
1

2

n∑
i=1

�i

(|||�A

(
xi
)
− �B

(
xi
)||| +

|||vA
(
xi
)
− vB

(
xi
)||| +

|||�A
(
xi
)
− �B

(
xi
)|||
)

(2)D�E(A,B) =

√√√√1

2

n∑
i=1

�i

((
�A

(
xi
)
− �B

(
xi
))2

+
(
vA
(
xi
)
− vB

(
xi
))2

+
(
�A

(
xi
)
− �B

(
xi
))2)

(3)S�Cos(A,B) =

n∑
i=1

�i

�A

(
xi
)
�B

(
xi
)
+ vA

(
xi
)
vB
(
xi
)

√(
�A

(
xi
))2

+
(
vA
(
xi
))2√(

�B

(
xi
))2

+
(
vB
(
xi
))2

(4)S�Tan(A,B) =

n�
i=1

�i

�
1 − tan

⎛⎜⎜⎜⎝

�

�����A

�
xi
�
− �B

�
xi
���� +

���vA
�
xi
�
− vB

�
xi
���� +

����A
�
xi
�
− �B

�
xi
����
�

12

⎞⎟⎟⎟⎠

�

(5)D�Jiang(A,B) =
1

2

n�
i=1

�i

⎛
⎜⎜⎜⎜⎜⎝

�����
2
�
�A

�
xi
�
�B

�
xi
�
− �B

�
xi
�
�A

�
xi
��

− 4
�
�A

�
xi
�
− �B

�
xi
��

4 − �A
�
xi
�
�B

�
xi
�

�����
+

�����
4
�
vA
�
xi
�
− vB

�
xi
��

+ 2
�
vA
�
xi
�
�B

�
xi
�
− vB

�
xi
�
�A

�
xi
��

+ 2
�
�A

�
xi
�
− �B

�
xi
��

4 − �A
�
xi
�
�B

�
xi
�

�����

⎞⎟⎟⎟⎟⎟⎠

represents the correlation measure between A and B , and it 
needs to satisfy the following properties:

Since the twenty-first century, many studies [24, 25, 27] 

have introduced various methods to calculate the coeffi-

cient of IFSs. As one of the several well-known correlation 

coefficients of IFSs, the method proposed in [26] has been 
used in clustering algorithms. It considers membership 
degree, non-membership degree, hesitation degree and the 
weight of element xi . So it retains more information than 
other correlation coefficients. The specific expression is 
as follows:

where

(P1) 0 ≤ C(A,B) ≤ 1

(P2)C(A,B) = 1 if and only if A = B

(P3)C(A,B) = C(B,A)

(6)��Xu(A,B) =
C�(A,B)

max
(
T�(A), T�(B)

) ,

(7)

C�(A,B) =

n∑
i=1

�i

[
�A

(
xi
)
�B

(
xi
)
+ vA

(
xi
)
vB
(
xi
)
+ �A

(
xi
)
�B

(
xi
)]
.
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T�(A) = C�(A,A) and T�(B) = C�(B,B) . The values of 
the correlation coefficients change within the interval [0, 1].

2.2  Intuitionistic fuzzy clustering approach

The proposed intuitionistic fuzzy clustering approach 
involves two stages. The first one is to map crisp values to 
IFSs through the intuitionistic fuzzification method, and the 
second one is to cluster IFSs by using the IFCM algorithm.

2.2.1  Intuitionistic fuzzification

With reference to [17], in the process of intuitionistic fuzzi-
fication, the crisp data set needs to be converted into a fuzzy 
data set firstly and be converted into an intuitionistic fuzzy 
data set subsequently.

Let X be the data set with n objects, and each object con-
sists of d features. The fuzzy membership function of each 
data element xij is defined as

where i = 1, 2,… , n , and j = 1, 2,… , d.
The IFS membership function is equal to fuzzy member-

ship function �
(
xij
)
 . IFS non-membership function v

(
xij
)
 can 

be calculated from Yager’s generating function [38].

where N(1) = 0,N(0) = 1.
Therefore, IFS A can be written as

The hesitation degree is

The value of � is used to control the hesitation degree of 
IFSs. When parameter � is equal to 1,v

(
xij
)
= 1 − �

(
xij
)
 , 

which means that the hesitation degree is 0 and is not 
considered.

2.2.2  IFCM clustering algorithm

The FCM clustering algorithm partitions a set of data into 
c clusters on the basis of Euclidean distance metrics. As an 
improvement of the FCM algorithm, the IFCM algorithm 
developed by [11] replaces the traditional Euclidean dis-
tance of crisp data with intuitionistic fuzzy similarity/dis-
tance measures.

(8)�(xij) =
xij −min(xij)

max
(
xj
)
−min(xj)

,

(9)N(x) = (1 − x𝛼)
1

𝛼 , 𝛼 > 0,

(10)A =

{⟨
xij,�

(
xij
)
,
(
1 − �

(
xij
)�) 1

�

⟩|||xij ∈ X

}
.

(11)�
(
xij
)
= 1 − �

(
xij
)
−
(
1 − �

(
xij
)�) 1

� .

Given n IFSs 
{
A1,A2,… ,An

}
 are to be divided into 

c(1 ≤ c ≤ n) clusters. The method aims at minimizing the 
objective function, that is,

where d is the Euclidean distance between object Ai and 
the j th cluster centre Vj ; uij is the membership degree of 
Ai belonging to the j th cluster; parameter m(m > 1) is the 
weighting exponent that determines the fuzziness of the 
clustering result, and the default value of m is 2.

