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Abstract
Among machine learning paradigms, unsupervised transductive transfer learning is useful when no labeled data from the 
target domain are available at training time, but there is accessible unlabeled target data during training phase instead. The 
current paper proposes a novel unsupervised transductive transfer learning method to find the specific and shared features 
across the source and the target domains. The proposed learning method then maps both domains into the respective sub-
spaces with minimum marginal and conditional distribution divergences. It is shown that the discriminative learning across 
domains leads to boost the model performance. Hence, the proposed method discriminates the classes of both domains via 
maximizing the distance between each sample-pairs with different labels and via minimizing the distance between each 
instance-pairs of the same classes. We verified our approach using standard visual benchmarks, with the average accuracy 
of 46 experiments as 76.5%, which rates rather high in comparison with other state-of-the-art transfer learning methods 
through various cross-domain tasks.

Keywords Machine learning · Unsupervised transfer learning · Cross-domain problems · Discriminative learning · 
Respective subspaces

1 Introduction

Transfer learning has been the interest of many researches 
for the incurring performance boost of learning in target 
domain, which is originated from inheriting well-learned 
knowledge of source domain. The transductive transfer 
learning exploits the labeled training set and unlabeled test 
set for training the model to infer the labels of unlabeled test 
set [1]. For a new sample, the transductive transfer algo-
rithm trains the model on entire data including even the new 
sample. For an example in biological sequence classifica-
tion, the forthcoming unlabeled samples with different fea-
ture distribution needs to be labeled according to previous 
experiments [2].

In order to reduce the distribution difference across 
domains, transfer learning uses the following three lines of 
strategies. Model-based methods train a model with source 
domain and adapt the parameters of model for target domain 
[3, 4]. Instance-based methods re-weight the source samples 
and train a model on source data to adapt with target domain 
[5]. Feature-based methods aim to find feature sub-spaces 
where the distribution divergence across domains is mini-
mized [6–12].

Feature-based domain adaptation methods, based on 
the type of features in latent space are categorized into two 
strategies including data-alignment and subspace-alignment 
methods [11, 13]. Data-alignment methods transfer the sam-
ples of both domains from original feature space into a com-
mon latent subspace consists of the shared features across 
the source and the target domains. Subspace-alignment 
methods preserve either shared or specific features of both 
domains. Specific information of target domain, is essential 
for boosting the performance of model, which is trained on 
the source domain and predicts the labels of target samples 
[11].

In the current paper, we propose a novel subspace learn-
ing framework called Transductive Transfer Learning 
for image Classification (TTLC), which seeks a specific 
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low-dimensional feature space for each domain while the 
local and global information of samples is aligned. TTLC 
aligns distribution divergence across source and target 
domains through the following contributions. 

(1) In global-alignment, the marginal and conditional dis-
tribution discrepancies across domains are decreased 
via maximum mean discrepancy (MMD) [14]. Trans-
fer joint matching (TJM) [15], as a base-line method, 
globally aligns domains via adapting MMD to reduce 
the marginal distribution discrepancy across domains. 
In comparison with TJM, we additionally alleviate the 
conditional distribution discrepancy across the source 
and the target domains via MMD. Unlike TJM, TTLC 
maps both domains onto respective subspaces to pre-
serve more information. By investigating the results 
of TJM and our proposed method, we realize that the 
aligning domains through decreasing both the marginal 
and conditional distributions boosts the classifier per-
formance.

(2) For class discrimination, TTLC reduces the distances 
between each sample-pairs with same labels and 
increases the distances between each instance-pairs 
with different labels either in the source or target 
domain. Joint geometrical and statistical alignment 
(JGSA) [11], as an state-of-the-art method, discrimi-
nates the source features through within-class vari-
ance minimization, while TTLC discriminates both the 
source and the target features. Also, TTLC aligns both 
domains through class-wise alignment. Based on our 
experiment results, the class discrimination in TTLC 
leads to more precise margins between different classes 
in both domains, which leads to learn more accurate 
classifier.

(3) In local-alignment, the distances between both low-
dimensional subspaces are reduced. Domain invariant 
and class discriminative (DICD) [9], as an state-of-
the-art method, discriminates both the source and the 
target features via minimizing the distances between 
each instance-pairs with the same labels in source and 
target domains laying in a common subspace. DICD, 
also, maximizes the distances between each sample-
pairs with different labels in both domains. Our pro-
posed method through preserving both the specified 
and shared information of the source and the target 
domains boosts the performance of model.

(4) Our results over 46 visual domain adaptation tasks on 
four DA benchmarks including Office+Caltech-256 
(Surf) [16, 17], CMU-PIE [18], Digit [19, 20] and 
Office+Caltech-256 (Decaf6) [21] verify the effective-
ness of TTLC against other state-of-the-art methods in 
domain adaptation field.

The rest of the paper is organized as follows. The related 
work is reviewed in Sect. 2. Our proposed method is intro-
duced in Sect.  3. In Sect. 4, experiments are implemented 
and in Sect. 5, the conclusion and future works are provided.

2  Related work

Domain adaptation aims to transfer the learned knowledge 
from source to target domain where the machine learning 
algorithms can be reused for cross-domain problems [22]. 
However, domain adaptation approaches are divided into 
two categories, including unsupervised and semi-supervised 
domain adaptation [13]. In semi-supervised domain adapta-
tion, a little portion of the target samples has labels while 
in unsupervised domain adaptation, there are no labeled 
samples in the target domain. However, in most real-world 
applications, no labeled samples exist in target domain. 
Therefore, we focus on tackling the unsupervised domain 
adaptation problems in this paper.

Unsupervised domain adaptation setting consists of three 
lines of strategies including instance-based, model-based 
and feature-extraction methods. Recent researches in DA 
have focused on feature learning methods to mitigate the 
distribution mismatches between the source and the target 
domains. TTLC is associated with feature-extraction frame-
work, which consists of two subcategories including data-
alignment and subspace-alignment categories. Thus, in this 
section, we review some related methods in data-oriented 
and subspace-oriented strategies.

As a data-alignment method, Yong et al. proposed a low-
rank and sparse representation (LRSR) [8] method to solve 
the unsupervised domain adaptation problems. LRSR finds 
a common feature space where each target sample with a 
specific neighborhood, can be linearly reconstructed by the 
same neighbors in source domain. To achieve this, LRSR 
uses low-rank and sparse constraint on the reconstruction 
matrix. Moreover, for reducing the impact of outlier sam-
ples on resultant subspace, LRSR uses sparse constraint on 
noise matrix. Robust data geometric and structure aligned 
close yet discriminative domain adaptation (RSA-CDDA) 
[10] for adapting the gap between the source and the target 
domains, finds a common subspace on which the distance 
of the marginal and conditional distributions are minimized. 
RSA-CDDA uses low-rank and sparse constraint on recon-
struction matrix to reduce the reconstruction error. Visual 
domain adaptation (VDA) [6] tries to find a common latent 
subspace on which the marginal and conditional distribution 
discrepancies across the source and the target domains are 
jointly reduced. VDA benefits from domain invariant clus-
tering to discriminate across various classes [23]. Coupled 
local-global adaptation (CLGA) [7] finds the common fea-
tures across domains to reduce the marginal and conditional 
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distribution differences. CLGA builds a graph on a manifold 
and label the structure of both source and target samples. 
Hence, in a unified framework, CLGA aligns across the local 
and global distributions of source and target domains. Dis-
criminative and geometry aware domain adaptation (DGA-
DA) [24] benefits from model-based and feature-based 
strategies. In feature-based learning, DGA-DA finds a com-
mon subspace via repulsive force on the label structures of 
domains during the global distribution adaptation. In model-
based learning, DGA-DA aims to find a model based on the 
label smoothness consistency. Domain invariant and class 
discriminative (DICD) [9] aims to reduce the marginal and 
conditional distribution discrepancies across the source and 
the target domains. DICD rebuilds the class structures of 
data and maximizes the distances across the samples with 
different labels and condenses the distance between samples 
lying in the same classes. Subspace alignment (SA) [25], as a 
subspace-based method, maps both domains onto the respec-
tive subspaces by principal component analysis (PCA) [26] 
and aligns basis vectors of source to target domain through 
an optimal transformation matrix. Sun et al. improve SA 
to subspace distribution alignment (SDA) [27] by aligning 
both mapped domains as well as variance of the source and 
the target data for additionally aligning the data distribution.

As a subspace-centeric method, discriminative and 
domain invariant subspace alignment (DISA) [28], transfers 
source and target domains into the latent subspaces where 
the marginal and conditional distribution mismatches are 

decreased through MMD criterion. DISA increases the deci-
sion region in source and target domains through preserving 
the manifold and label structures of domains. Also, DISA 
brings each respective subspace closer to each other through 
the subspace-alignment process. Zhang et al. proposed joint 
geometrical and statistical alignment (JGSA) [11] to find 
two coupled specific embedded feature spaces for the source 
and the target domains where each subspaces consists of 
the shared and specific features of domains. To preserve the 
geometrical and statistical information of domains, JGSA 
decreases the marginal and conditional distribution dispari-
ties across the source and the target domains.

The proposed method is a subspace-based feature learn-
ing method, which aims to design a unique subspace for each 
domain where the marginal and conditional distribution mis-
matches across the respective source and target subspaces 
are minimized. Also, TTLC aligns the latent subspaces geo-
metrically through bringing the latent subspaces closer to 
each other. Moreover, TTLC maximizes the distances across 
each sample-pairs of different classes and minimizes the dis-
tances across each sample-pairs of the same classes.

3  Proposed method

This section introduces TTLC as a feature-based unsuper-
vised domain adaptation method to tackle the cross-domain 
problem. The main idea of TTLC is illustrated in Fig. 1, 

Fig. 1  Main idea of TTLC (Best viewed in color). The source and 
the target domains are shown in blue and red colors, respectively and 
various classes are illustrated using different shapes. a A classifier is 
trained using labeled source samples in original feature space. b Pre-
viously trained classifier on the source domain is used for predicting 
the pseudo-labels of target samples in original feature space. Since 

the distribution discrepancy across the source and the target domains 
is high, the classifier has very low accuracy. c TTLC transfers each 
domain into a respective feature spaces and aligns domains. d A clas-
sifier is trained on transferred source samples in the embedded feature 
space. e The trained classifier is used for labeling the target samples 
in new latent feature space
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where the source and the target distribution mismatches are 
high, and the data-alignment methods fail to find a com-
mon subspace across the source and the target domains. For 
solving this problem, TTLC transfers both domains into the 
respective subspaces to align domains. The frequently used 
notations are introduced in Table 1.

TTLC finds two respective subspaces where the source 
and the target distributions are mapped into each other. To 
this end, TTLC uses MMD to embed both the source and 
the target samples into reproducing kernel Hilbert space 
(RKHS) [29]. Therefore, reducing the distance between each 
class pairs of the source and the target domains in RKHS 
and minimizing the sample means of both domains will 
lead to a lower distribution divergence. TTLC uses PCA 
to find the respective subspaces, which target samples vari-
ance is maximized and the source within-class variance is 
minimized. Moreover, the larger margins across different 
classes of source domain help TTLC to classify target sam-
ples with fine accuracy. To this end, TTLC puts the samples 
of same classes into the shared clusters with reducing the 
distance between each pair of them. Also, decreasing the 
distance between samples of different classes maximizes 
the discriminativeness of the source domain. With an itera-
tive procedure, TTLC refines the predicted target pseudo 
labels and discriminates the target samples through source 
domain. Aligning the source and the target subspaces will 
lead to sample rotation and better alignment in embedded 
latent subspaces.

3.1  Problem definition

3.1.1  Domain

A domain D is included in a feature space X and a mar-
ginal probability distribution P(X). In the other words, 
D = {X,P(x)} where X = {x1, x2, ..., xm} and x ∈ X.

3.1.2  Task

For each specific domain, a task T is defined as T = {Y , f (x)} 
where Y is the label set for respective samples of domain, 

and f(x) is a classifier for labeling samples. Also, f(x) is 
known as the conditional probability distribution of samples. 
Thus, f (x) = P(y ∣ x) where y ∈ Y .

The source domain is denoted as Ds = {Xs,Ps(Xs)} 
and target domain is denoted as Dt = {Xt,Pt(Xt)} where 
Xs ∈ ℝ

m×ns and Xt ∈ ℝ
m×nt where, m is the dimension of 

source and target feature spaces, ns and nt are the number 
of samples in source and target domains, respectively. In 
unsupervised domain adaptation, there are sufficient source 
samples that are fully labeled where the source samples 
are denoted as DS = {xs

i
, ys

i
}
ns
i=1

 and each source sample xs
i
 

is associated with related label, ys
i
 . Also, none of the target 

samples have label and are denoted as DT = {xt
i
}
nt
i=1

 . The 
preliminary assumption in domain adaptation problems is 
that the source and the target domains are different but the 
tasks are the same [22]. More specifically, we assume feature 
and label spaces across the source and the target domains are 
equal where Xs = Xt , Ys = Yt . Also, the gap between domains 
exist where Ps(xs) ≠ Pt(xt) and Ps(ys ∣ xs) ≠ Pt(yt ∣ xt) . TTLC 
provides a unified framework that finds two related latent 
subspaces for source and target domains to minimize the 
marginal and conditional distribution disparities across 
domains. Also, each classes are discriminated, and the 
embedded subspaces are aligned.

3.2  Problem formulation

3.2.1  Distribution‑wise alignment

Marginal distribution divergence minimization: Since the 
source and the target domains are drawn from different dis-
tributions, we align both domains by adopting MMD as a 
non-parametric criterion. Thus, by minimizing the distance 
between the sample means of source and target domains 
via MMD, the marginal distribution of both domains are 
aligned. Thus, the marginal distribution divergence across 
both domains is computed as follows:

where tr(⋅) is the trace of matrix, X = [Xs,Xt] ∈ ℝ
m×(ns+nt) 

and M0 =

[
(M0)s (M0)st
(M0)ts (M0)t

]
∈ ℝ

(ns+nt)×(ns+nt) is the marginal 

MMD coefficient matrix, which (M0)s =
1

n2
s

 , (M0)st = −
1

nsnt
 , 

(M0)ts = −
1

ntns
 and (M0)t =

1

n2t
.