The Lagrange multiplier method is used to minimize 
Eq. (12), and the updated equations of uij and Vj are given 
as follows:

The IFCM algorithm optimizes JIFCM by continuously 
updating uij and Vj until ‖‖‖u

l+1
ij

− ul
ij

‖‖‖ < 𝛿 is satisfied, where δ 
is the termination tolerance for solution accuracy.

The specific procedure of the IFCM algorithm can be 
stated as follows.

This conventional IFCM algorithm has two main 
disadvantages.

(12)

min JIFCM(U,V) =

n∑
i=1

c∑
j=1

(
uij
)m

d2
(
Ai,Vj

)

s.t

c∑
j=1

uij = 1, uij ∈ [0, 1], 0 ≤

n∑
i=1

uij ≤ n,

(13)
uij =

1

∑c

l=1

�
d(Ai,Vj)
d(Ai,Vl)

� 1

1−m

(14)Vj =

∑n

i=1

�
uij
�m

Ai∑n

i=1

�
uij
�m .
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Firstly, the weighted Euclidean distance of IFSs is 
adopted as the proximity measurement between two objects. 
However, the Euclidean distance can only evaluate the dis-
tance between two projects but ignores the effects of the 
direction and linear relationship between them. In this case, 
some valuable information will be lost during the clustering 
process, which will affect the precision of clustering results.

Secondly, the parameters in this algorithm are subjec-
tively set by the user. These preset parameters are not opti-
mal parameters due to the lack of user knowledge, which 
will also affect the final clustering results.

To compensate for the two shortcomings mentioned 
above, this paper proposes new proximity measurement 
and parameter determination methods and apply them to 
the IFCM algorithm in the next section.

3  Proposed IFCM algorithm based 
on the aggregated weighted proximity 
measure and GA (GA‑IFCM)

In this section, our proposed GA-IFCM algorithm is 
explained. To formalize the GA-IFCM clustering algorithm, 
we firstly propose a new proximity function s�(A,B) , which 
aggregates similarity and correlation measures, and then use 
GA to determine the parameters in the clustering process.

3.1  Aggregated weighted proximity measure 
for IFSs

In this part, the new proximity measure of IFSs that aggre-
gates similarity and correlation measures is presented.

The proximity measure between two projects is an 
important component of the IFCM algorithm. As mentioned 
in Sect. 1, in the existing method, the similarity/distance 
between two IFSs are used to find proximity between any 
pair of objects. It is obtained by weighted averaging of the 
similarity/distance between each pair of intuitionistic fuzzy 
numbers (IFNs), which ignores the trends of a set of IFNs 
in an IFS. Thus, the similarity/distance measures cannot 
identify the correlations between two IFSs with similar 
trends. On the contrary, in the correlation measure, cor-
relation coefficients can evaluate the strength and direction 
of the linear relationship between two IFSs. The trends of 
a set of IFNs in an IFS are considered. Thus, we aggregate 
similarity measures and correlation coefficients into a new 
proximity measure of IFSs and then apply it to the IFCM 
algorithm.

With regard to similarity measures, as shown in 
Sect. 2.1.1, several well-known similarity/distance meas-
ures have been listed. Among them, the Hamming and 
Euclidean distances measure the similarity between two 

IFNs on the basis of their distance, ignoring the effect of 
their direction. By contrast, the cosine and tangent simi-
larities only focus on the direction, neglecting the distance 
between two IFNs. In fact, the distance can quantify how 
close two IFNs are from each other, and the direction can 
quantify how orthogonal they are. Therefore, considering 
that using the Euclidean distance can produce more accu-
rate clustering results than those by using the Hamming 
distance for most data sets [18] and that cosine similarity 
does not satisfy property P2 in Definition 3 [36], we com-
bine the weighted Euclidean distance and tangent similar-
ity to define a new similarity measure for IFSs. It can be 
expressed as follows:

Measure S�(A,B) satisfies the properties of similarity 
measures described in Definition 3.

With regard to similarity measures, as shown in 
Sect.  2.1.2, the well-known correlation coefficients 
��Xu(A,B) has been used in clustering algorithms. There-
fore, we intend to aggregate it with the similarity meas-
ure proposed above as a new proximity measure for 
clustering.

From [28], the values of S�(A,B) and ��Xu(A,B) 
are between 0 and 1. Let mapping f ∶ [0, 1]n → [0, 1] 
be idempotent and monotonically increasing, then 
f
(
S�(A,B), ��Xu(A,B)

)
 can also satisfy the common prop-

erties of S�(A,B) and ��Xu(A,B) in Definition 4. In this 
study, we use the most common aggregation operator, the 
arithmetic averaging operator, as aggregation function f  
to aggregate similarity measures S�(A,B) and correlation 
coefficients ��Xu(A,B) into new proximity measure s�(A,B) , 
that is,

Measure s�(A,B) is not a geometrical measure but an 
information measure.

Clearly, this proximity measure will aggregate different 
and conflicting consequences obtained by similarity meas-
ures and correlation coefficients. Thus, the corresponding 
clustering result obtained using the proximity measure is 
relatively objective, comprehensive and reasonable.

3.2  Computing optimal weight with the maximizing 
deviation method

In the process of calculating the proximity between two 
IFSs, the determination of the weight of each feature is an 
important issue. For data sets with completely unknown 
weight information, we use the maximizing deviation 

(15)S�(A,B) =
1

2

(
S� tan(A,B) + 1 − D�E(A,B)

)

(16)s�(A,B) =
1

2

(
S�(A,B) + ��Xu(A,B)

)
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method proposed in [39] to determine the weight of each 
feature.

This approach indicates that if the performance value of 
each object under a certain feature is inconsiderably differ-
ent, then the value of the useful information provided by 
the feature is small, and a small weight should be assigned.

Let data set X =
{
X1,X2,… ,Xn

}
 , X1,X2,… ,Xn be n 

o b j e c t s ,  C1,C2,… ,Cd  b e  d  f e a t u r e s  a n d 
xij(i = 1, 2,… , n;j = 1, 2,… , d) be the performance values 
of objects Xi(i = 1, 2,… , n) under feature Cj(j = 1, 2,… , d) . 
The weight of the j th feature is represented by �j �∑d

j=1
�j = 1, 0 ≤ �j ≤ 1

�
.

For feature Cj , the deviation of object Xi to all other 
objects can be expressed as

Then, the deviations of all objects to other objects under 
feature Cj are

The deviations of all objects for all features should 
be described as W(�) . The optimal weight vector 
� =

(
�1,�2,… ,�d

)
 should maximize W(�) , as shown in 

the nonlinear programming model below.

Model (19) is solved using the Lagrange function, and we 
obtain a normalizing optimal weight of feature Cj , that is,

3.3  GA‑IFCM based on the aggregated weighted 
proximity measure

After the intuitionistic fuzzification presented in Sect. 2.2.1, 
the data set X =

{
X1,X2,… ,Xn

}
 becomes intuitionistic 

fuzzy data set A =
{
A1,A2,… ,An

}
 , which contains n objects 

with d features. Data set A can be divided into c(1 ≤ c ≤ n) 
clusters. Let Vj(j = 1, 2,… , c) be the centre of the j th cluster 
and U =

(
uij
)
n×c

 be the membership matrix of Ai to Vj . In 

(17)

Wij(�) =

n∑
k=1

|||xij − xkj
|||�j, i = 1, 2,… , n, j = 1, 2,… , d.

(18)

Wj(�) =

n∑
i=1

Wij(�) =

n∑
i=1

n∑
k=1

|||xij − xkj
|||�j, j = 1, 2,… , d.

(19)

maxW(�) =

d∑
j=1

Wj(�) =

d∑
j=1

n∑
i=1

n∑
k=1

|||xij − xkj
|||�j

s.t. 0 ≤ �j,

d∑
j=1

�j = 1, j = 1, 2,… , d.

(20)�∗

j
=

∑n

i=1

∑n

k=1

���xij − xkj
���∑d

j=1

∑n

i=1

∑n

k=1

���xij − xkj
���
, j = 1, 2,… , d

the improved IFCM algorithm, the objection function can 
be stated as follows:

where s�
(
Ai,Vj

)
 is the new aggregated intuitionistic fuzzy 

proximity measure proposed in Sect. 3.1, and the weight 
vector � =

(
�1,�2,… ,�d

)
 of features is obtained using the 

method presented in Sect. 3.2. The clustering results can be 
obtained through continuously updating uij and Vj by using 
Eqs. (14) and (22).

We can observe many parameters in this clustering algo-
rithm. According to [22], the weighting exponent (m) and 
Yager’s intuitionistic fuzzy parameter (�) have important 
influences on the performance of the IFCM algorithm; suit-
able parameters can promote the success of the clustering 
algorithm. Therefore, parameter selection is crucial.

Amongst the optimization methods for selecting 
parameters ( m and � ), GA is used in this study because 
of its effectiveness in the global search of complex search 
spaces. As an evolution-based algorithm, GA represents 
each potential solution by using a chromosome-like data 
structure and then searches for an optimal solution via 
selection, crossover and mutation operators that imitate 
Darwinian natural evolution processes. The main mecha-
nisms of the improved IFCM model optimized using the 
GA method are described as follows:

Step 1 (Initialization): Initial chromosome popula-
tion (popsize × bit) is randomly generated, where popsize 
and bit are the numbers of chromosomes and parameters, 
respectively. Each chromosome represents a combination 
of two parameters ( m and � ), and it needs to be binary 
coded within a given range.

Step 2 (Evaluating fitness): The fitness of individuals 
in a population is calculated. We adopt Acc as the fitness 
function.

where B refers to the correct clustering results, and F 
denotes the clustering results generated using the IFCM 
algorithm with the new aggregated intuitionistic fuzzy 

(21)

max JIFCM(U,V) =

n∑
i=1

c∑
j=1

(
uij
)m

s
2

�

(
Ai,Vj

)

s.t

c∑
j=1

uij = 1, uij ∈ [0, 1], 0 ≤

n∑
i=1

uij ≤ n,

(22)uij =

c∑
l=1

(
s�
(
Ai,Vj

)

s�
(
Ai,Vl

)
) 1

1−m

.

(23)Acc =
Count(|B ∩ F|)

N
.



866 International Journal of Machine Learning and Cybernetics (2021) 12:859–875

1 3

proximity measure. Accordingly, Count(|B ∩ F|) is the num-
ber of objects that are classified correctly using this IFCM 
algorithm. N represents the total amount of objects in the 
data set. Thus, the greater the fitness value is, the better the 
chromosome will be.

Step 3 (Selection): In order to ensure that the next gen-
eration of optimal chromosomes is better than the previ-
ous generation, the roulette wheel selection mechanism is 
used to retain several elite chromosomes with the highest 
fitness value. In this study, the number of retained elite 
chromosomes (elist_n) is set to 2.