TTLC finds two projection matrices P1 and P2 to map the 
source and the target samples into the latent subspaces and 
brings sample means of both domains closer to each other.

(1)

‖‖‖‖‖‖
1

ns

∑
xi∈Xs

PT
1
xi −

1

nt

∑
xj∈Xt

PT
2
xj

‖‖‖‖‖‖

2

= minP1,P2
tr

(
[PT

1
PT
2
]XM0X

T

[
P1

P2

])

Table 1  Frequently used notations

Notation Description

X
s
∕X

t
The source/target data

n
s
∕n

t
Number of source/target samples

n
c

s
∕nc

t
Number of source/target samples in class c

m Original feature space dimension
k The embedded subspace dimension
C Number of classes
P1 and P2 Transformation matrices for respective subspaces
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Conditional distribution divergence minimization: Adapt-
ing the marginal distribution across the source and the target 
domains cannot guarantee that each same class in domains 
match as well. Thus, we are to cluster each class-pairs in 
domains closer. Considering the target samples have no 
label, we use a classic classifier like nearest neighbor (NN) 
[30] to train it with the labeled source samples to use for 
assigning pseudo-labels to target samples [31]. As the distri-
bution divergence across the source and the target domains 
is high, we design TTLC with an iterative structure to refine 
the labels. Therefore, the MMD as a measure for estimating 
the distance between the class means of both domains is 
used as follows:

where Mc =

[
(Mc)s (Mc)st
(Mc)ts (Mc)t

]
∈ ℝ

(ns+nt)×(ns+nt) is the condi-

tional MMD coefficient matrix that it is computed as fol-
lows, (Mc)s =

1

(nc
s
)2

 , (Mc)st = −
1

nc
s
nct

 , (Mc)ts = −
1

nct n
c
s

 and 
(Mc)t =

1

(nct )
2
.

TTLC finds two mapping matrices P1 and P2 to trans-
fer both domains into the respective low-dimensional sub-
spaces where both the sample and class means of domains 
are matched.

3.2.2  Knowledge transformation

Target domain variance maximization: TTLC exploits a 
dimensionality reduction method such as PCA to transfer 
the knowledge from the original space to learned subspaces. 
PCA guarantees to preserve the data information and maxi-
mizes the variance of target samples to minimize the data 
distortion. PCA seeks to find the mapping matrix P2 , as 
follows:

where Ht = It −
1

nt
1t1

T

t
 is the target centering matrix to pre-

serve the data information, It ∈ ℝ
nt×nt is the identity matrix 

and 1t ∈ ℝ
nt is the column one vector. By imposing the 

orthogonal constraint on transformation matrix P2, PCA pre-
vents to degenerate into zero. Thus, PCA finds a projection 
matrix to map the target samples into a relatively low-dimen-
sional subspace where the scatter of target samples is 
preserved.

Source domain within-class variance minimization: 
The model trained with the mapped source samples should 
be able to classify the mapped target samples with high 

(2)

C∑
c=1

‖‖‖‖‖‖
1

nc
s

∑
xi∈X

c
s

PT
1
xi −

1

nct

∑
xj∈X

c
t

PT
2
xj

‖‖‖‖‖‖

2

= minP1,P2
tr

(
[PT

1
PT
2
]XMcX

T

[
P1

P2

])

(3)maxPT
2
P2=I

tr(PT
2
XtHtX

T
t
P2)

accuracy. The source domain contains different classes 
with different structures. As much as the margin between 
classes increases, the trained model performs better to pre-
dict the labels of target samples. Therefore, we are to transfer 
the source samples into the most discriminated subspace 
to increase the accuracy of model. Thus, TTLC minimizes 
the within-class sample variance to condense the samples 
of each class, simultaneously, by transferring the source 
domain knowledge. The described concept is written, math-
ematically, as follows:

where Xc
s
∈ ℝ

m×nc
s is the source samples of class c, 

Hc
s
= Ic

s
−

1

nc
s

1
c

s
(1c

s
)T is the centering matrix, nc

s
 is the number 

of source samples that belonging to class c, Ic
s
∈ ℝ

nc
s
×nc

s and 
1
c

s
∈ ℝ

nc
s  are identity matrix and the ones vector, 

respectively.
TTLC finds a transformation matrix to map the source 

samples into a respective low-dimensional subspace, where 
it brings the sample distributions of the same classes closer 
to each other.

3.2.3  Discriminative clustering

As described in the previous sub-section, the maximum mar-
gin between the different source classes lead to improve the 
trained model accuracy. Thus, TTLC aligns the source and 
the target domains while each pair of samples with the same 
class are discriminatively matched between domains.

Within-class density: TTLC minimizes the distances 
between all instance-pairs belonging to the same class, 
while applying the proposed procedure to all source classes 
to create the condensed clusters. Also, TTLC finds a low-
dimensional subspace with discriminative clusters for the 
source domain, as follows:

where Ds
same

∈ ℝ
ns×ns is the distance coefficient matrix that 

balances the impact of different classes. However, the imbal-
anced number of samples in different classes causes the 
model trained with the majority source classes, and operates 
inefficiently for target domain. Thus, TTLC balances via 
coefficient ns

nc
s

 to compensate the impact of different classes 
[9]. The diagonal members of the distance coefficient matrix 
employs ns as the balancing coefficient where the distance 
between sample-pairs of the same classes is considered − ns

nc
s

 . 

(4)minP1
tr

(
PT
1

(
C∑
c=1

Xc
s
Hc

s
(Xc

s
)T

)
P1

)

(5)
minP1

C�
c=1

ns

nc
s

�
xi,xj∈X

c
s

‖PT
1
xi − PT

1
xj‖2

= minP1
tr(PT

1
XsD

s
same

XT
s
P1)
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Also, zero value is assigned for other distances to eliminate 
their impact.

Moreover, we apply the same procedure for target domain 
to cluster target samples discriminatively. TTLC utilizes the 
pseudo-labels for target samples and maps the target samples 
into a respective latent subspace with dense clusters, as follows:

w h e r e  (Dt
same

)ij =

⎧
⎪⎨⎪⎩

nt i = j

−
nt

nct
i ≠ j,∈ Xc

t

0 otherwise

,  Dt
same

∈ ℝ
nt×nt  , 

Xc
t
∈ ℝ

m×nc
t  is target samples and nc

t
 is the number of target 

samples in the class c.
Between-class expansion: Minimizing the within-class 

distribution solely does not guarantee that the different 
classes lie far away from each other. To this end, TTLC 
maximizes the distances between each instance-pairs of dif-
ferent classes. Thus, the different classes discriminatively 
place far away.