Step 4 (Crosser and mutation): The chromosomes 
selected in the previous step are randomly matched to form 
parent pairs. In accordance with the single-point crossover 
principle, the middle segment between two randomly chosen 
break points is replaced. After crossover, some individuals 
are randomly selected to perform mutation operations with a 
certain probability. New individuals are generated by swap-
ping 0 and 1 bit. The probabilities of crossover (cross_rate) 
and mutation (mutate_rate) need to be set in advance.

Step 5 (Next generation): After the crossover and muta-
tion operations, the new generation population is formed. 
The evolution process needs to be repeated on the new popu-
lation until the predefined stop criterion has been satisfied.

Step 6 (Stop criterion): If the number of generations 
reaches the given maximum genetic algebra (max _gen) , 
then the optimal parameters and clustering results ( U and 
V  ) of the IFCM algorithm with the optimal parameters are 
returned.

In short, the novel IFCM technique in this study adopts 
the aggregated weighted proximity measure, then GA is used 
to determine the optimal parameters in the clustering pro-
cess. The flow chart of the GA-IFCM algorithm is shown 
in Fig. 1.

3.4  Analysis of computational complexity

In the IFCM algorithm, l , c , n and d are the numbers of 
iterations, clusters, objects and features, respectively. Each 
iteration in the IFCM method needs to calculate the distance 
between n objects and c cluster centres, which involves d 
dimensions. Hence, the time complexity of the IFCM algo-
rithm is o(ncdl) . In GA, popsize , bit and max _gen are the 
numbers of chromosomes, parameters to be optimized and 
genetic algebra, respectively. Each generation in GA needs 
to calculate the fitness value of all chromosome popula-
tion (popsize × bit) . Thus, the time complexity of GA is 
o(popsize × bit ×max _gen) . In the proposed GA-IFCM 
method, the IFCM algorithm is nested in each fitness calcu-
lation in the GA process. Therefore, the time complexity of 
the proposed method is o(popsize × bit ×max _gen × ncdl).

4  Experimental analysis

In this section, we conduct three experiments on a synthetic 
data set and UCI machine learning data sets by using the 
proposed GA-IFCM algorithm and other comparison meth-
ods to demonstrate the effectiveness of the proposed cluster-
ing algorithm. Firstly, in order to illustrate the advantages 
of the proposed weighted proximity measure for IFSs, the 
traditional FCM algorithm and its variants which are based 
on different distance measures of crisp values, such as the 
kernel FCM (KFCM) algorithm [40] and Gustafson–Kessel 
(GK) algorithm [41], and six IFCM algorithms based on 
different similarity measures of IFSs are tested. Secondly, 
to clarify the role of GA in improving the performance of 
IFCM, we perform an experiment of optimising the parame-
ters of IFCM with several heuristic optimization algorithms, 
including GA, PSO and ABC. Thirdly, we compare the pro-
posed GA-IFCM algorithm with several state-of-the-art 
clustering algorithms, including partitioning, hierarchical, Fig. 1  Flow chart of the proposed GA-IFCM algorithm



867International Journal of Machine Learning and Cybernetics (2021) 12:859–875 

1 3

density-based and model-based clustering, to prove its supe-
riority. We conduct experiments on a personal computer 
with an Intel Core i5 2 GHz processor and 16 GB RAM.

Next, we will introduce the data sets, evaluation criteria 
and the experimental results.

4.1  Data sets

Experiments are conducted with a synthetic data set and 
five UCI data sets, namely, Iris, Wine, Zoo, Breast Cancer 
Wisconsin and Dermatology. The synthetic data set used in 
this study comes from a fuzzy clustering toolbox (Available: 
https ://www.fmt.vein.hu/softc omp/fclus ttool box/), which 
contains 2000 data points. A summary of the selected UCI 
machine learning data sets is given in Table 1.

The Iris and Wine data sets are the most commonly used 
data sets in clustering experiments. In the Zoo data set, the 
types of attributes are categorical and binary. The Breast 
Cancer Wisconsin data set comprises medical data which 
has a low number of classes. The Dermatology data set has 
a large number of features, and almost all of which are cat-
egorical variables. These data sets have different character-
istics, thus, the experimental results can be comprehensively 
tested.

The IFCM algorithm is used to cluster IFSs. Hence, 
the real-valued UCI data sets should be transformed into 
IFSs through the intuitionistic fuzzification presented in 
Sect. 2.2.1.

4.2  Cluster evaluation indexes

In this study, we use accuracy, several cluster validation 
indexes and time consuming to evaluate the performance 
of each clustering algorithm.

Accuracy: It is a common index in machine learning, 
which is the ratio of the number of correctly classified 
objects to the total number of objects in a data set. The 
formula of accuracy is shown in Eq. (23).

Cluster validation indexes: Cluster validity indexes gen-
erally need to reflect intra-class compactness and inter-
class separation. Existing cluster validity indexes are often 
closely related to clustering tasks, and a universally per-
fect indicator is difficult to find. Thus, we combine several 
indexes to evaluate clustering results. Partition coefficient 
(PC) is a measure of the fuzziness of clustering. A large 
value of PC indicates a clear clustering. Partition index 
(SC) and separation index (S) are the ratios of intra-class 
variation to interclass separation, and Dunn index (DI) is 
the ratio of interclass separation to intra-class variation. 
Thus, small values of SC and S imply enhanced perfor-
mance; the opposite is true for DI. The four cluster validity 
indexes we adopt are briefly described in Table 2.