Moreover, TTLC finds a low-dimensional subspace for 
source domain where the between-class distances are maxi-
mized, as follows:

where Ds
diff

∈ ℝ
ns×ns is the distance coefficient matrix that 

(Ds
diff

)ij =

⎧⎪⎨⎪⎩

ns − nc
s
i = j, yi = c

−1 i ≠ j, yi ≠ yj
0 otherwise

 , yi is the label of the source 

samples.
TTLC also employs the same procedure for target 

domain. Thus, TTLC finds an embedded subspace where 
the different target classes lie as far as possible, as follows:

where P2 maps the target domain to the respective subspace 
a n d  Dt

diff
∈ ℝ

nt×nt  i s  c a l c u l a t e d  b y 

(Dt
diff

)ij =

⎧⎪⎨⎪⎩

nt − nc
t
i = j, yi = c

−1 i ≠ j, yi ≠ yj
0 otherwise

.

Integrating Eqs. (5) and (7) leads to create the discrimina-
tive clusters in the source domain. Also, integrating Eqs. (6) 

(6)
minP2

C�
c=1

nt

nct

�
xi,xj∈X

c
t

‖PT
2
xi − PT

2
xj‖2

= minP2
tr(PT

2
XtD

t
same

XT
t
P2)

(7)
maxP1

�
xi,xj∈Xs,yi≠yj

‖PT
1
xi − PT

1
xj‖2

= maxP1
tr(PT

1
XsD

s
diff

XT
s
P1)

(8)
maxP2

�
xi,xj∈Xt ,yi≠yj

‖PT
2
xi − PT

2
xj‖2

= maxP2
tr(PT

2
XtD

t
diff

XT
t
P2)

and (8) points to find a mapping matrix to transfer the target 
samples into a relative subspace with discriminative clusters. 
Thus, the trained model predicts the labels of target domain, 
more accurately.

3.2.4  Class‑wise alignment

TTLC is a subspace-based method jointly search for the 
specific and shared features of source and target domains, 
which leads to the least divergence across domains. Thus, 
TTLC matches all classes of source and target domains for 
precisely aligning domains.

For class-wise matching, TTLC minimizes the distance 
between all sample-pairs of the same classes across domains. 
Also, TTLC maximizes the distance between all instance-
pairs of different classes across the source and the target 
domains.

Therefore, TTLC finds two projection matrices where 
map the source and the target samples into the individual 
subspaces. In the respective subspaces, the gap between 
the instance-pairs from the source and the target domains 
is minimized. Also, the distance between the sample-pairs 
of the same classes from the target and source domains is 
mitigated. The proposed concept is written, mathematically, 
as follows:

where Dst
same

∈ ℝ
ns×nt is the distance coefficient matrix, 

which is calculated by (Dst
same

)ij =

{
ns

nc
s

nt

nct
i ∈ Xc

s
, j ∈ Xc

t

0 otherwise
 , to 

balance the impact of various classes of source and target 
domains.

The same procedure is exploited for the target domain and 
is formulated as follows:

where (Dts
same

)ij =

{
nt

nct

ns

nc
s

i ∈ Xc
t
, j ∈ Xc

s

0 otherwise
 is the distance coef-

ficient matrix for aligning the target subspace with the 
source subspace.

For discriminative class-wise alignment, TTLC maxi-
mizes the distance between all instance-pairs of different 
classes across the source and the target domains. Thus, the 
margin between different classes is increased. TTLC finds 
the respective subspaces where the same paired classes in 

(9)
minP1,P2

C�
c=1

ns

nc
s

nt

nct

�
xi∈X

c
s
,xj∈X

c
t

‖PT
1
xi − PT

2
xj‖2

= minP1,P2
tr(PT

1
XsD

st
same

XT
t
P2)

(10)
minP1,P2

C�
c=1

ns

nc
s

nt

nct

�
xi∈X

c
t ,xj∈X

c
s

‖PT
2
xi − PT

1
xj‖2

= minP1,P2
tr(PT

2
XtD

ts
same

XT
s
P1)
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source and target domains are matched and the margins 
between different classes in each domain are maximized. 
We mathematically show the described procedure across the 
source into the target domain as follows:

where (Dst
diff

)ij =

{
−1 i ∈ Xs, j ∈ Xt, yi ≠ yj
0 otherwise

.

(11)
maxP1,P2

�
xi∈Xs,xj∈Xt ,yi≠yj

‖PT
1
xi − PT

2
xj‖2

= maxP1,P2
tr(PT

1
XsD

st
diff

XT
t
P2)

TTLC also maximizes the distance between all sample-
pairs of target domain and source samples of different 
classes as follows:

where (Dts
diff

)ij =

{
−1 i ∈ Xt, j ∈ Xs, yi ≠ yj
0 otherwise

 . Moreover, -1 

is assigned as the distance coefficient for each sample-pairs 
of different classes and zero is set for other sample-pairs 
across the source and the target domains.

3.2.5  Subspace‑wise alignment

Since the TTLC preserves more information of source and 
target domains by finding the shared and specific features 
of domains, the divergence across learned low-dimensional 
subspaces should be minimized. To this end, TTLC brings 
the source subspace closer to the target subspace. The 
defined concept is written as follows:

where ‖ ⋅ ‖2
F
 is the Frobenius norm. Thus, TTLC finds two 

transformation matrices, which the source and the target 
subspaces are aligned with each other.

(12)
maxP1,P2

�
xi∈Xt ,xj∈Xs,yi≠yj

‖PT
2
xi − PT

1
xj‖2

= maxP1,P2
tr(PT

2
XtD

ts
diff

XT
s
P1)

(13)minP1,P2
‖P1 − P2‖2F

3.3  Optimization problem

TTLC as an unsupervised domain adaptation method maxi-
mizes the performance of model to predict the labels of the 
target samples. To this end, Eq. (1) through (13) are inte-
grated to find two projection matrices based on Rayleigh 
quotient [31] to map both domains into the respective sub-
spaces, which the marginal and conditional distributions are 
minimized, the related clusters are discriminatively matched 
and both subspaces are aligned, as follows:

Equation (14) is calculated via eigenvalue decomposition 
where the k biggest eigenvectors are selected as two coupled 
transformation matrices to map the source and the target 
domains into two subspaces where the distribution diver-
gence across both domains are minimized. Thus, the pro-
posed method is summarized in Algorithm 1.

Based on Eq. (14), TTLC has five hyper-parameters, 
which they control the learning process. The optimal value 
of parameters � , � , � and � are learned via the cross-valida-
tion. Therefore, the parameter � adjusts the discriminative 
clustering part of the algorithm, and � controls the source 
domain within-class variance. Also, � adjusts the subspace-
wise alignement part of model and � transfers the target 
domain knowledge into the embedded target subspace. How-
ever, the optimal value of each parameter is dependent on 
the value of other hyper-parameters, where we investigate 
the value of each parameter in the range [0.0001, 1] while 
the other parameters are fixed.