The data set contains n objects and c clusters.
Time consuming: In data mining and machine learning, 

the time complexity is an important property of algorithms. 
High validity with a relatively short time is desirable.

4.3  Experiment 1: comparison of the proposed 
weighted proximity and other measurements

The objective of this experiment is to prove the advantages 
of the proposed weighted proximity measure by comparing 
with other measurement methods. The methods compared 
in this experiment are as follows: the FCM using the Euclid-
ean distance of crisp values; the KFCM using the Gaussian 
kernel of crisp values; the GK using the Mahalanobis dis-
tance norm of crisp values; the conventional IFCM using the 
Euclidean distances of IFSs; the IFCM using the measure-
ment functions shown in Sects. 2 and 3, including weighted 
Hamming distances D�Ham(A,B) , Jiang’s weighted distance 
D�Jiang(A,B) , weighted Euclidean distances D�E(A,B) , 
weighted tangent similarity S�Tan(A,B) , the proposed new 

Table 1  Summary of UCI data 
sets

Data set No. of 
instances

No. of features No. of 
classes

Feature characteristics

Iris 150 4 3 Real
Wine 178 13 3 Integer, real
Zoo 101 17 7 Categorical, integer
Breast Cancer Wisconsin 699 10 2 Integer
Dermatology 366 34 6 Categorical, integer

Table 2  Description of four cluster validity indexes

Validity 
index

Formula Optical 
perfor-
mance

PC [42] PC =
1

n

∑n

i=1

∑c

j=1

�
uij
�2 max PC

SC [42]
SC =

∑c

j=1

∑n

i=1 (uij)
m
d2
ij(xi ,vj)

Nj

∑c

k=1
d2
jk(vj ,vk)

min SC

S [42]
S =

∑c

j=1

∑n

i=1 (uij)
2
d2
ij(xi ,vj)

Nj min d2
jk(vj ,vk)

min S

DI [43]
DI = minj∈c

{
mini∈c,i≠j

{
minxi∈ci ,xj∈cj

d(xi ,xj)

minxi ,xj∈c
d(xi ,xj)

}}
max DI

https://www.fmt.vein.hu/softcomp/fclusttoolbox/
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weighted similarity measure S�(A,B) and the proposed 
weighted proximity measure s�(A,B) . Hereafter, they are 
expressed as FCM, KFCM, GK, IFCM_E, IFCM_wH, 
IFCM_wJiang, IFCM_wE, IFCM_wT, IFCM_wET and 
IFCM_wETC. In all experiments, we set � = 0.0001 and 
L = 200.

Before the clustering, the number of clusters c should be 
set in advance. But this task is difficult for the synthetic data 
set with an unknown data structure. In this case, we search 
for optimal c by using validity measures. Specifically, in the 
FCM algorithm, the value of c varies from 2 to 14, then the 
values of the validity indexes corresponding to each c are 
computed (Figs. 2, 3, 4, 5, 6, 7). The optimal value of c can 

be determined by analysing the changes in the values of all 
validity indexes.

From Fig. 2, we can observe that PC is monotonically 
decreasing with the increase in c . Obviously, the more the 
number of clusters divided is, the smaller the ambiguity of 
the clustering results is. Thus, the optimal value cannot be 
determined only on the basis of PC. Additional information 
is provided in Figs. 3 and 5. When c < 3 , the values of S and 
SC decrease rapidly; when c = 3 , they reach a local optimum 
(minimum); when c > 3 , the values tend to be stable, and 
the extent of their decreases is small. Thus, from S and SC, 
c = 3 may be a good choice. Figure 4 shows that DI reaches 
its optimal (maximum) value when c = 3 , which proves the 
superiority of the clustering results if c is regarded as 3. 
More intuitively, Figs. 6 and 7 show the original data points 

Fig. 2  Values of PC

Fig. 3  Values of S

Fig. 4  Values of DI

Fig. 5  Values of SC
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and clustering results with c = 3 and c = 14 , respectively. 
When c = 3 , the clustering results are consistent with the 
distribution of the original data points; when c = 14 , the 
14 clusters are still divided into three categories in general. 
Therefore, in the case of the synthetic data set, we set the 
optimal number of clusters to 3.

Next, we perform an experiment with the methods listed 
above on the synthetic data set and several UCI data sets. 
Table 3, which is given in ‘Appendix 1,’ indicates the perfor-
mance of each algorithm in accuracy, four cluster validation 
indexes and time consuming. The best results are shown in 
bold. On the basis of the results in Table 3, our analysis is 
as follows.

Firstly, as presented in Table 3, the clustering perfor-
mance of FCM, KFCM and GK is poor. On most data sets, 

they have lower accuracy and higher SC and S compared 
with those of all IFCM methods. Although a high DI value is 
obtained, DI is unreliable in the case of overlapped clusters 
because of the redivision of the results with the hard division 
method. Therefore, accuracy, SC and S values demonstrate 
that clustering intuitionistic fuzzy data perform better than 
crisp data.

Secondly, except for the S of the Breast Cancer Wiscon-
sin data set and the DI of Zoo and Dermatology data sets, 
almost all weighted IFCMs acquire better values of valida-
tion indexes than IFCM_E does. IFCM_E cannot consider 
the weight of features, resulting in information loss. The 
comparison results show that the feature weight in our pro-
posed method should be taken into account.