For achieving to optimal functionality of TTLC, we 
empirically set � = 0.1 , � = 0.5 , � = 0.5 , � = 0.5 , k = 30 for 
Office+Caltech-256 (Surf) datasets. For CMU-PIE dataset, 
we set � = 1 , � = 0.5 , � = 5 , � = 0.5 , k = 140 as the optimal 
parameters. Also, the optimal parameters for Digit dataset is 
set to � = 0.05 , � = 0.005 , � = 1 , � = 5 , k = 70 . The optimal 
number for the algorithm iteration for label refinement is set 
to 10 for all three datasets. 
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Algorithm 1 Transductive transfer learning approach for image classification
1: Input: Xs, Xt, Ys, parameters: λ = 0.5, µ = 0.5, k = 30, T = 10, β = 0.5, α = 0.1
2: Output: target domain labels yt
3: Learn 1-NN classifier f on (Xs, Ys)
4: Predict the pseudo labels of target domain Yt0 , by classifier f
5: Repeat until convergence
6: Solve Equation 14 and select the k biggest eigenvectors as P1 and P2
7: Learn the classifier f on (PT

1 Xs, Ys)
8: Update pseudo labels, Yt0 , on (PT

2 Xt)
9: Update matrix Mc according to Equation 2
10: End repeat
11: Return target domain labels yt predicted by classifier f which is trained on (PT

1 Xs, Ys)

3.4  Time complexity

Analyzing the time complexity of TTLC is as follows. In the 
first step, training an NN classifier would have O(mns) . Pre-
dicting the pseudo-labels of target samples would cost 
O(mnt) . Constructing the MMD coefficient matrices by 
Eqs. (1) and (2) have O((ns + nt)

2) computational complex-
ity. Computing Ds

same
 and Ds

diff
 , cost O((ns)2) and, Dt

same
 and 

Dt
diff

 have O((nt)2) time complexity. Computing Dst
same

 , Dts
same

 , 
Dst

diff
 and Dts

diff
 obtain O((ns + nt)

2) . Computational complex-
ity of solving Eq. (14) and selecting the k biggest eigenvec-
tors as P1 and P2, is O(k3) , where k is the dimension number. 
Therefore, the whole time complexity of TTLC is 
O((ns + nt)

2 + k3).

Fig. 2  The first row represents 
the Office+Caltech-256 (Surf) 
datasets, and the second row 
represents CMU-PIE and USPS 
and MNIST datasets (from left 
to right)

4  Experiments

In this section, we compare our proposed method with other 
state-of-the-art domain adaptation methods and verify the 
effectiveness of TTLC. We also analyze the efficiency of 
TTLC on standard visual benchmarks, where the details 
of the experimental setup and parameter sensitivity are 
explained in the rest.

4.1  Standard benchmarks

Office+Caltech-256 (SURF): One of the popular object rec-
ognition benchmark is Office dataset [16] that consists of 31 
object images in following three different domains: Ama-
zon (A: images downloaded from amazon.com), DSLR (D: 
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images taken with high-resolution SLR camera), Webcam 
(W: low-resolution images taken with webcam). Moreover, 
Caltech (C) dataset [17] is an image set that consists of 256 
categories with 30607 images. However, 800 SURF features 
[16] are extracted from Office+Caltech-256 datasets. We 
conduct 12 cross-domain tasks that each domain is selected 
as the source and the target domains, e.g., Caltech domain as 
the source domain and Amazon domain as the target domain 
where ten common classes are selected as domain sets.

CMU-PIE: For the face recognition task, CMU-PIE 
dataset [18] is a standard benchmark that consists of 41,368 
grayscale images, which taken from 68 persons with dif-
ferent illuminations and from different angles. CMU-PIE 
composes of different domains where P1 has images with 
left pose, P2 has upward pose, P3 has downward pose, P4 
has front pose and P5 has right pose. We conduct 20 domain 
adaptation experiments on which one domain is selected as 
source domain and the other one as target domain.

Table 2  Accuracy (%) on 12 
pairs of source/target domains 
on Office+Caltech-256 (Surf) 
datasets

Dataset PCA JDA LRSR DICD JGSA RTML VDA CDDA CLGA TTLC TTLC
(2013) (2016) (2017) (2017) (2017) (2017) (2017) (2018) (kNN) (AC)

C ⟶ A 36.95 44.78 51.25 47.29 50.46 49.26 46.14 48.33 48.02 56.68 57.20
C ⟶ W 32.54 41.69 38.64 46.44 46.53 44.72 46.1 44.75 42.37 51.86 54.92
C ⟶ D 38.22 45.22 47.13 49.68 44.75 47.56 51.59 48.41 49.04 45.22 43.31
A ⟶ C 34.73 39.36 43.37 42.39 41.5 43.68 42.21 42.12 42.3 40.34 41.41
A ⟶ W 35.59 37.97 36.61 45.08 45.76 44.32 51.19 41.69 41.36 55.25 48.14
A ⟶ D 27.39 39.49 38.85 38.85 47.13 43.86 48.41 37.58 36.31 57.32 43.95
W ⟶ C 26.36 31.17 29.83 33.57 35.41 34.83 27.6 31.97 32.95 30.54 32.77
W ⟶ A 31.00 32.78 34.13 34.13 38.67 35.28 26.1 37.27 34.57 39.87 37.68
W ⟶ D 77.07 89.17 82.8 89.81 90.45 91.02 89.18 87.9 92.36 89.81 85.99
D ⟶ C 29.65 31.52 31.61 34.64 29.92 34.58 31.26 34.64 33.66 31.43 29.83
D ⟶ A 32.05 33.09 33.19 34.45 38.00 33.26 37.68 33.51 89.83 40.81 39.56
D ⟶ W 75.93 89.49 77.29 91.19 91.12 89.68 90.85 90.51 35.99 91.86 85.76
Average 39.75 46.31 45.39 48.96 50.04 49.34 49.03 48.22 48.23 52.58 50.04

Table 3  Accuracy (%) on 20 
pairs of source/target domains 
on CMU-PIE dataset

Dataset PCA JDA LRSR DICD JGSA RTML VDA CDDA CLGA TTLC
(2013) (2016) (2017) (2017) (2017) (2017) (2017) (2018) (kNN)