Thirdly, compared with the IFCM algorithm using other 
similarity measures, IFCM_wETC obtains the highest accu-
racy and the best or second best PC, SC and S values for all 
data sets. Thus, the clustering results of IFCM_wETC are 
significantly better than those of other IFCM algorithms, 
which indicate that similarity and correlation should be 
aggregated as the proximity measure of two projects in clus-
tering problems.

Lastly, in terms of time consuming, the FCM algorithm 
always spends the shortest time, but its accuracy is low. The 
IFCM algorithm consumes a longer time than FCM and 
KFCM do due to the complexity of the measurement method 
between two IFSs. Nevertheless, the difference is minimal 
and completely acceptable.

4.4  Experiment 2: comparison of GA and other 
parameter optimisation methods

After proving the superiority of the proposed weighted prox-
imity measure, we analyse the performance of the parameter 
optimization method in improving the accuracy of IFCM. 
Amongst all heuristic optimization algorithms, GA, PSO 
and ABC are the most commonly used algorithms and 
have shown good capability in many parameter optimiza-
tion problems. In this experiment, we employ them to opti-
mize the parameters of IFCM_wETC and compare them in 
terms of accuracy and time consuming. Hereafter, they are 
expressed as GA_IFCM_wETC, PSO_IFCM_wETC and 
ABC_IFCM_wETC.

GA updates the search space by selecting, crossing and 
mutating chromosomes. The PSO algorithm finds the opti-
mal solution by updating the position and velocity of parti-
cles. The ABC algorithm continuously searches and aban-
dons food sources by worker, onlooker and scout bees. These 
heuristic algorithms require predefined parameters that have 
substantial effects on the results. With reference to previ-
ous studies [14], the parameter settings for this experiment 
are as follows. The crossover and mutation rates in GA are 
set to 0.7 and 0.1, respectively. The two learning rates for 
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Fig. 6  Result of FCM with c = 3
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Fig. 7  Result of FCM with c = 14
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particle updates in PSO are set to 2, and the limits of search 
and scout in ABC are set to 5. The number of populations 
in the three heuristic algorithms is set to 20. The maximum 
number of iterations in the three heuristic algorithms is set to 
50 for the Dermatology data set, which has a large size and 
thus requires long processing time; meanwhile, the maxi-
mum number is set to 100 for all other data sets.

The comparison results of the three algorithms are shown 
in Table 4, which is given in ‘Appendix 1.’ Comparison of 
the results in Tables 3 and 4 shows that unlike the IFCM 
method based on parameters set manually, the three heu-
ristic algorithms greatly improve the clustering results but 

take a longer time. On the one hand, in terms of accuracy 
shown in Table 4, GA_IFCM_wETC obtains high accuracy, 
especially for highly complex data sets, such as Zoo, Breast 
Cancer Wisconsin and Dermatology data sets. Compared 
with PSO and ABC algorithms, the mutation in GA can 
make it better to avoid falling into a local optimum. On the 
other hand, regarding time consuming shown in Table 4, 
with the same number of populations and iterations set, 
PSO_IFCM_wETC consumes the shortest calculation time 
and ABC_IFCM_wETC consumes the longest time in most 
data sets. The PSO algorithm has a simple search mecha-
nism which only uses two parameters (the position and 

Fig. 8  Accuracy curve of GA_IFCM_wETC on Iris

Fig. 9  Accuracy curve of GA_IFCM_wETC on Wine

Fig. 10  Accuracy curve of GA_IFCM_wETC on Zoo

Fig. 11  Accuracy curve of GA_IFCM_wETC on Breast Cancer Wis-
consin



871International Journal of Machine Learning and Cybernetics (2021) 12:859–875 

1 3

velocity of particles), whereas the ABC algorithm needs to 
perform more calculations by three different types of bees 
(scout, employee and onlooker). GA has moderate time con-
suming, it spends less than 15 min on most data sets, which 
is acceptable. Overall, GA can achieve better results within 
a relatively short time, so using GA to determine optimal 
parameters can help traditional clustering algorithms obtain 
stable and accurate clustering results.

The accuracy curves of GA_IFCM_wETC on all data sets 
are shown in Figs. 8, 9, 10, 11 and 12.

4.5  Experiment 3: comparison of the proposed 
GA‑IFCM and other clustering methods

In this experiment, the performance of the proposed GA-
IFCM method using the proposed weighted proximity is 
compared with that of seven well-known clustering algo-
rithms, namely, k-means [44], affinity propagation clustering 
(APC) [45], CURE [46], agglomerative hierarchical clus-
tering (AHC) [47], DBSCAN [48], density peak clustering 
(DPC) [49] and Gaussian mixture model (GMM) [50], in 
clustering accuracy.

The comparison methods are introduced as follows. 
K-means algorithm is the most classic partitioning cluster-
ing algorithm, which groups data objects into k clusters in 
accordance with the nearest neighbour rule. The APC algo-
rithm is one of the most competitive clustering algorithms 
proposed recently, which also belongs to partitioning clus-
tering methods. It regards the similarity between pairs of 
data points as input and continuously updates the responsi-
bility and availability of each point until the final exemplars 
are generated. It is stable on large-scale multi class data sets 