P1 ⟶ P2 24.8 58.81 65.87 72.99 74.28 60.12 72.99 60.22 67.83 83.86
P1 ⟶ P3 25.18 54.23 64.09 72.00 74.94 55.21 61.64 58.7 63.85 83.09
P1 ⟶ P4 29.26 84.5 82.03 92.22 92.91 85.19 90.12 83.48 88.95 96.37
P1 ⟶ P5 16.3 49.75 54.9 66.85 61.03 52.98 42.4 54.17 61.76 77.21
P2 ⟶ P1 24.22 57.62 45.54 69.93 71.1 58.13 72.87 62.33 71.4 80.91
P2 ⟶ P3 45.53 62.93 53.49 65.87 73.59 63.92 75.61 64.64 72.98 80.39
P2 ⟶ P4 53.35 75.82 71.43 85.25 88.95 76.16 83.6 79.9 86.24 93.78
P2 ⟶ P5 25.43 39.89 47.97 48.71 65.25 40.38 57.72 44.00 51.23 77.88
P3 ⟶ P1 2.95 50.96 52.49 69.36 68.16 53.12 58.76 58.46 70.17 84.51
P3 ⟶ P2 40.45 57.95 55.56 65.44 80.05 58.67 74.65 59.73 73.48 84.9
P3 ⟶ P4 46.14 68.45 77.5 83.39 87.5 69.81 87.53 77.2 89.31 97.48
P3 ⟶ P5 25.31 39.95 54.11 61.4 67.22 42.13 52.63 47.24 55.51 80.21
P4 ⟶ P1 31.96 80.58 81.54 93.13 93.43 81.12 92.35 83.1 89.56 98.56
P4 ⟶ P2 60.96 82.63 58.39 90.12 93.98 83.92 92.27 82.26 92.94 97.05
P4 ⟶ P3 72.18 87.25 82.23 88.97 89.58 89.51 90.38 86.64 93.08 94.06
P4 ⟶ P5 35.11 54.66 72.61 75.61 80.15 56.26 69.98 58.33 71.63 87.62
P5 ⟶ P1 18.85 46.46 52.19 62.88 57.35 29.11 49.91 48.02 57.68 76.59
P5 ⟶ P2 23.39 42.05 49.41 57.03 68.88 33.28 62.31 45.61 55.43 79.07
P5 ⟶ P3 27.21 53.31 58.45 65.87 69.98 39.89 61.27 52.02 58.03 83.95
P5 ⟶ P4 30.34 57.01 64.31 74.77 84.41 47.13 71.19 55.99 71.85 93.12
Average 33.85 60.24 63.53 73.09 77.14 58.8 71.00 63.1 72.15 86.53
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Digit: MNIST (M) [19] and USPS (U) [20] datasets are 
used as standard digital recognition benchmarks. Based on 
[31], 2000 images of MNIST dataset and 1800 images of 
USPS dataset are selected for experiments. We conduct the 
following two experiments, i.e., USPS as the source domain 
and MNIST as the target domain and vice versa. Figure 2 
demonstrates the Office+Caltech-256 (Surf) datasets, CMU-
PIE and Digit benchmarks.

Office+Caltech-256 (DeCaf6): The dataset consists of 
four domains including Amazon (A), DSLR (D), Webcam 
(W) and Caltech (C) where model is trained on top 4096 
deep convolutional activation features (Decaf6) [21]. A con-
volutional neural network (CNN) is pre-trained on ImageNet 
dataset and the weights of CNN is produced as DeCaf6 fea-
tures. Since the deep methods could train on the original 
high-resolution images e.g., ImageNet dataset, DeCaf6 fea-
ture is used to compare the effectiveness of the proposed 
method with a deep one [32].

4.2  Implementation details

Domain adaptation methods reduce the divergence across 
domains and increase the performance of the model. The 
performance of model is measured via an evaluation metric 
as follows [31]:

where f(x) denotes the predicted label by trained model for 
instance x, and y(x) is the true label.

4.3  Experimental setup

We evaluate the performance of TTLC as an unsupervised 
domain adaptation method on four visual benchmarks 
through 46 cross-domain experiments in comparison with 
PCA [26], JDA [31], LRSR [8], DICD [9], JGSA [11], 
RTML [33], VDA [6], CDDA [34], CLGA [7].

We follow the same protocol as [31] for the experimental 
setup, to compare TTLC as a DA method with other state-
of-the-art methods. The experiment results of TTLC and 
other domain adaptation methods are shown in Tables 2, 
3 and 4, which the best results highlighted in bold. Also, 
We use an adaptive classifier (AC) on Office+Caltech-256 

(15)Accuracy =
�{x ∶ x ∈ Xt

⋀
f (x) = y(x)}�

nt

(Surf) datasets instead of kNN to generate pseudo labels. 
The results in Table 2 show that pseudo labels are not rely 
on kNN.

Based on Fig. 3a, b, we notice that TTLC in comparison 
with JGSA where is the best-compared method, outperforms 
in 9 out of 12 tasks on Office+Caltech-256 (Surf) datasets. 
Also, Fig. 3c, d depict that TTLC outperforms JGSA, in all 
cases with 9.39% mean accuracy improvements on CMU-
PIE dataset. Based on Fig. 3e, TTLC outperforms JGSA 
with 1.77% on Digit dataset. We show that TTLC in chal-
lenging experiments, e.g., C ⟶ W  , A ⟶ D , C ⟶ A , 
with a large distribution divergence across the source and 
the target domains, performs outstanding in comparison with 
other state-of-the-art methods. In the rest, we compare our 
proposed method with other compared methods with more 
detail.

PCA as a baseline machine learning method, maps the 
source and the target domains into a common subspace while 
the sample variance of domains is maximized. However, 
PCA ignores to reduce the distribution gap between domains 
while our TTLC finds the respective subspaces for each 
domain and minimizes the marginal and conditional distri-
bution differences. TTLC outperforms PCA with 12.83%, 
52.68% and 20.46% improvements on Office+Caltech-256 
(Surf), CMU-PIE and Digit datasets, respectively.

JDA transfers source and target domains into a shared 
subspace where the marginal and conditional distribution 
divergences are minimized. However, TTLC maps the 
source and the target domains into respective subspaces with 
the minimum marginal and conditional distribution differ-
ences, where it creates the discriminative clusters to boost 
the performance of model. TTLC works better than JDA in 
all tasks and improves the average accuracy with amounts of 
6.27%, 26.29% and 12.58% on Office+Caltech-256 (Surf), 
CMU-PIE and Digit datasets, respectively.

LRSR transfers both domains into a shared common 
subspace where the sample reconstruction error is mini-
mized and data information is preserved via employing the 
low-rank constraint. Unlike LRSR, TTLC preserves data 
information via finding the specific and shared features 
and discriminates the source and the target domains. TTLC 
in comparison with LRSR has 7.19%, 23% and 11.88% 
improvements on Office+Caltech-256 (Surf), CMU-PIE and 
Digit datasets, respectively.

Table 4  Accuracy (%) on 2 
pairs of source/target domains 
on USPS+MNIST datasets

Dataset PCA JDA LRSR DICD JGSA RTML VDA CDDA CLGA TTLC
(2013) (2016) (2017) (2017) (2017) (2017) (2017) (2018) (kNN)

U ⟶ M 44.95 59.65 54.51 65.2 68.15 61.82 62.95 62.05 58.35 69.15
M ⟶ U 66.22 67.28 73.82 77.83 80.4 69.52 74.95 76.22 71.28 82.94
Average 55.59 63.47 64.17 71.52 74.28 65.67 68.95 69.14 64.81 76.05
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Table 5  Accuracy (%) on 12 
pairs of source/target domains 
on Office+Caltech-256 
(Decaf6) datasets

Dataset AlexNet JDA DDC ELM AELM TAISL PUnDA SCA CDDA TIT TTLC
(2012) (2013) (2014) (2016) (2016) (2017) (2017) (2017) (2017) (2018) (kNN)