and is not easy to fall into local optima. The AHC algorithm 
is a bottom-up hierarchical clustering method. This method 
initially regards each data point as a class and then merges 
the data points with the highest similarity until the required 
number of clusters is reached. The calculation methods of 
similarity amongst clusters include ‘lingle-link’, ‘average-
link’ and ‘complete-link.’ The ‘average-link’ is selected in 
this study. CURE is a hierarchical clustering algorithm based 
on representative points. The shrinking of representative 
points can reduce the effect of noise; hence, the algorithm 
can cluster data of arbitrary shapes. The DBSCAN algo-
rithm is a typical density-based clustering algorithm, which 
divides continuous areas with high data density into one 
cluster. It determines the core point through two important 
parameters (the neighbourhood radius Eps and the minimum 
number of points MinPts ), then links the core points with 
reachable density until all data points are divided. DPC is 
a novel clustering algorithm published in Science Jour-
nal in 2014, which mainly draws on the ideas of k-means, 
DBSCAN, mean shift and other algorithms. Its core idea 
is based on the assumption that the cluster centres are sur-
rounded by neighbours with a low local density and have a 
large distance from other points with a high local density. It 
can efficiently detect noise on the basis of the density of the 
boundary area. Lastly, GMM is a popular model-based soft 
clustering algorithm, which can decompose the data set into 
several parts according to the Gaussian probability density 
function (normal distribution). Accordingly, it performs well 
on high-density data sets obeying normal distributions, but 
performs poorly on sparse clusters.

Figure 13 shows the clustering accuracy of our pro-
posed method and the seven comparison methods on five 
UCI data sets. K-means and AP algorithms obtain good 
accuracy on Iris and Breast Cancer Wisconsin data sets 

Fig. 12  Accuracy curve of GA_IFCM_wETC on Dermatology
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because they can handle convex-shaped clusters well. But 
for arbitrary-shaped ones, the two algorithms are ineffec-
tive. The results of AHC and CURE are unstable because 
they are sensitive to parameters. Besides, CURE has no 
clear definition to remove noisy points. DBSCAN also 
faces the problem of parameter selection, and it cannot 
effectively handle high-dimensional data with consider-
able changes in density, such as Wine and Dermatology 
data sets. If a low-density cluster exists in a data set, the 
capability of DPC will be affected, for example, it acquires 
the lowest accuracy on the Zoo data set. GMM is sensitive 
to the initial value of the parameters. If the initialization is 
appropriate, good results can usually be achieved for data 
sets with normal distributions within the class, such as the 
Wine data set. However, different initialization values will 
lead to different clustering results, thereby greatly reduc-
ing the stability of GMM. The proposed IFCM clustering 
algorithm based on GA and the novel weighted proximity 
measure (denoted as GA_IFCM_wETC in Fig. 13) has the 
highest accuracy on all data sets. This finding proves that 
the proposed method considerably improves the clustering 
results. The improved GA-IFCM algorithm is more robust 
than other algorithms. Even without GA, the accuracy of 
the IFCM algorithm using the proposed weighted proxim-
ity measure (denoted as IFCM_wETC in Fig. 13) is also 
higher than that of most comparison methods. This result 
illustrates the superiority of the soft clustering algorithm 
based on the proposed novel weighted proximity.

From the research results of the above-mentioned three 
experiments, we can conclude that the proposed GA_IFCM_
wETC may outperform other technologies in clustering 
problems. This superiority is mainly due to the advantage 
of the proposed weighted proximity measure in reducing 
information loss and the parameter optimisation capability 
of GA.

5  Conclusions

The FCM algorithm is an important soft clustering algo-
rithm, which allows each object to be assigned to multi-
ple clusters with varying membership degrees. IFSs can 
express valuable information; thus, the IFCM algorithm is 
developed to reduce the sensitivity of the FCM algorithm 
to noise and outliers. In the existing IFCM algorithm, 
the proximity degree between a pair of objects is always 
determined using the distance/similarity measures of IFSs, 
which only evaluates the closeness degree between the two 
projects and ignores the linear relationship between them. 
In addition, the parameters in the existing IFCM algorithm 

are always subjectively set by the user, which may lead to 
unreasonable clustering results. Therefore, we propose a 
novel weighted proximity measure in this paper to improve 
the IFCM clustering. The proposed measure combines the 
advantages of similarity and correlation measures to solve 
the first problem. To deal with the second problem, the 
improved IFCM algorithm applies GA to determine opti-
mal parameters. Lastly, three experiments are conducted 
on a synthetic data set and UCI data sets. Experiments 1 
and 2 prove that the proposed weighted proximity meas-
ure and GA perform better than other measurement meth-
ods and heuristic algorithms. The result of Experiment 3 
demonstrates the superiority of the improved GA-IFCM 
algorithm to several latest clustering algorithms, including 
k-means, APC, AHC, CURE, DBSCAN, DPC and GMM.

In general, the clustering method proposed in this paper 
mainly has the following advantages. (1) A new weighted 
proximity measure that aggregates weighted similarity and 
correlation measures is proposed and applied to the IFCM 
algorithm. It can evaluate not only the closeness degree but 
also the linear relationship between two objects represented 
by IFSs. (2) The maximizing deviation method is used to 
calculate the weight of each feature in the new weighted 
proximity measure, which can reduce information loss for 
accurate clustering results. (3) GA is applied to the improved 
IFCM algorithm to determine the optimal parameters of the 
clustering algorithm effectively by thoroughly and optimally 
searching the solution space. In this way, the adverse effects 
of subjective parameter setting on the clustering results can 
be prevented.