C ⟶ A 91.9 89.7 91.9 89.07 89.46 90 90.3 89.46 90.71 89.5 92.90
C ⟶ W 83.7 83.7 85.4 70.51 79.32 85.3 88.3 85.42 85.76 92.1 87.46
C ⟶ D 87.1 86.6 88.8 78.98 81.53 90.6 76.2 87.9 91.72 86.7 92.99
A ⟶ C 83 82.2 85 79.61 79.96 80.1 82.3 78.81 85.66 83.8 88.33
A ⟶ W 79.5 78.6 86.1 74.56 77.63 77.9 82.7 75.93 78.31 91.4 83.05
A ⟶ D 87.4 80.2 89 80.25 85.35 85.1 76.2 85.35 84.08 89.1 89.81
W ⟶ C 73 80.5 78 70.61 71.24 82.6 82.6 74.18 86.02 80.2 85.22
W ⟶ A 83.8 88.1 84.9 75.37 76.83 85.6 86.9 86.12 89.77 89.3 91.54
W ⟶ D 100 100 100 100 100 97.7 89.8 100 100 94.9 100
D ⟶ C 79 80.1 81.1 68.21 75.6 84 69.2 78.09 86.2 80.7 86.02
D ⟶ A 87.1 89.4 89.5 80.79 83.19 87.6 83.1 89.98 91.34 92.5 92.80
D ⟶ W 97.7 98.9 98.2 98.31 98.98 95 93.4 98.64 100 88.1 100
Average 86.1 86.5 88.2 80.52 83.25 86.87 83.42 85.88 89.13 88.2 90.84

Fig. 3  Accuracy (%) of TTLC in comparison against cross-domain visual problems. a, b Office+Caltech-256 (Surf), c, d CMU-PIE, e 
USPS+MNIST (best viewed in color)
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DICD as a traditional state-of-the-art method maps the 
source and the target domains into a common embedded 
subspace. DICD minimizes the marginal and conditional dis-
tribution divergences where each sample-pairs in the same 
classes are condensed and the distances between sample-
pairs of different classes are maximized. TTLC unlike the 
DICD finds two coupled subspaces for the source and the 
target domains with discriminative clusters and mitigates 
the distribution gaps across domains. Thus, the shared and 
specific features for each domain are found and the most 
important information of data is preserved. TTLC obtains 
3.62%, 13.44% and 4.53% improvements against DICD 
on Office+Caltech-256 (Surf), CMU-PIE, Digit datasets, 
respectively.

JGSA maps the source domain into a relative subspace 
that consists of the shared and specific features while the 
within-class variances are minimized. Also, JGSA for mini-
mizing the sample reconstruction error, transfers the target 
samples into a low-dimensional subspace where the target 
domain variance is maximized. Therefore, through the distri-
bution adaptation, the marginal and conditional distribution 
divergences across domains are minimized. Nevertheless, 
TTLC finds more discriminative features through creat-
ing condenced clusters in source and target domains while 
between-class distances are maximized. Also, TTLC finds 
discriminative subspaces where distance between source 
and target equal paired classes are minimized and distance 
between different classes of domains are maximized. Thus, 
TTLC outperforms JGSA with 2.54%, 9.39% and 1.77% 
improvement on Office+Caltech-256 (Surf), CMU-PIE and 
Digit benchmarks, respectively.

RTML adapts source and target domains based on feature 
and sample spaces. In sample space, RTML reduces the mar-
ginal and conditional distribution gaps using domain-wise 
and class-wise adaptations, respectively. In feature space, 
RTML employs the low-rank constraint. However, TTLC 
minimizes the marginal and conditional distribution diver-
gences and discriminates classes for maximizing the clas-
sifier efficiency. TTLC improves the classifier performance 
against RTML with 3.24% on Office+Caltech-256 (Surf) 
datasets, 27.73% on CMU-PIE dataset and 10.38% on Digit 
dataset.

VDA reduces the marginal and conditional distribution 
gaps via mapping the source and the target domains into 
a low-dimensional subspace with the least sample mean 
distance across domains and sample mean across all same 
classes. VDA uses domain invariant clustering to discrimi-
nate the source classes. In addition to reduce the marginal 
and conditional distribution disparities across domains, 
TTLC discriminates source and target classes via mini-
mizing the sample-pairs distances in the same classes and 

maximizing the instance-pairs distances between different 
classes. TTLC outperforms VDA with 3.55%, 15.53% and 
7.1% on Office+Caltech-256 (Surf), CMU-PIE and Digit 
datasets, respectively.

CDDA maps the source and the target domains into a 
shared subspace with the least marginal and conditional 
distribution differences across domains and discriminates 
classes by employing the repulsive term on domains. CDDA 
preserves the label smoothness and geometrical structure of 
samples. TTLC focuses to discriminate on both domains and 
preserves the sample information via finding two respective 
subspaces. TTLC outperforms CDDA with 4.36%, 23.43% 
and 6.91% on Office+Caltech-256 (Surf), CMU-PIE and 
Digit datasets, respectively.

CLGA finds a common subspace based on manifold graph 
for preserving the local and global information of samples. 
However, TTLC finds the respective subspaces with specific 
and shared features. TTLC performs better than CLGA with 
4.35%, 14.38% and 11.24% on Office+Caltech-256 (Surf), 
CMU-PIE and Digit datasets, respectively.

Recently, deep DA methods have been considered 
for their high performance. According to investigate the 
effectiveness of TTLC in comparison with deep methods, 
we train TTLC on Decaf6 features, which experimen-
tal results are shown in Table  5. For evaluating TTLC 
against other state-of-the-art methods, the performance 
of JDA, CDDA and TIT [35], as data-alignment methods, 
are reported. Based on the results, TTLC outperforms in 
most of the experiments in cross-domain tasks. TTLC out-
performs TIT, newly introduced method, with 2.64% on 
Office+Caltech-256 (Decaf6) datasets. TTLC outperforms 
SCA [36], a traditional subspace-based DA method, with 
4.96% on Office+Caltech-256 (Decaf6) datasets. Moreover, 
the performance of TTLC against ELM [37], AELM [37], 
AlexNet [38], DDC [39], TAISL [40] and PUnDA [41], as 
the state-of-the-art deep domain adaptation methods, is con-
sidered. TTLC with 90.84% accuracy, outperforms ELM and 
AELM. Moreover, TTLC works better than AlexNet and 
DDC, the traditional deep methods, with 4.74% and 2.64% 
improvements, respectively.

Despite these comparisons, it should be noted that deep 
methods must be trained on massive amount of labeled data-
sets for reliably prediction of target labels [42]. Compared 
to deep methods, TTLC with training on enough but not 
huge datasets, outperforms compared deep DA methods. 
Moreover, Deep methods have more time complexity even 
on GPUs, although some of them could not be run on CPUs. 
In comparison, TTLC is applicable with the least resources 
and reasonable execution time.
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4.4  Parameter sensitivity

TTLC has five regularization parameters where in this 
section, we analyze the parameter influence on the per-
formance of model on Office+Caltech-256 (Surf), CMU-
PIE and Digit datasets. For tuning the optimal values of 
hyper-parameters, we change the value of each parameter 
in [0.0001, 1] range while we fix others. Figure 4 reports 
the average experimental accuracy of TTLC for different 
values of parameters, including � , � , � and � from [0.0001, 
1] range on Office+Caltech-256 (Surf) datasets. From 
Fig. 4a, we can observe that small values for � increases the 
performance of TTLC. Thus, we set � = 0.1 as the default 
and optimal value for experiments on Office+Caltech-256 
(Surf) datasets. Figure 4b–d illustrate that increasing the 
value of � , � and � leads TTLC to perform efficiently, thus, 
we set � = 0.5 , � = 0.5 and � = 0.5 as the optimal values. 
Figure 4e suggests that the subspaces with small dimen-
sions adapt efficiently. Thus, on Office+Caltech-256 (Surf) 
datasets, subspaces with 30 features preserve efficient data 
information. Figure 4f shows the convergence of TTLC on 

five challenging experiments, including D ⟶ W , D ⟶ A , 
W ⟶ D , A ⟶ D and A ⟶ C where TTLC converges in 
10 iterations.