However, the proposed algorithm has a limitation. 
Although GA can make clustering results feasible, it requires 
additional running time, especially in the case of process-
ing large data sets. In the future, traditional heuristic algo-
rithms need to be improved to optimize parameters or ini-
tialise cluster centres with minimal time. What’s more, the 
application of the developed algorithm to other fields, such 
as data mining, image processing, and decision making, is 
also an interesting topic for future research.
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See Tables 3 and 4.
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Table 3  Comparison of several soft clustering algorithms based on different measurement methods

Data set Method Parameters Accuracy (%) PC SC S DI Time (s)

Synthetic data set FCM m = 2,c = 3 — 0.9402 0.0367 2.2012e-05 0.7336 0.0354
KFCM — 0.3645 0.0047 2.8458e-06 0.0187 0.1939
GK — 0.9298 0.0372 2.2320e-05 0.5890 0.3745
IFCM_E α = 1,m = 2,c = 3 — 0.8600 0.0053 3.1670e-06 0.0868 0.1655
IFCM_wH — 0.8667 0.0049 2.9529e-06 0.0609 0.1600
IFCM_wJiang — 0.8645 0.0047 2.8411e-06 0.0868 0.1650
IFCM_wE — 0.8654 0.0051 3.0922e-06 0.0649 0.2365
IFCM_wT — 0.8652 0.0025 1.5204e-06 0.0700 0.1136
IFCM_wET — 0.8757 0.0034 2.0695e-06 0.0881 0.1297
IFCM_wETC — 0.9342 0.0018 1.0544e-06 0.0700 0.2207

Iris FCM m = 2,c = 3 89.3333 0.7834 0.1165 0.0012 0.1050 0.0204
KFCM 71.3333 0.4101 0.0122 1.3696e-04 0.0363 0.0749
GK 90 0.7277 0.0980 9.1845e-04 0.0413 0.4477
IFCM_E α = 1,m = 2,c = 3 89.3333 0.7425 0.0782 7.9328e-04 0.0347 0.1341
IFCM_wH 95.3333 0.8336 0.0540 5.4520e-04 0.0347 0.0497
IFCM_wJiang 95.3333 0.8336 0.0540 5.4520e-04 0.0347 0.0594
IFCM_wE 96 0.8070 0.0659 6.6901e-04 0.1032 0.0818
IFCM_wT 95.3333 0.8361 0.0283 2.8515e-04 0.0347 0.1129
IFCM_wET 96 0.8171 0.0108 1.1081e-04 0.1073 0.1147
IFCM_wETC 96 0.8691 0.0065 6.5276e-05 0.1073 0.1237

Wine FCM m = 2,c = 3 68.5393 0.7909 7.3291e-04 6.8364e-06 0.0117 0.0298
KFCM 59.5506 0.5732 3.5055e-05 3.3227e-07 0.0135 0.0819
GK 60.6742 0.3541 6.8649e-04 4.9870e-06 0.0019 0.0626
IFCM_E α = 1,m = 2,c = 3 91.0112 0.5462 1.9816e-06 1.5387e-08 0.0033 0.0687
IFCM_wH 93.2584 0.5856 1.6115e-06 1.2501e-08 0.0035 0.7090
IFCM_wJiang 93.2584 0.5856 1.6115e-06 1.2501e-08 0.0035 0.1027
IFCM_wE 94.9438 0.5294 1.9362e-06 1.5043e-08 0.0039 0.0795
IFCM_wT 93.8202 0.5898 8.3655e-07 6.4972e-09 0.0035 0.0567
IFCM_wET 94.9438 0.5266 1.4107e-06 1.0919e-08 0.0034 0.0491
IFCM_wETC 95.5056 0.6450 7.4240e-07 5.8928e-09 0.0039 0.0972

Zoo FCM m = 2,c = 7 54.4554 0.4521 0.1726 0.0025 0.2182 0.0258
KFCM 53.4653 0.1506 0.0330 4.4126e-05 0.1925 0.1196
GK 53.4653 0.4340 0.4318 0.0046 0.1459 0.9514
IFCM_E α = 1,m = 2,c = 7 69.3069 0.3601 0.0522 6.6821e-04 0.1213 0.0660
IFCM_wH 73.2673 0.4825 0.0437 5.7273e-04 0.1195 0.3083
IFCM_wJiang 75.2475 0.4776 0.0437 5.3791e-04 0.1195 0.6095
IFCM_wE 66.3366 0.3738 0.0776 0.0010 01,187 0.0998
IFCM_wT 81.1881 0.4527 0.0363 4.4106e-04 0.1187 0.3100
IFCM_wET 79.2079 0.3983 0.0498 6.4063e-04 0.1187 0.2052
IFCM_wETC 82.1287 0.5285 0.0233 3.2999e-04 0.1213 0.1617

Breast Cancer Wisconsin FCM m = 2,c = 2 95.7082 0.8364 0.0633 9.0572e-05 0.1474 0.0936
KFCM 77.1102 0.5000 8.2307 0.0118 0.0387 0.7254
GK 86.8383 0.7362 0.0733 1.0489e-04 0.0777 0.4019
IFCM_E α = 1,m = 2,c = 2 92.2747 0.8433 0.0513 7.3443e-05 0.1421 0.0717
IFCM_wH 93.1330 0.8583 0.0398 5.6870e-05 0.1235 0.0828
IFCM_wJiang 93.1330 0.8583 0.0398 5.6870e-05 0.1235 0.1209
IFCM_wE 92.8469 0.8411 0.0498 7.1274e-05 0.1235 0.0790
IFCM_wT 93.2761 0.8628 0.0013 1.2505e-06 0.0984 0.4276
IFCM_wET 93.7053 0.8486 0.0015 2.1140e-06 0.0984 0.0847
IFCM_wETC 93.9914 0.8889 0.0011 1.5651e-06 0.0984 0.3520
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