Figure 5 illustrates average accuracy of TTLC with vary-
ing values of regularization parameters on CMU-PIE data-
set. Experimental results in Fig. 5a–d show that increasing 
the values of � , � , � and � from [0.0001, 1] range, leads 
to better performance. Thus, we empirically set � = 1 and 
� = 5 . Also for all experiments on CMU-PIE dataset, we set 
� and � to be 0.5 as default value. Figure 5e reports the effi-
ciently knowledge transfers of TTLC whenever the domains 
are mapped into subspaces with 140 features. Figure 5f 
illustrates accuracy of TTLC on P1 ⟶ P3 , P2 ⟶ P1 , 
P2 ⟶ P3 , P4 ⟶ P1 , P4 ⟶ P2 and P5 ⟶ P4 tasks 
on CMU-PIE dataset where TTLC converges in only 10 
iterations.

Figure  6 reports the average accuracy of TTLC by 
varying values of � , � and � from [0.0001, 1] range on 
USPS+MNIST dataset. Thus, � = 0.005 , � = 1 and � = 5 are 
as default values. Figure 6a evaluates TTLC on Digit dataset 
with 0.0001, 0.0005, 0.001, 0.005, 0.01 and 1 values to finde 
the optimal value of parameter � . Thus, we empirically set � 

Fig. 4  Parameters sensitivity evaluation on Office+Caltech-256 
(Surf) datasets. a Sensitivity of regularization parameter � with 
respect to average accuracy (%), b sensitivity of regularization param-
eter � with respect to average accuracy (%), c impact of regulariza-
tion parameter � with respect to average accuracy (%), d sensitivity 

of parameter � with respect to average accuracy (%), e the number 
of subspaces with respect to average accuracy (%), f the number of 
iteration, T, with respect to accuracy (%) on D ⟶ W , D ⟶ A , 
W ⟶ D , A ⟶ D , A ⟶ C experiments
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to 0.05. Figure 6e shows that our model performs accurately 
when samples are mapped into subspace with 70 features. 
Figure 6f proves that TTLC converges in 10 iterations for 
both experiments on Digit datasets.

4.5  Ablation study

Table 6 reports the accuracy of TTLC on 12 pairs of source 
and target domains on Office+Caltech-256 (Surf) datasets 
with respect to dropping parameters including � , � , � and � . 
Dropping � from TTLC eliminates discriminativeness from 
the model. As shown in Table 6, the performance of TTLC 
by discriminating different classes, through adopting � , will 
be increased. Accuracy degradation of TTLC through drop-
ping � is 6.72%, where � adjusts the source domain within-
class variance. Based on Fig. 4b, the sensitivity of � on 
TTLC, and through average accuracy degradation of TTLC 
by dropping � , which results are reported in Table 6, the 
most variance minimization in every single source classes 
leads to higher model performance. Through dropping � , 
9.58% average accuracy degradation of our method proves 
that the alignment of both respective subspaces maximizes 
the model efficiency. Target domain knowledge transfer is 

adjusted with � parameter and eliminating it decreases the 
average accuracy of TTLC about 24.99%. Eventually, elimi-
nating the source domain within-class variance minimiza-
tion, target variance maximization, class discriminativeness 
and subspace alignment from TTLC reduce the model effi-
ciency to 19.49%.

5  Conclusion and future work

In this paper, we proposed a novel unsupervised domain 
adaptation method namely Transductive Transfer Learn-
ing approach for image Classification (TTLC). TTLC finds 
two mapping matrices according to both the specific and 
the shared features of source and target domains with mini-
mum distribution divergence across domains. Superiority 
of TTLC is verified on 46 visual cross domain problems in 
comparison with other state-of-the-art methods. We intend 
to extend TTLC as an online domain adaptation approach 
for real-time labeling. Moreover, since the deep learning is 
growing as a hot topic in artificial intelligence, extending 
TTLC as a deep neural network will be on the agenda. Also, 
we intend to extend TTLC for tackling missing modality 

Fig. 5  Parameters sensitivity evaluation on CMU-PIE dataset. a Sen-
sitivity of regularization parameter � with respect to average accuracy 
(%), b sensitivity of regularization parameter � with respect to aver-
age accuracy (%), c impact of regularization parameter � with respect 
to average accuracy (%), d sensitivity of parameter � with respect 

to average accuracy (%), e the number of subspaces with respect to 
average accuracy (%), f the number of iteration, T, with respect to 
accuracy (%) on P1 ⟶ P3 , P2 ⟶ P1 , P2 ⟶ P3 , P4 ⟶ P1 , 
P4 ⟶ P2 , P5 ⟶ P4 experiments
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Fig. 6  Parameters sensitivity evaluation on USPS and MNIST data-
sets. a Sensitivity of regularization parameter � with respect to aver-
age accuracy (%), b sensitivity of regularization parameter � with 
respect to average accuracy (%), c impact of regularization parameter 

� with respect to average accuracy (%), d sensitivity of parameter � 
with respect to average accuracy (%), e the number of subspaces with 
respect to average accuracy (%), f the number of iteration, T, with 
respect to accuracy (%) on U ⟶ M and M ⟶ U experiments

Table 6  Accuracy (%) 
degradation investigation 
through dropping method 
parameters on 12 pairs of 
source/target domains on 
Office+Caltech-256 (Surf) 
datasets

Dataset � � � � All parameters TTLC

C ⟶ A 52.92 45.62 49.16 35.07 20.56 56.68
C ⟶ W 47.12 32.88 40.68 26.44 7.46 51.86
C ⟶ D 47.13 32.48 42.04 21.66 8.28 45.22
A ⟶ C 39.72 39.98 36.69 31.88 24.13 40.34
A ⟶ W 56.95 41.36 26.44 30.17 12.20 55.25
A ⟶ D 49.04 42.04 23.57 36.31 15.29 57.32
W ⟶ C 30.54 31.08 27.43 11.58 14.78 30.54
W ⟶ A 40.19 37.16 38.00 9.92 24.53 39.87
W ⟶ D 88.54 91.08 85.99 52.23 38.85 89.81
D ⟶ C 31.17 27.52 27.60 18.34 22.53 31.43
D ⟶ A 40.50 37.27 29.54 14.41 26.93 40.81
D ⟶ W 90.17 91.86 88.81 43.05 18.31 91.86
Average 51.17 45.86 43.00 27.59 19.49 52.58

problems [43]. Thus, we are to boost the model when there 
is no related source domain.
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